Science.gov

Sample records for invertebrate neuropeptide conference

  1. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  2. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  3. Introduction: Invertebrate Neuropeptides XV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  4. Introduction: Invertebrate Neuropeptides XIV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  5. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates

    PubMed Central

    Elphick, Maurice R.; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom. PMID:24994999

  6. Unique translational modification of an invertebrate neuropeptide: a phosphorylated member of the adipokinetic hormone peptide family

    PubMed Central

    2005-01-01

    Separation of an extract of corpora cardiaca from the protea beetle, Trichostetha fascicularis, by single-step RP (reverse-phase)-HPLC and monitoring of tryptophan fluorescence resulted in two distinctive peaks, the material of which mobilized proline and carbohydrates in a bioassay performed using the beetle. Material from one of these peaks was; however, inactive in the classical bioassays of locusts and cockroaches that are used for detecting peptides belonging to the AKH (adipokinetic hormone) family. After enzymatically deblocking the N-terminal pyroglutamic acid (pGlu) residue in the peptide material and sequencing by Edman degradation, a partial sequence was obtained: (pGlu)-Ile-Asn-Met-Thr-Xaa-Gly-Trp. The complete sequence was deduced from ESI-MSn (electrospray ionization multi-stage-MS); position six was identified as a phosphothreonine residue and the C-terminus is amidated. The peptide, code-named Trifa-CC, was chemically synthesized and used in confirmatory experiments to show that the primary structure had been correctly assigned. To our knowledge, this is the first report of a phosphorylated invertebrate neuropeptide. Synthetic Trifa-CC co-elutes with the natural peptide, found in the gland of the protea beetle, after RP-HPLC. Moreover, the natural peptide can be dephosphorylated by alkaline phosphatase and the product of that reaction has the same retention time as a synthetic nonphosphorylated octapeptide which has the same sequence as Trifa-CC. Finally, synthetic Trifa-CC has hypertrehalosaemic and hyperprolinaemic biological activity in the protea beetle, but even high concentrations of synthetic Trifa-CC are inactive in locusts and cockroaches. Hence, the correct peptide structure has been assigned. Trifa-CC of the protea beetle is an unusual member of the AKH family that is unique in its post-translational modification. Since it increases the concentration of carbohydrates and proline in the haemolymph when injected into the protea beetle, and

  7. Immunocytochemical distribution of neuropeptide F (NPF) in the gastropod mollusc, Helix aspersa, and in several other invertebrates.

    PubMed

    Leung, P S; Shaw, C; Johnston, C F; Irvine, G B

    1994-02-01

    The distribution of neuropeptide F (NPF) immunoreactivity in the snail, Helix aspersa, has been demonstrated by immunocytochemistry using 2 region-specific antisera. One, designated NPF3, was raised against a synthetic N-terminal fragment of Helix aspersa NPF; the other, designated PP221, was raised against the C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP) but cross-reacts fully with the analogous C-terminal region of Helix aspersa NPF. The distribution of NPF immunoreactivity has also been compared with that of FMRFamide using alternate serial sections of Helix aspersa ganglia. Results showed that NPF immunoreactivity was abundant and widespread in the central and peripheral nervous systems and the pattern of immunostaining obtained using both region-specific antisera was similar. Likewise, immunocytochemistry of neural tissues of a congeneric species, Helix pomatia, and 2 prosobranch gastropods, Buccinum undatum and Littorina littorea, produced similar staining patterns with both antisera. However, in the cephalopod mollusc, Loligo vulgaris, and the cestode, Moniezia expansa, positive immunostaining was only obtained with the C-terminal PP antiserum. Immunostaining of alternate serial sections of Helix aspersa ganglia with NPF3, and an antiserum raised to FMRFamide, showed that while a few neurones were immunoreactive with one antiserum only, in the majority, both immunoreactivities were co-localised. NPF thus appears to be an important neuropeptide of widespread distribution in Helix aspersa and the differential immunocytochemical staining obtained using the 2 region-specific antisera would suggest a high degree of primary structural conservation within the gastropod molluscs, but lack of conservation of the N-terminal region of the peptide in other invertebrate groups.

  8. Crustacean neuropeptides.

    PubMed

    Christie, Andrew E; Stemmler, Elizabeth A; Dickinson, Patsy S

    2010-12-01

    Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.

  9. Duplications of the Neuropeptide Receptor VIPR2 Confer Significant Risk for Schizophrenia

    PubMed Central

    Vacic, Vladimir; McCarthy, Shane; Malhotra, Dheeraj; Murray, Fiona; Chou, Hsun-Hua; Peoples, Aine; Makarov, Vladimir; Yoon, Seungtai; Bhandari, Abhishek; Corominas, Roser; Iakoucheva, Lilia M.; Krastoshevsky, Olga; Krause, Verena; Larach-Walters, Verónica; Welsh, David K.; Craig, David; Kelsoe, John R.; Gershon, Elliot S.; Leal, Suzanne M.; Aquila, Marie Dell; Morris, Derek W.; Gill, Michael; Corvin, Aiden; Insel, Paul A.; McClellan, Jon; King, Mary-Claire; Karayiorgou, Maria; Levy, Deborah L.; DeLisi, Lynn E.; Sebat, Jonathan

    2012-01-01

    Rare copy number variants (CNVs) play a prominent role in the etiology of schizophrenia and other neuropsychiatric disorders1. Substantial risk for schizophrenia is conferred by large (>500 kb) CNVs at several loci, including microdeletions at 1q21.1 2, 3q29 3, 15q13.3 2 and 22q11.2 4 and microduplication at 16p11.2 5. However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia (P= 4.0×10-5, OR = 16.14 [3.06, ∞]). Microduplications with variable breakpoints occurred within a 362 kb region and were detected in 29 of 8,290 (0.35%) patients versus two of 7,431 (0.03%) controls in the combined sample (p-value= 5.7×10-7, odds ratio (OR) = 14.1 [3.5, 123.9]). All duplications overlapped or were located within 89 kb upstream of the vasoactive intestinal peptide receptor VIPR2. VIPR2 transcription and cyclic-AMP signaling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered VIP signaling in the pathogenesis of schizophrenia and suggest VIPR2 as a potential target for the development of novel antipsychotic drugs. PMID:21346763

  10. Invertebrate Paleontology.

    ERIC Educational Resources Information Center

    Feldmann, Rodney M.

