Sample records for inverse variance method

  1. Constructing inverse probability weights for continuous exposures: a comparison of methods.

    PubMed

    Naimi, Ashley I; Moodie, Erica E M; Auger, Nathalie; Kaufman, Jay S

    2014-03-01

    Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.

  2. Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis.

    PubMed

    Austin, Peter C

    2016-12-30

    Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  3. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  4. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.

  5. Pilot Study on the Applicability of Variance Reduction Techniques to the Simulation of a Stochastic Combat Model

    DTIC Science & Technology

    1987-09-01

    inverse transform method to obtain unit-mean exponential random variables, where Vi is the jth random number in the sequence of a stream of uniform random...numbers. The inverse transform method is discussed in the simulation textbooks listed in the reference section of this thesis. X(b,c,d) = - P(b,c,d...Defender ,C * P(b,c,d) We again use the inverse transform method to obtain the conditions for an interim event to occur and to induce the change in

  6. Inverse Optimization: A New Perspective on the Black-Litterman Model.

    PubMed

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch

    2012-12-11

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.

  7. Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.

    PubMed

    Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V

    2016-10-01

    An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Approximation of reliabilities for multiple-trait model with maternal effects.

    PubMed

    Strabel, T; Misztal, I; Bertrand, J K

    2001-04-01

    Reliabilities for a multiple-trait maternal model were obtained by combining reliabilities obtained from single-trait models. Single-trait reliabilities were obtained using an approximation that supported models with additive and permanent environmental effects. For the direct effect, the maternal and permanent environmental variances were assigned to the residual. For the maternal effect, variance of the direct effect was assigned to the residual. Data included 10,550 birth weight, 11,819 weaning weight, and 3,617 postweaning gain records of Senepol cattle. Reliabilities were obtained by generalized inversion and by using single-trait and multiple-trait approximation methods. Some reliabilities obtained by inversion were negative because inbreeding was ignored in calculating the inverse of the relationship matrix. The multiple-trait approximation method reduced the bias of approximation when compared with the single-trait method. The correlations between reliabilities obtained by inversion and by multiple-trait procedures for the direct effect were 0.85 for birth weight, 0.94 for weaning weight, and 0.96 for postweaning gain. Correlations for maternal effects for birth weight and weaning weight were 0.96 to 0.98 for both approximations. Further improvements can be achieved by refining the single-trait procedures.

  9. Inverse Optimization: A New Perspective on the Black-Litterman Model

    PubMed Central

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.

    2014-01-01

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873

  10. Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods

    DTIC Science & Technology

    2016-11-16

    determinant of the inverse Fisher information matrix which is proportional to the global error volume. If a practitioner has a suitable...pro- ceeds from the determinant of the inverse Fisher information matrix which is proportional to the global error volume. If a practitioner has a...design of statistical estimators (i.e. sensors) as their respective inverses act as lower bounds to the (co)variances of the subject estimator, a property

  11. Deflation as a method of variance reduction for estimating the trace of a matrix inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas

    Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less

  12. Deflation as a method of variance reduction for estimating the trace of a matrix inverse

    DOE PAGES

    Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas

    2017-04-06

    Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less

  13. Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach

    NASA Technical Reports Server (NTRS)

    Seidman, T. I.; Munteanu, M. J.

    1979-01-01

    The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.

  14. Null-space and statistical significance of first-arrival traveltime inversion

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2004-03-01

    The strong uncertainty inherent in the traveltime inversion of first arrivals from surface sources is usually removed by using a priori constraints or regularization. This leads to the null-space (data-independent model variability) being inadequately sampled, and consequently, model uncertainties may be underestimated in traditional (such as checkerboard) resolution tests. To measure the full null-space model uncertainties, we use unconstrained Monte Carlo inversion and examine the statistics of the resulting model ensembles. In an application to 1-D first-arrival traveltime inversion, the τ-p method is used to build a set of models that are equivalent to the IASP91 model within small, ~0.02 per cent, time deviations. The resulting velocity variances are much larger, ~2-3 per cent within the regions above the mantle discontinuities, and are interpreted as being due to the null-space. Depth-variant depth averaging is required for constraining the velocities within meaningful bounds, and the averaging scalelength could also be used as a measure of depth resolution. Velocity variances show structure-dependent, negative correlation with the depth-averaging scalelength. Neither the smoothest (Herglotz-Wiechert) nor the mean velocity-depth functions reproduce the discontinuities in the IASP91 model; however, the discontinuities can be identified by the increased null-space velocity (co-)variances. Although derived for a 1-D case, the above conclusions also relate to higher dimensions.

  15. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  16. A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization.

    PubMed

    Cao, Cheng; Akalin Acar, Zeynep; Kreutz-Delgado, Kenneth; Makeig, Scott

    2012-01-01

    Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.

  17. Implication of adaptive smoothness constraint and Helmert variance component estimation in seismic slip inversion

    NASA Astrophysics Data System (ADS)

    Fan, Qingbiao; Xu, Caijun; Yi, Lei; Liu, Yang; Wen, Yangmao; Yin, Zhi

    2017-10-01

    When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.

  18. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  19. Meta-analysis with missing study-level sample variance data.

    PubMed

    Chowdhry, Amit K; Dworkin, Robert H; McDermott, Michael P

    2016-07-30

    We consider a study-level meta-analysis with a normally distributed outcome variable and possibly unequal study-level variances, where the object of inference is the difference in means between a treatment and control group. A common complication in such an analysis is missing sample variances for some studies. A frequently used approach is to impute the weighted (by sample size) mean of the observed variances (mean imputation). Another approach is to include only those studies with variances reported (complete case analysis). Both mean imputation and complete case analysis are only valid under the missing-completely-at-random assumption, and even then the inverse variance weights produced are not necessarily optimal. We propose a multiple imputation method employing gamma meta-regression to impute the missing sample variances. Our method takes advantage of study-level covariates that may be used to provide information about the missing data. Through simulation studies, we show that multiple imputation, when the imputation model is correctly specified, is superior to competing methods in terms of confidence interval coverage probability and type I error probability when testing a specified group difference. Finally, we describe a similar approach to handling missing variances in cross-over studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  1. Dependence of the Energy Resolution of a Hemispherical Semiconductor Detector on the Bias Voltage

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2017-12-01

    It is shown that the series expansion of the amplitude and variance of the hemispherical semiconductor detector signal in inverse bias voltage allows finding the Fano factor, the product of electron lifetime and mobility, the degree of inhomogeneity of the trap density in the semiconductor material, and the relative variance of the electronic channel gain. An important advantage of the proposed method is that it is independent of the electronic channel gain and noise.

  2. Accuracy of maximum likelihood and least-squares estimates in the lidar slope method with noisy data.

    PubMed

    Eberhard, Wynn L

    2017-04-01

    The maximum likelihood estimator (MLE) is derived for retrieving the extinction coefficient and zero-range intercept in the lidar slope method in the presence of random and independent Gaussian noise. Least-squares fitting, weighted by the inverse of the noise variance, is equivalent to the MLE. Monte Carlo simulations demonstrate that two traditional least-squares fitting schemes, which use different weights, are less accurate. Alternative fitting schemes that have some positive attributes are introduced and evaluated. The principal factors governing accuracy of all these schemes are elucidated. Applying these schemes to data with Poisson rather than Gaussian noise alters accuracy little, even when the signal-to-noise ratio is low. Methods to estimate optimum weighting factors in actual data are presented. Even when the weighting estimates are coarse, retrieval accuracy declines only modestly. Mathematical tools are described for predicting retrieval accuracy. Least-squares fitting with inverse variance weighting has optimum accuracy for retrieval of parameters from single-wavelength lidar measurements when noise, errors, and uncertainties are Gaussian distributed, or close to optimum when only approximately Gaussian.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, T; Dong, X; Petrongolo, M

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less

  4. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original hypothesis by Panofsky and McCormick that the local scaling in terms of the local buoyancy flux defines the lower bound of the moments.

  5. Synthesizing Evidence: Synthesis Methods for Evidence Clearinghouses

    ERIC Educational Resources Information Center

    Valentine, Jeff; Lau, Timothy

    2015-01-01

    Following the theme of the first two presentations, this presentation will focus on the choices available for research synthesis when summarizing research evidence. The presenters will describe the current research synthesis practice of the What Works Clearinghouse (WWC) as well as several alternative models, including inverse-variance weighted…

  6. Fast Minimum Variance Beamforming Based on Legendre Polynomials.

    PubMed

    Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae

    2016-09-01

    Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.

  7. Weighting by Inverse Variance or by Sample Size in Random-Effects Meta-Analysis

    ERIC Educational Resources Information Center

    Marin-Martinez, Fulgencio; Sanchez-Meca, Julio

    2010-01-01

    Most of the statistical procedures in meta-analysis are based on the estimation of average effect sizes from a set of primary studies. The optimal weight for averaging a set of independent effect sizes is the inverse variance of each effect size, but in practice these weights have to be estimated, being affected by sampling error. When assuming a…

  8. Effect of correlated observation error on parameters, predictions, and uncertainty

    USGS Publications Warehouse

    Tiedeman, Claire; Green, Christopher T.

    2013-01-01

    Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.

  9. Hydrogeophysical Assessment of Aquifer Uncertainty Using Simulated Annealing driven MRF-Based Stochastic Joint Inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.

    2017-12-01

    Geophysical quantification of hydrogeological parameters typically involve limited noisy measurements coupled with inadequate understanding of the target phenomenon. Hence, a deterministic solution is unrealistic in light of the largely uncertain inputs. Stochastic imaging (SI), in contrast, provides multiple equiprobable realizations that enable probabilistic assessment of aquifer properties in a realistic manner. Generation of geologically realistic prior models is central to SI frameworks. Higher-order statistics for representing prior geological features in SI are, however, usually borrowed from training images (TIs), which may produce undesirable outcomes if the TIs are unpresentatitve of the target structures. The Markov random field (MRF)-based SI strategy provides a data-driven alternative to TI-based SI algorithms. In the MRF-based method, the simulation of spatial features is guided by Gibbs energy (GE) minimization. Local configurations with smaller GEs have higher likelihood of occurrence and vice versa. The parameters of the Gibbs distribution for computing the GE are estimated from the hydrogeophysical data, thereby enabling the generation of site-specific structures in the absence of reliable TIs. In Metropolis-like SI methods, the variance of the transition probability controls the jump-size. The procedure is a standard Markov chain Monte Carlo (McMC) method when a constant variance is assumed, and becomes simulated annealing (SA) when the variance (cooling temperature) is allowed to decrease gradually with time. We observe that in certain problems, the large variance typically employed at the beginning to hasten burn-in may be unideal for sampling at the equilibrium state. The powerfulness of SA stems from its flexibility to adaptively scale the variance at different stages of the sampling. Degeneration of results were reported in a previous implementation of the MRF-based SI strategy based on a constant variance. Here, we present an updated version of the algorithm based on SA that appears to resolve the degeneration problem with seemingly improved results. We illustrate the performance of the SA version with a joint inversion of time-lapse concentration and electrical resistivity measurements in a hypothetical trinary hydrofacies aquifer characterization problem.

  10. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S.

    NASA Astrophysics Data System (ADS)

    West, Michael; Gao, Wei; Grand, Stephen

    2004-08-01

    Body and surface wave tomography have complementary strengths when applied to regional-scale studies of the upper mantle. We present a straight-forward technique for their joint inversion which hinges on treating surface waves as horizontally-propagating rays with deep sensitivity kernels. This formulation allows surface wave phase or group measurements to be integrated directly into existing body wave tomography inversions with modest effort. We apply the joint inversion to a synthetic case and to data from the RISTRA project in the southwest U.S. The data variance reductions demonstrate that the joint inversion produces a better fit to the combined dataset, not merely a compromise. For large arrays, this method offers an improvement over augmenting body wave tomography with a one-dimensional model. The joint inversion combines the absolute velocity of a surface wave model with the high resolution afforded by body waves-both qualities that are required to understand regional-scale mantle phenomena.

  11. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    NASA Astrophysics Data System (ADS)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  12. Empirical Bayes estimation of undercount in the decennial census.

    PubMed

    Cressie, N

    1989-12-01

    Empirical Bayes methods are used to estimate the extent of the undercount at the local level in the 1980 U.S. census. "Grouping of like subareas from areas such as states, counties, and so on into strata is a useful way of reducing the variance of undercount estimators. By modeling the subareas within a stratum to have a common mean and variances inversely proportional to their census counts, and by taking into account sampling of the areas (e.g., by dual-system estimation), empirical Bayes estimators that compromise between the (weighted) stratum average and the sample value can be constructed. The amount of compromise is shown to depend on the relative importance of stratum variance to sampling variance. These estimators are evaluated at the state level (51 states, including Washington, D.C.) and stratified on race/ethnicity (3 strata) using data from the 1980 postenumeration survey (PEP 3-8, for the noninstitutional population)." excerpt

  13. Resolving Isotropic Components from Regional Waves using Grid Search and Moment Tensor Inversion Methods

    NASA Astrophysics Data System (ADS)

    Ichinose, G. A.; Saikia, C. K.

    2007-12-01

    We applied the moment tensor (MT) analysis scheme to identify seismic sources using regional seismograms based on the representation theorem for the elastic wave displacement field. This method is applied to estimate the isotropic (ISO) and deviatoric MT components of earthquake, volcanic, and isotropic sources within the Basin and Range Province (BRP) and western US. The ISO components from Hoya, Bexar, Montello and Junction were compared to recently well recorded recent earthquakes near Little Skull Mountain, Scotty's Junction, Eureka Valley, and Fish Lake Valley within southern Nevada. We also examined "dilatational" sources near Mammoth Lakes Caldera and two mine collapses including the August 2007 event in Utah recorded by US Array. Using our formulation we have first implemented the full MT inversion method on long period filtered regional data. We also applied a grid-search technique to solve for the percent deviatoric and %ISO moments. By using the grid-search technique, high-frequency waveforms are used with calibrated velocity models. We modeled the ISO and deviatoric components (spall and tectonic release) as separate events delayed in time or offset in space. Calibrated velocity models helped the resolution of the ISO components and decrease the variance over the average, initial or background velocity models. The centroid location and time shifts are velocity model dependent. Models can be improved as was done in previously published work in which we used an iterative waveform inversion method with regional seismograms from four well recorded and constrained earthquakes. The resulting velocity models reduced the variance between predicted synthetics by about 50 to 80% for frequencies up to 0.5 Hz. Tests indicate that the individual path-specific models perform better at recovering the earthquake MT solutions even after using a sparser distribution of stations than the average or initial models.

  14. Source mechanism analysis of central Aceh earthquake July 2, 2013 Mw 6.2 using moment tensor inversion with BMKG waveform data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasetyo, Retno Agung, E-mail: prasetyo.agung@bmkg.go.id; Heryandoko, Nova; Afnimar

    The source mechanism of earthquake on July 2, 2013 was investigated by using moment tensor inversion. The result also compared by the field observation. Five waveform data of BMKG’s seismic network used to estimate the mechanism of earthquake, namely ; KCSI, MLSI, LASI, TPTI and SNSI. Main shock data taken during 200 seconds and filtered by using Butterworth band pass method from 0.03 to 0.05 Hz of frequency. Moment tensor inversion method is applied based on the point source assumption. Furthermore, the Green function calculated using the extended reflectivity method which modified by Kohketsu. The inversion result showed a strike-slipmore » faulting, where the nodal plane strike/dip/rake (124/80.6/152.8) and minimum variance value 0.3285 at a depth of 6 km (centroid). It categorized as a shallow earthquake. Field observation indicated that the building orientated to the east. It can be related to the southwest of dip direction which has 152 degrees of slip. As conclusion, the Pressure (P) and Tension (T) axis described dominant compression is happen from the south which is caused by pressure of the Indo-Australian plate.« less

  15. A Shearlet-based algorithm for quantum noise removal in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng

    2016-03-01

    Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.

  16. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  17. Remote sensing of environmental particulate pollutants - Optical methods for determinations of size distribution and complex refractive index

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1978-01-01

    A unifying approach, based on a generalization of Pearson's differential equation of statistical theory, is proposed for both the representation of particulate size distribution and the interpretation of radiometric measurements in terms of this parameter. A single-parameter gamma-type distribution is introduced, and it is shown that inversion can only provide the dimensionless parameter, r/ab (where r = particle radius, a = effective radius, b = effective variance), at least when the distribution vanishes at both ends. The basic inversion problem in reconstructing the particle size distribution is analyzed, and the existing methods are reviewed (with emphasis on their capabilities) and classified. A two-step strategy is proposed for simultaneously determining the complex refractive index and reconstructing the size distribution of atmospheric particulates.

  18. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success.

    PubMed

    Knief, Ulrich; Forstmeier, Wolfgang; Pei, Yifan; Ihle, Malika; Wang, Daiping; Martin, Katrin; Opatová, Pavlína; Albrechtová, Jana; Wittig, Michael; Franke, Andre; Albrecht, Tomáš; Kempenaers, Bart

    2017-08-01

    Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.

  19. Hydraulic Conductivity Estimation using Bayesian Model Averaging and Generalized Parameterization

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Li, X.

    2006-12-01

    Non-uniqueness in parameterization scheme is an inherent problem in groundwater inverse modeling due to limited data. To cope with the non-uniqueness problem of parameterization, we introduce a Bayesian Model Averaging (BMA) method to integrate a set of selected parameterization methods. The estimation uncertainty in BMA includes the uncertainty in individual parameterization methods as the within-parameterization variance and the uncertainty from using different parameterization methods as the between-parameterization variance. Moreover, the generalized parameterization (GP) method is considered in the geostatistical framework in this study. The GP method aims at increasing the flexibility of parameterization through the combination of a zonation structure and an interpolation method. The use of BMP with GP avoids over-confidence in a single parameterization method. A normalized least-squares estimation (NLSE) is adopted to calculate the posterior probability for each GP. We employee the adjoint state method for the sensitivity analysis on the weighting coefficients in the GP method. The adjoint state method is also applied to the NLSE problem. The proposed methodology is implemented to the Alamitos Barrier Project (ABP) in California, where the spatially distributed hydraulic conductivity is estimated. The optimal weighting coefficients embedded in GP are identified through the maximum likelihood estimation (MLE) where the misfits between the observed and calculated groundwater heads are minimized. The conditional mean and conditional variance of the estimated hydraulic conductivity distribution using BMA are obtained to assess the estimation uncertainty.

  20. Examining the Causal Role of Leptin in Alzheimer Disease: A Mendelian Randomization Study.

    PubMed

    Romo, Matthew L; Schooling, C Mary

    2017-01-01

    Observational evidence regarding the role of leptin in Alzheimer disease (AD) is conflicting. We sought to determine the causal role of circulating leptin and soluble plasma leptin receptor (sOB-R) levels in AD using a separate-sample Mendelian randomization study. Single nucleotide polymorphisms (SNPs) independently and solely predictive of log-transformed leptin (rs10487505 [LEP], rs780093 [GCKR], rs900400 [CCNL1], rs6071166 [SLC32A1], and rs6738627 [COBLL1]) and of sOB-R (rs1137101 [LEPR], rs2767485 [LEPR], and rs1751492 [LEPR]) levels (ng/mL) were obtained from 2 previously reported genome-wide association studies. We obtained associations of leptin and sOB-R levels with AD using inverse variance weighting with fixed effects by combining Wald estimates for each SNP. Sensitivity analyses included using weighted median and MR-Egger methods and repeating the analyses using only SNPs of genome-wide significance. Using inverse variance weighting, genetically predicted circulating leptin levels were not associated with AD, albeit with wide confidence intervals (CIs): odds ratio (OR) 0.99 per log-transformed ng/mL; 95% CI 0.55-1.78. Similarly, the association of sOB-R with AD was null using inverse variance weighting (OR 1.08 per log-transformed ng/mL; 95% CI 0.83-1.41). Results from our sensitivity analyses confirmed our findings. In this first Mendelian randomization study estimating the causal effect of leptin on AD, we did not find an effect of genetically predicted circulating leptin and sOB-R levels on AD. As such, this study suggests that leptin is unlikely to be a major contributor to AD, although the wide CIs preclude a definitive assessment. © 2017 S. Karger AG, Basel.

  1. Statistical Estimation of Heterogeneities: A New Frontier in Well Testing

    NASA Astrophysics Data System (ADS)

    Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.

    2001-12-01

    Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.

  2. Parameter Estimation for the Blind Restoration of Blurred Imagery.

    DTIC Science & Technology

    1986-09-01

    17 Noise Process .... ............. 23 Restoration Methods .... .......... 26 Inverse Filter .... ........... 26 Wiener Filter...of Eq. (155) ....... .................... ... 64 Table 2 Restored Pictures and Noise Variances ........ . 69 v 5𔃼 5- viq °,. r -’ .’S’ .N’% N...restoration system. g(x,y) Degraded image. G(u,v) Discrete Fourier Transform of the degraded image. n(x,y) Noise . N(u,v) Discrete Fourier transform of n

  3. Inverse probability weighting estimation of the volume under the ROC surface in the presence of verification bias.

    PubMed

    Zhang, Ying; Alonzo, Todd A

    2016-11-01

    In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A matched-peak inversion approach for ocean acoustic travel-time tomography

    PubMed

    Skarsoulis

    2000-03-01

    A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.

  5. Robust versus consistent variance estimators in marginal structural Cox models.

    PubMed

    Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris

    2018-06-11

    In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.

    PubMed

    Fessler, J A; Booth, S D

    1999-01-01

    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.

  7. Discrete Inverse and State Estimation Problems

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2006-06-01

    The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware

  8. A random variance model for detection of differential gene expression in small microarray experiments.

    PubMed

    Wright, George W; Simon, Richard M

    2003-12-12

    Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf

  9. A partially reflecting random walk on spheres algorithm for electrical impedance tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de

    2015-12-15

    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less

  10. Estimates of genetic and environmental (co)variances for first lactation on milk yield, survival, and calving interval.

    PubMed

    Dong, M C; van Vleck, L D

    1989-03-01

    Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.

  11. flowVS: channel-specific variance stabilization in flow cytometry.

    PubMed

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-07-28

    Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances. We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation are optimally selected by Bartlett's likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test. With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays. The homogeneity of variance in cell populations across FC samples is desirable when extracting features uniformly and comparing cell populations with different levels of marker expressions. The newly developed flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally transforming data with the help of Bartlett's likelihood-ratio test. On two publicly available FC datasets, flowVS stabilizes within-population variances more evenly than the available transformation and normalization techniques. flowVS-based variance stabilization can help in performing comparison and alignment of phenotypically identical cell populations across different samples. flowVS and the datasets used in this paper are publicly available in Bioconductor.

  12. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.

    PubMed

    Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique

    2018-01-22

    We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

  13. Combining Study Outcome Measures Using Dominance Adjusted Weights

    ERIC Educational Resources Information Center

    Makambi, Kepher H.; Lu, Wenxin

    2013-01-01

    Weighting of studies in meta-analysis is usually implemented by using the estimated inverse variances of treatment effect estimates. However, there is a possibility of one study dominating other studies in the estimation process by taking on a weight that is above some upper limit. We implement an estimator of the heterogeneity variance that takes…

  14. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    NASA Astrophysics Data System (ADS)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  15. A trade-off between model resolution and variance with selected Rayleigh-wave data

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.

    2008-01-01

    Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.

  16. Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.

    PubMed

    Dosso, Stan E; Nielsen, Peter L

    2002-01-01

    This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.

  17. Kalman filter for statistical monitoring of forest cover across sub-continental regions [Symposium

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a generalization of the composite estimator. The univariate composite estimate combines 2 prior estimates of population parameter with a weighted average where the scalar weight is inversely proportional to the variances. The composite estimator is a minimum variance estimator that requires no distributional assumptions other than estimates of the...

  18. Bias correction for estimated QTL effects using the penalized maximum likelihood method.

    PubMed

    Zhang, J; Yue, C; Zhang, Y-M

    2012-04-01

    A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed.

  19. Two methods for parameter estimation using multiple-trait models and beef cattle field data.

    PubMed

    Bertrand, J K; Kriese, L A

    1990-08-01

    Two methods are presented for estimating variances and covariances from beef cattle field data using multiple-trait sire models. Both methods require that the first trait have no missing records and that the contemporary groups for the second trait be subsets of the contemporary groups for the first trait; however, the second trait may have missing records. One method uses pseudo expectations involving quadratics composed of the solutions and the right-hand sides of the mixed model equations. The other method is an extension of Henderson's Simple Method to the multiple trait case. Neither of these methods requires any inversions of large matrices in the computation of the parameters; therefore, both methods can handle very large sets of data. Four simulated data sets were generated to evaluate the methods. In general, both methods estimated genetic correlations and heritabilities that were close to the Restricted Maximum Likelihood estimates and the true data set values, even when selection within contemporary groups was practiced. The estimates of residual correlations by both methods, however, were biased by selection. These two methods can be useful in estimating variances and covariances from multiple-trait models in large populations that have undergone a minimal amount of selection within contemporary groups.

  20. Estimating the periodic components of a biomedical signal through inverse problem modelling and Bayesian inference with sparsity enforcing prior

    NASA Astrophysics Data System (ADS)

    Dumitru, Mircea; Djafari, Ali-Mohammad

    2015-01-01

    The recent developments in chronobiology need a periodic components variation analysis for the signals expressing the biological rhythms. A precise estimation of the periodic components vector is required. The classical approaches, based on FFT methods, are inefficient considering the particularities of the data (short length). In this paper we propose a new method, using the sparsity prior information (reduced number of non-zero values components). The considered law is the Student-t distribution, viewed as a marginal distribution of a Infinite Gaussian Scale Mixture (IGSM) defined via a hidden variable representing the inverse variances and modelled as a Gamma Distribution. The hyperparameters are modelled using the conjugate priors, i.e. using Inverse Gamma Distributions. The expression of the joint posterior law of the unknown periodic components vector, hidden variables and hyperparameters is obtained and then the unknowns are estimated via Joint Maximum A Posteriori (JMAP) and Posterior Mean (PM). For the PM estimator, the expression of the posterior law is approximated by a separable one, via the Bayesian Variational Approximation (BVA), using the Kullback-Leibler (KL) divergence. Finally we show the results on synthetic data in cancer treatment applications.

  1. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  2. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    NASA Astrophysics Data System (ADS)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.

  3. The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits.

    PubMed

    Li, Shi; Mukherjee, Bhramar; Taylor, Jeremy M G; Rice, Kenneth M; Wen, Xiaoquan; Rice, John D; Stringham, Heather M; Boehnke, Michael

    2014-07-01

    With challenges in data harmonization and environmental heterogeneity across various data sources, meta-analysis of gene-environment interaction studies can often involve subtle statistical issues. In this paper, we study the effect of environmental covariate heterogeneity (within and between cohorts) on two approaches for fixed-effect meta-analysis: the standard inverse-variance weighted meta-analysis and a meta-regression approach. Akin to the results in Simmonds and Higgins (), we obtain analytic efficiency results for both methods under certain assumptions. The relative efficiency of the two methods depends on the ratio of within versus between cohort variability of the environmental covariate. We propose to use an adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the interaction parameter. The AWE retains full efficiency of the joint analysis using individual level data under certain natural assumptions. Lin and Zeng (2010a, b) showed that a multivariate inverse-variance weighted estimator retains full efficiency as joint analysis using individual level data, if the estimates with full covariance matrices for all the common parameters are pooled across all studies. We show consistency of our work with Lin and Zeng (2010a, b). Without sacrificing much efficiency, the AWE uses only univariate summary statistics from each study, and bypasses issues with sharing individual level data or full covariance matrices across studies. We compare the performance of the methods both analytically and numerically. The methods are illustrated through meta-analysis of interaction between Single Nucleotide Polymorphisms in FTO gene and body mass index on high-density lipoprotein cholesterol data from a set of eight studies of type 2 diabetes. © 2014 WILEY PERIODICALS, INC.

  4. Measurement methods and algorithms for comparison of local and remote clocks

    NASA Technical Reports Server (NTRS)

    Levine, Judah

    1993-01-01

    Several methods for characterizing the performance of clocks with special emphasis on using calibration information that is acquired via an unreliable or noisy channel is discussed. Time-domain variance estimators and frequency-domain techniques such as cross-spectral analysis are discussed. Each of these methods has advantages and limitations that will be illustrated using data obtained via GPS, ACTS, and other methods. No one technique will be optimum for all of these analyses, and some of these problems cannot be completely characterized by any of the techniques discussed. The inverse problem of communicating frequency and time corrections to a real-time steered clock are also discussed. Methods were developed to mitigate the disastrous problems of data corruption and loss of computer control.

  5. Propensity score analysis with partially observed covariates: How should multiple imputation be used?

    PubMed

    Leyrat, Clémence; Seaman, Shaun R; White, Ian R; Douglas, Ian; Smeeth, Liam; Kim, Joseph; Resche-Rigon, Matthieu; Carpenter, James R; Williamson, Elizabeth J

    2017-01-01

    Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates: covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement multiple imputation for propensity score analysis: (a) should we apply Rubin's rules to the inverse probability of treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a third multiple imputation approach in which the propensity score parameters are combined rather than the propensity scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all the studied scenarios and Rubin's rules provided good variance estimates for MIte. The propensity score estimated in the MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred approach.

  6. Is academic buoyancy anything more than adaptive coping?

    PubMed

    Putwain, David W; Connors, Liz; Symes, Wendy; Douglas-Osborn, Erica

    2012-05-01

    Academic buoyancy refers to a positive, constructive, and adaptive response to the types of challenges and setbacks experienced in a typical and everyday academic setting. In this project we examined whether academic buoyancy explained any additional variance in test anxiety over and above that explained by coping. Two hundred and ninety-eight students in their final two years of compulsory schooling completed self-report measures of academic buoyancy, coping, and test anxiety. Results suggested that buoyancy was inversely related to test anxiety and unrelated to coping. With the exception of test-irrelevant thoughts, test anxiety was positively related to avoidance coping and social support. Test-irrelevant thoughts were inversely related to task focus, unrelated to social support, and positively related to avoidance. A hierarchical regression analysis showed that academic buoyancy explained a significant additional proportion of variance in test anxiety when the variance for coping had already been accounted for. These findings suggest that academic buoyancy can be considered as a distinct construct from that of adaptive coping.

  7. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  8. Improved Horvitz-Thompson Estimation of Model Parameters from Two-phase Stratified Samples: Applications in Epidemiology

    PubMed Central

    Breslow, Norman E.; Lumley, Thomas; Ballantyne, Christie M; Chambless, Lloyd E.; Kulich, Michal

    2009-01-01

    The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-population at phase one and stratified random sampling from a finite cohort at phase two. Standard analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating equations, with weights determined by the known phase two sampling fractions. The variance of parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms: (i) the model based variance of the usual estimates that would be calculated if full data were available for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort total of the efficient influence function (IF) contributions. This second variance component may be reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary variables correlated with the IF contributions or by their estimation using these same auxiliary variables. Both adjustment methods are implemented in the R survey package. We derive the limit laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical methods for construction of auxiliary variables that are evaluated by simulation of case-cohort samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators based on adjusted weights may come close to achieving full efficiency within the class of augmented IPW estimators. PMID:20174455

  9. Type-curve estimation of statistical heterogeneity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.; Guadagnini, Alberto; Riva, Monica

    2004-04-01

    The analysis of pumping tests has traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. We explore numerically the feasibility of using a simple graphical approach (without numerical inversion) to estimate the geometric mean, integral scale, and variance of local log transmissivity on the basis of quasi steady state head data when a randomly heterogeneous confined aquifer is pumped at a constant rate. By local log transmissivity we mean a function varying randomly over horizontal distances that are small in comparison with a characteristic spacing between pumping and observation wells during a test. Experimental evidence and hydrogeologic scaling theory suggest that such a function would tend to exhibit an integral scale well below the maximum well spacing. This is in contrast to equivalent transmissivities derived from pumping tests by treating the aquifer as being locally uniform (on the scale of each test), which tend to exhibit regional-scale spatial correlations. We show that whereas the mean and integral scale of local log transmissivity can be estimated reasonably well based on theoretical ensemble mean variations of head and drawdown with radial distance from a pumping well, estimating the log transmissivity variance is more difficult. We obtain reasonable estimates of the latter based on theoretical variation of the standard deviation of circumferentially averaged drawdown about its mean.

  10. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke.

    PubMed

    Elsner, Bernhard; Kugler, Joachim; Pohl, Marcus; Mehrholz, Jan

    2013-11-15

    Stroke is one of the leading causes of disability worldwide. Functional impairment resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance and function after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability and hence to improve ADL performance and function. To assess the effects of tDCS on generic activities of daily living (ADLs) and motor function in people with stroke. We searched the Cochrane Stroke Group Trials Register (March 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, May 2013), MEDLINE (1948 to May 2013), EMBASE (1980 to May 2013), CINAHL (1982 to May 2013), AMED (1985 to May 2013), Science Citation Index (1899 to May 2013) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials (from which we analysed only the first period as a parallel-group design) that compared tDCS versus control in adults with stroke for improving ADL performance and function. Two review authors independently assessed trial quality (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. We included 15 studies involving a total of 455 participants. Analysis of six studies involving 326 participants regarding our primary outcome, ADL, showed no evidence of an effect in favour of tDCS at the end of the intervention phase (mean difference (MD) 5.31 Barthel Index (BI) points; 95% confidence interval (CI) -0.52 to 11.14; inverse variance method with random-effects model), whereas at follow-up (MD 11.13 BI points; 95% CI 2.89 to 19.37; inverse variance method with random-effects model), we found evidence of an effect. However, the confidence intervals were wide and the effect was not sustained when only studies with low risk of bias were included. For our secondary outcome, upper limb function, we analysed eight trials with 358 participants, which showed evidence of an effect in favour of tDCS at the end of the intervention phase (MD 3.45 Upper Extremity Fugl-Meyer Score points (UE-FM points); 95% CI 1.24 to 5.67; inverse variance method with random-effects model) but not at the end of follow-up three months after the intervention (MD 9.23 UE-FM points; 95% CI -13.47 to 31.94; inverse variance method with random-effects model). These results were sensitive to inclusion of studies at high risk of bias. Adverse events were reported and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.00; 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model). At the moment, evidence of very low to low quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance and function after stroke. Future research should investigate the effects of tDCS on lower limb function and should address methodological issues by routinely reporting data on adverse events and dropouts and allocation concealment, and by performing intention-to-treat analyses.