    1983-01-01

    Indicating that, although no broad conceptual notions in invertebrate paleontology were proposed during 1982, a large number of excellent papers focusing on testing, modifying, and documenting earlier speculations were published or presented at professional meetings. Highlights of papers, conferences, and research studies are provided (including…

  11. Functional neuropeptidomics in invertebrates.

    PubMed

    De Haes, Wouter; Van Sinay, Elien; Detienne, Giel; Temmerman, Liesbet; Schoofs, Liliane; Boonen, Kurt

    2015-07-01

    Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  12. Invertebrate FMRFamide related peptides.

    PubMed

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  13. Mini-review: the evolution of neuropeptide signaling.

    PubMed

    Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2012-08-10

    Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling.

  14. Mini-review: the evolution of neuropeptide signaling.

    PubMed

    Grimmelikhuijzen, Cornelis J P; Hauser, Frank

    2012-08-10

    Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling. PMID:22726357

  15. [Physiology of the neuropeptides].

    PubMed

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  16. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution

    PubMed Central

    Semmens, Dean C.; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R.; Wurm, Yannick; Elphick, Maurice R.

    2016-01-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan. PMID:26865025

  17. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.

    PubMed

    Semmens, Dean C; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R; Wurm, Yannick; Elphick, Maurice R

    2016-02-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.

  18. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.

    PubMed

    Semmens, Dean C; Mirabeau, Olivier; Moghul, Ismail; Pancholi, Mahesh R; Wurm, Yannick; Elphick, Maurice R

    2016-02-01

    Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an 'intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan. PMID:26865025

  19. Invertebrate lamins

    SciTech Connect

    Melcer, Shai; Gruenbaum, Yosef . E-mail: gru@vms.huji.ac.il; Krohne, Georg . E-mail: krohne@biozentrum.uni-wuerzburg.de

    2007-06-10

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions.

  20. Zoology: Invertebrates that Parasitize Invertebrates.

    PubMed

    Giribet, Gonzalo

    2016-07-11

    The genome of an orthonectid, a group of highly modified parasitic invertebrates, is drastically reduced and compact, yet it shows the bilaterian gene toolkit. Phylogenetic analyses place the enigmatic orthonectids within Spiralia, although their exact placement remains uncertain.

  1. Peptide neuromodulation in invertebrate model systems

    PubMed Central

    Taghert, Paul H.; Nitabach, Michael N.

    2012-01-01

    Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms. PMID:23040808

  2. NeuroPep: a comprehensive resource of neuropeptides.

    PubMed

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep

  3. NeuroPep: a comprehensive resource of neuropeptides

    PubMed Central

    Wang, Yan; Wang, Mingxia; Yin, Sanwen; Jang, Richard; Wang, Jian; Xue, Zhidong; Xu, Tao

    2015-01-01

    Neuropeptides play a variety of roles in many physiological processes and serve as potential therapeutic targets for the treatment of some nervous-system disorders. In recent years, there has been a tremendous increase in the number of identified neuropeptides. Therefore, we have developed NeuroPep, a comprehensive resource of neuropeptides, which holds 5949 non-redundant neuropeptide entries originating from 493 organisms belonging to 65 neuropeptide families. In NeuroPep, the number of neuropeptides in invertebrates and vertebrates is 3455 and 2406, respectively. It is currently the most complete neuropeptide database. We extracted entries deposited in UniProt, the database (www.neuropeptides.nl) and NeuroPedia, and used text mining methods to retrieve entries from the MEDLINE abstracts and full text articles. All the entries in NeuroPep have been manually checked. 2069 of the 5949 (35%) neuropeptide sequences were collected from the scientific literature. Moreover, NeuroPep contains detailed annotations for each entry, including source organisms, tissue specificity, families, names, post-translational modifications, 3D structures (if available) and literature references. Information derived from these peptide sequences such as amino acid compositions, isoelectric points, molecular weight and other physicochemical properties of peptides are also provided. A quick search feature allows users to search the database with keywords such as sequence, name, family, etc., and an advanced search page helps users to combine queries with logical operators like AND/OR. In addition, user-friendly web tools like browsing, sequence alignment and mapping are also integrated into the NeuroPep database. Database URL: http://isyslab.info/NeuroPep PMID:25931458

  4. Neuropeptides in epilepsy.

    PubMed

    Kovac, Stjepana; Walker, Matthew C

    2013-12-01

    Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.

  5. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    PubMed

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.

  6. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans.

    PubMed

    Chang, Yan-Jung; Burton, Tina; Ha, Lawrence; Huang, Zi; Olajubelo, Adewale; Li, Chris

    2015-01-01

    Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction. PMID:26406995

  7. Neuropeptides and hippocampal neurogenesis.

    PubMed

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  8. Neuropeptide physiology in helminths.

    PubMed

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  9. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  10. Migraine and neuropeptides.

    PubMed

    Tajti, János; Szok, Délia; Majláth, Zsófia; Tuka, Bernadett; Csáti, Anett; Vécsei, László

    2015-08-01

    Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.

  11. Invertebrates in the Classroom.

    ERIC Educational Resources Information Center

    Abramson, Charles I.

    1986-01-01

    Describes an inexpensive program using invertebrates as subjects in conditioning demonstrations and experiments. Provides a bibliography of reviews about invertebrate learning in addition to information on obtaining required apparatus and invertebrates.

  12. Neuropeptides in cardiovascular control.

    PubMed

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The roles of neuropeptides in Caenorhabditis elegans including their importance in the regulation of feeding and metabolism.

    PubMed

    Holden-Dye, Lindy; Walker, Robert J

    2013-06-01

    C. elegans has 302 neurons (in the adult hermaphrodite) and this simple nervous system harbours over 250 neuropeptides. Neuropeptides are a class of signalling molecule implicated in key physiological roles and thus confer a surprising level of complexity to signalling in this nematode. Indeed, it is probable that most, if not all, sensory, motor and interneurons, in C. elegans synthesise and release at least one neuropeptide but that many neurons synthesise an array of neuropeptides. In this review neuropeptides and their receptors with specific roles in feeding, metabolism, reproduction and locomotion are discussed. It is noted that the majority of C. elegans neuropeptides do not yet have defined roles and their cognate receptors have not yet been identified. Future studies will serve to provide further fundamental insight into how neuropeptide signalling can underpin animal behaviour.

  14. Orphan neuropeptides. Novel neuropeptides modulating sleep or feeding.

    PubMed

    Chung, Shinjae; Civelli, Olivier

    2006-08-01

    Neuropeptides form the largest family of modulators of synaptic transmission. Until 1995 some 60 different neuropeptides had been found. With the recognition that all neuropeptides act by binding to G protein coupled receptors (GPCRs), a new approach relying on the use of orphan GPCRs as targets was designed to identify novel neuropeptides. Thirteen new neuropeptide families have since been discovered. In this review we will describe the orphan GPCR-based approach that led to these discoveries and present its impact on two specific physiological responses, feeding and sleep. In particular, we will discuss the modulatory roles of the hypocretins/orexins and of neuropeptide S in sleep and awakening and those of ghrelin and melanin concentrating hormone in food intake.

  15. Role of neuropeptides in cardiomyopathies.

    PubMed

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  16. Neuropeptides and diabetic retinopathy

    PubMed Central

    Gábriel, Robert

    2013-01-01

    Diabetic retinopathy, a common complication of diabetes, develops in 75% of patients with type 1 and 50% of patients with type 2 diabetes, progressing to legal blindness in about 5%. In the recent years, considerable efforts have been put into finding treatments for this condition. It has been discovered that peptidergic mechanisms (neuropeptides and their analogues, activating a diverse array of signal transduction pathways through their multiple receptors) are potentially important for consideration in drug development strategies. A considerable amount of knowledge has been accumulated over the last three decades on human retinal neuropeptides and those elements in the pathomechanisms of diabetic retinopathy which might be related to peptidergic signal transduction. Here, human retinal neuropeptides and their receptors are reviewed, along with the theories relevant to the pathogenesis of diabetic retinopathy both in humans and in experimental models. By collating this information, the curative potential of certain neupeptides and their analogues/antagonists can also be discussed, along with the existing clinical treatments of diabetic retinopathy. The most promising peptidergic pathways for which treatment strategies may be developed at present are stimulation of the somatostatin-related pathway and the pituitary adenylyl cyclase-activating polypeptide-related pathway or inhibition of angiotensinergic mechanisms. These approaches may result in the inhibition of vascular endothelial growth factor production and neuronal apoptosis; therefore, both the optical quality of the image and the processing capability of the neural circuit in the retina may be saved. PMID:23043302

  17. Toward a consensus nomenclature for insect neuropeptides and peptide hormones.

    PubMed

    Coast, Geoffrey M; Schooley, David A

    2011-03-01

    The nomenclature currently in use for insect neuropeptide and peptide hormone families is reviewed and suggestions are made as to how it can be rationalized. Based upon this review, a number of conventions are advanced as a guide to a more rationale nomenclature. The scheme that is put forward builds upon the binomial nomenclature scheme proposed by Raina and Gäde in 1988, when just over 20 insect neuropeptides had been identified. Known neuropeptides and peptide hormones are assigned to 32 structurally distinct families, frequently with overlapping functions. The names given to these families are those that are currently in use, and describe a biological function, homology to known invertebrate/vertebrate peptides, or a conserved structural motif. Interspecific isoforms are identified using a five-letter code to indicate genus and species names, and intraspecific isoforms are identified by Roman or Arabic numerals, with the latter used to signify the order in which sequences are encoded on a prepropeptide. The proposed scheme is sufficiently flexible to allow the incorporation of novel peptides, and could be extended to other arthropods and non-arthropod invertebrates. PMID:21093513

  18. Diversity and abundance: the basic properties of neuropeptide action in molluscs.

    PubMed

    Kiss, Tibor

    2011-05-15

    Neuropeptides, the most diverse group of signaling molecules, are responsible for regulating a variety of cellular and behavioral processes in all vertebrate and invertebrate animals. The role played by peptide signals in information processing is fundamentally different from that of conventional neurotransmitters. Neuropeptides may act as neurotransmitters or neuromodulators and are released at either synaptic or non-synaptic sites. Peptide signals control developmental processes, drive specific behaviors or contribute to the mechanisms of learning and memory storage. Co-transmission within or across peptide families, and between peptide and non-peptide signaling molecules, is common; this ensures the great versatility of their action. How these tasks are fulfilled when multiple neuropeptides are released has become an important topic for peptide research. Although our knowledge concerning the physiological and behavioral roles of most of the neuropeptides isolated from molluscs is incomplete, this article provides examples to address the complexity of peptide signaling.

  19. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    PubMed

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-01

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. PMID:25625515

  20. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    PubMed

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-23

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes.

  1. Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides

    PubMed Central

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-01

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. PMID:25625515

  2. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans

    PubMed Central

    Gravato-Nobre, Maria João; Vaz, Filipa; Filipe, Sergio; Chalmers, Ronald; Hodgkin, Jonathan

    2016-01-01

    Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material. PMID:27525822

  3. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans.

    PubMed

    Gravato-Nobre, Maria João; Vaz, Filipa; Filipe, Sergio; Chalmers, Ronald; Hodgkin, Jonathan

    2016-08-01

    Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material. PMID:27525822

  4. Neuropeptides and nasal secretion.

    PubMed

    Baraniuk, J N; Kaliner, M

    1991-10-01

    The nasal mucosa is innervated by the sensory, parasympathetic, and sympathetic nervous systems. Nociceptive sensory nerves are stimulated by mucosal injury, inhalation of irritants, or mast cell degranulation and release of the calcitonin gene-related peptide, the tachykinins substance P and neurokinin A, and other peptides by the axon response mechanism. Sensory nerve stimulation initiates systemic reflexes, such as the sneeze, and central parasympathetic reflexes which release acetylcholine, vasoactive intestinal peptide, and other peptides and lead to glandular secretion. In concert, these proinflammatory neural responses lead to vasodilation, vascular permeability, and glandular secretion. Sympathetic nerves release neuropeptide Y and norepinephrine, potent vasoconstrictors which act to decompress the nasal mucosa and produce nasal patency. The balance between the effects of parasympathetic and sympathetic neurotransmitters may regulate nasal homeostasis, whereas the nociceptive sensory system may be held in reserve as a defense mechanism. Dysfunction of these systems may lead to pathological nasal syndromes. In the future, specific neuropeptide agonists and antagonists may be useful for the treatment of human rhinitic diseases. PMID:1928355

  5. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity.

    PubMed

    Setzu, M; Biolchini, M; Lilliu, A; Manca, M; Muroni, P; Poddighe, S; Bass, C; Angioy, A M; Nichols, R

    2012-02-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity.