  11. Source-space ICA for MEG source imaging.

    PubMed

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  12. Reliability of the Inverse Water Volumetry Method to Measure the Volume of the Upper Limb.

    PubMed

    Beek, Martinus A; te Slaa, Alexander; van der Laan, Lijckle; Mulder, Paul G H; Rutten, Harm J T; Voogd, Adri C; Luiten, Ernest J T; Gobardhan, Paul D

    2015-06-01

    Lymphedema of the upper extremity is a common side effect of lymph node dissection or irradiation of the axilla. Several techniques are being applied in order to examine the presence and severity of lymphedema. Measurement of circumference of the upper extremity is most frequently performed. An alternative is the water-displacement method. The aim of this study was to determine the reliability and the reproducibility of the "Inverse Water Volumetry apparatus" (IWV-apparatus) for the measurement of arm volumes. The IWV-apparatus is based on the water-displacement method. Measurements were performed by three breast cancer nurse practitioners on ten healthy volunteers in three weekly sessions. The intra-class correlation coefficient, defined as the ratio of the subject component to the total variance, equaled 0.99. The reliability index is calculated as 0.14 kg. This indicates that only changes in a patient's arm volume measurement of more than 0.14 kg would represent a true change in arm volume, which is about 6% of the mean arm volume of 2.3 kg. The IWV-apparatus proved to be a reliable and reproducible method to measure arm volume.

  13. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter.

    PubMed

    Rocadenbosch, F; Soriano, C; Comerón, A; Baldasano, J M

    1999-05-20

    A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.

  14. Interferometric inverse synthetic aperture radar imaging for space targets based on wideband direct sampling using two antennas

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping

    2014-01-01

    Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.

  15. Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data.

    PubMed

    Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T

    2016-12-20

    Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  16. Inversion of atmospheric optical parameters from elastic-backscatter lidar returns using a Kalman filter

    NASA Astrophysics Data System (ADS)

    Rocadenbosch, Francesc; Comeron, Adolfo; Vazquez, Gregori; Rodriguez-Gomez, Alejandro; Soriano, Cecilia; Baldasano, Jose M.

    1998-12-01

    Up to now, retrieval of the atmospheric extinction and backscatter has mainly relied on standard straightforward non-memory procedures such as slope-method, exponential- curve fitting and Klett's method. Yet, their performance becomes ultimately limited by the inherent lack of adaptability as they only work with present returns and neither past estimations, nor the statistics of the signals or a prior uncertainties are taken into account. In this work, a first inversion of the backscatter and extinction- to-backscatter ratio from pulsed elastic-backscatter lidar returns is tackled by means of an extended Kalman filter (EKF), which overcomes these limitations. Thus, as long as different return signals income,the filter updates itself weighted by the unbalance between the a priori estimates of the optical parameters and the new ones based on a minimum variance criterion. Calibration errors or initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables to retrieve the sought-after optical parameters as time-range-dependent functions and hence, to track the atmospheric evolution, its performance being only limited by the quality and availability of the 'a priori' information and the accuracy of the atmospheric model assumed. The study ends with an encouraging practical inversion of a live-scene measured with the Nd:YAG elastic-backscatter lidar station at our premises in Barcelona.

  17. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  18. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.

    PubMed

    Jeran, S; Steinbrecher, A; Pischon, T

    2016-08-01

    Activity-related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large-scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly labeled water method). Extracted study characteristics were sample size, accelerometer (type (uniaxial, triaxial), metrics (for example, activity counts, steps, acceleration), recording period, body position, wear time), explained variance of AEE (R(2)) and number of additional predictors. The relation of univariate and multivariate R(2) with study characteristics was analyzed using nonparametric tests. Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10 to 149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours and reported activity counts as output metric. Recording periods ranged from 5 to 15 days. The variance of AEE explained by accelerometer-assessed physical activity ranged from 4 to 80% (median crude R(2)=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R(2)=41%). The increase did not depend on the number of added predictors. We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus, data on predicted AEE based on accelerometry-assessed physical activity need to be interpreted cautiously.

  19. Bayesian inversions of a dynamic vegetation model in four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; François, L.

    2015-01-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We compare model inversions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a~priori or jointly inferred with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root-mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 g C m-2 day-1, 1.04 to 1.56 g C m-2 day-1, and 0.50 to 1.28 mm day-1, respectively. In validation, mismatches between measured and simulated data are larger, but still with Nash-Sutcliffe efficiency scores above 0.5 for three out of the four sites. Although measurement errors associated with eddy covariance data are known to be heteroscedastic, we showed that assuming a classical linear heteroscedastic model of the residual errors in the inversion do not fully remove heteroscedasticity. Since the employed heteroscedastic error model allows for larger deviations between simulated and measured data as the magnitude of the measured data increases, this error model expectedly lead to poorer data fitting compared to inversions considering a constant variance of the residual errors. Furthermore, sampling the residual error variances along with model parameters results in overall similar model parameter posterior distributions as those obtained by fixing these variances beforehand, while slightly improving model performance. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides model behaviour, difference between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics. Lastly, the possibility of finding a common set of parameters among the four experimental sites is discussed.

  20. Erlang circular model motivated by inverse stereographic projection

    NASA Astrophysics Data System (ADS)

    Pramesti, G.

    2018-05-01

    The Erlang distribution is a special case of the Gamma distribution with the shape parameter is an integer. This paper proposed a new circular model used inverse stereographic projection. The inverse stereographic projection which is a mapping that projects a random variable from a real line onto a circle can be used in circular statistics to construct a distribution on the circle from real domain. From the circular model, then can be derived the characteristics of the Erlang circular model such as the mean resultant length, mean direction, circular variance and trigonometric moments of the distribution.

  1. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Examining Suicide Protective Factors Among Black College Students

    PubMed Central

    Wang, Mei-Chuan; Lightsey, Owen Richard; Tran, Kimberly K.; Bonaparte, Taria S.

    2012-01-01

    The purpose of this study was to contribute to the nascent literature on resilience and suicidality among Black Americans by examining factors that may predict less suicidal behavior among this population. We hypothesized that reasons for living, life satisfaction, and religious awareness would account for unique variance in suicidal thoughts and behavior among Black Americans, above the variance accounted for by depressive symptoms. We also hypothesized that reasons for living and religious awareness would be stronger inverse predictors among Black women than Black men. Results indicated that both depression and life satisfaction were stronger predictors of suicidal behavior among Black men. Among women, only reasons for living was a significant inverse predictor of suicidal thoughts and behavior. More frequent reasons for living moderated the relationship between depression and suicidal thoughts and behavior among Black women. PMID:24524434

  3. Replica approach to mean-variance portfolio optimization

    NASA Astrophysics Data System (ADS)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  <  1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r  =  1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1  -  r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  4. Intelligent estimation of noise and blur variances using ANN for the restoration of ultrasound images.

    PubMed

    Uddin, Muhammad Shahin; Halder, Kalyan Kumar; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-11-01

    Ultrasound (US) imaging is a widely used clinical diagnostic tool in medical imaging techniques. It is a comparatively safe, economical, painless, portable, and noninvasive real-time tool compared to the other imaging modalities. However, the image quality of US imaging is severely affected by the presence of speckle noise and blur during the acquisition process. In order to ensure a high-quality clinical diagnosis, US images must be restored by reducing their speckle noise and blur. In general, speckle noise is modeled as a multiplicative noise following a Rayleigh distribution and blur as a Gaussian function. Hereto, we propose an intelligent estimator based on artificial neural networks (ANNs) to estimate the variances of noise and blur, which, in turn, are used to obtain an image without discernible distortions. A set of statistical features computed from the image and its complex wavelet sub-bands are used as input to the ANN. In the proposed method, we solve the inverse Rayleigh function numerically for speckle reduction and use the Richardson-Lucy algorithm for de-blurring. The performance of this method is compared with that of the traditional methods by applying them to a synthetic, physical phantom and clinical data, which confirms better restoration results by the proposed method.

  5. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Fang, Ming; Ghate, Virendra

    2016-02-01

    Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less

  6. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    NASA Astrophysics Data System (ADS)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.

  7. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    NASA Astrophysics Data System (ADS)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there is no other geophysical data available.

  8. Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem.

    PubMed

    Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo

    2014-11-01

    One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Least-squares dual characterization for ROI assessment in emission tomography

    NASA Astrophysics Data System (ADS)

    Ben Bouallègue, F.; Crouzet, J. F.; Dubois, A.; Buvat, I.; Mariano-Goulart, D.

    2013-06-01

    Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.

  10. Stability of steady hand force production explored across spaces and methods of analysis.

    PubMed

    de Freitas, Paulo B; Freitas, Sandra M S F; Lewis, Mechelle M; Huang, Xuemei; Latash, Mark L

    2018-06-01

    We used the framework of the uncontrolled manifold (UCM) hypothesis and explored the reliability of several outcome variables across different spaces of analysis during a very simple four-finger accurate force production task. Fourteen healthy, young adults performed the accurate force production task with each hand on 3 days. Small spatial finger perturbations were generated by the "inverse piano" device three times per trial (lifting the fingers 1 cm/0.5 s and lowering them). The data were analyzed using the following main methods: (1) computation of indices of the structure of inter-trial variance and motor equivalence in the space of finger forces and finger modes, and (2) analysis of referent coordinates and apparent stiffness values for the hand. Maximal voluntary force and the index of enslaving (unintentional finger force production) showed good to excellent reliability. Strong synergies stabilizing total force were reflected in both structure of variance and motor equivalence indices. Variance within the UCM and the index of motor equivalent motion dropped over the trial duration and showed good to excellent reliability. Variance orthogonal to the UCM and the index of non-motor equivalent motion dropped over the 3 days and showed poor to moderate reliability. Referent coordinate and apparent stiffness indices co-varied strongly and both showed good reliability. In contrast, the computed index of force stabilization showed poor reliability. The findings are interpreted within the scheme of neural control with referent coordinates involving the hierarchy of two basic commands, the r-command and c-command. The data suggest natural drifts in the finger force space, particularly within the UCM. We interpret these drifts as reflections of a trade-off between stability and optimization of action. The implications of these findings for the UCM framework and future clinical applications are explored in the discussion. Indices of the structure of variance and motor equivalence show good reliability and can be recommended for applied studies.

  11. Differences in Connection Strength between Mental Symptoms Might Be Explained by Differences in Variance: Reanalysis of Network Data Did Not Confirm Staging.

    PubMed

    Terluin, Berend; de Boer, Michiel R; de Vet, Henrica C W

    2016-01-01

    The network approach to psychopathology conceives mental disorders as sets of symptoms causally impacting on each other. The strengths of the connections between symptoms are key elements in the description of those symptom networks. Typically, the connections are analysed as linear associations (i.e., correlations or regression coefficients). However, there is insufficient awareness of the fact that differences in variance may account for differences in connection strength. Differences in variance frequently occur when subgroups are based on skewed data. An illustrative example is a study published in PLoS One (2013;8(3):e59559) that aimed to test the hypothesis that the development of psychopathology through "staging" was characterized by increasing connection strength between mental states. Three mental states (negative affect, positive affect, and paranoia) were studied in severity subgroups of a general population sample. The connection strength was found to increase with increasing severity in six of nine models. However, the method used (linear mixed modelling) is not suitable for skewed data. We reanalysed the data using inverse Gaussian generalized linear mixed modelling, a method suited for positively skewed data (such as symptoms in the general population). The distribution of positive affect was normal, but the distributions of negative affect and paranoia were heavily skewed. The variance of the skewed variables increased with increasing severity. Reanalysis of the data did not confirm increasing connection strength, except for one of nine models. Reanalysis of the data did not provide convincing evidence in support of staging as characterized by increasing connection strength between mental states. Network researchers should be aware that differences in connection strength between symptoms may be caused by differences in variances, in which case they should not be interpreted as differences in impact of one symptom on another symptom.

  12. Use of switched capacitor filters to implement the discrete wavelet transform

    NASA Technical Reports Server (NTRS)

    Kaiser, Kraig E.; Peterson, James N.

    1993-01-01

    This paper analyzes the use of IIR switched capacitor filters to implement the discrete wavelet transform and the inverse transform, using quadrature mirror filters (QMF) which have the necessary symmetry for reconstruction of the data. This is done by examining the sensitivity of the QMF transforms to the manufacturing variance in the desired capacitances. The performance is evaluated at the outputs of the separate filter stages and the error in the reconstruction of the inverse transform is compared with the desired results.

  13. Single-Sided Noinvasive Inspection of Multielement Sample Using Fan-Beam Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2000-05-01

    a vector , ρ "# represents the set of voxel densities sorted into a vector , and ( )A ρ $# "# represents a 8 mapping of the voxel densities to...density vector in equation (4) suggests that solving for ρ "# by direct inversion is not possible, calling for an iterative technique beginning with...the vector of measured spectra, and D is the diagonal matrix of the inverse of the variances. The diagonal matrix provides weighting terms, which

  14. Inverse Stochastic Resonance in Cerebellar Purkinje Cells

    PubMed Central

    Häusser, Michael; Gutkin, Boris S.; Roth, Arnd

    2016-01-01

    Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958

  15. Combining multiple imputation and meta-analysis with individual participant data

    PubMed Central

    Burgess, Stephen; White, Ian R; Resche-Rigon, Matthieu; Wood, Angela M

    2013-01-01

    Multiple imputation is a strategy for the analysis of incomplete data such that the impact of the missingness on the power and bias of estimates is mitigated. When data from multiple studies are collated, we can propose both within-study and multilevel imputation models to impute missing data on covariates. It is not clear how to choose between imputation models or how to combine imputation and inverse-variance weighted meta-analysis methods. This is especially important as often different studies measure data on different variables, meaning that we may need to impute data on a variable which is systematically missing in a particular study. In this paper, we consider a simulation analysis of sporadically missing data in a single covariate with a linear analysis model and discuss how the results would be applicable to the case of systematically missing data. We find in this context that ensuring the congeniality of the imputation and analysis models is important to give correct standard errors and confidence intervals. For example, if the analysis model allows between-study heterogeneity of a parameter, then we should incorporate this heterogeneity into the imputation model to maintain the congeniality of the two models. In an inverse-variance weighted meta-analysis, we should impute missing data and apply Rubin's rules at the study level prior to meta-analysis, rather than meta-analyzing each of the multiple imputations and then combining the meta-analysis estimates using Rubin's rules. We illustrate the results using data from the Emerging Risk Factors Collaboration. PMID:23703895

  16. Modification of inertial oscillations by the mesoscale eddy field

    NASA Astrophysics Data System (ADS)

    Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.

    2010-09-01

    The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.

  17. Evaluating the Utility of Adjoint-based Inverse Modeling with Aircraft and Surface Measurements during ARCTAS-CARB to Constrain Wildfire Emissions of Black Carbon

    NASA Astrophysics Data System (ADS)

    Henze, D. K.; Guerrette, J.; Bousserez, N.

    2016-12-01

    Wildfires contribute significantly to regional haze events globally, and they are potentially becoming more commonplace with increasing droughts due to climate change. Aerosol emissions from wildfires are highly uncertain, with global annual totals varying by a factor of 2 to 3 and regional rates varying by up to a factor of 10. At the high resolution required to predict PM2.5 exposure events, this variance is attributable to differences in methodology, differing land cover datasets, spatial variation in fire locations, and limited understanding of fast transient fire behavior. Here we apply an adjoint-based online chemical inverse modeling tool, WRFDA-Chem, to constrain black carbon aerosol (BC) emissions from fires during the 2008 ARCTAS-CARB field campaign. We identify several weaknesses in the prior diurnal distribution of emissions, including a missing early morning emission peak associated with local, persistent, large-scale forest fires. On 22 June, 2008, aircraft observations are able to reduce the spread between FINNv1.0 and QFEDv2.4r8 from ×3.5 to ×2.1. On 23 and 24 June, the spread is reduced from ×3.4 to ×1.4. Using posterior error estimates, we found that emission variance improvements are limited to a small footprint surrounding the measurements. Relative BB emission variances are reduced by up to 35% near aircraft flight paths and up to 60% near IMPROVE surface sites. Due to the spatial variation of observations on multiple days, and the heterogeneous biomass burning errors on daily scales, cross-validation was not successful. Future high-resolution measurements need to be carefully planned to characterize biomass burning emission errors and control for day-to-day variation. In general, the 4D-Var inversion framework would benefit from reduced wall-time. For the problem presented, incremental 4D-Var requires 20 hours on 96 cores to reach practical optimization convergence and generate the posterior covariance matrix for a 24-hour assimilation window. We will present initial computational comparisons with a recently developed method to parallelize those calculations, which will reduce wall-time by a factor of 5 or more for all WRFDA 4D-Var applications.

  18. COMPUTATIONAL ANALYSIS OF SWALLOWING MECHANICS UNDERLYING IMPAIRED EPIGLOTTIC INVERSION

    PubMed Central

    Pearson, William G.; Taylor, Brandon K; Blair, Julie; Martin-Harris, Bonnie

    2015-01-01

    Objective Determine swallowing mechanics associated with the first and second epiglottic movements, that is, movement to horizontal and full inversion respectively, in order to provide a clinical interpretation of impaired epiglottic function. Study Design Retrospective cohort study. Methods A heterogeneous cohort of patients with swallowing difficulties was identified (n=92). Two speech-language pathologists reviewed 5ml thin and 5ml pudding videofluoroscopic swallow studies per subject, and assigned epiglottic component scores of 0=complete inversion, 1=partial inversion, and 2=no inversion forming three groups of videos for comparison. Coordinates mapping minimum and maximum excursion of the hyoid, pharynx, larynx, and tongue base during pharyngeal swallowing were recorded using ImageJ software. A canonical variate analysis with post-hoc discriminant function analysis of coordinates was performed using MorphoJ software to evaluate mechanical differences between groups. Eigenvectors characterizing swallowing mechanics underlying impaired epiglottic movements were visualized. Results Nineteen of 184 video-swallows were rejected for poor quality (n=165). A Goodman-Kruskal index of predictive association showed no correlation between epiglottic component scores and etiologies of dysphagia (λ=.04). A two-way analysis of variance by epiglottic component scores showed no significant interaction effects between sex and age (f=1.4, p=.25). Discriminant function analysis demonstrated statistically significant mechanical differences between epiglottic component scores: 1&2, representing the first epiglottic movement (Mahalanobis distance=1.13, p=.0007); and, 0&1, representing the second epiglottic movement (Mahalanobis distance=0.83, p=.003). Eigenvectors indicate that laryngeal elevation and tongue base retraction underlie both epiglottic movements. Conclusion Results suggest that reduced tongue base retraction and laryngeal elevation underlie impaired first and second epiglottic movements. The styloglossus, hyoglossus and long pharyngeal muscles are implicated as targets for rehabilitation in dysphagic patients with impaired epiglottic inversion. PMID:27426940

  19. Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2018-06-04

    Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Identification of a Candidate Gene for Astigmatism

    PubMed Central

    Lopes, Margarida C.; Hysi, Pirro G.; Verhoeven, Virginie J. M.; Macgregor, Stuart; Hewitt, Alex W.; Montgomery, Grant W.; Cumberland, Phillippa; Vingerling, Johannes R.; Young, Terri L.; van Duijn, Cornelia M.; Oostra, Ben; Uitterlinden, Andre G.; Rahi, Jugnoo S.; Mackey, David A.; Klaver, Caroline C. W.; Andrew, Toby; Hammond, Christopher J.

    2013-01-01

    Purpose. Astigmatism is a common refractive error that reduces vision, where the curvature and refractive power of the cornea in one meridian are less than those of the perpendicular axis. It is a complex trait likely to be influenced by both genetic and environmental factors. Twin studies of astigmatism have found approximately 60% of phenotypic variance is explained by genetic factors. This study aimed to identify susceptibility loci for astigmatism. Methods. We performed a meta-analysis of seven genome-wide association studies that included 22,100 individuals of European descent, where astigmatism was defined as the number of diopters of cylinder prescription, using fixed effect inverse variance-weighted methods. Results. A susceptibility locus was identified with lead single nucleotide polymorphism rs3771395 on chromosome 2p13.3 (meta-analysis, P = 1.97 × 10−7) in the VAX2 gene. VAX2 plays an important role in the development of the dorsoventral axis of the eye. Animal studies have shown a gradient in astigmatism along the vertical plane, with corresponding changes in refraction, particularly in the ventral field. Conclusions. This finding advances the understanding of refractive error, and provides new potential pathways to be evaluated with regard to the development of astigmatism. PMID:23322567

  1. A Ground Flash Fraction Retrieval Algorithm for GLM

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.

  2. A Multipath Mitigation Algorithm for vehicle with Smart Antenna

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Zhang, Jiantong; Chen, Wei; Su, Deliang

    2018-01-01

    In this paper, the antenna array adaptive method is used to eliminate the multipath interference in the environment of GPS L1 frequency. Combined with the power inversion (PI) algorithm and the minimum variance no distortion response (MVDR) algorithm, the anti-Simulation and verification of the antenna array, and the program into the FPGA, the actual test on the CBD road, the theoretical analysis of the LCMV criteria and PI and MVDR algorithm principles and characteristics of MVDR algorithm to verify anti-multipath interference performance is better than PI algorithm, The satellite navigation in the field of vehicle engineering practice has some guidance and reference.

  3. An approach for the assessment of the statistical aspects of the SEA coupling loss factors and the vibrational energy transmission in complex aircraft structures: Experimental investigation and methods benchmark

    NASA Astrophysics Data System (ADS)

    Bouhaj, M.; von Estorff, O.; Peiffer, A.

    2017-09-01

    In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.

  4. Analysing the 21 cm signal from the epoch of reionization with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Hayato; Semelin, Benoit

    2017-07-01

    The 21 cm signal from the epoch of reionization should be observed within the next decade. While a simple statistical detection is expected with Square Kilometre Array (SKA) pathfinders, the SKA will hopefully produce a full 3D mapping of the signal. To extract from the observed data constraints on the parameters describing the underlying astrophysical processes, inversion methods must be developed. For example, the Markov Chain Monte Carlo method has been successfully applied. Here, we test another possible inversion method: artificial neural networks (ANNs). We produce a training set that consists of 70 individual samples. Each sample is made of the 21 cm power spectrum at different redshifts produced with the 21cmFast code plus the value of three parameters used in the seminumerical simulations that describe astrophysical processes. Using this set, we train the network to minimize the error between the parameter values it produces as an output and the true values. We explore the impact of the architecture of the network on the quality of the training. Then we test the trained network on the new set of 54 test samples with different values of the parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameters at a given redshift, that including thermal noise and sample variance decreases the quality of the reconstruction and that using the power spectrum at several redshifts as an input to the ANN improves the quality of the reconstruction. We conclude that ANNs are a viable inversion method whose main strength is that they require a sparse exploration of the parameter space and thus should be usable with full numerical simulations.

  5. A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships.

    PubMed

    Visscher, Peter M; Goddard, Michael E

    2015-01-01

    Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N(2), where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N. Copyright © 2015 by the Genetics Society of America.

  6. Manual physical therapy and exercise versus supervised home exercise in the management of patients with inversion ankle sprain: a multicenter randomized clinical trial.

    PubMed

    Cleland, Joshua A; Mintken, Paul E; McDevitt, Amy; Bieniek, Melanie L; Carpenter, Kristin J; Kulp, Katherine; Whitman, Julie M

    2013-01-01

    Randomized clinical trial. To compare the effectiveness of manual therapy and exercise (MTEX) to a home exercise program (HEP) in the management of individuals with an inversion ankle sprain. An in-clinic exercise program has been found to yield similar outcomes as an HEP for individuals with an inversion ankle sprain. However, no studies have compared an MTEX approach to an HEP. Patients with an inversion ankle sprain completed the Foot and Ankle Ability Measure (FAAM) activities of daily living subscale, the FAAM sports subscale, the Lower Extremity Functional Scale, and the numeric pain rating scale. Patients were randomly assigned to either an MTEX or an HEP treatment group. Outcomes were collected at baseline, 4 weeks, and 6 months. The primary aim (effects of treatment on pain and disability) was examined with a mixed-model analysis of variance. The hypothesis of interest was the 2-way interaction (group by time). Seventy-four patients (mean ± SD age, 35.1 ± 11.0 years; 48.6% female) were randomized into the MTEX group (n = 37) or the HEP group (n = 37). The overall group-by-time interaction for the mixed-model analysis of variance was statistically significant for the FAAM activities of daily living subscale (P<.001), FAAM sports subscale (P<.001), Lower Extremity Functional Scale (P<.001), and pain (P ≤.001). Improvements in all functional outcome measures and pain were significantly greater at both the 4-week and 6-month follow-up periods in favor of the MTEX group. The results suggest that an MTEX approach is superior to an HEP in the treatment of inversion ankle sprains. Registered at clinicaltrials.gov (NCT00797368). Therapy, level 1b-.

  7. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less

  8. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  9. Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation with Brain Iron in Normal Aging

    PubMed Central

    Poynton, Clare; Jenkinson, Mark; Adalsteinsson, Elfar; Sullivan, Edith V.; Pfefferbaum, Adolf; Wells, William

    2015-01-01

    There is increasing evidence that iron deposition occurs in specific regions of the brain in normal aging and neurodegenerative disorders such as Parkinson's, Huntington's, and Alzheimer's disease. Iron deposition changes the magnetic susceptibility of tissue, which alters the MR signal phase, and allows estimation of susceptibility differences using quantitative susceptibility mapping (QSM). We present a method for quantifying susceptibility by inversion of a perturbation model, or ‘QSIP’. The perturbation model relates phase to susceptibility using a kernel calculated in the spatial domain, in contrast to previous Fourier-based techniques. A tissue/air susceptibility atlas is used to estimate B0 inhomogeneity. QSIP estimates in young and elderly subjects are compared to postmortem iron estimates, maps of the Field-Dependent Relaxation Rate Increase (FDRI), and the L1-QSM method. Results for both groups showed excellent agreement with published postmortem data and in-vivo FDRI: statistically significant Spearman correlations ranging from Rho = 0.905 to Rho = 1.00 were obtained. QSIP also showed improvement over FDRI and L1-QSM: reduced variance in susceptibility estimates and statistically significant group differences were detected in striatal and brainstem nuclei, consistent with age-dependent iron accumulation in these regions. PMID:25248179

  10. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  11. Computationally Efficient Adaptive Beamformer for Ultrasound Imaging Based on QR Decomposition.

    PubMed

    Park, Jongin; Wi, Seok-Min; Lee, Jin S

    2016-02-01

    Adaptive beamforming methods for ultrasound imaging have been studied to improve image resolution and contrast. The most common approach is the minimum variance (MV) beamformer which minimizes the power of the beamformed output while maintaining the response from the direction of interest constant. The method achieves higher resolution and better contrast than the delay-and-sum (DAS) beamformer, but it suffers from high computational cost. This cost is mainly due to the computation of the spatial covariance matrix and its inverse, which requires O(L(3)) computations, where L denotes the subarray size. In this study, we propose a computationally efficient MV beamformer based on QR decomposition. The idea behind our approach is to transform the spatial covariance matrix to be a scalar matrix σI and we subsequently obtain the apodization weights and the beamformed output without computing the matrix inverse. To do that, QR decomposition algorithm is used and also can be executed at low cost, and therefore, the computational complexity is reduced to O(L(2)). In addition, our approach is mathematically equivalent to the conventional MV beamformer, thereby showing the equivalent performances. The simulation and experimental results support the validity of our approach.

  12. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  13. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Log-amplitude statistics for Beck-Cohen superstatistics

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Konno, Hidetoshi

    2013-05-01

    As a possible generalization of Beck-Cohen superstatistical processes, we study non-Gaussian processes with temporal heterogeneity of local variance. To characterize the variance heterogeneity, we define log-amplitude cumulants and log-amplitude autocovariance and derive closed-form expressions of the log-amplitude cumulants for χ2, inverse χ2, and log-normal superstatistical distributions. Furthermore, we show that χ2 and inverse χ2 superstatistics with degree 2 are closely related to an extreme value distribution, called the Gumbel distribution. In these cases, the corresponding superstatistical distributions result in the q-Gaussian distribution with q=5/3 and the bilateral exponential distribution, respectively. Thus, our finding provides a hypothesis that the asymptotic appearance of these two special distributions may be explained by a link with the asymptotic limit distributions involving extreme values. In addition, as an application of our approach, we demonstrated that non-Gaussian fluctuations observed in a stock index futures market can be well approximated by the χ2 superstatistical distribution with degree 2.

  15. Simultaneous analysis of large INTEGRAL/SPI1 datasets: Optimizing the computation of the solution and its variance using sparse matrix algorithms

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Amestoy, P.; Buttari, A.; Rouet, F.-H.; Chauvin, M.

    2013-02-01

    Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.

  16. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  17. Bayesian Meta-Analysis of Coefficient Alpha

    ERIC Educational Resources Information Center

    Brannick, Michael T.; Zhang, Nanhua

    2013-01-01

    The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…

  18. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  19. Probability of stress-corrosion fracture under random loading.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1972-01-01

    A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.

  20. Analysis of Modified SMI Method for Adaptive Array Weight Control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald Louis

    1989-01-01

    An adaptive array is used to receive a desired signal in the presence of weak interference signals which need to be suppressed. A modified sample matrix inversion (SMI) algorithm controls the array weights. The modification leads to increased interference suppression by subtracting a fraction of the noise power from the diagonal elements of the covariance matrix. The modified algorithm maximizes an intuitive power ratio criterion. The expected values and variances of the array weights, output powers, and power ratios as functions of the fraction and the number of snapshots are found and compared to computer simulation and real experimental array performance. Reduced-rank covariance approximations and errors in the estimated covariance are also described.

  1. On estimation of linear transformation models with nested case–control sampling

    PubMed Central

    Liu, Mengling

    2011-01-01

    Nested case–control (NCC) sampling is widely used in large epidemiological cohort studies for its cost effectiveness, but its data analysis primarily relies on the Cox proportional hazards model. In this paper, we consider a family of linear transformation models for analyzing NCC data and propose an inverse selection probability weighted estimating equation method for inference. Consistency and asymptotic normality of our estimators for regression coefficients are established. We show that the asymptotic variance has a closed analytic form and can be easily estimated. Numerical studies are conducted to support the theory and an application to the Wilms’ Tumor Study is also given to illustrate the methodology. PMID:21912975

  2. Estimating individual glomerular volume in the human kidney: clinical perspectives

    PubMed Central

    Puelles, Victor G.; Zimanyi, Monika A.; Samuel, Terence; Hughson, Michael D.; Douglas-Denton, Rebecca N.; Bertram, John F.

    2012-01-01

    Background. Measurement of individual glomerular volumes (IGV) has allowed the identification of drivers of glomerular hypertrophy in subjects without overt renal pathology. This study aims to highlight the relevance of IGV measurements with possible clinical implications and determine how many profiles must be measured in order to achieve stable size distribution estimates. Methods. We re-analysed 2250 IGV estimates obtained using the disector/Cavalieri method in 41 African and 34 Caucasian Americans. Pooled IGV analysis of mean and variance was conducted. Monte-Carlo (Jackknife) simulations determined the effect of the number of sampled glomeruli on mean IGV. Lin’s concordance coefficient (RC), coefficient of variation (CV) and coefficient of error (CE) measured reliability. Results. IGV mean and variance increased with overweight and hypertensive status. Superficial glomeruli were significantly smaller than juxtamedullary glomeruli in all subjects (P < 0.01), by race (P < 0.05) and in obese individuals (P < 0.01). Subjects with multiple chronic kidney disease (CKD) comorbidities showed significant increases in IGV mean and variability. Overall, mean IGV was particularly reliable with nine or more sampled glomeruli (RC > 0.95, <5% difference in CV and CE). These observations were not affected by a reduced sample size and did not disrupt the inverse linear correlation between mean IGV and estimated total glomerular number. Conclusions. Multiple comorbidities for CKD are associated with increased IGV mean and variance within subjects, including overweight, obesity and hypertension. Zonal selection and the number of sampled glomeruli do not represent drawbacks for future longitudinal biopsy-based studies of glomerular size and distribution. PMID:21984554

  3. Empirical Study of Horizontal and Vertical Resolution of Teleseismic Receiver Function Data for Shallow Crustal Imagery.

    NASA Astrophysics Data System (ADS)

    Subasic, S.; Piana Agostinetti, N.; Bean, C. J.

    2017-12-01

    Passive seismic methods as a tool in exploration geophysics are relatively cheap, and offer the prospect of 3D imagery at a fraction of the cost of an active survey. Outputs from passive seismic surveys can also be used as a test and guide for subsequent targeted higher resolution studies, and they offer a strategic alternative in areas where an active survey would be a difficult or impossible task. In order to test the horizontal and vertical resolution of teleseismic receiver functions, we perform a complete receiver function analysis and inversion of the teleseismic data from the La Barge array. The La Barge Passive Seismic Experiment is composed of 55 instruments deployed in western Wyoming, recording continuously between November 2008 and June 2009. The close interstation distance used during the deployment (250m, up to two orders of magnitude smaller than in typical receiver function studies) makes this open-access data set a perfect test-case for the aim of this study. Receiver functions (RF) are calculated for earthquakes with Mw ≥ 5.5, at epicentral distances ranging from 30° to 100°. We use the frequency domain deconvolution method proposed by Di Bona (1998). This method includes estimations of variances for individual receiver functions, and considers both the pre-signal noise, as well as the noise involved in the deconvolution itself. We perform harmonic decomposition of the receiver function dataset. The zero-order harmonic, representing the bulk isotropic variation of seismic velocities with depth, is used in the inversion. The RF inversion scheme follows a reversible jump Markov Chain Monte Carlo algorithm, developed by Piana Agostinetti and Malinverno (2010). The results can be compared with the measurements from nearby wells.

  4. TOPEX/POSEIDON tides estimated using a global inverse model

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.

    1994-01-01

    Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.

  5. 3D Photonic Crystals Build Up By Self-Organization Of Nanospheres

    DTIC Science & Technology

    2006-05-23

    variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86

  6. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.

    PubMed

    Johnston, P R; Walker, S J; Hyttinen, J A; Kilpatrick, D

    1994-04-01

    The inverse problem of electrocardiography, the computation of epicardial potentials from body surface potentials, is influenced by the desired resolution on the epicardium, the number of recording points on the body surface, and the method of limiting the inversion process. To examine the role of these variables in the computation of the inverse transform, Tikhonov's zero-order regularization and singular value decomposition (SVD) have been used to invert the forward transfer matrix. The inverses have been compared in a data-independent manner using the resolution and the noise amplification as endpoints. Sets of 32, 50, 192, and 384 leads were chosen as sets of body surface data, and 26, 50, 74, and 98 regions were chosen to represent the epicardium. The resolution and noise were both improved by using a greater number of electrodes on the body surface. When 60% of the singular values are retained, the results show a trade-off between noise and resolution, with typical maximal epicardial noise levels of less than 0.5% of maximum epicardial potentials for 26 epicardial regions, 2.5% for 50 epicardial regions, 7.5% for 74 epicardial regions, and 50% for 98 epicardial regions. As the number of epicardial regions is increased, the regularization technique effectively fixes the noise amplification but markedly decreases the resolution, whereas SVD results in an increase in noise and a moderate decrease in resolution. Overall the regularization technique performs slightly better than SVD in the noise-resolution relationship. There is a region at the posterior of the heart that was poorly resolved regardless of the number of regions chosen. The variance of the resolution was such as to suggest the use of variable-size epicardial regions based on the resolution.

  7. Factor Analysis by Generalized Least Squares.

    ERIC Educational Resources Information Center

    Joreskog, Karl G.; Goldberger, Arthur S.

    Aitkin's generalized least squares (GLS) principle, with the inverse of the observed variance-covariance matrix as a weight matrix, is applied to estimate the factor analysis model in the exploratory (unrestricted) case. It is shown that the GLS estimates are scale free and asymptotically efficient. The estimates are computed by a rapidly…

  8. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    PubMed

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  9. [Determinants of pride and shame: outcome, expected success and attribution].

    PubMed

    Schützwohl, A

    1991-01-01

    In two experiments we investigated the relationship between subjective probability of success and pride and shame. According to Atkinson (1957), pride (the incentive of success) is an inverse linear function of the probability of success, shame (the incentive of failure) being a negative linear function. Attribution theory predicts an inverse U-shaped relationship between subjective probability of success and pride and shame. The results presented here are at variance with both theories: Pride and shame do not vary with subjective probability of success. However, pride and shame are systematically correlated with internal attributions of action outcome.

  10. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model.

    PubMed

    Doi, Suhail A R; Barendregt, Jan J; Khan, Shahjahan; Thalib, Lukman; Williams, Gail M

    2015-11-01

    This article examines an improved alternative to the random effects (RE) model for meta-analysis of heterogeneous studies. It is shown that the known issues of underestimation of the statistical error and spuriously overconfident estimates with the RE model can be resolved by the use of an estimator under the fixed effect model assumption with a quasi-likelihood based variance structure - the IVhet model. Extensive simulations confirm that this estimator retains a correct coverage probability and a lower observed variance than the RE model estimator, regardless of heterogeneity. When the proposed IVhet method is applied to the controversial meta-analysis of intravenous magnesium for the prevention of mortality after myocardial infarction, the pooled OR is 1.01 (95% CI 0.71-1.46) which not only favors the larger studies but also indicates more uncertainty around the point estimate. In comparison, under the RE model the pooled OR is 0.71 (95% CI 0.57-0.89) which, given the simulation results, reflects underestimation of the statistical error. Given the compelling evidence generated, we recommend that the IVhet model replace both the FE and RE models. To facilitate this, it has been implemented into free meta-analysis software called MetaXL which can be downloaded from www.epigear.com. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Feasibility and acceptability of using jumping mechanography to detect early components of sarcopenia in community-dwelling older women

    PubMed Central

    Hannam, K.; Hartley, A.; Clark, E.M.; Sayer, A. Aihie; Tobias, J.H.; Gregson, C.L.

    2017-01-01

    Objective: To determine the feasibility and acceptability of using peak power and force, measured by jumping mechanography (JM), to detect early age-related features of sarcopenia in older women. Methods: Community-dwelling women aged 71-87 years were recruited into this cross-sectional study. Physical function tests comprised the short physical performance battery (SPPB), grip strength and, if SPPB score≥6, JM. JM measured peak weight-adjusted power and force from two-footed jumps and one-legged hops respectively. Questionnaires assessed acceptability. Results: 463 women were recruited; 37(8%) with SPPB<6 were ineligible for JM. Of 426 remaining, 359(84%) were able to perform ≥1 valid two-footed jump, 300(70%) completed ≥1 valid one-legged hop. No adverse events occurred. Only 14% reported discomfort. Discomfort related to JM performance, with inverse associations with both power and force (p<0.01). Peak power and force respectively explained 8% and 10% of variance in SPPB score (13% combined); only peak power explained additional variance in grip strength (17%). Conclusions: Peak power and force explained a significant, but limited, proportion of variance in SPPB and grip strength. JM represents a safe and acceptable clinical tool for evaluating lower-limb muscle power and force in older women, detecting distinct components of muscle function, and possibly sarcopenia, compared to those evaluated by more established measures. PMID:28860427

  12. Multilevel models for cost-effectiveness analyses that use cluster randomised trial data: An approach to model choice.

    PubMed

    Ng, Edmond S-W; Diaz-Ordaz, Karla; Grieve, Richard; Nixon, Richard M; Thompson, Simon G; Carpenter, James R

    2016-10-01

    Multilevel models provide a flexible modelling framework for cost-effectiveness analyses that use cluster randomised trial data. However, there is a lack of guidance on how to choose the most appropriate multilevel models. This paper illustrates an approach for deciding what level of model complexity is warranted; in particular how best to accommodate complex variance-covariance structures, right-skewed costs and missing data. Our proposed models differ according to whether or not they allow individual-level variances and correlations to differ across treatment arms or clusters and by the assumed cost distribution (Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo methods. Our approach to model choice is based on four main criteria: the characteristics of the data, model pre-specification informed by the previous literature, diagnostic plots and assessment of model appropriateness. This is illustrated by re-analysing a previous cost-effectiveness analysis that uses data from a cluster randomised trial. We find that the most useful criterion for model choice was the deviance information criterion, which distinguishes amongst models with alternative variance-covariance structures, as well as between those with different cost distributions. This strategy for model choice can help cost-effectiveness analyses provide reliable inferences for policy-making when using cluster trials, including those with missing data. © The Author(s) 2013.

  13. Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection

    NASA Astrophysics Data System (ADS)

    Brunetti, Carlotta; Linde, Niklas

    2018-01-01

    Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical properties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydrogeological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.

  14. Discordance between net analyte signal theory and practical multivariate calibration.

    PubMed

    Brown, Christopher D

    2004-08-01

    Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.

  15. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture.

    PubMed

    Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja

    2014-10-01

    This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.

  16. Determination of source parameters of the 2017 Mount Agung volcanic earthquake from moment-tensor inversion method using local broadband seismic waveforms

    NASA Astrophysics Data System (ADS)

    Madlazim; Prastowo, T.; Supardiyono; Hardy, T.

    2018-03-01

    Monitoring of volcanoes has been an important issue for many purposes, particularly hazard mitigation. With regard to this, the aims of the present work are to estimate and analyse source parameters of a volcanic earthquake driven by recent magmatic events of Mount Agung in Bali island that occurred on September 28, 2017. The broadband seismogram data consisting of 3 local component waveforms were recorded by the IA network of 5 seismic stations: SRBI, DNP, BYJI, JAGI, and TWSI (managed by BMKG). These land-based observatories covered a full 4-quadrant region surrounding the epicenter. The methods used in the present study were seismic moment-tensor inversions, where the data were all analyzed to extract the parameters, namely moment magnitude, type of a volcanic earthquake indicated by percentages of seismic components: compensated linear vector dipole (CLVD), isotropic (ISO), double-couple (DC), and source depth. The results are given in the forms of variance reduction of 65%, a magnitude of M W 3.6, a CLVD of 40%, an ISO of 33%, a DC of 27% and a centroid-depth of 9.7 km. These suggest that the unusual earthquake was dominated by a vertical CLVD component, implying the dominance of uplift motion of magmatic fluid flow inside the volcano.

  17. Simulation methods with extended stability for stiff biochemical Kinetics.

    PubMed

    Rué, Pau; Villà-Freixa, Jordi; Burrage, Kevin

    2010-08-11

    With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.

  18. Variance and covariance estimates for weaning weight of Senepol cattle.

    PubMed

    Wright, D W; Johnson, Z B; Brown, C J; Wildeus, S

    1991-10-01

    Variance and covariance components were estimated for weaning weight from Senepol field data for use in the reduced animal model for a maternally influenced trait. The 4,634 weaning records were used to evaluate 113 sires and 1,406 dams on the island of St. Croix. Estimates of direct additive genetic variance (sigma 2A), maternal additive genetic variance (sigma 2M), covariance between direct and maternal additive genetic effects (sigma AM), permanent maternal environmental variance (sigma 2PE), and residual variance (sigma 2 epsilon) were calculated by equating variances estimated from a sire-dam model and a sire-maternal grandsire model, with and without the inverse of the numerator relationship matrix (A-1), to their expectations. Estimates were sigma 2A, 139.05 and 138.14 kg2; sigma 2M, 307.04 and 288.90 kg2; sigma AM, -117.57 and -103.76 kg2; sigma 2PE, -258.35 and -243.40 kg2; and sigma 2 epsilon, 588.18 and 577.72 kg2 with and without A-1, respectively. Heritability estimates for direct additive (h2A) were .211 and .210 with and without A-1, respectively. Heritability estimates for maternal additive (h2M) were .47 and .44 with and without A-1, respectively. Correlations between direct and maternal (IAM) effects were -.57 and -.52 with and without A-1, respectively.

  19. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  20. Dealing with non-unique and non-monotonic response in particle sizing instruments

    NASA Astrophysics Data System (ADS)

    Rosenberg, Phil

    2017-04-01

    A number of instruments used as de-facto standards for measuring particle size distributions are actually incapable of uniquely determining the size of an individual particle. This is due to non-unique or non-monotonic response functions. Optical particle counters have non monotonic response due to oscillations in the Mie response curves, especially for large aerosol and small cloud droplets. Scanning mobility particle sizers respond identically to two particles where the ratio of particle size to particle charge is approximately the same. Images of two differently sized cloud or precipitation particles taken by an optical array probe can have similar dimensions or shadowed area depending upon where they are in the imaging plane. A number of methods exist to deal with these issues, including assuming that positive and negative errors cancel, smoothing response curves, integrating regions in measurement space before conversion to size space and matrix inversion. Matrix inversion (also called kernel inversion) has the advantage that it determines the size distribution which best matches the observations, given specific information about the instrument (a matrix which specifies the probability that a particle of a given size will be measured in a given instrument size bin). In this way it maximises use of the information in the measurements. However this technique can be confused by poor counting statistics which can cause erroneous results and negative concentrations. Also an effective method for propagating uncertainties is yet to be published or routinely implemented. Her we present a new alternative which overcomes these issues. We use Bayesian methods to determine the probability that a given size distribution is correct given a set of instrument data and then we use Markov Chain Monte Carlo methods to sample this many dimensional probability distribution function to determine the expectation and (co)variances - hence providing a best guess and an uncertainty for the size distribution which includes contributions from the non-unique response curve, counting statistics and can propagate calibration uncertainties.

  1. The relationship between emotional intelligence and job stress in the faculty of medicine in Isfahan University of Medical Sciences

    PubMed Central

    YAMANI, NIKOO; SHAHABI, MARYAM; HAGHANI, FARIBA

    2014-01-01

    Introduction: health care professionals especially clinicians, undergo lots of job stress (JS). Emotional intelligence (EI) is among the variables that appear to be associated with stress. It is also included among the ways adopted by the individuals in order to resist JS in the workplace. Thus, this study aims to investigate the relationship between EI and JS in the faculty members of Isfahan University of Medical Sciences (IUMS). Methods: This was a correlational study performed on 202 faculty members of IUMS. The data was gathered through two valid and reliable questionnaires (Bradberry EI questionnaire and JS questionnaire), being analyzed by SPSS software using descriptive statistics, Pearson correlation coefficient, t-test, analysis of variance (ANOVA) and linear regression analysis (α=0.05). Results: 142 individuals (70.30%) filled out the questionnaires. 75% of the respondents were male and 98% were married. There was an inverse correlation between the total score of EI and the level of JS (r=-0.235, p=0.005). Moreover, among the factors of EI, self-awareness and self-management scores had significant inverse relationship with the level of JS. Linear regression analysis showed that the EI factors explained approximately 7% of the variance of JS levels of the teachers. Conclusions: Individuals with high EI have less JS. Since the EI can be taught, it can be expected that the JS of faculty members can be reduced through training them on emotional intelligence. Therefore, it is recommended that short-term training courses be scheduled and designed based on the concepts of EI for teachers, particularly clinicians. PMID:25512914

  2. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin

    PubMed Central

    Al-Attas, Omar S; Al-Daghri, Nasser M; Alokail, Majed S; Alfadda, Assim; Bamakhramah, Ahmed; Sabico, Shaun; Pritlove, Dave; Harte, Alison; Tripathi, Gyanendra; McTernan, Philip G; Kumar, Sudhesh; Chrousos, George

    2010-01-01

    Objective Studies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2). Design and methods One hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR. Results Circulating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01). Conclusion Obesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging. PMID:20679357

  3. Likelihood-Based Random-Effect Meta-Analysis of Binary Events.

    PubMed

    Amatya, Anup; Bhaumik, Dulal K; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D

    2015-01-01

    Meta-analysis has been used extensively for evaluation of efficacy and safety of medical interventions. Its advantages and utilities are well known. However, recent studies have raised questions about the accuracy of the commonly used moment-based meta-analytic methods in general and for rare binary outcomes in particular. The issue is further complicated for studies with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alternative to moment-based methods such as inverse-variance weighted fixed- and random-effects estimators. In this article, we compare and contrast different mixed-effect modeling strategies in the context of meta-analysis. Their performance in estimation and testing of overall effect and heterogeneity are evaluated when combining results from studies with a binary outcome. Models that allow heterogeneity in both baseline rate and treatment effect across studies have low type I and type II error rates, and their estimates are the least biased among the models considered.

  4. WEIGHTED LIKELIHOOD ESTIMATION UNDER TWO-PHASE SAMPLING

    PubMed Central

    Saegusa, Takumi; Wellner, Jon A.

    2013-01-01

    We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. We also consider several variants of WLEs involving estimated weights and calibration. A set of empirical process tools are developed including a Glivenko–Cantelli theorem, a theorem for rates of convergence of M-estimators, and a Donsker theorem for the inverse probability weighted empirical processes under two-phase sampling and sampling without replacement at the second phase. Using these general results, we derive asymptotic distributions of the WLE of a finite-dimensional parameter in a general semiparametric model where an estimator of a nuisance parameter is estimable either at regular or nonregular rates. We illustrate these results and methods in the Cox model with right censoring and interval censoring. We compare the methods via their asymptotic variances under both sampling without replacement and the more usual (and easier to analyze) assumption of Bernoulli sampling at the second phase. PMID:24563559

  5. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F

    2014-03-01

    System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant approximation, in the context of design optimization of a parallel-hole collimator SPECT system and of an adaptive imaging system (similar to the commercially available D-SPECT).

  6. Reproducibility and reliability of short-TE whole-brain MR spectroscopic imaging of human brain at 3T.

    PubMed

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Dellani, Paulo R; Lanfermann, Heinrich

    2015-03-01

    A feasibility study of an echo-planar spectroscopic imaging (EPSI) using a short echo time (TE) that trades off sensitivity, compared with other short-TE methods, to achieve whole brain coverage using inversion recovery and spatial oversampling to control lipid bleeding. Twenty subjects were scanned to examine intersubject variance. One subject was scanned five times to examine intrasubject reproducibility. Data were analyzed to determine coefficients of variance (COV) and intraclass correlation coefficient (ICC) for N-acetylaspartate (NAA), total creatine (tCr), total choline (tCho), glutamine/glutamate (Glx), and myo-inositol (mI). Regional metabolite concentrations were derived by using multi-voxel analysis based on lobar-level anatomic regions. For whole-brain mean values, the intrasubject COVs were 14%, 15%, and 20% for NAA, tCr, and tCho, respectively, and 31% for Glx and mI. The intersubject COVs were up to 6% higher. For regional distributions, the intrasubject COVs were ≤ 5% for NAA, tCr, and tCho; ≤ 9% for Glx; and ≤15% for mI, with about 6% higher intersubject COVs. The ICCs of 5 metabolites were ≥ 0.7, indicating the reliability of the measurements. The present EPSI method enables estimation of the whole-brain metabolite distributions, including Glx and mI with small voxel size, and a reasonable scan time and reproducibility. © 2014 Wiley Periodicals, Inc.

  7. Estimating individual glomerular volume in the human kidney: clinical perspectives.

    PubMed

    Puelles, Victor G; Zimanyi, Monika A; Samuel, Terence; Hughson, Michael D; Douglas-Denton, Rebecca N; Bertram, John F; Armitage, James A

    2012-05-01

    Measurement of individual glomerular volumes (IGV) has allowed the identification of drivers of glomerular hypertrophy in subjects without overt renal pathology. This study aims to highlight the relevance of IGV measurements with possible clinical implications and determine how many profiles must be measured in order to achieve stable size distribution estimates. We re-analysed 2250 IGV estimates obtained using the disector/Cavalieri method in 41 African and 34 Caucasian Americans. Pooled IGV analysis of mean and variance was conducted. Monte-Carlo (Jackknife) simulations determined the effect of the number of sampled glomeruli on mean IGV. Lin's concordance coefficient (R(C)), coefficient of variation (CV) and coefficient of error (CE) measured reliability. IGV mean and variance increased with overweight and hypertensive status. Superficial glomeruli were significantly smaller than juxtamedullary glomeruli in all subjects (P < 0.01), by race (P < 0.05) and in obese individuals (P < 0.01). Subjects with multiple chronic kidney disease (CKD) comorbidities showed significant increases in IGV mean and variability. Overall, mean IGV was particularly reliable with nine or more sampled glomeruli (R(C) > 0.95, <5% difference in CV and CE). These observations were not affected by a reduced sample size and did not disrupt the inverse linear correlation between mean IGV and estimated total glomerular number. Multiple comorbidities for CKD are associated with increased IGV mean and variance within subjects, including overweight, obesity and hypertension. Zonal selection and the number of sampled glomeruli do not represent drawbacks for future longitudinal biopsy-based studies of glomerular size and distribution.

  8. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.

    PubMed

    Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z

    2015-11-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman; Hertzog, Christopher

    2018-01-01

    Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. PMID:29755377

  10. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization

    PubMed Central

    Brier, Matthew R.; Mitra, Anish; McCarthy, John E.; Ances, Beau M.; Snyder, Abraham Z.

    2015-01-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. PMID:26208872

  11. Analytical and experimental design and analysis of an optimal processor for image registration

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D. (Principal Investigator); Svedlow, M.; Anuta, P. E.

    1976-01-01

    The author has identified the following significant results. A quantitative measure of the registration processor accuracy in terms of the variance of the registration error was derived. With the appropriate assumptions, the variance was shown to be inversely proportional to the square of the effective bandwidth times the signal to noise ratio. The final expressions were presented to emphasize both the form and simplicity of their representation. In the situation where relative spatial distortions exist between images to be registered, expressions were derived for estimating the loss in output signal to noise ratio due to these spatial distortions. These results are in terms of a reduction factor.

  12. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric flow. This is consistent with an upward flow from below the thick lithosphere of the Siberian Craton to below the thinner lithosphere of central Mongolia, likely to give rise to decompression melting and the scattered, sporadic volcanism observed in the Baikal Rift area, as proposed previously. Inversion of phase-velocity data from west-central Italy for azimuthal anisotropy reveals a clear change in the shear-wave fast-propagation direction at 70-100 km depths, near the lithosphere-asthenosphere boundary. The orientation of the fabric in the lithosphere is roughly E-W, parallel to the direction of stretching over the last 10 m.y. The orientation of the fabric in the asthenosphere is NW-SE, matching the fast directions inferred from shear-wave splitting and probably indicating the direction of the asthenospheric flow.

  13. Dietary Flavonoid Intake and Smoking-Related Cancer Risk: A Meta-Analysis

    PubMed Central

    Woo, Hae Dong; Kim, Jeongseon

    2013-01-01

    Purpose To systematically investigate the effects of dietary flavonoids and flavonoid subclasses on the risk of smoking-related cancer in observational studies. Methods Summary estimates and corresponding standard errors were calculated using the multivariate-adjusted odds ratio (OR) or relative risk (RR) and 95% CI of selected studies and weighted by the inverse variance. Results A total of 35 studies, including 19 case-controls (9,525 cases and 15,835 controls) and 15 cohort studies (988,082 subjects and 8,161 cases), were retrieved for the meta-analysis. Total dietary flavonoids and most of the flavonoid subclasses were inversely associated with smoking-related cancer risk (OR: 0.82, 95% CI: 0.72-0.93). In subgroup analyses by cancer site, significant associations were observed in aerodigestive tract and lung cancers. Total dietary flavonoid intake was significantly associated with aerodigestive tract cancer risk (OR: 0.67, 95% CI: 0.54-0.83) marginally associated with lung cancer risk (OR: 0.84, 95% CI: 0.71-1.00). Subgroup analyses by smoking status showed significantly different results. The intake of total flavonoids, flavonols, flavones, and flavanones, as well as the flavonols quercetin and kaempferol was significantly associated with decreased risk of smoking-related cancer in smokers, whereas no association was observed in non-smokers, except for flavanones. In meta-analysis for the effect of subclasses of dietary flavonoids by cancer type, aerodigestive tract cancer was inversely associated with most flavonoid subclasses. Conclusion The protective effects of flavonoids on smoking-related cancer risk varied across studies, but the overall results indicated that intake of dietary flavonoids, especially flavonols, was inversely associated with smoking-related cancer risk. The protective effects of flavonoids on smoking-related cancer risk were more prominent in smokers. PMID:24069431

  14. Mapping target signatures via partial unmixing of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Boardman, Joseph W.; Kruse, Fred A.; Green, Robert O.

    1995-01-01

    A complete spectral unmixing of a complicated AVIRIS scene may not always be possible or even desired. High quality data of spectrally complex areas are very high dimensional and are consequently difficult to fully unravel. Partial unmixing provides a method of solving only that fraction of the data inversion problem that directly relates to the specific goals of the investigation. Many applications of imaging spectrometry can be cast in the form of the following question: 'Are my target signatures present in the scene, and if so, how much of each target material is present in each pixel?' This is a partial unmixing problem. The number of unmixing endmembers is one greater than the number of spectrally defined target materials. The one additional endmember can be thought of as the composite of all the other scene materials, or 'everything else'. Several workers have proposed partial unmixing schemes for imaging spectrometry data, but each has significant limitations for operational application. The low probability detection methods described by Farrand and Harsanyi and the foreground-background method of Smith et al are both examples of such partial unmixing strategies. The new method presented here builds on these innovative analysis concepts, combining their different positive attributes while attempting to circumvent their limitations. This new method partially unmixes AVIRIS data, mapping apparent target abundances, in the presence of an arbitrary and unknown spectrally mixed background. It permits the target materials to be present in abundances that drive significant portions of the scene covariance. Furthermore it does not require a priori knowledge of the background material spectral signatures. The challenge is to find the proper projection of the data that hides the background variance while simultaneously maximizing the variance amongst the targets.

  15. Waveform inversion of mantle Love waves: The born seismogram approach

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.

    1983-01-01

    Normal mode theory, extended to the slightly laterally heterogeneous Earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the Earth's lateral heterogeneity at l=2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l=2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5% in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.

  16. Waveform inversion of mantle Love waves - The Born seismogram approach

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.

    1984-01-01

    Normal mode theory, extended to the slightly laterally heterogeneous earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love waves (200-500 sec) for the earth's lateral heterogeneity at l = 2 and a spherically symmetric anelasticity (Q sub mu) structure. The data are from the Global Digital Seismograph Network (GDSN). The l = 2 pattern is very similar to the results of other studies that used either different methods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analyzed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5 percent in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range can not constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.

  17. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  18. Least-Squares Analysis of Data with Uncertainty in "y" and "x": Algorithms in Excel and KaleidaGraph

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2018-01-01

    For the least-squares analysis of data having multiple uncertain variables, the generally accepted best solution comes from minimizing the sum of weighted squared residuals over all uncertain variables, with, for example, weights in x[subscript i] taken as inversely proportional to the variance [delta][subscript xi][superscript 2]. A complication…

  19. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.

  20. Hopping in the Crowd to Unveil Network Topology.

    PubMed

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-13

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  1. Hopping in the Crowd to Unveil Network Topology

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Carletti, Timoteo; Di Patti, Francesca; Fanelli, Duccio; Piazza, Francesco

    2018-04-01

    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node, which can be chosen randomly. The technique is successfully tested against both synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

  2. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    PubMed

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  3. A Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data

    PubMed Central

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181

  4. Ex Post Facto Monte Carlo Variance Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Thomas E.

    The variance in Monte Carlo particle transport calculations is often dominated by a few particles whose importance increases manyfold on a single transport step. This paper describes a novel variance reduction method that uses a large importance change as a trigger to resample the offending transport step. That is, the method is employed only after (ex post facto) a random walk attempts a transport step that would otherwise introduce a large variance in the calculation.Improvements in two Monte Carlo transport calculations are demonstrated empirically using an ex post facto method. First, the method is shown to reduce the variance inmore » a penetration problem with a cross-section window. Second, the method empirically appears to modify a point detector estimator from an infinite variance estimator to a finite variance estimator.« less

  5. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Petrongolo, M; Wang, T

    Purpose: A general problem of dual-energy CT (DECT) is that the decomposition is sensitive to noise in the two sets of dual-energy projection data, resulting in severely degraded qualities of decomposed images. We have previously proposed an iterative denoising method for DECT. Using a linear decomposition function, the method does not gain the full benefits of DECT on beam-hardening correction. In this work, we expand the framework of our iterative method to include non-linear decomposition models for noise suppression in DECT. Methods: We first obtain decomposed projections, which are free of beam-hardening artifacts, using a lookup table pre-measured on amore » calibration phantom. First-pass material images with high noise are reconstructed from the decomposed projections using standard filter-backprojection reconstruction. Noise on the decomposed images is then suppressed by an iterative method, which is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, we include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Analytical formulae are derived to compute the variance-covariance matrix from the measured decomposition lookup table. Results: We have evaluated the proposed method via phantom studies. Using non-linear decomposition, our method effectively suppresses the streaking artifacts of beam-hardening and obtains more uniform images than our previous approach based on a linear model. The proposed method reduces the average noise standard deviation of two basis materials by one order of magnitude without sacrificing the spatial resolution. Conclusion: We propose a general framework of iterative denoising for material decomposition of DECT. Preliminary phantom studies have shown the proposed method improves the image uniformity and reduces noise level without resolution loss. In the future, we will perform more phantom studies to further validate the performance of the purposed method. This work is supported by a Varian MRA grant.« less

  7. Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching

    NASA Astrophysics Data System (ADS)

    Peikari, Mohammad; Martel, Anne L.

    2016-03-01

    Purpose: Automatic cell segmentation plays an important role in reliable diagnosis and prognosis of patients. Most of the state-of-the-art cell detection and segmentation techniques focus on complicated methods to subtract foreground cells from the background. In this study, we introduce a preprocessing method which leads to a better detection and segmentation results compared to a well-known state-of-the-art work. Method: We transform the original red-green-blue (RGB) space into a new space defined by the top eigenvectors of the RGB space. Stretching is done by manipulating the contrast of each pixel value to equalize the color variances. New pixel values are then inverse transformed to the original RGB space. This altered RGB image is then used to segment cells. Result: The validation of our method with a well-known state-of-the-art technique revealed a statistically significant improvement on an identical validation set. We achieved a mean F1-score of 0.901. Conclusion: Preprocessing steps to decorrelate colorspaces may improve cell segmentation performances.

  8. Infrared fix pattern noise reduction method based on Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Zhao, Dong; Cheng, Kuanhong; Qian, Kun; Qin, Hanlin

    2018-06-01

    The non-uniformity correction (NUC) is an effective way to reduce fix pattern noise (FPN) and improve infrared image quality. The temporal high-pass NUC method is a kind of practical NUC method because of its simple implementation. However, traditional temporal high-pass NUC methods rely deeply on the scene motion and suffer image ghosting and blurring. Thus, this paper proposes an improved NUC method based on Shearlet Transform (ST). First, the raw infrared image is decomposed into multiscale and multi-orientation subbands by ST and the FPN component mainly exists in some certain high-frequency subbands. Then, high-frequency subbands are processed by the temporal filter to extract the FPN due to its low-frequency characteristics. Besides, each subband has a confidence parameter to determine the degree of FPN, which is estimated by the variance of subbands adaptively. At last, the process of NUC is achieved by subtracting the estimated FPN component from the original subbands and the corrected infrared image can be obtained by the inverse ST. The performance of the proposed method is evaluated with real and synthetic infrared image sequences thoroughly. Experimental results indicate that the proposed method can reduce heavily FPN with less roughness and RMSE.

  9. Statistical study of EBR-II fuel elements manufactured by the cold line at Argonne-West and by Atomics International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, A. L.

    1977-09-01

    Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.

  10. Fractal dimension and the navigational information provided by natural scenes.

    PubMed

    Shamsyeh Zahedi, Moosarreza; Zeil, Jochen

    2018-01-01

    Recent work on virtual reality navigation in humans has suggested that navigational success is inversely correlated with the fractal dimension (FD) of artificial scenes. Here we investigate the generality of this claim by analysing the relationship between the fractal dimension of natural insect navigation environments and a quantitative measure of the navigational information content of natural scenes. We show that the fractal dimension of natural scenes is in general inversely proportional to the information they provide to navigating agents on heading direction as measured by the rotational image difference function (rotIDF). The rotIDF determines the precision and accuracy with which the orientation of a reference image can be recovered or maintained and the range over which a gradient descent in image differences will find the minimum of the rotIDF, that is the reference orientation. However, scenes with similar fractal dimension can differ significantly in the depth of the rotIDF, because FD does not discriminate between the orientations of edges, while the rotIDF is mainly affected by edge orientation parallel to the axis of rotation. We present a new equation for the rotIDF relating navigational information to quantifiable image properties such as contrast to show (1) that for any given scene the maximum value of the rotIDF (its depth) is proportional to pixel variance and (2) that FD is inversely proportional to pixel variance. This contrast dependence, together with scene differences in orientation statistics, explains why there is no strict relationship between FD and navigational information. Our experimental data and their numerical analysis corroborate these results.

  11. Spectral Clustering Predicts Tumor Tissue Heterogeneity Using Dynamic 18F-FDG PET: A Complement to the Standard Compartmental Modeling Approach.

    PubMed

    Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A

    2017-04-01

    In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor heterogeneity using dynamic PET studies. Because SC tumor segmentation is based on the intrinsic structure of the underlying data, it can be easily applied to other cancer types as well. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Effects of low sampling rate in the digital data-transition tracking loop

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Million, S.; Hinedi, S.

    1994-01-01

    This article describes the performance of the all-digital data-transition tracking loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The effects of few samples per symbol and of noncommensurate sampling and symbol rates are addressed and analyzed. Their impact on the probability density and variance of the phase error are quantified through computer simulations. It is shown that the performance of the all-digital DTTL approaches its analog counterpart when the sampling and symbol rates are noncommensurate (i.e., the number of samples per symbol is an irrational number). The loop signal-to-noise ratio (SNR) (inverse of phase error variance) degrades when the number of samples per symbol is an odd integer but degrades even further for even integers.

  13. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction.

    PubMed

    Crawford, D C; Bell, D S; Bamber, J C

    1993-01-01

    A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.

  14. Inverse modeling of surface-water discharge to achieve restoration salinity performance measures in Florida Bay, Florida

    USGS Publications Warehouse

    Swain, E.D.; James, D.E.

    2008-01-01

    The use of numerical modeling to evaluate regional water-management practices involves the simulation of various alternative water-delivery scenarios, which typically are designed intuitively rather than analytically. These scenario simulations are used to analyze how specific water-management practices affect factors such as water levels, flows, and salinities. In lieu of testing a variety of scenario simulations in a trial-and-error manner, an optimization technique may be used to more precisely and directly define good water-management alternatives. A numerical model application in the coastal regions of Florida Bay and Everglades National Park (ENP), representing the surface- and ground-water hydrology for the region, is a good example of a tool used to evaluate restoration scenarios. The Southern Inland and Coastal System (SICS) model simulates this area with a two-dimensional hydrodynamic surface-water model and a three-dimensional ground-water model, linked to represent the interaction of the two systems with salinity transport. This coastal wetland environment is of great interest in restoration efforts, and the SICS model is used to analyze the effects of alternative water-management scenarios. The SICS model is run within an inverse modeling program called UCODE. In this application, UCODE adjusts the regulated inflows to ENP while SICS is run iteratively. UCODE creates parameters that define inflow within an allowable range for the SICS model based on SICS model output statistics, with the objective of matching user-defined target salinities that meet ecosystem restoration criteria. Preliminary results obtained using two different parameterization methods illustrate the ability of the model to achieve the goals of adjusting the range and reducing the variance of salinity values in the target area. The salinity variance in the primary zone of interest was reduced from an original value of 0.509 psu2 to values 0.418 psu2 and 0.342 psu2 using different methods. Simulations with one, two, and three target areas indicate that optimization is limited near model boundaries and the target location nearest the tidal boundary may not be improved. These experiments indicate that this method can be useful for designing water-delivery schemes to achieve certain water-quality objectives. Additionally, this approach avoids much of the intuitive type of experimentation with different flow schemes that has often been used to develop restoration scenarios. ?? 2007 Elsevier B.V. All rights reserved.

  15. A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems

    NASA Astrophysics Data System (ADS)

    Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em

    2017-09-01

    We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.