  6. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity

    PubMed Central

    Setzu, M.; Biolchini, M.; Lilliu, A.; Manca, M.; Muroni, P.; Poddighe, S.; Bass, C.; Angioy, A.M.; Nichols, R.

    2012-01-01

    Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10 nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~ 50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity. PMID:22289500

  7. More than two decades of research on insect neuropeptide GPCRs: an overview

    PubMed Central

    Caers, Jelle; Verlinden, Heleen; Zels, Sven; Vandersmissen, Hans Peter; Vuerinckx, Kristel; Schoofs, Liliane

    2012-01-01

    This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years. PMID

  8. Neuropeptides as therapeutic targets in anxiety disorders.

    PubMed

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  9. Identification of a novel starfish neuropeptide that acts as a muscle relaxant.

    PubMed

    Kim, Chan-Hee; Kim, Eun Jung; Go, Hye-Jin; Oh, Hye Young; Lin, Ming; Elphick, Maurice R; Park, Nam Gyu

    2016-04-01

    Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant

  10. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis.

    PubMed

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-11-23

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain.

  11. Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis

    PubMed Central

    Bao, Chenchang; Yang, Yanan; Huang, Huiyang; Ye, Haihui

    2015-01-01

    Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain. PMID:26592767

  12. From gonadotropin-inhibitory hormone to SIFamides: are echinoderm SALMFamides the "missing link" in a bilaterian family of neuropeptides that regulate reproductive processes?

    PubMed

    Elphick, Maurice R

    2013-11-01

    Gonadotropin-inhibitory hormone (GnIH) belongs to a family of vertebrate neuropeptides with a C-terminal PxRFamide motif, which exert effects by activating the G-protein coupled receptors NPFF1 and/or NPFF2. Comparative analysis of genome sequence data has revealed that orthologs of NPFF1/NPFF2-type receptors occur throughout the Bilateria and the neuropeptide ligand that activates the Drosophila NPFF1/NPFF2-type receptor has been identified as AYRKPPFNGSIFamide ("SIFamide"). Therefore, SIFamide-type neuropeptides, which occur throughout protostomian invertebrates, probably share a common evolutionary origin with vertebrate PxRFamide-type neuropeptides. Based on structural similarities, here SALMFamide neuropeptides are identified as candidate ligand components of this ancient bilaterian peptide-receptor signaling system in a deuterostomian invertebrate phylum, the echinoderms (e.g., starfish, sea urchins). Furthermore, functional studies provide evidence that PxRFamide/SALMFamide/SIFamide-type neuropeptides have evolutionarily conserved roles in regulation (typically inhibitory) of reproductive processes.

  13. Immune memory in invertebrates.

    PubMed

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. PMID:27402055

  14. Immune memory in invertebrates.

    PubMed

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming.

  15. Aquarium Culture of Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Wood, Timothy S.

    1996-01-01

    Describes two methods for rearing small aquatic invertebrates using submerged surfaces in an unfiltered current of water where fish are present. Presents suggestions on how to use the invertebrate communities in the classroom. (JRH)

  16. Stalking the Neighborhood Invertebrate.

    ERIC Educational Resources Information Center

    Manley, James W.

    1982-01-01

    Describes a six-week simulation of basic research in which high school students acquire, observe, describe, illustrate, and report on an invertebrate of their choice. Includes chart used to evaluate student monographs, and comments relating to student experiences while engaged in their projects. (Author/JN)

  17. Invertebrates in managed waterfowl marshes

    USGS Publications Warehouse

    Stafford, Joshua D.; Janke, Adam K.; Webb, Elisabeth B.; Chipps, Steven R.

    2016-01-01

    Invertebrates are an important food for breeding, migrating, and wintering waterfowl. Sparse study has been devoted to understanding the influence of waterfowl and wetland management on production of invertebrates for waterfowl foods; however, manipulation of hydrology and soils may change or enhance production. Fish can compete with waterfowl for invertebrate forage in wetlands and harm aquatic macrophytes; biomanipulation (e.g., stocking piscivores) may improve waterfowl habitat quality. Similarly, some terrestrial vertebrates (e.g., beaver (Castor canadensis)) may positively or negatively impact invertebrate communities in waterfowl habitats. Various challenges exist to wetland management for invertebrates for waterfowl, but the lack of data on factors influencing production may be the most limiting.

  18. Intron-Specific Neuropeptide Probes

    PubMed Central

    Gainer, Harold; Ponzio, Todd A.; Yue, Chunmei; Kawasaki, Makoto

    2016-01-01

    Measurements of changes in pre-mRNA levels by intron-specific probes are generally accepted as more closely reflecting changes in gene transcription rates than are measurements of mRNA levels by exonic probes. This is, in part, because the pre-mRNAs, which include the primary transcript and various splicing intermediates located in the nucleus (also referred to as heteronuclear RNAs, or hnRNAs), are processed rapidly (with half-lives <60 min) as compared to neuropeptide mRNAs, which are then transferred to the cytoplasm and which have much longer half-lives (often over days). In this chapter, we describe the use of exon-and intron-specific probes to evaluate oxytocin (OT) and vasopressin (VP) neuropeptide gene expression by analyses of their mRNAs and hnRNAs by quantitative in situ hybridization (qISH) and also by using specific PCR primers in quantitative, real-time PCR (qPCR) procedures. PMID:21922402

  19. Invertebrate models of alcoholism.

    PubMed

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  20. Hypothalamic neuropeptides and the regulation of appetite.

    PubMed

    Parker, Jennifer A; Bloom, Stephen R

    2012-07-01

    Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.