  16. Ancestral Relationships Using Metafounders: Finite Ancestral Populations and Across Population Relationships

    PubMed Central

    Legarra, Andres; Christensen, Ole F.; Vitezica, Zulma G.; Aguilar, Ignacio; Misztal, Ignacy

    2015-01-01

    Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a “metafounder,” a pseudo-individual included as founder of the pedigree and similar to an “unknown parent group.” Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. PMID:25873631

  17. Investigation of inversion polymorphisms in the human genome using principal components analysis.

    PubMed

    Ma, Jianzhong; Amos, Christopher I

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct "populations" of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.

  18. Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method

    PubMed Central

    Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.

    2012-01-01

    Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660

  19. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  20. Lithospheric structure of Taiwan from gravity modelling and sequential inversion of seismological and gravity data

    NASA Astrophysics Data System (ADS)

    Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.

    2012-11-01

    Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.

  1. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  2. A generalized formulation for downscaling data based on Fourier Transform and inversion: Mathematical rationale and application to the Max-Planck-Institute aerosol climatology data

    NASA Astrophysics Data System (ADS)

    Zhang, Taiping; Stackhouse, Paul W.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen

    2017-02-01

    Occasionally, a need arises to downscale a time series of data from a coarse temporal resolution to a finer one, a typical example being from monthly means to daily means. For this case, daily means derived as such are used as inputs of climatic or atmospheric models so that the model results may exhibit variance on the daily time scale and retain the monthly mean of the original data set without an abrupt change from the end of one month to the beginning of the next. Different methods have been developed which often need assumptions, free parameters and the solution of simultaneous equations. Here we derive a generalized formulation by means of Fourier transform and inversion so that it can be used to directly compute daily means from a series of an arbitrary number of monthly means. The formulation can be used to transform any coarse temporal resolution to a finer one. From the derived results, the original data can be recovered almost identically. As a real application, we use this method to derive the daily counterpart of the MAC-v1 aerosol climatology that provides monthly mean aerosol properties for 18 shortwave bands and 12 longwave bands for the years from 1860 to 2100. The derived daily means are to be used as inputs of the shortwave and longwave algorithms of the NASA GEWEX SRB project.

  3. Impact of Strategically Located White Matter Hyperintensities on Cognition in Memory Clinic Patients with Small Vessel Disease

    PubMed Central

    Hilal, Saima; Kuijf, Hugo J.; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P. L. H.

    2016-01-01

    Background and Purpose Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. Methods A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Results Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Conclusions Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs. PMID:27824925

  4. Chromosomal Inversions, Natural Selection and Adaptation in the Malaria Vector Anopheles funestus

    PubMed Central

    Ayala, Diego; Fontaine, Michael C.; Cohuet, Anna; Fontenille, Didier; Vitalis, Renaud; Simard, Frédéric

    2011-01-01

    Chromosomal polymorphisms, such as inversions, are presumably involved in the rapid adaptation of populations to local environmental conditions. Reduced recombination between alternative arrangements in heterozygotes may protect sets of locally adapted genes, promoting ecological divergence and potentially leading to reproductive isolation and speciation. Through a comparative analysis of chromosomal inversions and microsatellite marker polymorphisms, we hereby present biological evidence that strengthens this view in the mosquito Anopheles funestus s.s, one of the most important and widespread malaria vectors in Africa. Specimens were collected across a wide range of geographical, ecological, and climatic conditions in Cameroon. We observed a sharp contrast between population structure measured at neutral microsatellite markers and at chromosomal inversions. Microsatellite data detected only a weak signal for population structuring among geographical zones (FST < 0.013, P < 0.01). By contrast, strong differentiation among ecological zones was revealed by chromosomal inversions (FST > 0.190, P < 0.01). Using standardized estimates of FST, we show that inversions behave at odds with neutral expectations strongly suggesting a role of environmental selection in shaping their distribution. We further demonstrate through canonical correspondence analysis that heterogeneity in eco-geographical variables measured at specimen sampling sites explained 89% of chromosomal variance in A. funestus. These results are in agreement with a role of chromosomal inversions in ecotypic adaptation in this species. We argue that this widespread mosquito represents an interesting model system for the study of chromosomal speciation mechanisms and should provide ample opportunity for comparative studies on the evolution of reproductive isolation and speciation in major human malaria vectors. PMID:20837604

  5. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  6. Choroidal thickness measurement in children using optical coherence tomography.

    PubMed

    Bidaut-Garnier, Mélanie; Schwartz, Claire; Puyraveau, Marc; Montard, Michel; Delbosc, Bernard; Saleh, Maher

    2014-04-01

    To measure choroidal thickness (CT) in children of various ages by using spectral optical coherence tomography with enhanced depth imaging and to investigate the association between subfoveal CT and ocular axial length, age, gender, weight, and height in children. Healthy children were prospectively included between May and August 2012. Optical coherence tomography with the enhanced depth imaging system (Spectralis, Heidelberg, Germany) was used for choroidal imaging at nine defined points of the macula of both eyes. Axial length was measured using IOLMaster (Carl Zeiss Meditec, Dublin, CA). Height, weight, and refraction were recorded. Interobserver agreement in readings was also assessed by the Bland-Altman Method. Three hundred and forty-eight eyes from 174 children aged 3.5 years to 14.9 years were imaged. The mean subfoveal CT in right eyes was 341.96 ± 74.7 µm. Choroidal thickness increased with age (r = 0.24, P = 0.017), height, and weight but not with gender (P > 0.05). It was also inversely correlated to the axial length (r = 0.24, P = 0.001). The nasal choroid appeared thinner than in the temporal area (analysis of variance, P < 0.0001). In children, CT increases with age and is inversely correlated to axial length. There is a significant variation of CT between children of the same age.

  7. Bayesian multiple-source localization in an uncertain ocean environment.

    PubMed

    Dosso, Stan E; Wilmut, Michael J

    2011-06-01

    This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out. © 2011 Acoustical Society of America

  8. Intake of Fruit and Vegetables and the Incident Risk of Cognitive Disorders: A Systematic Review and Meta-Analysis of Cohort Studies.

    PubMed

    Wu, L; Sun, D; Tan, Y

    2017-01-01

    No quantitative assessment has been performed to specifically link the consumption of fruit and vegetables with the incident risk of cognitive disorders. We searched the PubMed and the Embase databases (both from the inception to June 13th, 2016) for records that report the intake of fruit and vegetables and the risk of developing cognitive disorders (Alzheimer's disease, dementia, and cognitive decline/impairment). A generic inverse-variance method (random-effects model) was used to combine the relative risks (RRs) and 95% confidence intervals (CIs). To explore the potential sources of heterogeneity, we performed the subgroup and meta-regression analyses by pre-specified characteristics. We identified 6 cohorts involving a total of 21,175 participants. The pooled analysis showed that consumption of fruit and vegetables was inversely associated with the incident risk of cognitive disorders, and the pooled RR (95% CI) was 0.74 (0.62, 0.88), with evidence of significant heterogeneity (I2 =68%). Furthermore, we found that the significant heterogeneity might be attributed to the ethnic difference. Further large prospective studies should be performed to quantify the potential dose-response patterns of fruit and/or vegetables intake and to explore the role of fruit or vegetables consumption separately on cognitive disorders in different populations.

  9. Identification of polymorphic inversions from genotypes

    PubMed Central

    2012-01-01

    Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by independent experimental methods in ten (9+1) individuals [3,4]. We provide efficient implementations of both genotype and haplotype methods as a unified R package inveRsion. PMID:22321652

  10. Improving Conceptual Models Using AEM Data and Probability Distributions

    NASA Astrophysics Data System (ADS)

    Davis, A. C.; Munday, T. J.; Christensen, N. B.

    2012-12-01

    With emphasis being placed on uncertainty in groundwater modelling and prediction, coupled with questions concerning the value of geophysical methods in hydrogeology, it is important to ask meaningful questions of hydrogeophysical data and inversion results. For example, to characterise aquifers using electromagnetic (EM) data, we ask questions such as "Given that the electrical conductivity of aquifer 'A' is less than x, where is that aquifer elsewhere in the survey area?" The answer may be given by examining inversion models, selecting locations and layers that satisfy the condition 'conductivity <= x', and labelling them as aquifer 'A'. One difficulty with this approach is that the inversion model result often be considered to be the only model for the data. In reality it is just one image of the subsurface that, given the method and the regularisation imposed in the inversion, agrees with measured data within a given error bound. We have no idea whether the final model realised by the inversion satisfies the global minimum error, or whether it is simply in a local minimum. There is a distribution of inversion models that satisfy the error tolerance condition: the final model is not the only one, nor is it necessarily the correct one. AEM inversions are often linearised in the calculation of the parameter sensitivity: we rely on the second derivatives in the Taylor expansion, thus the minimum model has all layer parameters distributed about their mean parameter value with well-defined variance. We investigate the validity of the minimum model, and its uncertainty, by examining the full posterior covariance matrix. We ask questions of the minimum model, and answer them in a probabilistically. The simplest question we can pose is "What is the probability that all layer resistivity values are <= a cut-off value?" We can calculate through use of the erf or the erfc functions. The covariance values of the inversion become marginalised in the integration: only the main diagonal is used. Complications arise when we ask more specific questions, such as "What is the probability that the resistivity of layer 2 <= x, given that layer 1 <= y?" The probability then becomes conditional, calculation includes covariance terms, the integration is taken over many dimensions, and the cross-correlation of parameters becomes important. To illustrate, we examine the inversion results of a Tempest AEM survey over the Uley Basin aquifers in the Eyre Peninsula, South Australia. Key aquifers include the unconfined Bridgewater Formation that overlies the Uley and Wanilla Formations, which contain Tertiary clays and Tertiary sandstone. These Formations overlie weathered basement which define the lower bound of the Uley Basin aquifer systems. By correlating the conductivity of the sub-surface Formation types, we pose questions such as: "What is the probability-depth of the Bridgewater Formation in the Uley South Basin?", "What is the thickness of the Uley Formation?" and "What is the most probable depth to basement?" We use these questions to generate improved conceptual hydrogeological models of the Uley Basin in order to develop better estimates of aquifer extent and the available groundwater resource.

  11. Online Estimation of Allan Variance Coefficients Based on a Neural-Extended Kalman Filter

    PubMed Central

    Miao, Zhiyong; Shen, Feng; Xu, Dingjie; He, Kunpeng; Tian, Chunmiao

    2015-01-01

    As a noise analysis method for inertial sensors, the traditional Allan variance method requires the storage of a large amount of data and manual analysis for an Allan variance graph. Although the existing online estimation methods avoid the storage of data and the painful procedure of drawing slope lines for estimation, they require complex transformations and even cause errors during the modeling of dynamic Allan variance. To solve these problems, first, a new state-space model that directly models the stochastic errors to obtain a nonlinear state-space model was established for inertial sensors. Then, a neural-extended Kalman filter algorithm was used to estimate the Allan variance coefficients. The real noises of an ADIS16405 IMU and fiber optic gyro-sensors were analyzed by the proposed method and traditional methods. The experimental results show that the proposed method is more suitable to estimate the Allan variance coefficients than the traditional methods. Moreover, the proposed method effectively avoids the storage of data and can be easily implemented using an online processor. PMID:25625903

  12. Dependence of paracentric inversion rate on tract length.

    PubMed

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-04-03

    We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted.

  13. Dependence of paracentric inversion rate on tract length

    PubMed Central

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-01-01

    Background We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. Results We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. Conclusion The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted. PMID:17407601

  14. Evidence for large inversion polymorphisms in the human genome from HapMap data

    PubMed Central

    Bansal, Vikas; Bashir, Ali; Bafna, Vineet

    2007-01-01

    Knowledge about structural variation in the human genome has grown tremendously in the past few years. However, inversions represent a class of structural variation that remains difficult to detect. We present a statistical method to identify large inversion polymorphisms using unusual Linkage Disequilibrium (LD) patterns from high-density SNP data. The method is designed to detect chromosomal segments that are inverted (in a majority of the chromosomes) in a population with respect to the reference human genome sequence. We demonstrate the power of this method to detect such inversion polymorphisms through simulations done using the HapMap data. Application of this method to the data from the first phase of the International HapMap project resulted in 176 candidate inversions ranging from 200 kb to several megabases in length. Our predicted inversions include an 800-kb polymorphic inversion at 7p22, a 1.1-Mb inversion at 16p12, and a novel 1.2-Mb inversion on chromosome 10 that is supported by the presence of two discordant fosmids. Analysis of the genomic sequence around inversion breakpoints showed that 11 predicted inversions are flanked by pairs of highly homologous repeats in the inverted orientation. In addition, for three candidate inversions, the inverted orientation is represented in the Celera genome assembly. Although the power of our method to detect inversions is restricted because of inherently noisy LD patterns in population data, inversions predicted by our method represent strong candidates for experimental validation and analysis. PMID:17185644

  15. Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis

    PubMed Central

    Ma, Jianzhong; Amos, Christopher I.

    2012-01-01

    Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct “populations” of inversion homozygotes of different orientations and their 1∶1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases. PMID:22808122

  16. Multivariable confounding adjustment in distributed data networks without sharing of patient-level data.

    PubMed

    Toh, Sengwee; Reichman, Marsha E; Houstoun, Monika; Ding, Xiao; Fireman, Bruce H; Gravel, Eric; Levenson, Mark; Li, Lingling; Moyneur, Erick; Shoaibi, Azadeh; Zornberg, Gwen; Hennessy, Sean

    2013-11-01

    It is increasingly necessary to analyze data from multiple sources when conducting public health safety surveillance or comparative effectiveness research. However, security, privacy, proprietary, and legal concerns often reduce data holders' willingness to share highly granular information. We describe and compare two approaches that do not require sharing of patient-level information to adjust for confounding in multi-site studies. We estimated the risks of angioedema associated with angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and aliskiren in comparison with beta-blockers within Mini-Sentinel, which has created a distributed data system of 18 health plans. To obtain the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs), we performed (i) a propensity score-stratified case-centered logistic regression analysis, a method identical to a stratified Cox regression analysis but needing only aggregated risk set data, and (ii) an inverse variance-weighted meta-analysis, which requires only the site-specific HR and variance. We also performed simulations to further compare the two methods. Compared with beta-blockers, the adjusted HR was 3.04 (95% CI: 2.81, 3.27) for ACEIs, 1.16 (1.00, 1.34) for ARBs, and 2.85 (1.34, 6.04) for aliskiren in the case-centered analysis. The corresponding HRs were 2.98 (2.76, 3.21), 1.15 (1.00, 1.33), and 2.86 (1.35, 6.04) in the meta-analysis. Simulations suggested that the two methods may produce different results under certain analytic scenarios. The case-centered analysis and the meta-analysis produced similar results without the need to share patient-level data across sites in our empirical study, but may provide different results in other study settings. Copyright © 2013 John Wiley & Sons, Ltd.

  17. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  18. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  19. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  20. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  1. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants

    DOE PAGES

    Moral, Pierre Del; Jasra, Ajay; Law, Kody J. H.; ...

    2017-08-24

    This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic partial differential equations (PDEs). The examples involve the inversion of observations of themore » solution of (i) a 1-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a 2-dimensional Poisson equation to infer the external forcing.« less

  2. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  3. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  4. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  5. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis.

    PubMed

    Ortiz, Andrés; Munilla, Jorge; Álvarez-Illán, Ignacio; Górriz, Juan M; Ramírez, Javier

    2015-01-01

    Alzheimer's Disease (AD) is the most common neurodegenerative disease in elderly people. Its development has been shown to be closely related to changes in the brain connectivity network and in the brain activation patterns along with structural changes caused by the neurodegenerative process. Methods to infer dependence between brain regions are usually derived from the analysis of covariance between activation levels in the different areas. However, these covariance-based methods are not able to estimate conditional independence between variables to factor out the influence of other regions. Conversely, models based on the inverse covariance, or precision matrix, such as Sparse Gaussian Graphical Models allow revealing conditional independence between regions by estimating the covariance between two variables given the rest as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods to learn undirected graphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation fits perfectly here as brain regions usually only interact with a few other areas. The models clearly show different metabolic covariation patters between subject groups, revealing the loss of strong connections in AD and MCI subjects when compared to Controls. Similarly, the variance between GM (Gray Matter) densities of different regions reveals different structural covariation patterns between the different groups. Thus, the different connectivity patterns for controls and AD are used in this paper to select regions of interest in PET and GM images with discriminative power for early AD diagnosis. Finally, functional an structural models are combined to leverage the classification accuracy. The results obtained in this work show the usefulness of the Sparse Gaussian Graphical models to reveal functional and structural connectivity patterns. This information provided by the sparse inverse covariance matrices is not only used in an exploratory way but we also propose a method to use it in a discriminative way. Regression coefficients are used to compute reconstruction errors for the different classes that are then introduced in a SVM for classification. Classification experiments performed using 68 Controls, 70 AD, and 111 MCI images and assessed by cross-validation show the effectiveness of the proposed method.

  6. anisotropic microseismic focal mechanism inversion by waveform imaging matching

    NASA Astrophysics Data System (ADS)

    Wang, L.; Chang, X.; Wang, Y.; Xue, Z.

    2016-12-01

    The focal mechanism is one of the most important parameters in source inversion, for both natural earthquakes and human-induced seismic events. It has been reported to be useful for understanding stress distribution and evaluating the fracturing effect. The conventional focal mechanism inversion method picks the first arrival waveform of P wave. This method assumes the source as a Double Couple (DC) type and the media isotropic, which is usually not the case for induced seismic focal mechanism inversion. For induced seismic events, the inappropriate source and media model in inversion processing, by introducing ambiguity or strong simulation errors, will seriously reduce the inversion effectiveness. First, the focal mechanism contains significant non-DC source type. Generally, the source contains three components: DC, isotropic (ISO) and the compensated linear vector dipole (CLVD), which makes focal mechanisms more complicated. Second, the anisotropy of media will affect travel time and waveform to generate inversion bias. The common way to describe focal mechanism inversion is based on moment tensor (MT) inversion which can be decomposed into the combination of DC, ISO and CLVD components. There are two ways to achieve MT inversion. The wave-field migration method is applied to achieve moment tensor imaging. This method can construct elements imaging of MT in 3D space without picking the first arrival, but the retrieved MT value is influenced by imaging resolution. The full waveform inversion is employed to retrieve MT. In this method, the source position and MT can be reconstructed simultaneously. However, this method needs vast numerical calculation. Moreover, the source position and MT also influence each other in the inversion process. In this paper, the waveform imaging matching (WIM) method is proposed, which combines source imaging with waveform inversion for seismic focal mechanism inversion. Our method uses the 3D tilted transverse isotropic (TTI) elastic wave equation to approximate wave propagating in anisotropic media. First, a source imaging procedure is employed to obtain the source position. Second, we refine a waveform inversion algorithm to retrieve MT. We also use a microseismic data set recorded in surface acquisition to test our method.

  7. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin.

    PubMed

    Al-Attas, Omar S; Al-Daghri, Nasser M; Alokail, Majed S; Alfadda, Assim; Bamakhramah, Ahmed; Sabico, Shaun; Pritlove, Dave; Harte, Alison; Tripathi, Gyanendra; McTernan, Philip G; Kumar, Sudhesh; Chrousos, George

    2010-10-01

    Studies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2). One hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR. Circulating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01). Obesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging.

  8. Ancestral Relationships Using Metafounders: Finite Ancestral Populations and Across Population Relationships.

    PubMed

    Legarra, Andres; Christensen, Ole F; Vitezica, Zulma G; Aguilar, Ignacio; Misztal, Ignacy

    2015-06-01

    Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a "metafounder," a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group." Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. Copyright © 2015 by the Genetics Society of America.

  9. Methods to Estimate the Variance of Some Indices of the Signal Detection Theory: A Simulation Study

    ERIC Educational Resources Information Center

    Suero, Manuel; Privado, Jesús; Botella, Juan

    2017-01-01

    A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…

  10. Inference of multi-Gaussian property fields by probabilistic inversion of crosshole ground penetrating radar data using an improved dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Hunziker, Jürg; Laloy, Eric; Linde, Niklas

    2016-04-01

    Deterministic inversion procedures can often explain field data, but they only deliver one final subsurface model that depends on the initial model and regularization constraints. This leads to poor insights about the uncertainties associated with the inferred model properties. In contrast, probabilistic inversions can provide an ensemble of model realizations that accurately span the range of possible models that honor the available calibration data and prior information allowing a quantitative description of model uncertainties. We reconsider the problem of inferring the dielectric permittivity (directly related to radar velocity) structure of the subsurface by inversion of first-arrival travel times from crosshole ground penetrating radar (GPR) measurements. We rely on the DREAM_(ZS) algorithm that is a state-of-the-art Markov chain Monte Carlo (MCMC) algorithm. Such algorithms need several orders of magnitude more forward simulations than deterministic algorithms and often become infeasible in high parameter dimensions. To enable high-resolution imaging with MCMC, we use a recently proposed dimensionality reduction approach that allows reproducing 2D multi-Gaussian fields with far fewer parameters than a classical grid discretization. We consider herein a dimensionality reduction from 5000 to 257 unknowns. The first 250 parameters correspond to a spectral representation of random and uncorrelated spatial fluctuations while the remaining seven geostatistical parameters are (1) the standard deviation of the data error, (2) the mean and (3) the variance of the relative electric permittivity, (4) the integral scale along the major axis of anisotropy, (5) the anisotropy angle, (6) the ratio of the integral scale along the minor axis of anisotropy to the integral scale along the major axis of anisotropy and (7) the shape parameter of the Matérn function. The latter essentially defines the type of covariance function (e.g., exponential, Whittle, Gaussian). We present an improved formulation of the dimensionality reduction, and numerically show how it reduces artifacts in the generated models and provides better posterior estimation of the subsurface geostatistical structure. We next show that the results of the method compare very favorably against previous deterministic and stochastic inversion results obtained at the South Oyster Bacterial Transport Site in Virginia, USA. The long-term goal of this work is to enable MCMC-based full waveform inversion of crosshole GPR data.

  11. Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments.

    PubMed

    McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe

    2007-04-01

    Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.

  12. Distribution of model uncertainty across multiple data streams

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas

    2014-05-01

    When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.

  13. A synthesis of studies of access point density as a risk factor for road accidents.

    PubMed

    Elvik, Rune

    2017-10-01

    Studies of the relationship between access point density (number of access points, or driveways, per kilometre of road) and accident frequency or rate (number of accidents per unit of exposure) have consistently found that accident rate increases when access point density increases. This paper presents a formal synthesis of the findings of these studies. It was found that the addition of one access point per kilometre of road is associated with an increase of 4% in the expected number of accidents, controlling for traffic volume. Although studies consistently indicate an increase in accident rate as access point density increases, the size of the increase varies substantially between studies. In addition to reviewing studies of access point density as a risk factor, the paper discusses some issues related to formally synthesising regression coefficients by applying the inverse-variance method of meta-analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Equifinality and its violations in a redundant system: multifinger accurate force production.

    PubMed

    Wilhelm, Luke; Zatsiorsky, Vladimir M; Latash, Mark L

    2013-10-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The "inverse piano" device was used to lift and lower one of the fingers smoothly. The subjects were instructed "not to intervene voluntarily" with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis.

  15. Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations

    NASA Astrophysics Data System (ADS)

    Zhi, Longxiao; Gu, Hanming

    2018-03-01

    The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.

  16. Seven big strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Lohman, R. B.; Simons, M.; Pritchard, M. E.

    2003-12-01

    We examine seven large (Mw > 7) strike-slip earthquakes that occurred since the beginning of ERS 1 and 2 missions. We invert GPS observations and InSAR interferograms and azimuth offsets for coseismic slip distributions. We explore two refinements to the traditional least-squares inversion technique with roughness constraints. First, we diverge from the usual definition of ``roughness'' as the average roughness over the entire fault plane, and allow ``variable smoothing'' constraints. Variable smoothing allows our inversion to select models that are more complex in regions that are well-resolved by the data, while still damping regions that are poorly resolved. Second, we choose our smoothing parameters using the jR_i criterion. The jR_i criterion draws on the theory behind cross-validation and the bootstrap method. We examine the theoretical basis behind such methods and use an analytical approximation technique for linear problems. We provide maps of model variance and spatial averaging scale over the fault plane, to explicitly show which features in our slip models are robust. We examine the 1992 Landers (CA), 1995 Sakhalin (Russia), 1995 Kobe (Japan), 1997 Ardekul (Iran), 1997 Manyi (Tibet), 1999 Hector Mine (CA), and 2001 Kunlun (Tibet) earthquakes. We compare features of the slip distributions such as the depth distribution of slip, the inferred magnitude and the degree of heterogeneity of slip over the fault plane, as resolved by the available InSAR and GPS data. We end with a brief description of the data coverage required for future earthquakes of similar size if we want to infer some of the above quantities to within a given confidence interval. We describe both the number of InSAR scenes and the distribution of GPS points that would be required, based on theoretical treatments of the fault plane/data point geometry using the jR_i method.

  17. Statin therapy and plasma vitamin E concentrations: A systematic review and meta-analysis of randomized placebo-controlled trials.

    PubMed

    Sahebkar, Amirhossein; Simental-Mendía, Luis E; Ferretti, Gianna; Bacchetti, Tiziana; Golledge, Jonathan

    2015-12-01

    Vitamin E is one of the most important natural antioxidants, and its plasma levels are inversely associated with the progression of atherosclerosis. There have been reports suggesting a potential negative effect of statin therapy on plasma vitamin E levels. The aim of this meta-analysis was to determine the impact of statin therapy on plasma vitamin E concentrations. PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases were searched to identify randomized placebo-controlled trials evaluating the impact of statins on plasma vitamin E concentrations from inception to February 27, 2015. A systematic assessment of bias in the included studies was performed using the Cochrane criteria. A random-effects model (using DerSimonian-Laird method) and the generic inverse variance method were used to examine the effect of statins on plasma vitamin E concentrations. Heterogeneity was quantitatively assessed using the I(2) index. Sensitivity analysis was conducted using the leave-one-out method. A meta-analysis of data from 8 randomized treatment arms including 504 participants indicated a significant reduction in plasma vitamin E concentrations following statin treatment (WMD: -16.30%, 95% CI: -16.93, -15.98, p < 0.001). However, cholesterol-adjusted vitamin E concentrations (defined as vitamin E:total cholesterol ratio) were found to be improved by statin therapy (WMD: 29.35%, 95% CI: 24.98, 33.72, p < 0.001). Statin therapy was not associated with any significant alteration in LDL vitamin E content (SMD: 0.003, 95% CI: -0.90, 0.90, p = 0.995). Findings of the present study suggest that statin therapy has no negative impact on plasma vitamin E concentrations or LDL vitamin E content. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    NASA Astrophysics Data System (ADS)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  19. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  20. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    NASA Astrophysics Data System (ADS)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  1. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX)

    NASA Astrophysics Data System (ADS)

    Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Karion, Anna; Oda, Tomohiro; Patarasuk, Risa; Razlivanov, Igor; Sarmiento, Daniel; Shepson, Paul; Sweeney, Colm; Turnbull, Jocelyn; Wu, Kai

    2016-05-01

    Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

  2. Research and application of spectral inversion technique in frequency domain to improve resolution of converted PS-wave

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong

    2017-06-01

    Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.

  3. Trimming and procrastination as inversion techniques

    NASA Astrophysics Data System (ADS)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  4. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  5. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  6. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  7. Variance Difference between Maximum Likelihood Estimation Method and Expected A Posteriori Estimation Method Viewed from Number of Test Items

    ERIC Educational Resources Information Center

    Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.

    2016-01-01

    The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…

  8. Statistical image-domain multimaterial decomposition for dual-energy CT.

    PubMed

    Xue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye

    2017-03-01

    Dual-energy CT (DECT) enhances tissue characterization because of its basis material decomposition capability. In addition to conventional two-material decomposition from DECT measurements, multimaterial decomposition (MMD) is required in many clinical applications. To solve the ill-posed problem of reconstructing multi-material images from dual-energy measurements, additional constraints are incorporated into the formulation, including volume and mass conservation and the assumptions that there are at most three materials in each pixel and various material types among pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially into multiple basis materials using a direct inversion scheme which leads to magnified noise in the material images. In this paper, we propose a statistical image-domain MMD method for DECT to suppress the noise. The proposed method applies penalized weighted least-square (PWLS) reconstruction with a negative log-likelihood term and edge-preserving regularization for each material. The statistical weight is determined by a data-based method accounting for the noise variance of high- and low-energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The separability in each pixel enables the simultaneous update of all pixels. The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration methods for a comparison purpose. Compared with the direct inversion method, the proposed method reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%. We proposed a statistical image-domain MMD method using DECT measurements. The method successfully suppresses the magnified noise while faithfully retaining the quantification accuracy and anatomical structure in the decomposed material images. The proposed method is practical and promising for advanced clinical applications using DECT imaging. © 2017 American Association of Physicists in Medicine.

  9. Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Yu, Z.

    The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.

  10. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†

    PubMed Central

    Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia

    2015-01-01

    Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144

  11. Two Dimensional Finite Element Based Magnetotelluric Inversion using Singular Value Decomposition Method on Transverse Electric Mode

    NASA Astrophysics Data System (ADS)

    Tjong, Tiffany; Yihaa’ Roodhiyah, Lisa; Nurhasan; Sutarno, Doddy

    2018-04-01

    In this work, an inversion scheme was performed using a vector finite element (VFE) based 2-D magnetotelluric (MT) forward modelling. We use an inversion scheme with Singular value decomposition (SVD) method toimprove the accuracy of MT inversion.The inversion scheme was applied to transverse electric (TE) mode of MT. SVD method was used in this inversion to decompose the Jacobian matrices. Singular values which obtained from the decomposition process were analyzed. This enabled us to determine the importance of data and therefore to define a threshold for truncation process. The truncation of singular value in inversion processcould improve the resulted model.

  12. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  13. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  14. Comparing Balance and Inverse Methods on Learning Conceptual and Procedural Knowledge in Equation Solving: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy Phuong

    2016-01-01

    We examined the use of balance and inverse methods in equation solving. The main difference between the balance and inverse methods lies in the operational line (e.g. +2 on both sides vs -2 becomes +2). Differential element interactivity favours the inverse method because the interaction between elements occurs on both sides of the equation for…

  15. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  16. Robust, Adaptive Radar Detection and Estimation

    DTIC Science & Technology

    2015-07-21

    cost function is not a convex function in R, we apply a transformation variables i.e., let X = σ2R−1 and S′ = 1 σ2 S. Then, the revised cost function in...1 viv H i . We apply this inverse covariance matrix in computing the SINR as well as estimator variance. • Rank Constrained Maximum Likelihood: Our...even as almost all available training samples are corrupted. Probability of Detection vs. SNR We apply three test statistics, the normalized matched

  17. Genome-wide association tests of inversions with application to psoriasis

    PubMed Central

    Ma, Jianzhong; Xiong, Momiao; You, Ming; Lozano, Guillermina; Amos, Christopher I.

    2014-01-01

    Although inversions have occasionally been found to be associated with disease susceptibility through interrupting a gene or its regulatory region, or by increasing the risk for deleterious secondary rearrangements, no association study has been specifically conducted for risks associated with inversions, mainly because existing approaches to detecting and genotyping inversions do not readily scale to a large number of samples. Based on our recently proposed approach to identifying and genotyping inversions using principal components analysis (PCA), we herein develop a method of detecting association between inversions and disease in a genome-wide fashion. Our method uses genotype data for single nucleotide polymorphisms (SNPs), and is thus cost-efficient and computationally fast. For an inversion polymorphism, local PCA around the inversion region is performed to infer the inversion genotypes of all samples. For many inversions, we found that some of the SNPs inside an inversion region are fixed in the two lineages of different orientations and thus can serve as surrogate markers. Our method can be applied to case-control and quantitative trait association studies to identify inversions that may interrupt a gene or the connection between a gene and its regulatory agents. Our method also offers a new venue to identify inversions that are responsible for disease-causing secondary rearrangements. We illustrated our proposed approach to case-control data for psoriasis and identified novel associations with a few inversion polymorphisms. PMID:24623382

  18. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.

    PubMed

    Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin

    2016-10-13

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. Copyright © 2016 Gianola et al.

  19. Temporal and Spatial Variances in Arterial Spin-Labeling Are Inversely Related to Large-Artery Blood Velocity.

    PubMed

    Robertson, A D; Matta, G; Basile, V S; Black, S E; Macgowan, C K; Detre, J A; MacIntosh, B J

    2017-08-01

    The relationship between extracranial large-artery characteristics and arterial spin-labeling MR imaging may influence the quality of arterial spin-labeling-CBF images for older adults with and without vascular pathology. We hypothesized that extracranial arterial blood velocity can explain between-person differences in arterial spin-labeling data systematically across clinical populations. We performed consecutive pseudocontinuous arterial spin-labeling and phase-contrast MR imaging on 82 individuals (20-88 years of age, 50% women), including healthy young adults, healthy older adults, and older adults with cerebral small vessel disease or chronic stroke infarcts. We examined associations between extracranial phase-contrast hemodynamics and intracranial arterial spin-labeling characteristics, which were defined by labeling efficiency, temporal signal-to-noise ratio, and spatial coefficient of variation. Large-artery blood velocity was inversely associated with labeling efficiency ( P = .007), temporal SNR ( P < .001), and spatial coefficient of variation ( P = .05) of arterial spin-labeling, after accounting for age, sex, and group. Correction for labeling efficiency on an individual basis led to additional group differences in GM-CBF compared to correction using a constant labeling efficiency. Between-subject arterial spin-labeling variance was partially explained by extracranial velocity but not cross-sectional area. Choosing arterial spin-labeling timing parameters with on-line knowledge of blood velocity may improve CBF quantification. © 2017 by American Journal of Neuroradiology.

  20. Deterministic theory of Monte Carlo variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueki, T.; Larsen, E.W.

    1996-12-31

    The theoretical estimation of variance in Monte Carlo transport simulations, particularly those using variance reduction techniques, is a substantially unsolved problem. In this paper, the authors describe a theory that predicts the variance in a variance reduction method proposed by Dwivedi. Dwivedi`s method combines the exponential transform with angular biasing. The key element of this theory is a new modified transport problem, containing the Monte Carlo weight w as an extra independent variable, which simulates Dwivedi`s Monte Carlo scheme. The (deterministic) solution of this modified transport problem yields an expression for the variance. The authors give computational results that validatemore » this theory.« less

  1. The Relationship between Anxiety and Coping Strategies in Family Caregivers of Patients with Trauma

    PubMed Central

    Rahnama, Mozhgan; Bagheri, Somyeh; Moghadam, Mahdieh Poodineh; Absalan, Ahmad

    2017-01-01

    Introduction Traumatic events are of high incidence and affect not only the patient but also their family members, causing psychological problems such as stress and anxiety for caregivers of these patients. Therefore, the application of appropriate coping strategies by them seems necessary in order to promote mental health. Aim To study the relationship of anxiety with coping strategies in family caregivers of trauma patients. Materials and Methods The present research was a descriptive-correlational study which was carried out on 127 family caregivers of patients with trauma in intensive care unit, surgery ward and emergency unit of Amir al-Mu’minin Hospital of Zabol, Sistan and Baluchestan Province. The respondents were selected based on the convenience sampling method. Demographics questionnaire, DASS-21, and Coping Strategies questionnaire were used for data collection. The obtained data were statistically analysed using descriptive statistics, Analysis of Variance (ANOVA), t-test, and Pearson correlation coefficient in statistical package for the Social Sciences (SPSS) version 21.0. Results Based on the results, 89.9% of family caregivers suffer from mild to severe anxiety. The most common type of coping strategy used by the respondents was emotion-focused. The results showed no relationship between anxiety and emotion-centrism, but an inverse relationship was found between problem-centrism and anxiety. Conclusion The majority of family caregivers had anxiety. Given, the inverse relationship between the level of anxiety and the use of problem-based coping strategy, in addition to identifying and reducing the causes of anxiety in caregivers. It is recommended that appropriate coping strategies should be trained to them. PMID:28571166

  2. A note on variance estimation in random effects meta-regression.

    PubMed

    Sidik, Kurex; Jonkman, Jeffrey N

    2005-01-01

    For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.

  3. Dynamic cycling in atrial size and flow during obstructive apnoea

    PubMed Central

    Pressman, Gregg S; Cepeda-Valery, Beatriz; Codolosa, Nicolas; Orban, Marek; Samuel, Solomon P; Somers, Virend K

    2016-01-01

    Objective Obstructive sleep apnoea (OSA) is strongly associated with cardiovascular disease. However, acute cardiovascular effects of repetitive airway obstruction are poorly understood. While past research used a sustained Mueller manoeuver to simulate OSA we employed a series of gasping efforts to better simulate true obstructive apnoeas. This report describes acute changes in cardiac anatomy and flow related to sudden changes in intrathoracic pressure. Methods and results 26 healthy, normal weight participants performed 5–6 gasping efforts (target intrathoracic pressure −40 mm Hg) while undergoing Doppler echocardiography. 14 participants had sufficient echocardiographic images to allow comparison of atrial areas during the manoeuver with baseline measurements. Mitral and tricuspid E-wave and A-wave velocities postmanoeuver were compared with baseline in all participants. Average atrial areas changed little during the manoeuver, but variance in both atrial areas was significantly greater than baseline. Further, an inverse relationship was noted with left atrial collapse and right atrial enlargement at onset of inspiratory effort. Significant inverse changes were noted in Doppler flow when comparing the first beat postmanoeuver (pMM1) with baseline. Mitral E-wave velocity increased 9.1 cm/s while tricuspid E-wave velocity decreased 7.0 cm/s; by the eighth beat postmanoeuver (pMM8) values were not different from baseline. Mitral and tricuspid A-wave velocities were not different from baseline at pMM1, but both were significantly higher by pMM8. Conclusions Repetitive obstructive apnoeas produce dynamic, inverse changes in atrial size and Doppler flow across the atrioventricular valves. These observations have important implications for understanding the pathophysiology of OSA. PMID:27127636

  4. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  5. Fruit and vegetables consumption and incident hypertension: dose-response meta-analysis of prospective cohort studies.

    PubMed

    Wu, L; Sun, D; He, Y

    2016-10-01

    The role of dietary factors on chronic diseases seems essential in the potentially adverse or preventive effects. However, no evidence of dose-response meta-analysis of prospective cohort studies has verified the association between the intake of fruit and/or vegetables and the risk of developing hypertension. The PubMed and Embase were searched for prospective cohort studies. A generic inverse-variance method with random effects model was used to calculate the pooled relative risks (RRs) and 95% confidence intervals (CIs). Generalized least squares trend estimation model was used to calculate the study-specific slopes for the dose-response analyses. Seven articles comprised nine cohorts involving 185 676 participants were assessed. The highest intake of fruit or vegetables separately, and total fruit and vegetables were inversely associated with the incident risk of hypertension compared with the lowest level, and the pooled RRs and 95% CIs were 0.87 (0.79, 0.95), 0.88 (0.79, 0.99) and 0.90 (0.84, 0.98), respectively. We also found an inverse dose-response relation between the risk of developing hypertension and fruit intake, and total fruit and vegetables consumption. The incident risk of hypertension was decreased by 1.9% for each serving per day of fruit consumption, and decreased by 1.2% for each serving per day of total fruit and vegetables consumption. Our results support the recommendation to increase the consumption of fruit and vegetables with respect to preventing the risk of developing hypertension. However, further large prospective studies and long-term high-quality randomized controlled trials are still needed to confirm the observed association.

  6. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  7. Inversion methods for interpretation of asteroid lightcurves

    NASA Technical Reports Server (NTRS)

    Kaasalainen, Mikko; Lamberg, L.; Lumme, K.

    1992-01-01

    We have developed methods of inversion that can be used in the determination of the three-dimensional shape or the albedo distribution of the surface of a body from disk-integrated photometry, assuming the shape to be strictly convex. In addition to the theory of inversion methods, we have studied the practical aspects of the inversion problem and applied our methods to lightcurve data of 39 Laetitia and 16 Psyche.

  8. Spectral reflectance inversion with high accuracy on green target

    NASA Astrophysics Data System (ADS)

    Jiang, Le; Yuan, Jinping; Li, Yong; Bai, Tingzhu; Liu, Shuoqiong; Jin, Jianzhou; Shen, Jiyun

    2016-09-01

    Using Landsat-7 ETM remote sensing data, the inversion of spectral reflectance of green wheat in visible and near infrared waveband in Yingke, China is studied. In order to solve the problem of lower inversion accuracy, custom atmospheric conditions method based on moderate resolution transmission model (MODTRAN) is put forward. Real atmospheric parameters are considered when adopting this method. The atmospheric radiative transfer theory to calculate atmospheric parameters is introduced first and then the inversion process of spectral reflectance is illustrated in detail. At last the inversion result is compared with simulated atmospheric conditions method which was a widely used method by previous researchers. The comparison shows that the inversion accuracy of this paper's method is higher in all inversion bands; the inversed spectral reflectance curve by this paper's method is more similar to the measured reflectance curve of wheat and better reflects the spectral reflectance characteristics of green plant which is very different from green artificial target. Thus, whether a green target is a plant or artificial target can be judged by reflectance inversion based on remote sensing image. This paper's research is helpful for the judgment of green artificial target hidden in the greenery, which has a great significance on the precise strike of green camouflaged weapons in military field.

  9. A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics.

    PubMed

    Pare, Guillaume; Mao, Shihong; Deng, Wei Q

    2016-06-08

    Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance.

  10. A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics

    PubMed Central

    Pare, Guillaume; Mao, Shihong; Deng, Wei Q.

    2016-01-01

    Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance. PMID:27273519

  11. Comparing transformation methods for DNA microarray data

    PubMed Central

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-01-01

    Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method. PMID:15202953

  12. Comparing transformation methods for DNA microarray data.

    PubMed

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-06-17

    When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  13. Inversion of time-domain induced polarization data based on time-lapse concept

    NASA Astrophysics Data System (ADS)

    Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon

    2018-05-01

    Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.

  14. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  15. Gaussian statistics for palaeomagnetic vectors

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  16. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less

  17. Inverse kinematic problem for a random gradient medium in geometric optics approximation

    NASA Astrophysics Data System (ADS)

    Petersen, N. V.

    1990-03-01

    Scattering at random inhomogeneities in a gradient medium results in systematic deviations of the rays and travel times of refracted body waves from those corresponding to the deterministic velocity component. The character of the difference depends on the parameters of the deterministic and random velocity component. However, at great distances to the source, independently of the velocity parameters (weakly or strongly inhomogeneous medium), the most probable depth of the ray turning point is smaller than that corresponding to the deterministic velocity component, the most probable travel times also being lower. The relative uncertainty in the deterministic velocity component, derived from the mean travel times using methods developed for laterally homogeneous media (for instance, the Herglotz-Wiechert method), is systematic in character, but does not exceed the contrast of velocity inhomogeneities by magnitude. The gradient of the deterministic velocity component has a significant effect on the travel-time fluctuations. The variance at great distances to the source is mainly controlled by shallow inhomogeneities. The travel-time flucutations are studied only for weakly inhomogeneous media.

  18. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  19. Integrated approach to estimate the ocean's time variable dynamic topography including its covariance matrix

    NASA Astrophysics Data System (ADS)

    Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter

    2015-04-01

    The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.

  20. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models

    PubMed Central

    2014-01-01

    Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829

  1. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  2. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  3. A Hybrid Seismic Inversion Method for V P/V S Ratio and Its Application to Gas Identification

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Zhang, Hongbing; Han, Feilong; Xiao, Wei; Shang, Zuoping

    2018-03-01

    The ratio of compressional wave velocity to shear wave velocity (V P/V S ratio) has established itself as one of the most important parameters in identifying gas reservoirs. However, considering that seismic inversion process is highly non-linear and geological conditions encountered may be complex, a direct estimation of V P/V S ratio from pre-stack seismic data remains a challenging task. In this paper, we propose a hybrid seismic inversion method to estimate V P/V S ratio directly. In this method, post- and pre-stack inversions are combined in which the pre-stack inversion for V P/V S ratio is driven by the post-stack inversion results (i.e., V P and density). In particular, the V P/V S ratio is considered as a model parameter and is directly inverted from the pre-stack inversion based on the exact Zoeppritz equation. Moreover, anisotropic Markov random field is employed in order to regularise the inversion process as well as taking care of geological structures (boundaries) information. Aided by the proposed hybrid inversion strategy, the directional weighting coefficients incorporated in the anisotropic Markov random field neighbourhoods are quantitatively calculated by the anisotropic diffusion method. The synthetic test demonstrates the effectiveness of the proposed inversion method. In particular, given low quality of the pre-stack data and high heterogeneity of the target layers in the field data, the proposed inversion method reveals the detailed model of V P/V S ratio that can successfully identify the gas-bearing zones.

  4. Applications of non-parametric statistics and analysis of variance on sample variances

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Nonparametric methods that are available for NASA-type applications are discussed. An attempt will be made here to survey what can be used, to attempt recommendations as to when each would be applicable, and to compare the methods, when possible, with the usual normal-theory procedures that are avavilable for the Gaussion analog. It is important here to point out the hypotheses that are being tested, the assumptions that are being made, and limitations of the nonparametric procedures. The appropriateness of doing analysis of variance on sample variances are also discussed and studied. This procedure is followed in several NASA simulation projects. On the surface this would appear to be reasonably sound procedure. However, difficulties involved center around the normality problem and the basic homogeneous variance assumption that is mase in usual analysis of variance problems. These difficulties discussed and guidelines given for using the methods.

  5. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies

    PubMed Central

    Wu, Lei; Sun, Dali

    2017-01-01

    Recent articles have presented inconsistent findings on the impact of Mediterranean diet in the occurrence of cognitive disorders; therefore, we performed an updated systematic review and meta-analysis to evaluate the potential association and dose-response pattern with accumulating evidence. We searched the PubMed and the Embase for the records relevant to this topic. A generic inverse-variance method was used to pool the outcome data for continuous variable, and categories of high vs. low, median vs. low of Mediterranean diet score with a random-effects model. Generalized least-squares trend estimation model was used to estimate the potential dose-response patterns of Mediterranean diet score on incident cognitive disorders. We identified 9 cohort studies involving 34,168 participants. Compared with the lowest category, the pooled analysis showed that the highest Mediterranean diet score was inversely associated with the developing of cognitive disorders, and the pooled RR (95% CI) was 0.79 (0.70, 0.90). Mediterranean diet score of the median category was not significantly associated with cognitive disorders. Dose-response analysis indicated a trend of an approximately linear relationship of the Mediterranean diet score with the incident risk of cognitive disorders. Further studies of randomized controlled trials are warranted to confirm the observed association in different populations. PMID:28112268

  6. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR).

    PubMed

    Günther, M; Bock, M; Schad, L R

    2001-11-01

    Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels. Copyright 2001 Wiley-Liss, Inc.

  7. Variance in population firing rate as a measure of slow time-scale correlation

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Smith, Matthew A.

    2013-01-01

    Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research. PMID:24367326

  8. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.

  9. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  10. Equifinality and its violations in a redundant system: multifinger accurate force production

    PubMed Central

    Wilhelm, Luke; Zatsiorsky, Vladimir M.

    2013-01-01

    We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The “inverse piano” device was used to lift and lower one of the fingers smoothly. The subjects were instructed “not to intervene voluntarily” with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497

  11. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  12. Geoelectric Characterization of Thermal Water Aquifers Using 2.5D Inversion of VES Measurements

    NASA Astrophysics Data System (ADS)

    Gyulai, Á.; Szűcs, P.; Turai, E.; Baracza, M. K.; Fejes, Z.

    2017-03-01

    This paper presents a short theoretical summary of the series expansion-based 2.5D combined geoelectric weighted inversion (CGWI) method and highlights the advantageous way with which the number of unknowns can be decreased due to the simultaneous characteristic of this inversion. 2.5D CGWI is an approximate inversion method for the determination of 3D structures, which uses the joint 2D forward modeling of dip and strike direction data. In the inversion procedure, the Steiner's most frequent value method is applied to the automatic separation of dip and strike direction data and outliers. The workflow of inversion and its practical application are presented in the study. For conventional vertical electrical sounding (VES) measurements, this method can determine the parameters of complex structures more accurately than the single inversion method. Field data show that the 2.5D CGWI which was developed can determine the optimal location for drilling an exploratory thermal water prospecting well. The novelty of this research is that the measured VES data in dip and strike direction are jointly inverted by the 2.5D CGWI method.

  13. Uncontrolled Manifold Reference Feedback Control of Multi-Joint Robot Arms

    PubMed Central

    Togo, Shunta; Kagawa, Takahiro; Uno, Yoji

    2016-01-01

    The brain must coordinate with redundant bodies to perform motion tasks. The aim of the present study is to propose a novel control model that predicts the characteristics of human joint coordination at a behavioral level. To evaluate the joint coordination, an uncontrolled manifold (UCM) analysis that focuses on the trial-to-trial variance of joints has been proposed. The UCM is a nonlinear manifold associated with redundant kinematics. In this study, we directly applied the notion of the UCM to our proposed control model called the “UCM reference feedback control.” To simplify the problem, the present study considered how the redundant joints were controlled to regulate a given target hand position. We considered a conventional method that pre-determined a unique target joint trajectory by inverse kinematics or any other optimization method. In contrast, our proposed control method generates a UCM as a control target at each time step. The target UCM is a subspace of joint angles whose variability does not affect the hand position. The joint combination in the target UCM is then selected so as to minimize the cost function, which consisted of the joint torque and torque change. To examine whether the proposed method could reproduce human-like joint coordination, we conducted simulation and measurement experiments. In the simulation experiments, a three-link arm with a shoulder, elbow, and wrist regulates a one-dimensional target of a hand through proposed method. In the measurement experiments, subjects performed a one-dimensional target-tracking task. The kinematics, dynamics, and joint coordination were quantitatively compared with the simulation data of the proposed method. As a result, the UCM reference feedback control could quantitatively reproduce the difference of the mean value for the end hand position between the initial postures, the peaks of the bell-shape tangential hand velocity, the sum of the squared torque, the mean value for the torque change, the variance components, and the index of synergy as well as the human subjects. We concluded that UCM reference feedback control can reproduce human-like joint coordination. The inference for motor control of the human central nervous system based on the proposed method was discussed. PMID:27462215

  14. Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng

    2018-05-01

    This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.

  15. Relationships between fundamental movement skills and objectively measured physical activity in preschool children.

    PubMed

    Cliff, Dylan P; Okely, Anthony D; Smith, Leif M; McKeen, Kim

    2009-11-01

    Gender differences in cross-sectional relationships between fundamental movement skill (FMS) subdomains (locomotor skills, object-control skills) and physical activity were examined in preschool children. Forty-six 3- to 5-year-olds (25 boys) had their FMS video assessed (Test of Gross Motor Development II) and their physical activity objectively monitored (Actigraph 7164 accelerometers). Among boys, object-control skills were associated with physical activity and explained 16.9% (p = .024) and 13.7% (p = .049) of the variance in percent of time in moderate-to-vigorous physical activity (MVPA) and total physical activity, respectively, after controlling for age, SES and z-BMI. Locomotor skills were inversely associated with physical activity among girls, and explained 19.2% (p = .023) of the variance in percent of time in MVPA after controlling for confounders. Gender and FMS subdomain may influence the relationship between FMS and physical activity in preschool children.

  16. Comparative evolution of the inverse problems (Introduction to an interdisciplinary study of the inverse problems)

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.

  17. Remote sensing of earth terrain

    NASA Technical Reports Server (NTRS)

    Yueh, Herng-Aung; Kong, Jin AU

    1991-01-01

    In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach.

  18. Estimation of genetic parameters and their sampling variances of quantitative traits in the type 2 modified augmented design

    USDA-ARS?s Scientific Manuscript database

    We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...

  19. A Bayesian approach to modeling 2D gravity data using polygon states

    NASA Astrophysics Data System (ADS)

    Titus, W. J.; Titus, S.; Davis, J. R.

    2015-12-01

    We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.

  20. Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations

    NASA Astrophysics Data System (ADS)

    Zhi, L.; Gu, H.

    2017-12-01

    The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.

  1. A 3D inversion for all-space magnetotelluric data with static shift correction

    NASA Astrophysics Data System (ADS)

    Zhang, Kun

    2017-04-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results. The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm.

  2. New Variance-Reducing Methods for the PSD Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2010-01-01

    Edge data of a measured surface map of a circular optic result in large variance or "spectral leakage" behavior in the corresponding Power Spectral Density (PSD) data. In this paper we present two new, alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside of the circular area (method 2).

  3. SU-E-T-550: Modulation Index for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Park, S; Kim, J

    2015-06-15

    Purpose: To present modulation indices (MIs) for volumetric modulated arc therapy (VMAT). Methods: A total of 40 VMAT plans were retrospectively selected. To investigate the delivery accuracy of each VMAT plan, gamma passing rates, differences in modulating parameters between plans and log files, and differences between the original plans and the plans reconstructed with the log files were acquired. A modulation index (MIt) was designed by multiplications of the weighted quantifications of MLC speeds, MLC accelerations, gantry accelerations and dose-rate variations. Textural features including angular second moment, inverse difference moment, contrast, variance, correlation and entropy were calculated from the fluencesmore » of each VMAT plan. To test the performance of suggested MIs, Spearman’s rank correlation coefficients (r) with the plan delivery accuracy were calculated. Conventional modulation indices for VMAT including the modulation complexity score for VMAT (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li & Xing were calculated, and their correlations were also analyzed in the same way. Results: The r values of contrast (particular displacement distance, d = 1), variance (d = 1), MIt, MCSv, LTMCS and MI by Li&Xing to the local gamma passing rates with 2%/2 mm were 0.547 (p < 0.001), 0.519 (p < 0.001), −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The r values of those to the MLC errors were −0.863, −0.828, 0.917, −0.635, − 0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than did the conventional modulation indices. Conclusion: The MIt, contrast (d = 1) and variance (d = 1) showed good performance to predict the VMAT delivery accuracy showing higher correlations to the results of various types of verification methods for VMAT. This work was in part supported by the National Research Foundation of Korea (NRF) grant (no. 490-20140029 and no. 490-20130047) funded by the Korea government.« less

  4. Distorted Born iterative T-matrix method for inversion of CSEM data in anisotropic media

    NASA Astrophysics Data System (ADS)

    Jakobsen, Morten; Tveit, Svenn

    2018-05-01

    We present a direct iterative solutions to the nonlinear controlled-source electromagnetic (CSEM) inversion problem in the frequency domain, which is based on a volume integral equation formulation of the forward modelling problem in anisotropic conductive media. Our vectorial nonlinear inverse scattering approach effectively replaces an ill-posed nonlinear inverse problem with a series of linear ill-posed inverse problems, for which there already exist efficient (regularized) solution methods. The solution update the dyadic Green's function's from the source to the scattering-volume and from the scattering-volume to the receivers, after each iteration. The T-matrix approach of multiple scattering theory is used for efficient updating of all dyadic Green's functions after each linearized inversion step. This means that we have developed a T-matrix variant of the Distorted Born Iterative (DBI) method, which is often used in the acoustic and electromagnetic (medical) imaging communities as an alternative to contrast-source inversion. The main advantage of using the T-matrix approach in this context, is that it eliminates the need to perform a full forward simulation at each iteration of the DBI method, which is known to be consistent with the Gauss-Newton method. The T-matrix allows for a natural domain decomposition, since in the sense that a large model can be decomposed into an arbitrary number of domains that can be treated independently and in parallel. The T-matrix we use for efficient model updating is also independent of the source-receiver configuration, which could be an advantage when performing fast-repeat modelling and time-lapse inversion. The T-matrix is also compatible with the use of modern renormalization methods that can potentially help us to reduce the sensitivity of the CSEM inversion results on the starting model. To illustrate the performance and potential of our T-matrix variant of the DBI method for CSEM inversion, we performed a numerical experiments based on synthetic CSEM data associated with 2D VTI and 3D orthorombic model inversions. The results of our numerical experiment suggest that the DBIT method for inversion of CSEM data in anisotropic media is both accurate and efficient.

  5. On the inversion of geodetic integrals defined over the sphere using 1-D FFT

    NASA Astrophysics Data System (ADS)

    García, R. V.; Alejo, C. A.

    2005-08-01

    An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.

  6. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  7. Following the footprints of polymorphic inversions on SNP data: from detection to association tests

    PubMed Central

    Cáceres, Alejandro; González, Juan R.

    2015-01-01

    Inversion polymorphisms have important phenotypic and evolutionary consequences in humans. Two different methodologies have been used to infer inversions from SNP dense data, enabling the use of large cohorts for their study. One approach relies on the differences in linkage disequilibrium across breakpoints; the other one captures the internal haplotype groups that tag the inversion status of chromosomes. In this article, we assessed the convergence of the two methods in the detection of 20 human inversions that have been reported in the literature. The methods converged in four inversions including inv-8p23, for which we studied its association with low-BMI in American children. Using a novel haplotype tagging method with control on inversion ancestry, we computed the frequency of inv-8p23 in two American cohorts and observed inversion haplotype admixture. Accounting for haplotype ancestry, we found that the European inverted allele in children carries a recessive risk of underweight, validated in an independent Spanish cohort (combined: OR= 2.00, P = 0.001). While the footprints of inversions on SNP data are complex, we show that systematic analyses, such as convergence of different methods and controlling for ancestry, can reveal the contribution of inversions to the ancestral composition of populations and to the heritability of human disease. PMID:25672393

  8. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  9. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  10. A robust pseudo-inverse spectral filter applied to the Earth Radiation Budget Experiment (ERBE) scanning channels

    NASA Technical Reports Server (NTRS)

    Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.

    1984-01-01

    Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.

  11. Inverse sequential procedures for the monitoring of time series

    NASA Technical Reports Server (NTRS)

    Radok, Uwe; Brown, Timothy

    1993-01-01

    Climate changes traditionally have been detected from long series of observations and long after they happened. The 'inverse sequential' monitoring procedure is designed to detect changes as soon as they occur. Frequency distribution parameters are estimated both from the most recent existing set of observations and from the same set augmented by 1,2,...j new observations. Individual-value probability products ('likelihoods') are then calculated which yield probabilities for erroneously accepting the existing parameter(s) as valid for the augmented data set and vice versa. A parameter change is signaled when these probabilities (or a more convenient and robust compound 'no change' probability) show a progressive decrease. New parameters are then estimated from the new observations alone to restart the procedure. The detailed algebra is developed and tested for Gaussian means and variances, Poisson and chi-square means, and linear or exponential trends; a comprehensive and interactive Fortran program is provided in the appendix.

  12. Motion compensation via redundant-wavelet multihypothesis.

    PubMed

    Fowler, James E; Cui, Suxia; Wang, Yonghui

    2006-10-01

    Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.

  13. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  14. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    NASA Astrophysics Data System (ADS)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  15. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  16. 2.5D transient electromagnetic inversion with OCCAM method

    NASA Astrophysics Data System (ADS)

    Li, R.; Hu, X.

    2016-12-01

    In the application of time-domain electromagnetic method (TEM), some multidimensional inversion schemes are applied for imaging in the past few decades to overcome great error produced by 1D model inversion when the subsurface structure is complex. The current mainstream multidimensional inversion for EM data, with the finite-difference time-domain (FDTD) forward method, mainly implemented by Nonlinear Conjugate Gradient (NLCG). But the convergence rate of NLCG heavily depends on Lagrange multiplier and maybe fail to converge. We use the OCCAM inversion method to avoid the weakness. OCCAM inversion is proven to be a more stable and reliable method to image the subsurface 2.5D electrical conductivity. Firstly, we simulate the 3D transient EM fields governed by Maxwell's equations with FDTD method. Secondly, we use the OCCAM inversion scheme with the appropriate objective error functional we established to image the 2.5D structure. And the data space OCCAM's inversion (DASOCC) strategy based on OCCAM scheme were given in this paper. The sensitivity matrix is calculated with the method of time-integrated back-propagated fields. Imaging result of example model shown in Fig. 1 have proven that the OCCAM scheme is an efficient inversion method for TEM with FDTD method. The processes of the inversion iterations have shown the great ability of convergence with few iterations. Summarizing the process of the imaging, we can make the following conclusions. Firstly, the 2.5D imaging in FDTD system with OCCAM inversion demonstrates that we could get desired imaging results for the resistivity structure in the homogeneous half-space. Secondly, the imaging results usually do not over-depend on the initial model, but the iteration times can be reduced distinctly if the background resistivity of initial model get close to the truthful model. So it is batter to set the initial model based on the other geologic information in the application. When the background resistivity fit the truthful model well, the imaging of anomalous body only need a few iteration steps. Finally, the speed of imaging vertical boundaries is slower than the speed of imaging the horizontal boundaries.

  17. Impact of including or excluding both-armed zero-event studies on using standard meta-analysis methods for rare event outcome: a simulation study

    PubMed Central

    Cheng, Ji; Pullenayegum, Eleanor; Marshall, John K; Thabane, Lehana

    2016-01-01

    Objectives There is no consensus on whether studies with no observed events in the treatment and control arms, the so-called both-armed zero-event studies, should be included in a meta-analysis of randomised controlled trials (RCTs). Current analytic approaches handled them differently depending on the choice of effect measures and authors' discretion. Our objective is to evaluate the impact of including or excluding both-armed zero-event (BA0E) studies in meta-analysis of RCTs with rare outcome events through a simulation study. Method We simulated 2500 data sets for different scenarios varying the parameters of baseline event rate, treatment effect and number of patients in each trial, and between-study variance. We evaluated the performance of commonly used pooling methods in classical meta-analysis—namely, Peto, Mantel-Haenszel with fixed-effects and random-effects models, and inverse variance method with fixed-effects and random-effects models—using bias, root mean square error, length of 95% CI and coverage. Results The overall performance of the approaches of including or excluding BA0E studies in meta-analysis varied according to the magnitude of true treatment effect. Including BA0E studies introduced very little bias, decreased mean square error, narrowed the 95% CI and increased the coverage when no true treatment effect existed. However, when a true treatment effect existed, the estimates from the approach of excluding BA0E studies led to smaller bias than including them. Among all evaluated methods, the Peto method excluding BA0E studies gave the least biased results when a true treatment effect existed. Conclusions We recommend including BA0E studies when treatment effects are unlikely, but excluding them when there is a decisive treatment effect. Providing results of including and excluding BA0E studies to assess the robustness of the pooled estimated effect is a sensible way to communicate the results of a meta-analysis when the treatment effects are unclear. PMID:27531725

  18. Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals.

    PubMed

    Liu, X; Zhai, Z

    2007-12-01

    Reduction in indoor environment quality calls for effective control and improvement measures. Accurate and prompt identification of contaminant sources ensures that they can be quickly removed and contaminated spaces isolated and cleaned. This paper discusses the use of inverse modeling to identify potential indoor pollutant sources with limited pollutant sensor data. The study reviews various inverse modeling methods for advection-dispersion problems and summarizes the methods into three major categories: forward, backward, and probability inverse modeling methods. The adjoint probability inverse modeling method is indicated as an appropriate model for indoor air pollutant tracking because it can quickly find source location, strength and release time without prior information. The paper introduces the principles of the adjoint probability method and establishes the corresponding adjoint equations for both multi-zone airflow models and computational fluid dynamics (CFD) models. The study proposes a two-stage inverse modeling approach integrating both multi-zone and CFD models, which can provide a rapid estimate of indoor pollution status and history for a whole building. Preliminary case study results indicate that the adjoint probability method is feasible for indoor pollutant inverse modeling. The proposed method can help identify contaminant source characteristics (location and release time) with limited sensor outputs. This will ensure an effective and prompt execution of building management strategies and thus achieve a healthy and safe indoor environment. The method can also help design optimal sensor networks.

  19. Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.

    2017-09-01

    Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint inversion improves the previous inversions methods making it a powerful tool applicable to different research areas.

  20. Methods to Estimate the Between-Study Variance and Its Uncertainty in Meta-Analysis

    ERIC Educational Resources Information Center

    Veroniki, Areti Angeliki; Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian P. T.; Langan, Dean; Salanti, Georgia

    2016-01-01

    Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance,…

  1. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  2. Independent and inverse association of healthcare utilisation with physical activity in older adults with multiple chronic conditions.

    PubMed

    Liu-Ambrose, T Y L; Ashe, M C; Marra, C

    2010-11-01

    In this study, whether physical activity is independently associated with direct healthcare costs in community-dwelling older adults with multiple chronic conditions was examined. Cross-sectional analysis. Research laboratory. 299 community-dwelling men and women volunteers aged 65 years and older with chronic conditions. None. Primary dependent variable was direct healthcare costs incurred in the previous 3 months. Participants completed the Health Resource Utilisation (HRU) questionnaire. To estimate HRU, direct costs in the previous 3 months were calculated using the three-party payer perspective of the British Columbia Ministry of Health, deemed representative of the Canadian healthcare system costs. For medications, the Retail Pharmacy Dispensed prescription cost tables were used. Primary independent variables were (1) self-report current level of physical activity as assessed by the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) and (2) general balance and mobility as assessed by the National Institute on Aging Balance Scale. The mean number of chronic conditions per participant was six. Current level of physical activity was independently and inversely associated with HRU. Age, sex, number of chronic conditions, global cognitive function, body mass index, and general balance and mobility together accounted for 24.3% of the total variance. Adding the PASIPD score resulted in an R2 change of 3.3% and significantly improved the model. The total variance accounted by the final model was 27.6%. Physical activity promotion may reduce healthcare costs in older adults with chronic conditions.

  3. Relation between facial affect recognition and configural face processing in antipsychotic-free schizophrenia.

    PubMed

    Fakra, Eric; Jouve, Elisabeth; Guillaume, Fabrice; Azorin, Jean-Michel; Blin, Olivier

    2015-03-01

    Deficit in facial affect recognition is a well-documented impairment in schizophrenia, closely connected to social outcome. This deficit could be related to psychopathology, but also to a broader dysfunction in processing facial information. In addition, patients with schizophrenia inadequately use configural information-a type of processing that relies on spatial relationships between facial features. To date, no study has specifically examined the link between symptoms and misuse of configural information in the deficit in facial affect recognition. Unmedicated schizophrenia patients (n = 30) and matched healthy controls (n = 30) performed a facial affect recognition task and a face inversion task, which tests aptitude to rely on configural information. In patients, regressions were carried out between facial affect recognition, symptom dimensions and inversion effect. Patients, compared with controls, showed a deficit in facial affect recognition and a lower inversion effect. Negative symptoms and lower inversion effect could account for 41.2% of the variance in facial affect recognition. This study confirms the presence of a deficit in facial affect recognition, and also of dysfunctional manipulation in configural information in antipsychotic-free patients. Negative symptoms and poor processing of configural information explained a substantial part of the deficient recognition of facial affect. We speculate that this deficit may be caused by several factors, among which independently stand psychopathology and failure in correctly manipulating configural information. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  4. Inverse problems biomechanical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  5. Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.

    2018-07-01

    Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.

  6. Noise and drift analysis of non-equally spaced timing data

    NASA Technical Reports Server (NTRS)

    Vernotte, F.; Zalamansky, G.; Lantz, E.

    1994-01-01

    Generally, it is possible to obtain equally spaced timing data from oscillators. The measurement of the drifts and noises affecting oscillators is then performed by using a variance (Allan variance, modified Allan variance, or time variance) or a system of several variances (multivariance method). However, in some cases, several samples, or even several sets of samples, are missing. In the case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in time. Nevertheless, since some observations are very close together (one minute) and since the timing data sequence is very long (more than ten years), information on both short-term and long-term stability is available. Unfortunately, a direct variance analysis is not possible without interpolating missing data. Different interpolation algorithms (linear interpolation, cubic spline) are used to calculate variances in order to verify that they neither lose information nor add erroneous information. A comparison of the results of the different algorithms is given. Finally, the multivariance method was adapted to the measurement sequence of the millisecond pulsar timing data: the responses of each variance of the system are calculated for each type of noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of precision, dynamics, and separability of this method is given.

  7. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.

  8. Probabilistic Geoacoustic Inversion in Complex Environments

    DTIC Science & Technology

    2015-09-30

    Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is

  9. The whole space three-dimensional magnetotelluric inversion algorithm with static shift correction

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2016-12-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results.The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm. The verification and application example of 3D inversion algorithm is shown in Figure 1. From the comparison of figure 1, the inversion model can reflect all the abnormal bodies and terrain clearly regardless of what type of data (impedance/tipper/impedance and tipper). And the resolution of the bodies' boundary can be improved by using tipper data. The algorithm is very effective for terrain inversion. So it is very useful for the study of continental shelf with continuous exploration of land, marine and underground.The three-dimensional electrical model of the ore zone reflects the basic information of stratum, rock and structure. Although it cannot indicate the ore body position directly, the important clues are provided for prospecting work by the delineation of diorite pluton uplift range. The test results show that, the high quality of the data processing and efficient inversion method for electromagnetic method is an important guarantee for porphyry ore.