  1. Physiological Activity of Neuropeptide F on the Hindgut of the Blood-Feeding Hemipteran, Rhodnius prolixus

    PubMed Central

    Gonzalez, Ronald; Orchard, Ian

    2009-01-01

    Current hypotheses propose that, in the invertebrates, neuropeptide F (NPF), the vertebrate NPY homologue, may be capable of regulating responses to diverse cues related to nutritional status and feeding. An investigation into the effects of Drosophila melanogaster NPF (DrmNPF) and Anopheles gambiae NPF (AngNPF) on hindgut physiology of Rhodnius prolixus Stal (Heimptera: Reduviidae) suggests a myoinhibitory role for these peptides and the R. prolixus native peptide. Extracts of the central nervous system of R. prolixus were processed and several HPLC-fractions revealed NPF-like activity within the nanomolar equivalent range when tested using the hindgut contraction assay. Although NPF has been shown to decrease epithelial membrane potential in Aedes aegypti larval midgut preparations, NPF does not appear to play a role in epithelial transport of potassium in the hindgut. While the function of NPF has yet to be established, NPF-like effects suggest multiple physiological roles for NPF among invertebrates. PMID:20050776

  2. Brain neuropeptides in gastric mucosal protection.

    PubMed

    Gyires, Klára; Zádori, Zoltán S

    2014-12-01

    The centrally induced gastroprotective effect of neuropeptides has been intensively studied. Besides many similarities, however, differences can also be observed in their gastroprotective actions. The gastroprotective dose-response curve proved to be either sigmoid, or bell-shaped. Additional gastrointestinal effects of neuropeptides can contribute to their mucosal protective effect. Part of the neuropeptides induces gastroprotection by peripheral administration as well. Besides vagal nerve the sympathetic nervous system may also be involved in conveying the central effect to the periphery. Better understanding of the complex mechanism of the maintenance of gastric mucosal integrity may result in the development of new strategy to enhance gastric mucosal resistance against injury.

  3. Neuropeptides in learning and memory.

    PubMed

    Borbély, Eva; Scheich, Bálint; Helyes, Zsuzsanna

    2013-12-01

    Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to

  4. Variable immune molecules in invertebrates.

    PubMed

    Cerenius, Lage; Söderhäll, Kenneth

    2013-12-01

    Recently it has become evident that invertebrates may mount a highly variable immune response that is dependent on which pathogen is involved. The molecular mechanisms behind this diversity are beginning to be unravelled and in several invertebrate taxa immune proteins exhibiting a broad range of diversity have been found. In some cases, evidence has been gathered suggesting that this molecular diversity translates into the ability of an affected invertebrate to mount a defence that is specifically aimed at a particular pathogen.

  5. Oxygen sensing neurons and neuropeptides regulate survival after anoxia in developing C. elegans.

    PubMed

    Flibotte, John J; Jablonski, Angela M; Kalb, Robert G

    2014-01-01

    Hypoxic brain injury remains a major source of neurodevelopmental impairment for both term and preterm infants. The perinatal period is a time of rapid transition in oxygen environments and developmental resetting of oxygen sensing. The relationship between neural oxygen sensing ability and hypoxic injury has not been studied. The oxygen sensing circuitry in the model organism C. elegans is well understood. We leveraged this information to investigate the effects of impairments in oxygen sensing on survival after anoxia. There was a significant survival advantage in developing worms specifically unable to sense oxygen shifts below their preferred physiologic range via genetic ablation of BAG neurons, which appear important for conferring sensitivity to anoxia. Oxygen sensing that is mediated through guanylate cyclases (gcy-31, 33, 35) is unlikely to be involved in conferring this sensitivity. Additionally, animals unable to process or elaborate neuropeptides displayed a survival advantage after anoxia. Based on these data, we hypothesized that elaboration of neuropeptides by BAG neurons sensitized animals to anoxia, but further experiments indicate that this is unlikely to be true. Instead, it seems that neuropeptides and signaling from oxygen sensing neurons operate through independent mechanisms, each conferring sensitivity to anoxia in wild type animals.

  6. Prodynorphin in invertebrates.

    PubMed

    Salzet, M; Stefano, G

    1997-12-01

    We have characterized a prodynorphin-like molecule in an invertebrate, specifically in the rhynchobdellid leech Theromyzon tessulatum. The 14270 Da protein was purified by gel permeation chromatography, anti-leucine-enkephalin-affinity column separation followed by reverse-phase HPLC. Its complete characterization was performed by Edman degradation, enzymatic treatments, and matrix assisted laser-desorption time of flight mass spectrometry. This 119 amino-acid protein exhibits 28.8% sequence identity with rat prodynorphin, 22.9% with human prodynorphin, and 21.8% with the pig molecule. Within the leech precursor, alpha-Neo-endorphin, dynorphin-A, and dynorphin B-like peptides are present at the C-terminus as in vertebrate prodynorphin. These biological active peptides exhibit 100%, 50%, and 76.6% sequence identity with their counterparts in mammals, respectively. The amount of leucine-enkephalin is identical to that found in vertebrates. Leech prodynorphin is distinguished from that found in mammals in that the N-terminus is shorter. This report constitutes the first complete biochemical characterization of a prodynorphin in invertebrates.

  7. A Hypervariable Invertebrate Allodeterminant

    PubMed Central

    Nicotra, Matthew L.; Powell, Anahid E.; Rosengarten, Rafael D.; Moreno, Maria; Grimwood, Jane; Lakkis, Fadi G.; Dellaporta, Stephen L.; Buss, Leo W.

    2009-01-01

    Summary Colonial marine invertebrates, such as sponges, corals, bryozoans, and ascidians, often live in densely-populated communities where they encounter other members of their species as they grow over their substratum. Such encounters typically lead to a natural histocompatibility response in which colonies either fuse to become a single, chimeric colony or reject and aggressively compete for space. These allorecognition phenomena mediate intraspecific competition [1–3], support allotypic diversity [4], control the level at which selection acts [5–8], and resemble allogeneic interactions in pregnancy and transplantation [9–12]. Despite the ubiquity of allorecognition in colonial phyla, however, its molecular basis has not been identified beyond what is currently known about histocompatibility in vertebrates and protochordates. We positionally cloned an allorecognition gene using inbred strains of the cnidarian, Hydractinia symbiolongicarpus, which is a model system for the study of invertebrate allorecognition. The gene identified encodes a putative transmembrane receptor expressed in all tissues capable of allorecognition that is highly polymorphic and predicts allorecognition responses in laboratory and field-derived strains. This study reveals that a previously undescribed hypervariable molecule bearing three extracellular domains with greatest sequence similarity to the immunoglobulin superfamily is an allodeterminant in a lower metazoan. PMID:19303297

  8. Identification of a platyhelminth neuropeptide receptor.

    PubMed

    Omar, Hanan H; Humphries, Judith E; Larsen, Martha J; Kubiak, Teresa M; Geary, Timothy G; Maule, Aaron G; Kimber, Michael J; Day, Tim A

    2007-06-01

    We report the characterisation of the first neuropeptide receptor from the phylum Platyhelminthes, an early-diverging phylum which includes a number of important human and veterinary parasites. The G protein-coupled receptor (GPCR) was identified from the model flatworm Girardia tigrina (Tricladida: Dugesiidae) based on the presence of motifs widely conserved amongst GPCRs. In two different assays utilising heterologous expression in Chinese hamster ovary cells, the Girardia GPCR was most potently activated by neuropeptides from the FMRFamide-like peptide class. The most potent platyhelminth neuropeptide in both assays was GYIRFamide, a FMRFamide-like peptide known to be present in G. tigrina. There was no activation by neuropeptide Fs, another class of flatworm neuropeptides. Also active were FMRFamide-like peptides derived from other phyla but not known to be present in any platyhelminth. Most potent among these were nematode neuropeptides encoded by the Caenorhabditis elegans flp-1 gene which share a PNFLRFamide carboxy terminal motif. The ability of nematode peptides to stimulate a platyhelminth receptor demonstrates a degree of structural conservation between FMRFamide-like peptide receptors from these two distinct, distant phyla which contain parasitic worms.