  10. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  11. Metformin therapy and the risk of colorectal adenoma in patients with type 2 diabetes: A meta-analysis

    PubMed Central

    Hou, Yi-Chao; Hu, Qiang; Huang, Jiao; Fang, Jing-Yuan; Xiong, Hua

    2017-01-01

    Background Existing data evaluating the impact of metformin on the colorectal adenoma (CRA) risk in patients suffering from type 2 diabetes (T2D) are limited and controversial. We therefore summarized the studies currently available and assessed the relationship between metformin treatment and risk of CRA in T2D patients. Methods We systematically searched databases for eligible studies that explored the impact of metformin treatment on the occurrence of CRA in T2D patients from inception to June 2016. The summary odds ratio (OR) estimates with their 95% confidence interval (CI) were derived using random-effect, generic inverse variance methods. Sensitivity analysis and subgroup analysis were performed. Results Seven studies involving 7178 participants met the inclusion criteria. The pooling showed that metformin therapy has a 27% decrease in the CRA risk (OR, 0.73; 95% CI, 0.58 - 0.90). In subgroup analysis, we detected that metformin exhibits significant chemoprevention effects in Asia region (OR, 0.68; 95% CI, 0.48 - 0.96). Similar results were identified in both studies with adjusted ORs and high-quality studies (OR, 0.66; 95% CI, 0.50 - 0.86 and OR, 0.70; 95% CI, 0.58 - 0.84, respectively). Of note, an inverse relationship was noted that metformin therapy may result in a significant decrease in the advanced adenoma risk (OR, 0.52; 95% CI, 0.38 - 0.72). Low heterogeneity was observed, however, the results remained robust in multiplesensitivity analyses. Conclusions This meta-analysis indicates that metformin therapy is correlated with a significant decrease in the risk of CRA and advanced adenoma in T2D patients. Further confirmatory studies are warranted. PMID:27903961

  12. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  13. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditionalmore » Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.« less

  14. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison of iterative inverse coarse-graining methods

    NASA Astrophysics Data System (ADS)

    Rosenberger, David; Hanke, Martin; van der Vegt, Nico F. A.

    2016-10-01

    Deriving potentials for coarse-grained Molecular Dynamics (MD) simulations is frequently done by solving an inverse problem. Methods like Iterative Boltzmann Inversion (IBI) or Inverse Monte Carlo (IMC) have been widely used to solve this problem. The solution obtained by application of these methods guarantees a match in the radial distribution function (RDF) between the underlying fine-grained system and the derived coarse-grained system. However, these methods often fail in reproducing thermodynamic properties. To overcome this deficiency, additional thermodynamic constraints such as pressure or Kirkwood-Buff integrals (KBI) may be added to these methods. In this communication we test the ability of these methods to converge to a known solution of the inverse problem. With this goal in mind we have studied a binary mixture of two simple Lennard-Jones (LJ) fluids, in which no actual coarse-graining is performed. We further discuss whether full convergence is actually needed to achieve thermodynamic representability.

  16. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao

    2017-06-01

    A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.

  17. A comparison of accuracy validation methods for genomic and pedigree-based predictions of swine litter size traits using Large White and simulated data.

    PubMed

    Putz, A M; Tiezzi, F; Maltecca, C; Gray, K A; Knauer, M T

    2018-02-01

    The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single-step GBLUP (ssGBLUP) to traditional pedigree-based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single-step GEBVs from the full data set (GEBV Full ), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Y c ), (v) correlation from method iv divided by the square root of the heritability (Y ch ) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Y cs ). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Y ch approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBV Full performed poorly in both data sets and is not recommended. Results suggest that for within-breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set. © 2017 Blackwell Verlag GmbH.

  18. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  19. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  20. Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, H.; Min, D.; Keehm, Y.

    2011-12-01

    Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.

  1. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  2. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  3. Potential Seasonal Terrestrial Water Storage Monitoring from GPS Vertical Displacements: A Case Study in the Lower Three-Rivers Headwater Region, China.

    PubMed

    Zhang, Bao; Yao, Yibin; Fok, Hok Sum; Hu, Yufeng; Chen, Qiang

    2016-09-19

    This study uses the observed vertical displacements of Global Positioning System (GPS) time series obtained from the Crustal Movement Observation Network of China (CMONOC) with careful pre- and post-processing to estimate the seasonal crustal deformation in response to the hydrological loading in lower three-rivers headwater region of southwest China, followed by inferring the annual EWH changes through geodetic inversion methods. The Helmert Variance Component Estimation (HVCE) and the Minimum Mean Square Error (MMSE) criterion were successfully employed. The GPS inferred EWH changes agree well qualitatively with the Gravity Recovery and Climate Experiment (GRACE)-inferred and the Global Land Data Assimilation System (GLDAS)-inferred EWH changes, with a discrepancy of 3.2-3.9 cm and 4.8-5.2 cm, respectively. In the research areas, the EWH changes in the Lancang basin is larger than in the other regions, with a maximum of 21.8-24.7 cm and a minimum of 3.1-6.9 cm.

  4. Neutron monitor generated data distributions in quantum variational Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.; Pya, N.

    2016-08-01

    We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.

  5. A combined reconstruction-classification method for diffuse optical tomography.

    PubMed

    Hiltunen, P; Prince, S J D; Arridge, S

    2009-11-07

    We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.

  6. Implement Method for Automated Testing of Markov Chain Convergence into INVERSE for ORNL12-RS-108J: Advanced Multi-Dimensional Forward and Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bledsoe, Keith C.

    2015-04-01

    The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratory’s INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric.more » This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.« less

  7. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  8. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  9. Sampling from a Discrete Distribution While Preserving Monotonicity.

    DTIC Science & Technology

    1982-02-01

    in a table beforehand, this procedure, known as the inverse transform method, requires n storage spaces and EX comparisons on average, which may prove...limitations that deserve attention: a. In general, the alias method does not preserve a monotone relationship between U and X as does the inverse transform method...uses the inverse transform approach but with more information computed beforehand, as in the alias method. The proposed method is not new having been

  10. A New Nonparametric Levene Test for Equal Variances

    ERIC Educational Resources Information Center

    Nordstokke, David W.; Zumbo, Bruno D.

    2010-01-01

    Tests of the equality of variances are sometimes used on their own to compare variability across groups of experimental or non-experimental conditions but they are most often used alongside other methods to support assumptions made about variances. A new nonparametric test of equality of variances is described and compared to current "gold…

  11. Large-scale inverse model analyses employing fast randomized data reduction

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  12. An Improved 3D Joint Inversion Method of Potential Field Data Using Cross-Gradient Constraint and LSQR Method

    NASA Astrophysics Data System (ADS)

    Joulidehsar, Farshad; Moradzadeh, Ali; Doulati Ardejani, Faramarz

    2018-06-01

    The joint interpretation of two sets of geophysical data related to the same source is an appropriate method for decreasing non-uniqueness of the resulting models during inversion process. Among the available methods, a method based on using cross-gradient constraint combines two datasets is an efficient approach. This method, however, is time-consuming for 3D inversion and cannot provide an exact assessment of situation and extension of anomaly of interest. In this paper, the first attempt is to speed up the required calculation by substituting singular value decomposition by least-squares QR method to solve the large-scale kernel matrix of 3D inversion, more rapidly. Furthermore, to improve the accuracy of resulting models, a combination of depth-weighing matrix and compacted constraint, as automatic selection covariance of initial parameters, is used in the proposed inversion algorithm. This algorithm was developed in Matlab environment and first implemented on synthetic data. The 3D joint inversion of synthetic gravity and magnetic data shows a noticeable improvement in the results and increases the efficiency of algorithm for large-scale problems. Additionally, a real gravity and magnetic dataset of Jalalabad mine, in southeast of Iran was tested. The obtained results by the improved joint 3D inversion of cross-gradient along with compacted constraint showed a mineralised zone in depth interval of about 110-300 m which is in good agreement with the available drilling data. This is also a further confirmation on the accuracy and progress of the improved inversion algorithm.

  13. Multifocus watermarking approach based on discrete cosine transform.

    PubMed

    Waheed, Safa Riyadh; Alkawaz, Mohammed Hazim; Rehman, Amjad; Almazyad, Abdulaziz S; Saba, Tanzila

    2016-05-01

    Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf), standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques. © 2016 Wiley Periodicals, Inc.

  14. Principal polynomial analysis.

    PubMed

    Laparra, Valero; Jiménez, Sandra; Tuia, Devis; Camps-Valls, Gustau; Malo, Jesus

    2014-11-01

    This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves, instead of straight lines. Contrarily to previous approaches, PPA reduces to performing simple univariate regressions, which makes it computationally feasible and robust. Moreover, PPA shows a number of interesting analytical properties. First, PPA is a volume-preserving map, which in turn guarantees the existence of the inverse. Second, such an inverse can be obtained in closed form. Invertibility is an important advantage over other learning methods, because it permits to understand the identified features in the input domain where the data has physical meaning. Moreover, it allows to evaluate the performance of dimensionality reduction in sensible (input-domain) units. Volume preservation also allows an easy computation of information theoretic quantities, such as the reduction in multi-information after the transform. Third, the analytical nature of PPA leads to a clear geometrical interpretation of the manifold: it allows the computation of Frenet-Serret frames (local features) and of generalized curvatures at any point of the space. And fourth, the analytical Jacobian allows the computation of the metric induced by the data, thus generalizing the Mahalanobis distance. These properties are demonstrated theoretically and illustrated experimentally. The performance of PPA is evaluated in dimensionality and redundancy reduction, in both synthetic and real datasets from the UCI repository.

  15. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  16. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  17. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE PAGES

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    2017-10-29

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  18. Comparing multiple statistical methods for inverse prediction in nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela

    Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less

  19. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2017-11-01

    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  20. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  1. Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan

    2017-08-01

    Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.

  2. The application of the pilot points in groundwater numerical inversion model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Teng, Yanguo; Cheng, Lirong

    2015-04-01

    Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity

  3. Comparing implementations of penalized weighted least-squares sinogram restoration

    PubMed Central

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-01-01

    Purpose: A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. Methods: The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. Results: All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors’ previous penalized-likelihood implementation. Conclusions: Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes. PMID:21158306

  4. The New Method of Tsunami Source Reconstruction With r-Solution Inversion Method

    NASA Astrophysics Data System (ADS)

    Voronina, T. A.; Romanenko, A. A.

    2016-12-01

    Application of the r-solution method to reconstructing the initial tsunami waveform is discussed. This methodology is based on the inversion of remote measurements of water-level data. The wave propagation is considered within the scope of a linear shallow-water theory. The ill-posed inverse problem in question is regularized by means of a least square inversion using the truncated Singular Value Decomposition method. As a result of the numerical process, an r-solution is obtained. The method proposed allows one to control the instability of a numerical solution and to obtain an acceptable result in spite of ill posedness of the problem. Implementation of this methodology to reconstructing of the initial waveform to 2013 Solomon Islands tsunami validates the theoretical conclusion for synthetic data and a model tsunami source: the inversion result strongly depends on data noisiness, the azimuthal and temporal coverage of recording stations with respect to the source area. Furthermore, it is possible to make a preliminary selection of the most informative set of the available recording stations used in the inversion process.

  5. Probabilistic numerical methods for PDE-constrained Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark

    2017-06-01

    This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.

  6. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  7. Identification of multiple leaks in pipeline: Linearized model, maximum likelihood, and super-resolution localization

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Ghidaoui, Mohamed S.

    2018-07-01

    This paper considers the problem of identifying multiple leaks in a water-filled pipeline based on inverse transient wave theory. The analytical solution to this problem involves nonlinear interaction terms between the various leaks. This paper shows analytically and numerically that these nonlinear terms are of the order of the leak sizes to the power two and; thus, negligible. As a result of this simplification, a maximum likelihood (ML) scheme that identifies leak locations and leak sizes separately is formulated and tested. It is found that the ML estimation scheme is highly efficient and robust with respect to noise. In addition, the ML method is a super-resolution leak localization scheme because its resolvable leak distance (approximately 0.15λmin , where λmin is the minimum wavelength) is below the Nyquist-Shannon sampling theorem limit (0.5λmin). Moreover, the Cramér-Rao lower bound (CRLB) is derived and used to show the efficiency of the ML scheme estimates. The variance of the ML estimator approximates the CRLB proving that the ML scheme belongs to class of best unbiased estimator of leak localization methods.

  8. Efficient least angle regression for identification of linear-in-the-parameters models

    PubMed Central

    Beach, Thomas H.; Rezgui, Yacine

    2017-01-01

    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140

  9. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  10. Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk; Tiseanu, Ion; Zoita, Vasile

    The Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open. The reconstruction technique based on the maximum likelihood principle, that proved already to be a powerful tool for JET tomography, has been usedmore » to develop a method for the numerical evaluation of the statistical properties of the uncertainties in gamma and neutron emissivity reconstructions. The image covariance calculation takes into account the additional techniques introduced in the reconstruction process for tackling with the limited data set (projection resampling, smoothness regularization depending on magnetic field). The method has been validated by numerically simulations and applied to JET data. Different sources of artefacts that may significantly influence the quality of reconstructions and the accuracy of variance calculation have been identified.« less

  11. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  12. Buried Man-made Structure Imaging using 2-D Resistivity Inversion

    NASA Astrophysics Data System (ADS)

    Anderson Bery, Andy; Nordiana, M. M.; El Hidayah Ismail, Noer; Jinmin, M.; Nur Amalina, M. K. A.

    2018-04-01

    This study is carried out with the objective to determine the suitable resistivity inversion method for buried man-made structure (bunker). This study was carried out with two stages. The first stage is suitable array determination using 2-D computerized modeling method. One suitable array is used for the infield resistivity survey to determine the dimension and location of the target. The 2-D resistivity inversion results showed that robust inversion method is suitable to resolve the top and bottom part of the buried bunker as target. In addition, the dimension of the buried bunker is successfully determined with height of 7 m and length of 20 m. The location of this target is located at -10 m until 10 m of the infield resistivity survey line. The 2-D resistivity inversion results obtained in this study showed that the parameters selection is important in order to give the optimum results. These parameters are array type, survey geometry and inversion method used in data processing.

  13. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  14. A three-step Maximum-A-Posterior probability method for InSAR data inversion of coseismic rupture with application to four recent large earthquakes in Asia

    NASA Astrophysics Data System (ADS)

    Sun, J.; Shen, Z.; Burgmann, R.; Liang, F.

    2012-12-01

    We develop a three-step Maximum-A-Posterior probability (MAP) method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic solutions of earthquake rupture. The method originates from the Fully Bayesian Inversion (FBI) and the Mixed linear-nonlinear Bayesian inversion (MBI) methods , shares the same a posterior PDF with them and keeps most of their merits, while overcoming its convergence difficulty when large numbers of low quality data are used and improving the convergence rate greatly using optimization procedures. A highly efficient global optimization algorithm, Adaptive Simulated Annealing (ASA), is used to search for the maximum posterior probability in the first step. The non-slip parameters are determined by the global optimization method, and the slip parameters are inverted for using the least squares method without positivity constraint initially, and then damped to physically reasonable range. This step MAP inversion brings the inversion close to 'true' solution quickly and jumps over local maximum regions in high-dimensional parameter space. The second step inversion approaches the 'true' solution further with positivity constraints subsequently applied on slip parameters using the Monte Carlo Inversion (MCI) technique, with all parameters obtained from step one as the initial solution. Then the slip artifacts are eliminated from slip models in the third step MAP inversion with fault geometry parameters fixed. We first used a designed model with 45 degree dipping angle and oblique slip, and corresponding synthetic InSAR data sets to validate the efficiency and accuracy of method. We then applied the method on four recent large earthquakes in Asia, namely the 2010 Yushu, China earthquake, the 2011 Burma earthquake, the 2011 New Zealand earthquake and the 2008 Qinghai, China earthquake, and compared our results with those results from other groups. Our results show the effectiveness of the method in earthquake studies and a number of advantages of it over other methods. The details will be reported on the meeting.

  15. From the Rendering Equation to Stratified Light Transport Inversion

    DTIC Science & Technology

    2010-12-09

    iteratively. These approaches relate closely to the radiosity method for diffuse global illumination in forward rendering (Hanrahan et al, 1991; Gortler et...currently simply use sparse matrices to represent T, we are also interested in exploring connections with hierar- chical and wavelet radiosity as in...Seidel iterative methods used in radiosity . 2.4 Inverse Light Transport Previous work on inverse rendering has considered inversion of the direct

  16. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  17. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Taeyoung; Shin, Changsoo

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less

  18. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  19. The design of sampling transects for characterizing water quality in estuaries

    USGS Publications Warehouse

    Jassby, A.D.; Cole, B.E.; Cloern, J.E.

    1997-01-01

    The high spatial variability of estuaries poses a challenge for characterizing estuarine water quality. This problem was examined by conducting monthly high-resolution transects for several water quality variables (chlorophyll a, suspended particulate matter and salinity) in San Francisco Bay (California, U.S.A.). Using these data, six different ways of choosing station locations along a transect, in order to estimate mean conditions, were compared. In addition, 11 approaches to estimating the variance of the transect mean when stations are equally spaced were compared, and the relationship between variance of the estimated transect mean and number of stations was determined. The results provide guidelines for sampling along the axis of an estuary: (1) Choose as many equally-spaced stations as practical; (2) estimate the variance of the mean y?? by var (y??)=(1/10n2)??(j=2)/(n) (y(j)-y(j-1)2, where y1,...,y(n) are the measurements at the n stations; and (3) attain the desired precision by adjusting the number of stations according to var(y??)???1/n2. The inverse power of 2 in the last step is a consequence of the underlying spatial correlation structure in San Francisco Bay; more studies of spatial structure at other estuaries are needed to determine the generality of this relationship.

  20. Locus equations and coarticulation in three Australian languages.

    PubMed

    Graetzer, Simone; Fletcher, Janet; Hajek, John

    2015-02-01

    Locus equations were applied to F2 data for bilabial, alveolar, retroflex, palatal, and velar plosives in three Australian languages. In addition, F2 variance at the vowel-consonant boundary, and, by extension, consonantal coarticulatory sensitivity, was measured. The locus equation slopes revealed that there were place-dependent differences in the magnitude of vowel-to-consonant coarticulation. As in previous studies, the non-coronal (bilabial and velar) consonants tended to be associated with the highest slopes, palatal consonants tended to be associated with the lowest slopes, and alveolar and retroflex slopes tended to be low to intermediate. Similarly, F2 variance measurements indicated that non-coronals displayed greater coarticulatory sensitivity to adjacent vowels than did coronals. Thus, both the magnitude of vowel-to-consonant coarticulation and the magnitude of consonantal coarticulatory sensitivity were seen to vary inversely with the magnitude of consonantal articulatory constraint. The findings indicated that, unlike results reported previously for European languages such as English, anticipatory vowel-to-consonant coarticulation tends to exceed carryover coarticulation in these Australian languages. Accordingly, on the F2 variance measure, consonants tended to be more sensitive to the coarticulatory effects of the following vowel. Prosodic prominence of vowels was a less significant factor in general, although certain language-specific patterns were observed.

  1. Effects of important parameters variations on computing eigenspace-based minimum variance weights for ultrasound tissue harmonic imaging

    NASA Astrophysics Data System (ADS)

    Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza

    2018-02-01

    In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.

  2. Intra-class correlation estimates for assessment of vitamin A intake in children.

    PubMed

    Agarwal, Girdhar G; Awasthi, Shally; Walter, Stephen D

    2005-03-01

    In many community-based surveys, multi-level sampling is inherent in the design. In the design of these studies, especially to calculate the appropriate sample size, investigators need good estimates of intra-class correlation coefficient (ICC), along with the cluster size, to adjust for variation inflation due to clustering at each level. The present study used data on the assessment of clinical vitamin A deficiency and intake of vitamin A-rich food in children in a district in India. For the survey, 16 households were sampled from 200 villages nested within eight randomly-selected blocks of the district. ICCs and components of variances were estimated from a three-level hierarchical random effects analysis of variance model. Estimates of ICCs and variance components were obtained at village and block levels. Between-cluster variation was evident at each level of clustering. In these estimates, ICCs were inversely related to cluster size, but the design effect could be substantial for large clusters. At the block level, most ICC estimates were below 0.07. At the village level, many ICC estimates ranged from 0.014 to 0.45. These estimates may provide useful information for the design of epidemiological studies in which the sampled (or allocated) units range in size from households to large administrative zones.

  3. Comparing implementations of penalized weighted least-squares sinogram restoration.

    PubMed

    Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick

    2010-11-01

    A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.

  4. Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density

    NASA Astrophysics Data System (ADS)

    Liang, Li-Feng; Zhang, Hong-Bing; Dan, Zhi-Wei; Xu, Zi-Qiang; Liu, Xiu-Juan; Cao, Cheng-Hao

    2017-03-01

    Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.

  5. Development and evaluation of modified envelope correlation method for deep tectonic tremor

    NASA Astrophysics Data System (ADS)

    Mizuno, N.; Ide, S.

    2017-12-01

    We develop a new location method for deep tectonic tremors, as an improvement of widely used envelope correlation method, and applied it to construct a tremor catalog in western Japan. Using the cross-correlation functions as objective functions and weighting components of data by the inverse of error variances, the envelope cross-correlation method is redefined as a maximum likelihood method. This method is also capable of multiple source detection, because when several events occur almost simultaneously, they appear as local maxima of likelihood.The average of weighted cross-correlation functions, defined as ACC, is a nonlinear function whose variable is a position of deep tectonic tremor. The optimization method has two steps. First, we fix the source depth to 30 km and use a grid search with 0.2 degree intervals to find the maxima of ACC, which are candidate event locations. Then, using each of the candidate locations as initial values, we apply a gradient method to determine horizontal and vertical components of a hypocenter. Sometimes, several source locations are determined in a time window of 5 minutes. We estimate the resolution, which is defined as a distance of sources to be detected separately by the location method, is about 100 km. The validity of this estimation is confirmed by a numerical test using synthetic waveforms. Applying to continuous seismograms in western Japan for over 10 years, the new method detected 27% more tremors than a previous method, owing to the multiple detection and improvement of accuracy by appropriate weighting scheme.

  6. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  7. Lotic ecosystem response to chronic metal contamination assessed by the resazurin-resorufin smart tracer with data assimilation by the Markov chain Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Stanaway, D. J.; Flores, A. N.; Haggerty, R.; Benner, S. G.; Feris, K. P.

    2011-12-01

    Concurrent assessment of biogeochemical and solute transport data (i.e. advection, dispersion, transient storage) within lotic systems remains a challenge in eco-hydrological research. Recently, the Resazurin-Resorufin Smart Tracer System (RRST) was proposed as a mechanism to measure microbial activity at the sediment-water interface [Haggerty et al., 2008, 2009] associating metabolic and hydrologic processes and allowing for the reach scale extrapolation of biotic function in the context of a dynamic physical environment. This study presents a Markov Chain Monte Carlo (MCMC) data assimilation technique to solve the inverse model of the Raz Rru Advection Dispersion Equation (RRADE). The RRADE is a suite of dependent 1-D reactive ADEs, associated through the microbially mediated reduction of Raz to Rru (k12). This reduction is proportional to DO consumption (R^2=0.928). MCMC is a suite of algorithms that solve Bayes theorem to condition uncertain model states and parameters on imperfect observations. Here, the RRST is employed to quantify the effect of chronic metal exposure on hyporheic microbial metabolism along a 100+ year old metal contamination gradient in the Clark Fork River (CF). We hypothesized that 1) the energetic cost of metal tolerance limits heterotrophic microbial respiration in communities evolved in chronic metal contaminated environments, with respiration inhibition directly correlated to degree of contamination (observational experiment) and 2) when experiencing acute metal stress, respiration rate inhibition of metal tolerant communities is less than that of naïve communities (manipulative experiment). To test these hypotheses, 4 replicate columns containing sediment collected from differently contaminated CF reaches and reference sites were fed a solution of RRST, NaCl, and cadmium (manipulative experiment only) within 24 hrs post collection. Column effluent was collected and measured for Raz, Rru, and EC to determine the Raz Rru breakthrough curves (BTC), subsequently modeled by the RRADE and thereby allowing derivation of in situ rates of metabolism. RRADE parameter values are estimated through Metropolis Hastings MCMC optimization. Unknown prior parameter distributions (PD) were constrained via a sensitivity analysis, except for the empirically estimated velocity. MCMC simulations were initiated at random points within the PD. Convergence of target distributions (TD) is achieved when the variance of the mode values of the six RRADE parameters in independent model replication is at least 10^{-3} less than the mode value. Convergence of k12, the parameter of interest, was more resolved, with modal variance of replicate simulations ranging from 10^{-4} less than the modal value to 0. The MCMC algorithm presented here offers a robust approach to solve the inverse RRST model and could be easily adapted to other inverse problems.

  8. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  9. Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Samedov, Victor V.

    2018-01-01

    Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.

  10. White Matter Integrity, Creativity, and Psychopathology: Disentangling Constructs with Diffusion Tensor Imaging

    PubMed Central

    Jung, Rex E.; Grazioplene, Rachael; Caprihan, Arvind; Chavez, Robert S.; Haier, Richard J.

    2010-01-01

    That creativity and psychopathology are somehow linked remains a popular but controversial idea in neuroscience research. Brain regions implicated in both psychosis-proneness and creative cognition include frontal projection zones and association fibers. In normal subjects, we have previously demonstrated that a composite measure of divergent thinking (DT) ability exhibited significant inverse relationships in frontal lobe areas with both cortical thickness and metabolite concentration of N-acetyl-aspartate (NAA). These findings support the idea that creativity may reside upon a continuum with psychopathology. Here we examine whether white matter integrity, assessed by Fractional Anisotropy (FA), is related to two measures of creativity (Divergent Thinking and Openness to Experience). Based on previous findings, we hypothesize inverse correlations within fronto-striatal circuits. Seventy-two healthy, young adult (18–29 years) subjects were scanned on a 3 Tesla scanner with Diffusion Tensor Imaging. DT measures were scored by four raters (α = .81) using the Consensual Assessment Technique, from which a composite creativity index (CCI) was derived. We found that the CCI was significantly inversely related to FA within the left inferior frontal white matter (t = 5.36, p = .01), and Openness was inversely related to FA within the right inferior frontal white matter (t = 4.61, p = .04). These findings demonstrate an apparent overlap in specific white matter architecture underlying the normal variance of divergent thinking, openness, and psychotic-spectrum traits, consistent with the idea of a continuum. PMID:20339554

  11. A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.

    2016-10-01

    Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.

  12. A time domain inverse dynamic method for the end point tracking control of a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo; Book, Wayne J.

    1991-01-01

    The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.

  13. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint inversion code at the SAFOD site to compare its performance over the previous code. We will also select another fault zone such as the San Jacinto Fault Zone to better image its structure.

  14. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Gao, Kai; Huang, Lianjie

    Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquiredmore » at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.« less

  16. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    PubMed

    Yavorska, Olena O; Burgess, Stephen

    2017-12-01

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  17. Random left censoring: a second look at bone lead concentration measurements

    NASA Astrophysics Data System (ADS)

    Popovic, M.; Nie, H.; Chettle, D. R.; McNeill, F. E.

    2007-09-01

    Bone lead concentrations measured in vivo by x-ray fluorescence (XRF) are subjected to left censoring due to limited precision of the technique at very low concentrations. In the analysis of bone lead measurements, inverse variance weighting (IVW) of measurements is commonly used to estimate the mean of a data set and its standard error. Student's t-test is used to compare the IVW means of two sets, testing the hypothesis that the two sets are from the same population. This analysis was undertaken to assess the adequacy of IVW in the analysis of bone lead measurements or to confirm the results of IVW using an independent approach. The rationale is provided for the use of methods of survival data analysis in the study of XRF bone lead measurements. The procedure is provided for bone lead data analysis using the Kaplan-Meier and Nelson-Aalen estimators. The methodology is also outlined for the rank tests that are used to determine whether two censored sets are from the same population. The methods are applied on six data sets acquired in epidemiological studies. The estimated parameters and test statistics were compared with the results of the IVW approach. It is concluded that the proposed methods of statistical analysis can provide valid inference about bone lead concentrations, but the computed parameters do not differ substantially from those derived by the more widely used method of IVW.

  18. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  19. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  20. Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications (Methodes Inverses pour la Conception des Profils Porteurs pour des Applications dans les Domaines de l’Aeronautique et des Turbomachines)

    DTIC Science & Technology

    1990-11-01

    engined jet aircraft wing MID PLA CROSS tCTO% taking into account the effects of the propulsive system. -DESIGN PAAMETERS DESTIGE PARAMETERS 5CT 0 (MC 0...AGARD Report No.780 Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications (M6thodes Inverses pour la...manufacturing systems. Blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. - - In the

  1. Viscoelastic material inversion using Sierra-SD and ROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  2. Variance approach for multi-objective linear programming with fuzzy random of objective function coefficients

    NASA Astrophysics Data System (ADS)

    Indarsih, Indrati, Ch. Rini

    2016-02-01

    In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.

  3. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  4. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  5. Nonlinear PP and PS joint inversion based on the exact Zoeppritz equations: a two-stage procedure

    NASA Astrophysics Data System (ADS)

    Zhi, Lixia; Chen, Shuangquan; Song, Baoshan; Li, Xiang-yang

    2018-04-01

    S-velocity and density are very important parameters in distinguishing lithology and estimating other petrophysical properties. A reliable estimate of S-velocity and density is very difficult to obtain, even from long-offset gather data. Joint inversion of PP and PS data provides a promising strategy for stabilizing and improving the results of inversion in estimating elastic parameters and density. For 2D or 3D inversion, the trace-by-trace strategy is still the most widely used method although it often suffers from a lack of clarity because of its high efficiency, which is due to parallel computing. This paper describes a two-stage inversion method for nonlinear PP and PS joint inversion based on the exact Zoeppritz equations. There are several advantages for our proposed methods as follows: (1) Thanks to the exact Zoeppritz equation, our joint inversion method is applicable for wide angle amplitude-versus-angle inversion; (2) The use of both P- and S-wave information can further enhance the stability and accuracy of parameter estimation, especially for the S-velocity and density; (3) The two-stage inversion procedure proposed in this paper can achieve a good compromise between efficiency and precision. On the one hand, the trace-by-trace strategy used in the first stage can be processed in parallel so that it has high computational efficiency. On the other hand, to deal with the indistinctness of and undesired disturbances to the inversion results obtained from the first stage, we apply the second stage—total variation (TV) regularization. By enforcing spatial and temporal constraints, the TV regularization stage deblurs the inversion results and leads to parameter estimation with greater precision. Notably, the computation consumption of the TV regularization stage can be ignored compared to the first stage because it is solved using the fast split Bregman iterations. Numerical examples using a well log and the Marmousi II model show that the proposed joint inversion is a reliable method capable of accurately estimating the density parameter as well as P-wave velocity and S-wave velocity, even when the seismic data is noisy with signal-to-noise ratio of 5.

  6. Wedge-shaped slice-selective adiabatic inversion pulse for controlling temporal width of bolus in pulsed arterial spin labeling

    PubMed Central

    Guo, Jia; Buxton, Richard B.; Wong, Eric C.

    2015-01-01

    Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521

  7. An application of the LC-LSTM framework to the self-esteem instability case.

    PubMed

    Alessandri, Guido; Vecchione, Michele; Donnellan, Brent M; Tisak, John

    2013-10-01

    The present research evaluates the stability of self-esteem as assessed by a daily version of the Rosenberg (Society and the adolescent self-image, Princeton University Press, Princeton, 1965) general self-esteem scale (RGSE). The scale was administered to 391 undergraduates for five consecutive days. The longitudinal data were analyzed using the integrated LC-LSTM framework that allowed us to evaluate: (1) the measurement invariance of the RGSE, (2) its stability and change across the 5-day assessment period, (3) the amount of variance attributable to stable and transitory latent factors, and (4) the criterion-related validity of these factors. Results provided evidence for measurement invariance, mean-level stability, and rank-order stability of daily self-esteem. Latent state-trait analyses revealed that variances in scores of the RGSE can be decomposed into six components: stable self-esteem (40 %), ephemeral (or temporal-state) variance (36 %), stable negative method variance (9 %), stable positive method variance (4 %), specific variance (1 %) and random error variance (10 %). Moreover, latent factors associated with daily self-esteem were associated with measures of depression, implicit self-esteem, and grade point average.

  8. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fully three-dimensional and viscous semi-inverse method for axial/radial turbomachine blade design

    NASA Astrophysics Data System (ADS)

    Ji, Min

    2008-10-01

    A fully three-dimensional viscous semi-inverse method for the design of turbomachine blades is presented in this work. Built on a time marching Reynolds-Averaged Navier-Stokes solver, the inverse scheme is capable of designing axial/radial turbomachinery blades in flow regimes ranging from very low Mach number to transonic/supersonic flows. In order to solve flow at all-speed conditions, the preconditioning technique is incorporated into the basic JST time-marching scheme. The accuracy of the resulting flow solver is verified with documented experimental data and commercial CFD codes. The level of accuracy of the flow solver exhibited in those verification cases is typical of CFD analysis employed in the design process in industry. The inverse method described in the present work takes pressure loading and blade thickness as prescribed quantities and computes the corresponding three-dimensional blade camber surface. In order to have the option of imposing geometrical constraints on the designed blade shapes, a new inverse algorithm is developed to solve the camber surface at specified spanwise pseudo stream-tubes (i.e. along grid lines), while the blade geometry is constructed through ruling (e.g. straight-line element) at the remaining spanwise stations. The new inverse algorithm involves re-formulating the boundary condition on the blade surfaces as a hybrid inverse/analysis boundary condition, preserving the full three-dimensional nature of the flow. The new design procedure can be interpreted as a fully three-dimensional viscous semi-inverse method. The ruled surface design ensures the blade surface smoothness and mechanical integrity as well as achieves cost reduction for the manufacturing process. A numerical target shooting experiment for a mixed flow impeller shows that the semi-inverse method is able to accurately recover the target blade composed of straightline element from a different initial blade. The semi-inverse method is proved to work well with various loading strategies for the mixed flow impeller. It is demonstrated that uniformity of impeller exit flow and performance gain can be achieved with appropriate loading combinations at hub and shroud. An application of this semi-inverse method is also demonstrated through a redesign of an industrial shrouded subsonic centrifugal impeller. The redesigned impeller shows improved performance and operating range from the original one. Preliminary studies of blade designs presented in this work show that through the choice of the prescribed pressure loading profiles, this semi-inverse method can be used to design blade with the following objectives: (1) Various operating envelope. (2) Uniformity of impeller exit flow. (3) Overall performance improvement. By designing blade geometry with the proposed semi-inverse method whereby the blade pressure loading is specified instead of the conventional design approach of manually adjusting the blade angle to achieve blade design objectives, designers can discover blade geometry design space that has not been explored before.