  9. Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways.

    PubMed

    Tian, Shi; Zandawala, Meet; Beets, Isabel; Baytemur, Esra; Slade, Susan E; Scrivens, James H; Elphick, Maurice R

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in humans and other vertebrates. Homologs of GnRH and its cognate receptor have been identified in invertebrates-for example, the adipokinetic hormone (AKH) and corazonin (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships and origins of these signalling systems remain unknown. Here we have addressed this issue with the first identification of both GnRH-type and CRZ-type signalling systems in a deuterostome-the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH systems are orthologous and the origin of a paralogous CRZ-type signalling system can be traced to the common ancestor of the Bilateria (Urbilateria). PMID:27350121

  10. Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates.

    PubMed

    Goffredi, Shana K

    2010-08-01

    Symbioses involving bacteria and invertebrates contribute to the biological diversity and high productivity of both aquatic and terrestrial environments. Well-known examples from chemosynthetic deep-sea hydrothermal vent environments involve ectosymbiotic microbes associated with the external surfaces of marine invertebrates. Some of these ectosymbioses confer protection or defence from predators or the environment itself, some are nutritional in nature, and many still are of unknown function. Several recently discovered hydrothermal vent invertebrates, including two populations of yeti crab (Kiwa spp.), a limpet (Symmetromphalus aff. hageni), and the scaly-foot snail (as yet undescribed), support a consortium of diverse bacteria. Comparisons of these ectosymbioses to those previously described revealed similarities among the associated microorganisms, suggesting that certain microbes are indigenous to the surfaces of marine invertebrates. In particular, members of the Thiovulgaceae (epsilonproteobacteria) and Thiotrichaceae (gammaproteobacteria) appear to preferentially form ectosymbioses with vent crustaceans and gastropods. Interactions between specific Proteobacteria and the surfaces of many marine invertebrates likely have ecological and evolutionary significance at these chemically challenging habitats.

  11. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

    PubMed Central

    2016-01-01

    Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides. PMID:27103886

  12. Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus.

    PubMed

    Dougan, Paula M; Mair, Gunnar R; Halton, David W; Curry, W James; Day, Tim A; Maule, Aaron G

    2002-12-01

    Neuropeptide Y is one of the most widespread regulatory peptides within the vertebrate nervous system and shares the C-terminal motif [FY]-x(3)-[LIVM]-x(2)-Y-x(3)-[LIVMFY]-x-R-x-R-[YF] with pancreatic polypeptide, peptide YY, and fish pancreatic peptide Y. All four peptides are believed to have arisen from a single ancestral gene through successive gene duplication events in vertebrates. The origin of this peptide family may date back further still; similarly sized peptide transmitters with an identical C-terminal motif have been identified in molluscs and flatworms and designated neuropeptide F (NPF). Cloning of the npf gene from the parasitic flatworm Moniezia expansa identified some unusual features within the peptide precursor organization but, at the same time, provided support for an evolutionary relationship of npf and npy genes through the presence of a single intron at a conserved position. To extend the analysis of the evolutionary relationships between invertebrate NPF and vertebrate NPY family peptides, the NPF precursor from the turbellarian Arthurdendyus triangulatus was characterized. Sequence analysis revealed the npf transcript to be 362 base pairs in length encoding a single open reading frame of 81 amino acids. The precursor comprises a signal peptide followed by the mature peptide of 36 amino acids in length, terminating in the typical invertebrate GRPRF motif, followed by a carboxyterminal glycyl extension. The NPF precursor of A. triangulatus shows significant similarities to the vertebrate NPY peptides. Indeed, the N-terminus of A. triangulatus prepro-NPF corresponds more closely to that of the vertebrate peptide homologs than to that of other invertebrate NPFs isolated to date. Immunocytochemical localization studies have demonstrated NPF immunoreactivity throughout the nervous system of A. triangulatus, particularly in association with muscular structures. The data support an early evolutionary origin for this peptide transmitter family

  13. Neuropeptide Y: A stressful review

    PubMed Central

    Reichmann, Florian; Holzer, Peter

    2016-01-01

    Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptor, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target. PMID:26441327

  14. Nonassociative learning in invertebrates.

    PubMed

    Byrne, John H; Hawkins, Robert D

    2015-02-26

    The simplicity and tractability of the neural circuits mediating behaviors in invertebrates have facilitated the cellular/molecular dissection of neural mechanisms underlying learning. The review has a particular focus on the general principles that have emerged from analyses of an example of nonassociative learning, sensitization in the marine mollusk Aplysia. Learning and memory rely on multiple mechanisms of plasticity at multiple sites of the neuronal circuits, with the relative contribution to memory of the different sites varying as a function of the extent of training and time after training. The same intracellular signaling cascades that induce short-term modifications in synaptic transmission can also be used to induce long-term changes. Although short-term memory relies on covalent modifications of preexisting proteins, long-term memory also requires regulated gene transcription and translation. Maintenance of long-term cellular memory involves both intracellular and extracellular feedback loops, which sustain the regulation of gene expression and the modification of targeted molecules.

  15. Associative learning in invertebrates.

    PubMed

    Hawkins, Robert D; Byrne, John H

    2015-05-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron-motor neuron (SN-MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  16. Associative learning in invertebrates.

    PubMed

    Hawkins, Robert D; Byrne, John H

    2015-04-15

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron-motor neuron (SN-MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well.