  10. Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method

    NASA Astrophysics Data System (ADS)

    Schanz, Martin; Ye, Wenjing; Xiao, Jinyou

    2016-04-01

    Transient problems can often be solved with transformation methods, where the inverse transformation is usually performed numerically. Here, the discrete Fourier transform in combination with the exponential window method is compared with the convolution quadrature method formulated as inverse transformation. Both are inverse Laplace transforms, which are formally identical but use different complex frequencies. A numerical study is performed, first with simple convolution integrals and, second, with a boundary element method (BEM) for elastodynamics. Essentially, when combined with the BEM, the discrete Fourier transform needs less frequency calculations, but finer mesh compared to the convolution quadrature method to obtain the same level of accuracy. If further fast methods like the fast multipole method are used to accelerate the boundary element method the convolution quadrature method is better, because the iterative solver needs much less iterations to converge. This is caused by the larger real part of the complex frequencies necessary for the calculation, which improves the conditions of system matrix.

  11. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  12. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  13. Ground resistivity method and DCIP2D forward and inversion modelling to identify alteration at the Midwest uranium deposit, northern Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Long, Samuel R. M.; Smith, Richard S.; Hearst, Robert B.

    2017-06-01

    Resistivity methods are commonly used in mineral exploration to map lithology, structure, sulphides and alteration. In the Athabasca Basin, resistivity methods are used to detect alteration associated with uranium. At the Midwest deposit, there is an alteration zone in the Athabasca sandstones that is above a uraniferous conductive graphitic fault in the basement and below a conductive lake at surface. Previous geophysical work in this area has yielded resistivity sections that we feel are ambiguous in the area where the alteration is expected. Resolve® and TEMPEST sections yield an indistinct alteration zone, while two-dimensional (2D) inversions of the ground resistivity data show an equivocal smeared conductive feature in the expected location between the conductive graphite and the conductive lake. Forward modelling alone cannot identify features in the pseudosections that are clearly associated with alteration, as the section is dominated by the feature associated with the near-surface conductive lake; inverse modelling alone produces sections that are smeared and equivocal. We advocate an approach that uses a combination of forward and inverse modelling. We generate a forward model from a synthetic geoelectric section; this forward data is then inverse modelled and compared with the inverse model generated from the field data using the same inversion parameters. The synthetic geoelectric section is then adjusted until the synthetic inverse model closely matches the field inverse model. We found that this modelling process required a conductive alteration zone in the sandstone above the graphite, as removing the alteration zone from the sandstone created an inverse section very dissimilar to the inverse section derived from the field data. We therefore conclude that the resistivity method is able to identify conductive alteration at Midwest even though it is below a conductive lake and above a conductive graphitic fault. We also concluded that resistivity inversions suggest a conductive paleoweathering surface on the top of the basement rocks at the basin/basement unconformity.

  14. Reliability Overhaul Model

    DTIC Science & Technology

    1989-08-01

    Random variables for the conditional exponential distribution are generated using the inverse transform method. C1) Generate U - UCO,i) (2) Set s - A ln...e - [(x+s - 7)/ n] 0 + [Cx-T)/n]0 c. Random variables from the conditional weibull distribution are generated using the inverse transform method. C1...using a standard normal transformation and the inverse transform method. B - 3 APPENDIX 3 DISTRIBUTIONS SUPPORTED BY THE MODEL (1) Generate Y - PCX S

  15. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    PubMed Central

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987

  16. From Heterogeneity to Concentration: Latino Immigrant Neighborhoods and Collective Efficacy Perceptions in Los Angeles and Chicago

    PubMed Central

    Browning, Christopher R.; Dirlam, Jonathan; Boettner, Bethany

    2018-01-01

    Latino immigrant presence in urban neighborhoods has been linked with reduced neighborhood cohesion in social disorganization-based ethnic heterogeneity hypotheses and enhanced cohesion in immigration revitalization approaches. Using the 2000-2002 Los Angeles Family and Neighborhood Survey and the 1994-1995 Project on Human Development in Chicago Neighborhoods Community Survey, we explore the association between Latino immigrant concentration and both levels of, and agreement about, neighborhood collective efficacy. Findings from multilevel models with heteroskedastic variance indicate that Latino immigrant concentration exhibits a nonlinear association with collective efficacy. At low levels, increases in Latino immigrant concentration diminish collective efficacy, consistent with a heterogeneity hypothesis. The negative association between Latino immigrant concentration and collective efficacy declines in magnitude as immigrant concentration increases and, particularly in LA, becomes positive beyond a threshold, consistent with an immigration revitalization effect. We also find an inverse nonlinear pattern of association with the variance of collective efficacy. At low levels, increasing Latino immigrant concentration increases the variance of collective efficacy (reflecting more disagreement), but beyond a threshold, this association becomes negative (reflecting increasing agreement). This pattern is observed in both LA and Chicago. The prevalence of social interaction and reciprocated exchange within neighborhoods explains a modest proportion of the Latino immigrant concentration effect on mean levels of collective efficacy in Chicago, but does little to explain effects on the mean in LA or effects on the variance in either LA or Chicago. These findings offer insight into the complex role Latino immigrant presence plays in shaping neighborhood social climate. PMID:29430065

  17. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.

    2003-01-01

    We use data on pigeon guillemots Cepphus columba to test the hypothesis that discretionary time in breeding seabirds is correlated with variance in prey abundance. We measured the amount of time that guillemots spent at the colony before delivering fish to chicks ("resting time") in relation to fish abundance as measured by beach seines and bottom trawls. Radio telemetry showed that resting time was inversely correlated with time spent diving for fish during foraging trips (r = -0.95). Pigeon guillemots fed their chicks either Pacific sand lance Ammodytes hexapterus, a schooling midwater fish, which exhibited high interannual variance in abundance (CV = 181%), or a variety of non-schooling demersal fishes, which were less variable in abundance (average CV = 111%). Average resting times were 46% higher at colonies where schooling prey dominated the diet. Individuals at these colonies reduced resting times 32% during years of low food abundance, but did not reduce meal delivery rates. In contrast, individuals feeding on non-schooling fishes did not reduce resting times during low food years, but did reduce meal delivery rates by 27%. Interannual variance in resting times was greater for the schooling group than for the non-schooling group. We conclude from these differences that time allocation in pigeon guillemots is more flexible when variable schooling prey dominate diets. Resting times were also 27% lower for individuals feeding two-chick rather than one-chick broods. The combined effects of diet and brood size on adult time budgets may help to explain higher rates of brood reduction for pigeon guillemot chicks fed non-schooling fishes.

  18. Distinct associations between energy balance and the sleep characteristics slow wave sleep and rapid eye movement sleep.

    PubMed

    Rutters, F; Gonnissen, H K; Hursel, R; Lemmens, S G; Martens, E A; Westerterp-Plantenga, M S

    2012-10-01

    Epidemiologically, an inverse relationship between body mass index (BMI) and sleep duration is observed. Intra-individual variance in the amount of slow wave sleep (SWS) or rapid eye movement (REM) sleep has been related to variance of metabolic and endocrine parameters, which are risk factors for the disturbance of energy balance (EB). To investigate inter-individual relationships between EB (EB= energy intake-energy expenditure∣, MJ/24 h), SWS or REM sleep, and relevant parameters in normal-weight men during two 48 h stays in the controlled environment of a respiration chamber. A total of 16 men (age 23±3.7 years, BMI 23.9±1.9 kg m(-2)) stayed in the respiration chamber twice for 48 h to assure EB. Electroencephalography was used to monitor sleep (2330-0730 hrs). Hunger and fullness were scored by visual analog scales; mood was determined by State Trait Anxiety Index-state and food reward by liking and wanting. Baseline blood and salivary samples were collected before breakfast. Subjects were fed in EB, except for the last dinner, when energy intake was ad libitum. The subjects slept on average 441.8±49 min per night, and showed high within-subject reliability for the amount of SWS and REM sleep. Linear regression analyses showed that EB was inversely related to the amount of SWS (r=-0.43, P<0.03), and positively related to the amount of REM sleep (r=0.40, P<0.05). Relevant parameters such as hunger, reward, stress and orexigenic hormone concentrations were related to overeating, as well as to the amount of SWS and REM sleep, however, after inclusion of these parameters in a multiple regression, the amount of SWS and REM sleep did not add to the explained variance of EB, which suggests that due to their individual associations, these EB parameters are mediator variables. A positive EB due to overeating, was explained by a smaller amount of SWS and higher amount of REM sleep, mediated by hunger, fullness, State Trait Anxiety Index-state scores, glucose/insulin ratio, and ghrelin and cortisol concentrations.

  19. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  20. A multiwave range test for obstacle reconstructions with unknown physical properties

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Schulz, Jochen

    2007-08-01

    We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.

  1. An Empirical Assessment of Defense Contractor Risk 1976-1984.

    DTIC Science & Technology

    1986-06-01

    Model to evaluate the. Department of Defense contract pricing , financing, and profit policies . ’ D*’ ’ *NTV D? 7A’:: TA E *A l ..... -:- A-i SN 0102...defense con- tractor risk-return relationship is performed utilizing four methods: mean-variance analysis of rate of return, the Capital Asset Pricing Model ...relationship is performed utilizing four methods: mean- variance analysis of rate of return, the Capital Asset Pricing Model , mean-variance analysis of total

  2. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  3. Fair and Square Computation of Inverse "Z"-Transforms of Rational Functions

    ERIC Educational Resources Information Center

    Moreira, M. V.; Basilio, J. C.

    2012-01-01

    All methods presented in textbooks for computing inverse "Z"-transforms of rational functions have some limitation: 1) the direct division method does not, in general, provide enough information to derive an analytical expression for the time-domain sequence "x"("k") whose "Z"-transform is "X"("z"); 2) computation using the inversion integral…

  4. Inverse simulation system for evaluating handling qualities during rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan

    2017-08-01

    The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.

  5. Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Tsunoda, Y.; Otsuka, T.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2017-02-01

    The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf +g9/2 +d5/2 orbitals. The strong population of a (1+) state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A = 70 isobars from the new island of inversion to the Z = 28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.

  6. Mothers' self-reports of parenthood across the first 6 months postpartum.

    PubMed

    Grace, J T

    1993-12-01

    A postpartum measure, What Being the Parent of a New Baby is Like, was administered to explore the development of maternal role for mothers (N = 76) at 1, 3, 4 1/2, and 6 months postpartum. Individual differences were relatively stable across time and accounted for much more variance than time effects. Mean scores on the Centrality (of baby) and Help (with parenting tasks) subscales decreased over time, and Evaluation (satisfaction with role performance) and Lifechange subscale scores increased. Primiparas demonstrated the steepest mean increase in Evaluation scores over time. Mean Evaluation scores for first- (n = 29) and second-time mothers (n = 33) were similar, but mothers of three or more children (n = 14) had significantly higher scores. Parity was also related inversely to amount of life change, and maternal education was related inversely to Evaluation and Centrality scores. Demographic, subscale, and contextual variable interrelationships were generally consistent with maternal role adaptation theory. Findings also suggest that parity effects are more complex than a dichotomous primipara/multipara representation.

  7. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krüger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  8. Maturity associated variance in physical activity and health-related quality of life in adolescent females: a mediated effects model.

    PubMed

    Smart, Joan E Hunter; Cumming, Sean P; Sherar, Lauren B; Standage, Martyn; Neville, Helen; Malina, Robert M

    2012-01-01

    This study tested a mediated effects model of psychological and behavioral adaptation to puberty within the context of physical activity (PA). Biological maturity status, physical self-concept, PA, and health-related quality of life (HRQoL) were assessed in 222 female British year 7 to 9 pupils (mean age = 12.7 years, SD = .8). Structural equation modeling using maximum likelihood estimation and bootstrapping procedures supported the hypothesized model. Maturation status was inversely related to perceptions of sport competence, body attractiveness, and physical condition; and indirectly and inversely related to physical self-worth, PA, and HRQoL. Examination of the bootstrap-generated bias-corrected confidence intervals representing the direct and indirect paths between suggested that physical self-concept partially mediated the relations between maturity status and PA, and maturity status and HRQoL. Evidence supports the contention that perceptions of the physical self partially mediate relations maturity, PA, and HRQoL in adolescent females.

  9. A full potential inverse method based on a density linearization scheme for wing design

    NASA Technical Reports Server (NTRS)

    Shankar, V.

    1982-01-01

    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.

  10. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.

  11. Light Scattered from Polished Optical Surfaces: Wings of the Point Spread Function

    NASA Technical Reports Server (NTRS)

    Kenknight, C. E.

    1984-01-01

    Random figure errors from the polishing process plus particles on the main mirrors in a telescope cause an extended point spread function (PSF) declining approximately as the inverse square of the sine of the angle from a star from about 100 micro-rad to a right angle. The decline in at least one case, and probably in general, proceeds as the inverse cube at smaller angles where the usual focal plane aperture radius is chosen. The photometric error due to misalignment by one Airy ring spacing with an aperture of n rings depends on the net variance in the figure. It is approximately 60/(n+1)(3) when using the data of Kormendy (1973). A typical value is 6 x 10 to the -5th power per ring of misalignment with n = 100 rings. The encircled power may be modulated on a time scale of hours by parts per thousand in a wavelength dependent manner due to relative humidity effects on mirror dust. The scattering according to an inverse power law is due to a random walk in aberration height caused by a multitude of facets and slope errors left by the polishing process. A deviation from such a law at grazing emergence may permit monitoring the dust effects.

  12. Exposure to UV radiation and risk of Hodgkin lymphoma: a pooled analysis

    PubMed Central

    Glaser, Sally L.; Schupp, Clayton W.; Ekström Smedby, Karin; de Sanjosé, Silvia; Kane, Eleanor; Melbye, Mads; Forétova, Lenka; Maynadié, Marc; Staines, Anthony; Becker, Nikolaus; Nieters, Alexandra; Brennan, Paul; Boffetta, Paolo; Cocco, Pierluigi; Glimelius, Ingrid; Clavel, Jacqueline; Hjalgrim, Henrik; Chang, Ellen T.

    2013-01-01

    Ultraviolet radiation (UVR) exposure has been inversely associated with Hodgkin lymphoma (HL) risk, but only inconsistently, only in a few studies, and without attention to HL heterogeneity. We conducted a pooled analysis of HL risk focusing on type and timing of UVR exposure and on disease subtypes by age, histology, and tumor-cell Epstein-Barr virus (EBV) status. Four case-control studies contributed 1320 HL cases and 6381 controls. We estimated lifetime, adulthood, and childhood UVR exposure and history of sunburn and sunlamp use. We used 2-stage estimation with mixed-effects models and weighted pooled effect estimates by inverse marginal variances. We observed statistically significant inverse associations with HL risk for UVR exposures during childhood and adulthood, sunburn history, and sunlamp use, but we found no significant dose-response relationships. Risks were significant only for EBV-positive HL (pooled odds ratio, 0.56; 95% confidence interval, 0.35 to 0.91 for the highest overall UVR exposure category), with a significant linear trend for overall exposure (P = .03). Pooled relative risk estimates were not heterogeneous across studies. Increased UVR exposure may protect against HL, particularly EBV-positive HL. Plausible mechanisms involving UVR induction of regulatory T cells or the cellular DNA damage response suggest opportunities for new prevention targets. PMID:24016459

  13. Efficient realization of 3D joint inversion of seismic and magnetotelluric data with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Luo, H.; Zhang, H.; Gao, J.

    2016-12-01

    Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.

  14. An apparent contradiction: increasing variability to achieve greater precision?

    PubMed

    Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D

    2014-02-01

    To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.

  15. Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Peter; Varghese, Philip; Goldstein, David

    We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. Themore » method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.« less

  16. Characterization of turbulence stability through the identification of multifractional Brownian motions

    NASA Astrophysics Data System (ADS)

    Lee, K. C.

    2013-02-01

    Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  17. a method of gravity and seismic sequential inversion and its GPU implementation

    NASA Astrophysics Data System (ADS)

    Liu, G.; Meng, X.

    2011-12-01

    In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing, we use the GPU to accelerate our gravity and seismic inversion. Taking the gravity inversion as an example, its kernels are gravity forward simulation and correlation imaging, after the parallelization in GPU, in 3D case,the inversion module, the original five CPU loops are reduced to three,the forward module the original five CPU loops are reduced to two. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).

  18. Absolutely and uniformly convergent iterative approach to inverse scattering with an infinite radius of convergence

    DOEpatents

    Kouri, Donald J [Houston, TX; Vijay, Amrendra [Houston, TX; Zhang, Haiyan [Houston, TX; Zhang, Jingfeng [Houston, TX; Hoffman, David K [Ames, IA

    2007-05-01

    A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.

  19. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    PubMed

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  20. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    PubMed Central

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  1. Thermodynamic characterization of synchronization-optimized oscillator networks

    NASA Astrophysics Data System (ADS)

    Yanagita, Tatsuo; Ichinomiya, Takashi

    2014-12-01

    We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.

  2. On some stochastic formulations and related statistical moments of pharmacokinetic models.

    PubMed

    Matis, J H; Wehrly, T E; Metzler, C M

    1983-02-01

    This paper presents the deterministic and stochastic model for a linear compartment system with constant coefficients, and it develops expressions for the mean residence times (MRT) and the variances of the residence times (VRT) for the stochastic model. The expressions are relatively simple computationally, involving primarily matrix inversion, and they are elegant mathematically, in avoiding eigenvalue analysis and the complex domain. The MRT and VRT provide a set of new meaningful response measures for pharmacokinetic analysis and they give added insight into the system kinetics. The new analysis is illustrated with an example involving the cholesterol turnover in rats.

  3. Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task

    NASA Technical Reports Server (NTRS)

    Madura, D. P.; Soha, J. M.; Green, W. B.; Wherry, D. B.; Lewis, S. D.

    1978-01-01

    Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel.

  4. New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment.

    PubMed

    Coll-Font, Jaume; Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrel J; Wang, Dafang; Brooks, Dana H; van Dam, Peter; Macleod, Rob S

    2014-09-01

    Cardiac electrical imaging often requires the examination of different forward and inverse problem formulations based on mathematical and numerical approximations of the underlying source and the intervening volume conductor that can generate the associated voltages on the surface of the body. If the goal is to recover the source on the heart from body surface potentials, the solution strategy must include numerical techniques that can incorporate appropriate constraints and recover useful solutions, even though the problem is badly posed. Creating complete software solutions to such problems is a daunting undertaking. In order to make such tools more accessible to a broad array of researchers, the Center for Integrative Biomedical Computing (CIBC) has made an ECG forward/inverse toolkit available within the open source SCIRun system. Here we report on three new methods added to the inverse suite of the toolkit. These new algorithms, namely a Total Variation method, a non-decreasing TMP inverse and a spline-based inverse, consist of two inverse methods that take advantage of the temporal structure of the heart potentials and one that leverages the spatial characteristics of the transmembrane potentials. These three methods further expand the possibilities of researchers in cardiology to explore and compare solutions to their particular imaging problem.

  5. Spatially constrained Bayesian inversion of frequency- and time-domain electromagnetic data from the Tellus projects

    NASA Astrophysics Data System (ADS)

    Kiyan, Duygu; Rath, Volker; Delhaye, Robert

    2017-04-01

    The frequency- and time-domain airborne electromagnetic (AEM) data collected under the Tellus projects of the Geological Survey of Ireland (GSI) which represent a wealth of information on the multi-dimensional electrical structure of Ireland's near-surface. Our project, which was funded by GSI under the framework of their Short Call Research Programme, aims to develop and implement inverse techniques based on various Bayesian methods for these densely sampled data. We have developed a highly flexible toolbox using Python language for the one-dimensional inversion of AEM data along the flight lines. The computational core is based on an adapted frequency- and time-domain forward modelling core derived from the well-tested open-source code AirBeo, which was developed by the CSIRO (Australia) and the AMIRA consortium. Three different inversion methods have been implemented: (i) Tikhonov-type inversion including optimal regularisation methods (Aster el al., 2012; Zhdanov, 2015), (ii) Bayesian MAP inversion in parameter and data space (e.g. Tarantola, 2005), and (iii) Full Bayesian inversion with Markov Chain Monte Carlo (Sambridge and Mosegaard, 2002; Mosegaard and Sambridge, 2002), all including different forms of spatial constraints. The methods have been tested on synthetic and field data. This contribution will introduce the toolbox and present case studies on the AEM data from the Tellus projects.

  6. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  7. Statistical aspects of quantitative real-time PCR experiment design.

    PubMed

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  8. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Preprint)

    DTIC Science & Technology

    2007-06-05

    From - To) 05-06-2007 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements (Preprint) Taylor S. Matlock∗ Jackson...dimensional estimate of the plume electron temperature using a published xenon collisional radiative model. I. Introduction The Hall thruster is a high

  9. Anthropometry as a predictor of bench press performance done at different loads.

    PubMed

    Caruso, John F; Taylor, Skyler T; Lutz, Brant M; Olson, Nathan M; Mason, Melissa L; Borgsmiller, Jake A; Riner, Rebekah D

    2012-09-01

    The purpose of our study was to examine the ability of anthropometric variables (body mass, total arm length, biacromial width) to predict bench press performance at both maximal and submaximal loads. Our methods required 36 men to visit our laboratory and submit to anthropometric measurements, followed by lifting as much weight as possible in good form one time (1 repetition maximum, 1RM) in the exercise. They made 3 more visits in which they performed 4 sets of bench presses to volitional failure at 1 of 3 (40, 55, or 75% 1RM) submaximal loads. An accelerometer (Myotest Inc., Royal Oak MI) measured peak force, velocity, and power after each submaximal load set. With stepwise multivariate regression, our 3 anthropometric variables attempted to explain significant amounts of variance for 13 bench press performance indices. For criterion measures that reached significance, separate Pearson product moment correlation coefficients further assessed if the strength of association each anthropometric variable had with the criterion was also significant. Our analyses showed that anthropometry explained significant amounts (p < 0.05) of variance for 8 criterion measures. It was concluded that body mass had strong univariate correlations with 1RM and force-related measures, total arm length was moderately associated with 1RM and criterion variables at the lightest load, whereas biacromial width had an inverse relationship with the peak number of repetitions performed per set at the 2 lighter loads. Practical applications suggest results may help coaches and practitioners identify anthropometric features that may best predict various measures of bench press prowess in athletes.

  10. Unstable bodyweight and incident type 2 diabetes mellitus: A meta-analysis.

    PubMed

    Kodama, Satoru; Fujihara, Kazuya; Ishiguro, Hajime; Horikawa, Chika; Ohara, Nobumasa; Yachi, Yoko; Tanaka, Shiro; Shimano, Hitoshi; Kato, Kiminori; Hanyu, Osamu; Sone, Hirohito

    2017-07-01

    The present meta-analysis aimed to clarify the association of unstable bodyweight with the risk of type 2 diabetes mellitus, an association that has been controversial among longitudinal studies. An electronic literature search using EMBASE and MEDLINE was followed up to 31 August 2016. The relative risks (RRs) of type 2 diabetes mellitus in individuals with unstable bodyweight were pooled using the inverse variance method. Eight studies were eligible for the meta-analysis. The median duration of measurements of weight change and follow-up years for ascertaining type 2 diabetes mellitus were 13.5 and 9.4 years, respectively. The pooled RR for the least vs most stable category was 1.33 (95% confidence interval 1.12-1.57). Between-study heterogeneity was statistically significant (P = 0.048). Whether type 2 diabetes mellitus was ascertained by blood testing explained 66.0% of the variance in the logarithm of RR (P = 0.02). In three studies in which blood testing was carried out, type 2 diabetes mellitus risk was not significant (RR 1.06, 95% confidence interval 0.91-1.25). Furthermore, publication bias that inflated type 2 diabetes mellitus risk was statistically detected by Egger's test (P = 0.09). Unstable bodyweight might be modestly associated with the elevated risk of type 2 diabetes mellitus; although serious biases, such as diagnostic suspicion bias and publication bias, made it difficult to assess this association. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. Neuroticism explains unwanted variance in Implicit Association Tests of personality: possible evidence for an affective valence confound.

    PubMed

    Fleischhauer, Monika; Enge, Sören; Miller, Robert; Strobel, Alexander; Strobel, Anja

    2013-01-01

    Meta-analytic data highlight the value of the Implicit Association Test (IAT) as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling (SEM), latent Big-Five personality factors (based on self- and peer-report) were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign), biases that might result, for example, from the IAT's stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis). However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis), a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to recoding.

  12. Stochastic static fault slip inversion from geodetic data with non-negativity and bounds constraints

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.

    2018-04-01

    Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems (Tarantola & Valette 1982; Tarantola 2005) provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modeling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a Truncated Multi-Variate Normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulas for the single, two-dimensional or n-dimensional marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations (e.g. Genz & Bretz 2009). Posterior mean and covariance can also be efficiently derived. I show that the Maximum Posterior (MAP) can be obtained using a Non-Negative Least-Squares algorithm (Lawson & Hanson 1974) for the single truncated case or using the Bounded-Variable Least-Squares algorithm (Stark & Parker 1995) for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov Chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modeling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the Maximum Posterior (MAP) is extremely fast.

  13. Sparse and redundant representations for inverse problems and recognition

    NASA Astrophysics Data System (ADS)

    Patel, Vishal M.

    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.

  14. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  15. Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Nowack, Robert L.; Li, Cuiping

    The inversion of seismic travel-time data for radially varying media was initially investigated by Herglotz, Wiechert, and Bateman (the HWB method) in the early part of the 20th century [1]. Tomographic inversions for laterally varying media began in seismology starting in the 1970’s. This included early work by Aki, Christoffersson, and Husebye who developed an inversion technique for estimating lithospheric structure beneath a seismic array from distant earthquakes (the ACH method) [2]. Also, Alekseev and others in Russia performed early inversions of refraction data for laterally varying upper mantle structure [3]. Aki and Lee [4] developed an inversion technique using travel-time data from local earthquakes.

  16. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  17. Cross-bispectrum computation and variance estimation

    NASA Technical Reports Server (NTRS)

    Lii, K. S.; Helland, K. N.

    1981-01-01

    A method for the estimation of cross-bispectra of discrete real time series is developed. The asymptotic variance properties of the bispectrum are reviewed, and a method for the direct estimation of bispectral variance is given. The symmetry properties are described which minimize the computations necessary to obtain a complete estimate of the cross-bispectrum in the right-half-plane. A procedure is given for computing the cross-bispectrum by subdividing the domain into rectangular averaging regions which help reduce the variance of the estimates and allow easy application of the symmetry relationships to minimize the computational effort. As an example of the procedure, the cross-bispectrum of a numerically generated, exponentially distributed time series is computed and compared with theory.

  18. Three-dimensional inversion of multisource array electromagnetic data

    NASA Astrophysics Data System (ADS)

    Tartaras, Efthimios

    Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.

  19. GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION

    NASA Astrophysics Data System (ADS)

    Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič

    2015-10-01

    In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.

  20. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, So-Yeon; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744; Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantrymore » angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r{sub s} values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the r{sub s} values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the r{sub s} values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MI{sub SPORT} showed the highest correlations among the conventional modulation indices. For global passing rates, r{sub s} values of MI{sub SPORT} were −0.420, −0.330, and −0.632, respectively, and those for local passing rates were −0.455, −0.490 and −0.502. The values of r{sub s} of contrast, variance, and MI{sub SPORT} with the MLC errors were −0.863, −0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. Conclusions: The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.« less

  1. Accounting for missing data in the estimation of contemporary genetic effective population size (N(e) ).

    PubMed

    Peel, D; Waples, R S; Macbeth, G M; Do, C; Ovenden, J R

    2013-03-01

    Theoretical models are often applied to population genetic data sets without fully considering the effect of missing data. Researchers can deal with missing data by removing individuals that have failed to yield genotypes and/or by removing loci that have failed to yield allelic determinations, but despite their best efforts, most data sets still contain some missing data. As a consequence, realized sample size differs among loci, and this poses a problem for unbiased methods that must explicitly account for random sampling error. One commonly used solution for the calculation of contemporary effective population size (N(e) ) is to calculate the effective sample size as an unweighted mean or harmonic mean across loci. This is not ideal because it fails to account for the fact that loci with different numbers of alleles have different information content. Here we consider this problem for genetic estimators of contemporary effective population size (N(e) ). To evaluate bias and precision of several statistical approaches for dealing with missing data, we simulated populations with known N(e) and various degrees of missing data. Across all scenarios, one method of correcting for missing data (fixed-inverse variance-weighted harmonic mean) consistently performed the best for both single-sample and two-sample (temporal) methods of estimating N(e) and outperformed some methods currently in widespread use. The approach adopted here may be a starting point to adjust other population genetics methods that include per-locus sample size components. © 2012 Blackwell Publishing Ltd.

  2. The Threat of Common Method Variance Bias to Theory Building

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.

    2010-01-01

    The need for more theory building scholarship remains one of the pressing issues in the field of HRD. Researchers can employ quantitative, qualitative, and/or mixed methods to support vital theory-building efforts, understanding however that each approach has its limitations. The purpose of this article is to explore common method variance bias as…

  3. ADHD and Method Variance: A Latent Variable Approach Applied to a Nationally Representative Sample of College Freshmen

    ERIC Educational Resources Information Center

    Konold, Timothy R.; Glutting, Joseph J.

    2008-01-01

    This study employed a correlated trait-correlated method application of confirmatory factor analysis to disentangle trait and method variance from measures of attention-deficit/hyperactivity disorder obtained at the college level. The two trait factors were "Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition" ("DSM-IV")…

  4. A 3D generic inverse dynamic method using wrench notation and quaternion algebra.

    PubMed

    Dumas, R; Aissaoui, R; de Guise, J A

    2004-06-01

    In the literature, conventional 3D inverse dynamic models are limited in three aspects related to inverse dynamic notation, body segment parameters and kinematic formalism. First, conventional notation yields separate computations of the forces and moments with successive coordinate system transformations. Secondly, the way conventional body segment parameters are defined is based on the assumption that the inertia tensor is principal and the centre of mass is located between the proximal and distal ends. Thirdly, the conventional kinematic formalism uses Euler or Cardanic angles that are sequence-dependent and suffer from singularities. In order to overcome these limitations, this paper presents a new generic method for inverse dynamics. This generic method is based on wrench notation for inverse dynamics, a general definition of body segment parameters and quaternion algebra for the kinematic formalism.

  5. Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg-Marquardt methods.

    PubMed

    Toushmalani, Reza

    2013-01-01

    The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.

  6. Analysis Code - Data Analysis in 'Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications' (LMSMIPNFA) v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R

    R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.

  7. The Role of Eigensolutions in Nonlinear Inverse Cavity-Flow-Theory. Revision.

    DTIC Science & Technology

    1985-06-10

    The method of Levi Civita is applied to an isolated fully cavitating body at zero cavitation number and adapted to the solution of the inverse...Eigensolutions in Nonlinear Inverse Cavity-Flow Theory [Revised] Abstract: The method of Levi Civita is applied to an isolated fully cavitating body at...problem is not thought * to present much of a challenge at zero cavitation number. In this case, - the classical method of Levi Civita [7] can be

  8. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Postprint)

    DTIC Science & Technology

    2007-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high

  9. A Higher Order Iterative Method for Computing the Drazin Inverse

    PubMed Central

    Soleymani, F.; Stanimirović, Predrag S.

    2013-01-01

    A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of linear system of equations will be presented to clarify the contribution of the paper. PMID:24222747

  10. Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng

    2018-02-01

    The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.

  11. Diallel analysis for sex-linked and maternal effects.

    PubMed

    Zhu, J; Weir, B S

    1996-01-01

    Genetic models including sex-linked and maternal effects as well as autosomal gene effects are described. Monte Carlo simulations were conducted to compare efficiencies of estimation by minimum norm quadratic unbiased estimation (MINQUE) and restricted maximum likelihood (REML) methods. MINQUE(1), which has 1 for all prior values, has a similar efficiency to MINQUE(θ), which requires prior estimates of parameter values. MINQUE(1) has the advantage over REML of unbiased estimation and convenient computation. An adjusted unbiased prediction (AUP) method is developed for predicting random genetic effects. AUP is desirable for its easy computation and unbiasedness of both mean and variance of predictors. The jackknife procedure is appropriate for estimating the sampling variances of estimated variances (or covariances) and of predicted genetic effects. A t-test based on jackknife variances is applicable for detecting significance of variation. Worked examples from mice and silkworm data are given in order to demonstrate variance and covariance estimation and genetic effect prediction.

  12. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  13. The mean and variance of phylogenetic diversity under rarefaction

    PubMed Central

    Matsen, Frederick A.

    2013-01-01

    Summary Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required. PMID:23833701

  14. The mean and variance of phylogenetic diversity under rarefaction.

    PubMed

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  15. Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.

    NASA Astrophysics Data System (ADS)

    Xia, Jake Jiqing

    The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  16. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  17. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  18. Seabed mapping and characterization of sediment variability using the usSEABED data base

    USGS Publications Warehouse

    Goff, J.A.; Jenkins, C.J.; Jeffress, Williams S.