  17. The immune effects of neuropeptides.

    PubMed

    Berczi, I; Chalmers, I M; Nagy, E; Warrington, R J

    1996-05-01

    Current evidence indicates that the neuroendocrine system is the highest regulator of immune/inflammatory reactions. Prolactin and growth hormone stimulate the production of leukocytes, including lymphocytes, and maintain immunocompetence. The hypothalamus-pituitary-adrenal axis constitutes the most powerful circuit regulating the immune system. The neuropeptides constituting this axis, namely corticotrophin releasing factor, adrenocorticotrophic hormone, alpha-melanocyte stimulating hormone, and beta-endorphin are powerful immunoregulators, which have a direct regulatory effect on lymphoid cells, regulating immune reactions by the stimulation of immunoregulatory hormones (glucocorticoids) and also by acting on the central nervous system which in turn generates immunoregulatory nerve impulses. Peptidergic nerves are major regulators of the inflammatory response. Substance P and calcitonin gene-related peptide are pro-inflammatory mediators and somatostatin is anti-inflammatory. The neuroendocrine regulation of the inflammatory response is of major significance from the point of view of immune homeostasis. Malfunction of this circuit leads to disease and often is life-threatening. The immune system emits signals towards the neuroendocrine system by cytokine mediators which reach significant blood levels (cytokine-hormones) during systemic immune/inflammatory reactions. Interleukin-1, -6, and TNF-alpha are the major cytokine hormones mediating the acute phase response. These cytokines induce profound neuroendocrine and metabolic changes by interacting with the central nervous system and with many other organs and tissues in the body. Corticotrophin releasing factor functions under these conditions as a major co-ordinator of the response and is responsible for activating the ACTH-adrenal axis for regulating fever and for other CNS effects leading to a sympathetic outflow. Increased ACTH secretion leads to glucocorticoid production. alpha-melanocyte stimulating hormone

  18. Neuropeptides: Keeping The Balance Between Pathogen Immunity and Immune Tolerance

    PubMed Central

    Gonzalez-Rey, Elena; Ganea, Doina; Delgado, Mario

    2010-01-01

    Various neuropeptides have emerged recently as potent immunomodulatory factors with potential for their therapeutic use on immune disorders. Here we highlight the most recent data relevant in the field and we offer our opinion how neuropeptide therapy might impact clinical immune diseases, and the challenges in this field that must be overcome before achieving medical progress. We also review recent reports describing the antimicrobial effects showed by some neuropeptides and the therapeutic, physiological and evolutionary consequences of this new finding. Finally, we discuss how a physiologically functional neuropeptide system contributes to general health and how neuropeptides educate our immune system to be tolerant. PMID:20399708

  19. Neuropeptides: conductors of the immune orchestra.

    PubMed

    Morley, J E; Kay, N E; Solomon, G F; Plotnikoff, N P

    1987-08-01

    There is increasing evidence for a bidirectional communications system between the immune system and the brain. Many of the substances involved in this communication appear to be neuropeptides. These findings have given biochemical validity to the clinical and epidemiological studies that have suggested that psychosocial factors can modulate the response to infections and neoplasms. PMID:3298913

  20. The neuropeptide bursicon acts in cuticle metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bursicon is a heterodimeric neuropeptide formed of bursicon a (burs a) and bursicon B (burs B) that controls cuticle tanning and wing expansion in insects. Burs a-a and burs B-B homodimers are also formed; they act via an unknown receptor to induce expression of prophylactic immune and stress genes ...

  1. The evolution and diversity of SALMFamide neuropeptides.

    PubMed

    Elphick, Maurice R; Achhala, Sufyan; Martynyuk, Natalia

    2013-01-01

    The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide "cocktails" derived from the same precursor protein.

  2. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  3. Local Adaptation in Marine Invertebrates

    NASA Astrophysics Data System (ADS)

    Sanford, Eric; Kelly, Morgan W.

    2011-01-01

    Local adaptation in the sea was regarded historically as a rare phenomenon that was limited to a handful of species with exceptionally low dispersal potential. However, a growing body of experimental studies indicates that adaptive differentiation occurs in numerous marine invertebrates in response to selection imposed by strong gradients (and more complex mosaics) of abiotic and biotic conditions. Moreover, a surprisingly high proportion of the marine invertebrates known or suspected of exhibiting local adaptation are species with planktonic dispersal. Adaptive divergence among populations can occur over a range of spatial scales, including those that are fine-grained (i.e., meters to kilometers), reflecting a balance between scales of gene flow and selection. Addressing the causes and consequences of adaptive genetic differentiation among invertebrate populations promises to advance community ecology, climate change research, and the effective management of marine ecosystems.

  4. Aquatic Invertebrate Development Working Group

    NASA Technical Reports Server (NTRS)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  5. Neuropeptides and steroid hormones in arthritis.

    PubMed

    Cerinic, M M; Konttinen, Y; Generini, S; Cutolo, M

    1998-05-01

    Primary afferent nociceptive and peptidergic efferent nerves are sensitized in arthritis and thus easily stimulated by mechanical and chemical stimuli. This leads to increased or disturbed release of neuropeptides from nerve terminals. This local (at the site of stimulation), expanded (expanded and additional receptive fields), and remote (cross-spinal reflexes) neuropeptide release leads to disturbed tissue homeostasis and neurogenic inflammation. In arthritis, raised levels of neuropeptides were detected in the synovial fluid, whereas nerve fibers were lacking in the synovial tissue. It has been hypothesized that cycles of nerve fiber destruction and degeneration follow the cycles of joint inflammation. This evidence suggests that the peripheral nervous system, through its neuropeptides, may contribute to the generation of inflammation, i.e., "neurogenic inflammation." Altered hypothalamic-pituitary-adrenocortical axis function and sex hormone status have been suggested to contribute to the development and persistence of arthritis. In particular, current evidence indicates that glucocorticoid secretion is closely and reciprocally interrelated with inflammation, and that an adrenal insufficiency is present in many forms of immune-mediated arthritis. Conversely, gonadal steroids seem to play a central role as predisposing factors in many forms of arthritis, with estrogens involved as immuno-enhancing hormones and androgens as natural immunosuppressors. Functional receptors for sex hormones have been described in cells involved in the immune response and, after activation, the hormone-receptor complex might modulate the expression of selected cytokines. The possibility of targeting the efferent nerves with specific peptides and replacement therapies with selected steroid hormones may represent a new and potentially efficient and natural system of modulation of the arthritis.

  6. The Role of Neuropeptides in Suicidal Behavior: A Systematic Review

    PubMed Central

    Pompili, Maurizio; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper. PMID:23986909

  7. The role of neuropeptides in suicidal behavior: a systematic review.

    PubMed

    Serafini, Gianluca; Pompili, Maurizio; Lindqvist, Daniel; Dwivedi, Yogesh; Girardi, Paolo

    2013-01-01

    There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.