    2008-01-01

    We present a methodology for statistical analysis of randomly located marine sediment point data, and apply it to the US continental shelf portions of usSEABED mean grain size records. The usSEABED database, like many modern, large environmental datasets, is heterogeneous and interdisciplinary. We statistically test the database as a source of mean grain size data, and from it provide a first examination of regional seafloor sediment variability across the entire US continental shelf. Data derived from laboratory analyses ("extracted") and from word-based descriptions ("parsed") are treated separately, and they are compared statistically and deterministically. Data records are selected for spatial analysis by their location within sample regions: polygonal areas defined in ArcGIS chosen by geography, water depth, and data sufficiency. We derive isotropic, binned semivariograms from the data, and invert these for estimates of noise variance, field variance, and decorrelation distance. The highly erratic nature of the semivariograms is a result both of the random locations of the data and of the high level of data uncertainty (noise). This decorrelates the data covariance matrix for the inversion, and largely prevents robust estimation of the fractal dimension. Our comparison of the extracted and parsed mean grain size data demonstrates important differences between the two. In particular, extracted measurements generally produce finer mean grain sizes, lower noise variance, and lower field variance than parsed values. Such relationships can be used to derive a regionally dependent conversion factor between the two. Our analysis of sample regions on the US continental shelf revealed considerable geographic variability in the estimated statistical parameters of field variance and decorrelation distance. Some regional relationships are evident, and overall there is a tendency for field variance to be higher where the average mean grain size is finer grained. Surprisingly, parsed and extracted noise magnitudes correlate with each other, which may indicate that some portion of the data variability that we identify as "noise" is caused by real grain size variability at very short scales. Our analyses demonstrate that by applying a bias-correction proxy, usSEABED data can be used to generate reliable interpolated maps of regional mean grain size and sediment character. 

  19. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    PubMed

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  20. pyGIMLi: An open-source library for modelling and inversion in geophysics

    NASA Astrophysics Data System (ADS)

    Rücker, Carsten; Günther, Thomas; Wagner, Florian M.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.

  1. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.

    PubMed

    Hartwig, Fernando Pires; Davey Smith, George; Bowden, Jack

    2017-12-01

    Mendelian randomization (MR) is being increasingly used to strengthen causal inference in observational studies. Availability of summary data of genetic associations for a variety of phenotypes from large genome-wide association studies (GWAS) allows straightforward application of MR using summary data methods, typically in a two-sample design. In addition to the conventional inverse variance weighting (IVW) method, recently developed summary data MR methods, such as the MR-Egger and weighted median approaches, allow a relaxation of the instrumental variable assumptions. Here, a new method - the mode-based estimate (MBE) - is proposed to obtain a single causal effect estimate from multiple genetic instruments. The MBE is consistent when the largest number of similar (identical in infinite samples) individual-instrument causal effect estimates comes from valid instruments, even if the majority of instruments are invalid. We evaluate the performance of the method in simulations designed to mimic the two-sample summary data setting, and demonstrate its use by investigating the causal effect of plasma lipid fractions and urate levels on coronary heart disease risk. The MBE presented less bias and lower type-I error rates than other methods under the null in many situations. Its power to detect a causal effect was smaller compared with the IVW and weighted median methods, but was larger than that of MR-Egger regression, with sample size requirements typically smaller than those available from GWAS consortia. The MBE relaxes the instrumental variable assumptions, and should be used in combination with other approaches in sensitivity analyses. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  2. Measuring social impacts of breast carcinoma treatment in Chinese women.

    PubMed

    Fielding, Richard; Lam, Wendy W T

    2004-06-15

    There is no existing instrument that is suitable for measuring the social impact of breast carcinoma (BC) and its treatment among women of Southern Chinese descent. In the current study, the authors assessed the validity of the Chinese Social Adjustment Scale, which was designed to address the need for such an instrument. Five dimensions of social concern were identified in a previous study of Cantonese-speaking Chinese women with BC; these dimensions were family and other relationships, intimacy, private self-image, and public self-image. The authors designed 40 items to address perceptions of change in these areas. These items were administered to a group of 226 women who had received treatment for BC, and factor analysis subsequently was performed to determine construct characteristics. The resulting draft instrument then was administered, along with other measures for the assessment of basic psychometric properties, to a second group of 367 women who recently had undergone surgery for BC. Factor analysis optimally identified 5 factors (corresponding to 33 items): 1) Relationships with Family (10 items, accounting for 22% of variance); 2) Self-Image (7 items, accounting for 15% of variance); 3) Relationships with Friends (7 items, accounting for 8% of variance); 4) Social Enjoyment (4 items, accounting for 6% of variance); and 5) Attractiveness and Sexuality (5 items, accounting for 5% of variance). Subscales were reliable (alpha = 0.63-0.93) and exhibited convergent validity in positive correlations with related measures and divergent validity in appropriate inverse or nonsignificant correlations with other measures. Criterion validity was good, and sensitivity was acceptable. Patterns of change on the scales were consistent with reports in the literature. Self-administration resulted in improved sensitivity. The 33-item Chinese Social Adjustment Scale validly, reliably, and sensitively measures the social impact of BC on Cantonese-speaking Hong Kong Chinese women. Further development of the scale to increase its sensitivity is underway. Copyright 2004 American Cancer Society.

  3. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults.

    PubMed

    White, Tom; Westgate, Kate; Wareham, Nicholas J; Brage, Soren

    2016-01-01

    Wrist-worn accelerometers are emerging as the most common instrument for measuring physical activity in large-scale epidemiological studies, though little is known about the relationship between wrist acceleration and physical activity energy expenditure (PAEE). 1695 UK adults wore two devices simultaneously for six days; a combined sensor and a wrist accelerometer. The combined sensor measured heart rate and trunk acceleration, which was combined with a treadmill test to yield a signal of individually-calibrated PAEE. Multi-level regression models were used to characterise the relationship between the two time-series, and their estimations were evaluated in an independent holdout sample. Finally, the relationship between PAEE and BMI was described separately for each source of PAEE estimate (wrist acceleration models and combined-sensing). Wrist acceleration explained 44-47% between-individual variance in PAEE, with RMSE between 34-39 J•min-1•kg-1. Estimations agreed well with PAEE in cross-validation (mean bias [95% limits of agreement]: 0.07 [-70.6:70.7]) but overestimated in women by 3% and underestimated in men by 4%. Estimation error was inversely related to age (-2.3 J•min-1•kg-1 per 10y) and BMI (-0.3 J•min-1•kg-1 per kg/m2). Associations with BMI were similar for all PAEE estimates (approximately -0.08 kg/m2 per J•min-1•kg-1). A strong relationship exists between wrist acceleration and PAEE in free-living adults, such that irrespective of the objective method of PAEE assessment, a strong inverse association between PAEE and BMI was observed.

  4. The Relationship between Anxiety and Coping Strategies in Family Caregivers of Patients with Trauma.

    PubMed

    Rahnama, Mozhgan; Shahdadi, Hosien; Bagheri, Somyeh; Moghadam, Mahdieh Poodineh; Absalan, Ahmad

    2017-04-01

    Traumatic events are of high incidence and affect not only the patient but also their family members, causing psychological problems such as stress and anxiety for caregivers of these patients. Therefore, the application of appropriate coping strategies by them seems necessary in order to promote mental health. To study the relationship of anxiety with coping strategies in family caregivers of trauma patients. The present research was a descriptive-correlational study which was carried out on 127 family caregivers of patients with trauma in intensive care unit, surgery ward and emergency unit of Amir al-Mu'minin Hospital of Zabol, Sistan and Baluchestan Province. The respondents were selected based on the convenience sampling method. Demographics questionnaire, DASS-21, and Coping Strategies questionnaire were used for data collection. The obtained data were statistically analysed using descriptive statistics, Analysis of Variance (ANOVA), t-test, and Pearson correlation coefficient in statistical package for the Social Sciences (SPSS) version 21.0. Based on the results, 89.9% of family caregivers suffer from mild to severe anxiety. The most common type of coping strategy used by the respondents was emotion-focused. The results showed no relationship between anxiety and emotion-centrism, but an inverse relationship was found between problem-centrism and anxiety. The majority of family caregivers had anxiety. Given, the inverse relationship between the level of anxiety and the use of problem-based coping strategy, in addition to identifying and reducing the causes of anxiety in caregivers. It is recommended that appropriate coping strategies should be trained to them.

  5. DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression

    PubMed Central

    Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta

    2012-01-01

    Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171

  6. An adaptive coupling strategy for joint inversions that use petrophysical information as constraints

    NASA Astrophysics Data System (ADS)

    Heincke, Björn; Jegen, Marion; Moorkamp, Max; Hobbs, Richard W.; Chen, Jin

    2017-01-01

    Joint inversion strategies for geophysical data have become increasingly popular as they allow for the efficient combination of complementary information from different data sets. The algorithm used for the joint inversion needs to be flexible in its description of the subsurface so as to be able to handle the diverse nature of the data. Hence, joint inversion schemes are needed that 1) adequately balance data from the different methods, 2) have stable convergence behavior, 3) consider the different resolution power of the methods used and 4) link the parameter models in a way that they are suited for a wide range of applications. Here, we combine active source seismic P-wave tomography, gravity and magnetotelluric (MT) data in a petrophysical joint inversion that accounts for these issues. Data from the different methods are inverted separately but are linked through constraints accounting for parameter relationships. An advantage of performing the inversions separately is that no relative weighting between the data sets is required. To avoid perturbing the convergence behavior of the inversions by the coupling, the strengths of the constraints are readjusted at each iteration. The criterion we use to control the adaption of the coupling strengths is based on variations in the objective functions of the individual inversions from one to the next iteration. Adaption of the coupling strengths makes the joint inversion scheme also applicable to subsurface conditions, where assumed relationships are not valid everywhere, because the individual inversions decouple if it is not possible to reach adequately low data misfits for the made assumptions. In addition, the coupling constraints depend on the relative resolutions of the methods, which leads to an improved convergence behavior of the joint inversion. Another benefit of the proposed scheme is that structural information can easily be incorporated in the petrophysical joint inversion (no additional terms are added in the objective functions) by using mutually controlled structural weights for the smoothing constraints. We test our scheme using data generated from a synthetic 2-D sub-basalt model. We observe that the adaption of the coupling strengths makes the convergence of the inversions very robust (data misfits of all methods are close to the target misfits) and that final results are always close to the true models independent of the parameter choices. Finally, the scheme is applied on real data sets from the Faroe-Shetland Basin to image a basaltic sequence and underlying structures. The presence of a borehole and a 3-D reflection seismic survey in this region allows direct comparison and, hence, evaluate the quality of the joint inversion results. The results from joint inversion are more consistent with results from other studies than the ones from the corresponding individual inversions and the shape of the basaltic sequence is better resolved. However, due to the limited resolution of the individual methods used it was not possible to resolve structures underneath the basalt in detail, indicating that additional geophysical information (e.g. CSEM, reflection onsets) needs to be included.

  7. Strategies to Enhance the Model Update in Regions of Weak Sensitivities for Use in Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Nuber, André; Manukyan, Edgar; Maurer, Hansruedi

    2014-05-01

    Conventional methods of interpreting seismic data rely on filtering and processing limited portions of the recorded wavefield. Typically, either reflections, refractions or surface waves are considered in isolation. Particularly in near-surface engineering and environmental investigations (depths less than, say 100 m), these wave types often overlap in time and are difficult to separate. Full waveform inversion is a technique that seeks to exploit and interpret the full information content of the seismic records without the need for separating events first; it yields models of the subsurface at sub-wavelength resolution. We use a finite element modelling code to solve the 2D elastic isotropic wave equation in the frequency domain. This code is part of a Gauss-Newton inversion scheme which we employ to invert for the P- and S-wave velocities as well as for density in the subsurface. For shallow surface data the use of an elastic forward solver is essential because surface waves often dominate the seismograms. This leads to high sensitivities (partial derivatives contained in the Jacobian matrix of the Gauss-Newton inversion scheme) and thus large model updates close to the surface. Reflections from deeper structures may also include useful information, but the large sensitivities of the surface waves often preclude this information from being fully exploited. We have developed two methods that balance the sensitivity distributions and thus may help resolve the deeper structures. The first method includes equilibrating the columns of the Jacobian matrix prior to every inversion step by multiplying them with individual scaling factors. This is expected to also balance the model updates throughout the entire subsurface model. It can be shown that this procedure is mathematically equivalent to balancing the regularization weights of the individual model parameters. A proper choice of the scaling factors required to balance the Jacobian matrix is critical. We decided to normalise the columns of the Jacobian based on their absolute column sum, but defining an upper threshold for the scaling factors. This avoids particularly small and therefore insignificant sensitivities being over-boosted, which would produce unstable results. The second method proposed includes adjusting the inversion cell size with depth. Multiple cells of the forward modelling grid are merged to form larger inversion cells (typical ratios between forward and inversion cells are in the order of 1:100). The irregular inversion grid is adapted to the expected resolution power of full waveform inversion. Besides stabilizing the inversion, this approach also reduces the number of model parameters to be recovered. Consequently, the computational costs and the memory consumption are reduced significantly. This is particularly critical when Gauss-Newton type inversion schemes are employed. Extensive tests with synthetic data demonstrated that both methods stabilise the inversion and improve the inversion results. The two methods have some redundancy, which can be seen when both are applied simultaneously, that is, when scaling of the Jacobian matrix is applied to an irregular inversion grid. The calculated scaling factors are quite balanced and span a much smaller range than in the case of a regular inversion grid.

  8. Applications of He's semi-inverse method, ITEM and GGM to the Davey-Stewartson equation

    NASA Astrophysics Data System (ADS)

    Zinati, Reza Farshbaf; Manafian, Jalil

    2017-04-01

    We investigate the Davey-Stewartson (DS) equation. Travelling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, He's semi-inverse variational principle method (SIVPM), the improved tan(φ/2)-expansion method (ITEM) and generalized G'/G-expansion method (GGM) for seeking more exact solutions via the DS equation. These methods are direct, concise and simple to implement compared to other existing methods. The exact solutions containing four types solutions have been achieved. The results demonstrate that the aforementioned methods are more efficient than the Ansatz method applied by Mirzazadeh (2015). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found by the improved tan(φ/2)-expansion and generalized G'/G-expansion methods. By He's semi-inverse variational principle we have obtained dark and bright soliton wave solutions. Also, the obtained semi-inverse variational principle has profound implications in physical understandings. These solutions might play important role in engineering and physics fields. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.

  9. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  10. Female scarcity reduces women's marital ages and increases variance in men's marital ages.

    PubMed

    Kruger, Daniel J; Fitzgerald, Carey J; Peterson, Tom

    2010-08-05

    When women are scarce in a population relative to men, they have greater bargaining power in romantic relationships and thus may be able to secure male commitment at earlier ages. Male motivation for long-term relationship commitment may also be higher, in conjunction with the motivation to secure a prospective partner before another male retains her. However, men may also need to acquire greater social status and resources to be considered marriageable. This could increase the variance in male marital age, as well as the average male marital age. We calculated the Operational Sex Ratio, and means, medians, and standard deviations in marital ages for women and men for the 50 largest Metropolitan Statistical Areas in the United States with 2000 U.S Census data. As predicted, where women are scarce they marry earlier on average. However, there was no significant relationship with mean male marital ages. The variance in male marital age increased with higher female scarcity, contrasting with a non-significant inverse trend for female marital age variation. These findings advance the understanding of the relationship between the OSR and marital patterns. We believe that these results are best accounted for by sex specific attributes of reproductive value and associated mate selection criteria, demonstrating the power of an evolutionary framework for understanding human relationships and demographic patterns.

  11. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    PubMed

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Viscoelastic response of the lateral side of the ankle to cyclic inversion: a time course analysis.

    PubMed

    Malmir, K; Olyaei, G R; Talebian, S; Jamshidi, A A

    2014-12-01

    Although important, viscoelastic behavior of the ankle's lateral side has rarely been studied. The present study assesses the viscoelastic behavior during cyclic inversions. Eighteen recreationally active healthy males underwent 40 passive cyclic inversions using a Biodex dynamometer at 5 °/s through 80% of maximum range of motion. Energy absorption and restitution and dissipation coefficient were calculated for each repetition. Changes in the mean of the dependent variables for repetitions 1 (R1 ), R5 , R10 , R15 , R20 , R25 , R30 , R35 and R40 were compared by three one-way analyses of variance with repeated measures. There was a significant difference between the means of energy absorption for the selected repetitions from R1 to R20 (P < 0.01), but there was no significant difference between them from R20 to R40 (P > 0.05). There was no significant difference between the means of energy restitution for the selected repetitions (P > 0.05). Whereas there was no significant difference consecutively between the means of dissipative coefficient for the selected repetitions (P > 0.05), there was a significant difference between the means of R30 or R40 relative to the baseline (P < 0.005). The decrease in the energy absorbed and the dissipation coefficient following repeated inversions may be due to the slippage of collagen fibers. The decrease in the shock absorbing ability of the tissues may expose them to injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet

  14. High resolution tsunami inversion for 2010 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  15. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  16. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo

    2017-03-01

    We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.

  17. Some refinements on the comparison of areal sampling methods via simulation

    Treesearch

    Jeffrey Gove

    2017-01-01

    The design of forest inventories and development of new sampling methods useful in such inventories normally have a two-fold target of design unbiasedness and minimum variance in mind. Many considerations such as costs go into the choices of sampling method for operational and other levels of inventory. However, the variance in terms of meeting a specified level of...

  18. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  19. Intelligent ensemble T-S fuzzy neural networks with RCDPSO_DM optimization for effective handling of complex clinical pathway variances.

    PubMed

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2013-07-01

    Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  1. A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Kolb, J.; Lekic, V.

    2012-12-01

    Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter components. Furthermore, we demonstrate that this new approach is far less susceptible to generating spurious features even at high noise levels. Finally, the method yields not only the most-likely receiver function, but also quantifies its full uncertainty. [1] Bodin, T., M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, and N. Rawlinson (2012), Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301

  2. Indices of insulin resistance and glucotoxicity are not associated with bipolar disorder or major depressive disorder, but are differently associated with inflammatory, oxidative and nitrosative biomarkers.

    PubMed

    Landucci Bonifácio, Kamila; Sabbatini Barbosa, Décio; Gastaldello Moreira, Estefânia; de Farias, Carine Coneglian; Higachi, Luciana; Camargo, Alissana Ester Iakmiu; Favaro Soares, Janaina; Odebrecht Vargas, Heber; Nunes, Sandra Odebrecht Vargas; Berk, Michael; Dodd, Seetal; Maes, Michael

    2017-11-01

    Insulin resistance (IR) is a key factor in diabetes mellitus, metabolic syndrome (MetS) and obesity and may occur in mood disorders and tobacco use disorder (TUD), where disturbances of immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways are important shared pathophysiological pathways. This study aimed to a) examine IR and β-cell function as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity and β cell function (HOMA-B) and glucotoxicity (conceptualized as increased glucose levels versus lowered HOMA-B values) in 74 participants with major depressive disorder (MDD) and bipolar disorder, with and or without MetS and TUD, versus 46 healthy controls, and b) whether IR is associated with IO&NS biomarkers, including nitric oxide metabolites (NOx), lipid hydroperoxides (LOOH), plasma advanced oxidation protein products (AOPP), C-reactive protein (CRP), haptoglobin (Hp) and uric acid. Mood disorders are not associated with changes in IR or glucotoxicity, although the number of mood episodes may increase IR. 47.8% of the variance in HOMA-IR is explained by AOPP and body mass index (BMI, both positively) and NOx, Hp and TUD (all inversely). 43.2% of the variance in HOMA-B is explained by NOx, Hp and age (all inversely associated) and higher BMI and sex. The glucotoxic index is strongly associated with NOx, Hp and BMI (positively), male gender and lower education. This is a cross-sectional study and therefore we cannot draw firm conclusions on causal associations. Activated IO&NS pathways (especially increased Hp and NOx) increase glucotoxicity and exert very complex effects modulating IR. Mood disorders are not associated with increased IR. Copyright © 2017. Published by Elsevier B.V.

  3. Station Correction Uncertainty in Multiple Event Location Algorithms and the Effect on Error Ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne

    Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less

  4. Influence of the severity and location of bodily injuries on post-concussive and combat stress symptom reporting after military-related concurrent mild traumatic brain injuries and polytrauma.

    PubMed

    French, Louis M; Lange, Rael T; Marshall, Kathryn; Prokhorenko, Olga; Brickell, Tracey A; Bailie, Jason M; Asmussen, Sarah B; Ivins, Brian; Cooper, Douglas B; Kennedy, Jan E

    2014-10-01

    Traumatic brain injuries (TBI) sustained in combat frequently co-occur with significant bodily injuries. Intuitively, more extensive bodily injuries might be associated with increased symptom reporting. In 2012, however, French et al. demonstrated an inverse relation between bodily injury severity and symptom reporting. This study expands on that work by examining the influence of location and severity of bodily injuries on symptom reporting after mild TBI. Participants were 579 US military service members who sustained an uncomplicated mild TBI with concurrent bodily injuries and who were evaluated at two military medical centers. Bodily injury severity was quantified using a modified Injury Severity Score (ISSmod). Participants completed the Neurobehavioral Symptom Inventory (NSI) and the Posttraumatic Stress Disorder Checklist (PCL-C), on average, 2.5 months post-injury. There was a significant negative association between ISSmod scores and NSI (r=-0.267, p<0.001) and PCL-C (r=-0.273, p<0.001) total scores. Using linear regression to examine the relation between symptom reporting and injury severity across the six ISS body regions, three body regions were significant predictors of the NSI total score (face; p<0.001; abdomen; p=0.003; extremities; p<0.001) and accounted for 9.3% of the variance (p<0.001). For the PCL-C, two body regions were significant predictors of the PCL-C total score (face; p<0.001; extremities; p<0.001) and accounted for 10.5% of the variance. There was an inverse relation between bodily injury severity and symptom reporting in this sample. Hypothesized explanations include underreporting of symptoms, increased peer support, disruption of fear conditioning because of acute morphine use, or delayed expression of symptoms.

  5. Dose-Dependent Effects of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Regression Analysis.

    PubMed

    To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh

    2018-05-01

    The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running.

    PubMed

    Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T

    2009-01-01

    Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P

  7. Additive Partial Least Squares for efficient modelling of independent variance sources demonstrated on practical case studies.

    PubMed

    Luoma, Pekka; Natschläger, Thomas; Malli, Birgit; Pawliczek, Marcin; Brandstetter, Markus

    2018-05-12

    A model recalibration method based on additive Partial Least Squares (PLS) regression is generalized for multi-adjustment scenarios of independent variance sources (referred to as additive PLS - aPLS). aPLS allows for effortless model readjustment under changing measurement conditions and the combination of independent variance sources with the initial model by means of additive modelling. We demonstrate these distinguishing features on two NIR spectroscopic case-studies. In case study 1 aPLS was used as a readjustment method for an emerging offset. The achieved RMS error of prediction (1.91 a.u.) was of similar level as before the offset occurred (2.11 a.u.). In case-study 2 a calibration combining different variance sources was conducted. The achieved performance was of sufficient level with an absolute error being better than 0.8% of the mean concentration, therefore being able to compensate negative effects of two independent variance sources. The presented results show the applicability of the aPLS approach. The main advantages of the method are that the original model stays unadjusted and that the modelling is conducted on concrete changes in the spectra thus supporting efficient (in most cases straightforward) modelling. Additionally, the method is put into context of existing machine learning algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Fat Attenuation at CT in Anorexia Nervosa

    PubMed Central

    Gill, Corey M.; Torriani, Martin; Murphy, Rachel; Harris, Tamara B.; Miller, Karen K.; Klibanski, Anne

    2016-01-01

    Purpose To investigate the composition, cross-sectional area (CSA), and hormonal correlates of different fat depots in women with anorexia nervosa (AN) and control subjects with normal weights to find out whether patients with AN have lower fat CSA but higher attenuation than did control subjects and whether these changes may be mediated by gonadal steroids, cortisol, and thyroid hormones. Materials and Methods This study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Forty premenopausal women with AN and 40 normal-weight women of comparable age (mean age ± standard deviation, 26 years ± 5) were studied. All individuals underwent computed tomography of the abdomen and thigh with a calibration phantom. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), thigh SAT, and thigh intermuscular adipose tissue CSA and attenuation were quantified. Serum estradiol, thyroid hormones, and urinary free cortisol levels were assessed. Variables were compared by using analysis of variance. Associations were examined by using linear regression analysis. Results Women with AN had higher fat attenuation than did control subjects (−100.1 to −46.7 HU vs −117.6 to −61.8 HU, P < .0001), despite lower fat CSA (2.0–62.8 cm2 vs 5.5–185.9 cm2, P < .0001). VAT attenuation but not CSA was inversely associated with lowest prior lifetime body mass index in AN (r = −0.71, P = .006). Serum estradiol levels were inversely associated with fat attenuation (r = −0.34 to −0.61, P = .03 to <.0001) and were positively associated with fat CSA of all compartments (r = 0.42–0.64, P = .007 to <.0001). Thyroxine levels and urinary free cortisol levels were positively associated with thigh SAT attenuation (r = 0.64 [P = .006] and r = 0.68 [P = .0004], respectively) and were inversely associated with abdominal SAT and VAT CSA (r = −0.44 to −0.58, P = .04 to .02). Conclusion Women with AN have differences in fat composition, with higher fat attenuation than that of control subjects, as well as low fat mass. VAT attenuation but not CSA is inversely associated with lowest prior lifetime body mass index, suggesting that fat attenuation may serve as a biomarker of prior and current disease status in AN. © RSNA, 2015 PMID:26509295

  9. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  10. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  11. Potential Seasonal Terrestrial Water Storage Monitoring from GPS Vertical Displacements: A Case Study in the Lower Three-Rivers Headwater Region, China

    PubMed Central

    Zhang, Bao; Yao, Yibin; Fok, Hok Sum; Hu, Yufeng; Chen, Qiang

    2016-01-01

    This study uses the observed vertical displacements of Global Positioning System (GPS) time series obtained from the Crustal Movement Observation Network of China (CMONOC) with careful pre- and post-processing to estimate the seasonal crustal deformation in response to the hydrological loading in lower three-rivers headwater region of southwest China, followed by inferring the annual EWH changes through geodetic inversion methods. The Helmert Variance Component Estimation (HVCE) and the Minimum Mean Square Error (MMSE) criterion were successfully employed. The GPS inferred EWH changes agree well qualitatively with the Gravity Recovery and Climate Experiment (GRACE)-inferred and the Global Land Data Assimilation System (GLDAS)-inferred EWH changes, with a discrepancy of 3.2–3.9 cm and 4.8–5.2 cm, respectively. In the research areas, the EWH changes in the Lancang basin is larger than in the other regions, with a maximum of 21.8–24.7 cm and a minimum of 3.1–6.9 cm. PMID:27657064

  12. An Updated Global Picture of Cigarette Smoking Persistence among Adults

    PubMed Central

    Troost, Jonathan P.; Barondess, David A.; Storr, Carla L.; Wells, J. Elisabeth; Al-Hamzawi, Ali Obaid; Andrade, Laura Helena; Bromet, Evelyn; Bruffaerts, Ronny; Florescu, Silvia; de Girolamo, Giovanni; de Graaf, Ron; Gureje, Oye; Haro, Josep Maria; Hu, Chiyi; Huang, Yueqin; Karam, Aimee N.; Kessler, Ronald C.; Lepine, Jean-Pierre; Matschinger, Herbert; Medina-Mora, Maria Elena; O'Neill, Siobhan; Posada-Villa, Jose; Sagar, Rajesh; Takeshima, Tadashi; Tomov, Toma; Williams, David R.; Anthony, James C.

    2012-01-01

    Background Cross-national variance in smoking prevalence is relatively well documented. The aim of this study is to estimate levels of smoking persistence across 21 countries with a hypothesized inverse relationship between country income level and smoking persistence. Methods Data from the World Health Organization World Mental Health Survey Initiative were used to estimate cross-national differences in smoking persistence–the proportion of adults who started to smoke and persisted in smoking by the date of the survey. Result There is large variation in smoking persistence from 25% (Nigeria) to 85% (China), with a random-effects meta-analytic summary estimate of 55% with considerable cross-national variation. (Cochran's heterogeneity Q statistic=6,845; p<0.001). Meta-regressions indicated observed differences are not attributable to differences in country income level, age distribution of smokers, or how recent the onset of smoking began within each country. Conclusion While smoking should remain an important public health issue in any country where smokers are present, this report identifies several countries with higher levels of smoking persistence (namely, China and India). PMID:23626929

  13. Phase imaging of mechanical properties of live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  14. Violence against metropolitan bus drivers and fare collectors in Brazil

    PubMed Central

    Assunção, Ada Ávila; de Medeiros, Adriane Mesquita

    2015-01-01

    OBJECTIVE To analyze the correlation between sociodemographic factors and working conditions of bus workers in a metropolitan area and violence against them. METHODS This cross-sectional study used a nonprobabilistic sample estimated according to the number of workers employed in bus companies located in three cities in the Belo Horizonte metropolitan region in 2012 (N = 17,470). Face-to-face interviews were conducted using a digital questionnaire. The factors associated with violence were analyzed in two stages using Poisson regression, according to each level. The magnitude of the association was evaluated using prevalence ratios with robust variance and a statistical significance of 5%, and 95% confidence intervals were obtained. RESULTS The study sample comprised 782 drivers and 691 fare collectors; 45.0% participants reported at least one act of violence in the workplace in the last 12 months, with passengers being predominantly responsible. The age of the bus workers was inversely associated with violence. Chronic diseases, sickness absenteeism, and working conditions were also associated with violence. CONCLUSIONS The findings on the correlation between violence and working conditions are essential for implementing prevention strategies by transportation service managers. PMID:25741657

  15. Peeling linear inversion of upper mantle velocity structure with receiver functions

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Zhou, Huilan

    2012-02-01

    A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.

  16. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  17. Age at natural menopause genetic risk score in relation to age at natural menopause and primary open-angle glaucoma in a US-based sample

    PubMed Central

    Pasquale, Louis R.; Aschard, Hugues; Kang, Jae H.; Bailey, Jessica N. Cooke; Lindström, Sara; Chasman, Daniel I.; Christen, William G.; Allingham, R. Rand; Ashley-Koch, Allison; Lee, Richard K.; Moroi, Sayoko E.; Brilliant, Murray H.; Wollstein, Gadi; Schuman, Joel S.; Fingert, John; Budenz, Donald L.; Realini, Tony; Gaasterland, Terry; Gaasterland, Douglas; Scott, William K.; Singh, Kuldev; Sit, Arthur J.; Igo, Robert P.; Song, Yeunjoo E.; Hark, Lisa; Ritch, Robert; Rhee, Douglas J.; Gulati, Vikas; Havens, Shane; Vollrath, Douglas; Zack, Donald J.; Medeiros, Felipe; Weinreb, Robert N.; Pericak-Vance, Margaret A.; Liu, Yutao; Kraft, Peter; Richards, Julia E.; Rosner, Bernard A.; Hauser, Michael A.; Haines, Jonathan L.; Wiggs, Janey L.

    2017-01-01

    Abstract Objective: Several attributes of female reproductive history, including age at natural menopause (ANM), have been related to primary open-angle glaucoma (POAG). We assembled 18 previously reported common genetic variants that predict ANM to determine their association with ANM or POAG. Methods: Using data from the Nurses’ Health Study (7,143 women), we validated the ANM weighted genetic risk score in relation to self-reported ANM. Subsequently, to assess the relation with POAG, we used data from 2,160 female POAG cases and 29,110 controls in the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (NEIGHBORHOOD), which consists of 8 datasets with imputed genotypes to 5.6+ million markers. Associations with POAG were assessed in each dataset, and site-specific results were meta-analyzed using the inverse weighted variance method. Results: The genetic risk score was associated with self-reported ANM (P = 2.2 × 10–77) and predicted 4.8% of the variance in ANM. The ANM genetic risk score was not associated with POAG (Odds Ratio (OR) = 1.002; 95% Confidence Interval (CI): 0.998, 1.007; P = 0.28). No single genetic variant in the panel achieved nominal association with POAG (P ≥0.20). Compared to the middle 80 percent, there was also no association with the lowest 10th percentile or highest 90th percentile of genetic risk score with POAG (OR = 0.75; 95% CI: 0.47, 1.21; P = 0.23 and OR = 1.10; 95% CI: 0.72, 1.69; P = 0.65, respectively). Conclusions: A genetic risk score predicting 4.8% of ANM variation was not related to POAG; thus, genetic determinants of ANM are unlikely to explain the previously reported association between the two phenotypes. PMID:27760082

  18. Efficiency of two constructs called "fear of disease" and "perceived severity of disease" on the prevention of gastric cancer: Application of protection motivation theory

    PubMed Central

    Baghiani- Moghadam, Mohamad Hosein; Seyedi-Andi, Seyed Jalil; Shokri-Shirvani, Javad; Khafri, Sorayya; Ghadimi, Reza; Parsian, Hadi

    2015-01-01

    Background: Among all cancers, malignancies of gastrointestinal tract are the most common cancer among Iranian population. Dietary behavior is thought to be the most important risk factor in gastric cancer. Fear and perceived severity are two important constructs of the protection motivation theory (PMT). Despite the evidence of the impact of these two constructs in modifying dietary habits against gastric cancer, their efficiency is not well established. Therefore, the present study was designed to determine the efficiency of the mentioned constructs. Methods: This cross-sectional study was performed on 360 participants (180 males and 180 females) aged over 30 years old who presented to health centers in Babol, Iran in 2014. They were selected by a cluster sampling method in a population covered by health centers in Babol. Data collection was done using a questionnaire with acceptable reliability and validity, designed by a researcher based on two constructs of protection motivation theory. The data were analyzed by SPSS Version 20 using descriptive and analytical statistics such as ANOVA, linear and logistic regression analysis. Results: The participants who entered in the study achieved 38.6 and 69.7% of the scores of fear and perceived severity, respectively. There was a significant difference between perceived severity with level of education (p<0.05). There was a significant inverse correlation between perceived severity with nutritional high risk behavior associated with gastric cancer in the significant level of 0.05 (r=-0.165). The constructs of perceived severity and fear predicted 38% of the variance of nutritional high risk behaviors associated with gastric cancer. Conclusion: Constructs of fear and perceived severity of protection motivation theory with predicting 38% of the variance of nutritional high risk behaviors had an effective role against gastric cancer and may help in the design and implementation of educational programs for the prevention of gastric cancer. PMID:26644893

  19. A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance.

    PubMed

    Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L

    2015-01-01

    In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.

  20. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

Top