  8. The role of neuropeptides in sleep modulation.

    PubMed

    Prospéro-García, Oscar; Méndez-Díaz, Mónica

    2004-10-01

    Several neuropeptides affect the sleep-wake cycle, for example, vasoactive intestinal polypeptide, cholecystokinin octapeptide, orexin, somatostatin, insulin, leptin, ghrelin, neuropeptide Y and cortistatin, which regulate food ingestion. There are also proteins from the immunological system: tumor necrosis factor-alpha, interleukin (IL)-1beta IL-4, IL-10, IL-13, as well as trophic molecules, such as growth hormone-releasing hormone, growth hormone, prolactin, brain-derived neurotrophic factor and nerve growth factor, neurotrophin-3 and neurotrophin-4. Based on this information, we believe that some functions of sleep can be suggested. One of these functions could be the regulation of energy, since many, if not all, of the neuropeptides that regulate feeding affect the level of alertness. Likewise, the immunological system and the trophic molecules establish a dialog with the brain during sleep in order to reestablish neuronal structure. These proteins are the expression of genes that accomplish the function of regulating our waking and our sleep, suggesting the important control the genome is exerting on this activity.

  9. A proteomic approach to neuropeptide function elucidation.

    PubMed

    Temmerman, L; Bogaerts, A; Meelkop, E; Cardoen, D; Boerjan, B; Janssen, T; Schoofs, L

    2012-03-01

    Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.

  10. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    PubMed

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  11. Identification of a new member of PBAN family of neuropeptides from the fire ant, Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. Pyrokinin/Pheromone Biosynthesis Activating Neuropeptide (PBAN) is a major neuropeptide family, chara...

  12. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y.

    PubMed

    Bowers, Mallory E; Choi, Dennis C; Ressler, Kerry J

    2012-12-01

    The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.

  13. Comparison of Caenorhabditis elegans NLP peptides with arthropod neuropeptides.

    PubMed

    Husson, Steven J; Lindemans, Marleen; Janssen, Tom; Schoofs, Liliane

    2009-04-01

    Neuropeptides are small messenger molecules that can be found in all metazoans, where they govern a diverse array of physiological processes. Because neuropeptides seem to be conserved among pest species, selected peptides can be considered as attractive targets for drug discovery. Much can be learned from the model system Caenorhabditis elegans because of the availability of a sequenced genome and state-of-the-art postgenomic technologies that enable characterization of endogenous peptides derived from neuropeptide-like protein (NLP) precursors. Here, we provide an overview of the NLP peptide family in C. elegans and discuss their resemblance with arthropod neuropeptides and their relevance for anthelmintic discovery.

  14. Neuropeptides in the Gonads: From Evolution to Pharmacology

    PubMed Central

    McGuire, Nicolette L.; Bentley, George E.

    2010-01-01

    Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meager. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH). Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology. PMID:21607065

  15. Opine dehydrogenases in marine invertebrates.

    PubMed

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  16. Pharmacological Lifespan Extension of Invertebrates

    PubMed Central

    Lucanic, Mark; Lithgow, Gordon J.; Alavez, Silvestre

    2012-01-01

    There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans (C. elegans) has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies. PMID:22771382

  17. Marine Invertebrates: Communities at Risk

    PubMed Central

    Mather, Jennifer

    2013-01-01

    Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them. PMID:24832811

  18. Marine invertebrates: communities at risk.

    PubMed

    Mather, Jennifer

    2013-01-01

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  19. Mimetic analogs of three insect neuropeptide classes for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs w...

  20. Mimetic analogs of pyrokinin neuropeptides for pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptides are potent regulators of critical life processes in insects, but are subjected to rapid degradation by peptidases in the hemolymph (blood), tissues and gut. This limitation can be overcome via replacement of peptidase susceptible portions of the insect neuropeptides to create analogs ...

  1. Neuropeptides in Alzheimer's disease: from pathophysiological mechanisms to therapeutic opportunities.

    PubMed

    Van Dam, Debby; Van Dijck, Annemie; Janssen, Leen; De Deyn, Peter Paul

    2013-06-01

    Neuropeptides are found throughout the entire nervous system where they can act as neurotransmitter, neuromodulator or neurohormone. In those functions, they play important roles in the regulation of cognition and behavior. In brain disorders like Alzheimer's disease (AD), where abnormal cognition and behavior are observed, the study of neuropeptides is particularly interesting since altered neuropeptides can function as biomarkers or as targets for new medication. In this article neuropeptides with relevance to AD are listed and their influence on cognitive and behavioral disturbances is discussed. Findings from human cerebrospinal fluid and brain tissue, and AD mouse models are described and related to the pathophysiology and symptomatology of the disease. In the past, clinical trials with neuropeptides have often failed due to insufficient delivery to the brain. Therefore, new strategies to target the brain with peptide drugs are also covered.

  2. Neuropeptide Y stimulates autophagy in hypothalamic neurons.

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Carmo-Silva, Sara; Pascoal, Jorge F; Ferreira-Marques, Marisa; Nóbrega, Clévio; Cortes, Luísa; Valero, Jorge; Sousa-Ferreira, Lígia; Álvaro, Ana R; Santana, Magda; Kügler, Sebastian; Pereira de Almeida, Luís; Cavadas, Cláudia

    2015-03-31

    Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging. PMID:25775546

  3. Neuropeptide Y and posttraumatic stress disorder

    PubMed Central

    Sah, R; Geracioti, TD

    2016-01-01

    Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential ‘resilience-to-stress’ factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target. PMID:22801411

  4. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  5. Pain and suffering in invertebrates?

    PubMed

    Elwood, Robert W

    2011-01-01

    All animals face hazards that cause tissue damage and most have nociceptive reflex responses that protect them from such damage. However, some taxa have also evolved the capacity for pain experience, presumably to enhance long-term protection through behavior modification based on memory of the unpleasant nature of pain. In this article I review various criteria that might distinguish nociception from pain. Because nociceptors are so taxonomically widespread, simply demonstrating their presence is not sufficient. Furthermore, investigation of the central nervous system provides limited clues about the potential to experience pain. Opioids and other analgesics might indicate a central modulation of responses but often peripheral effects could explain the analgesia; thus reduction of responses by analgesics and opioids does not allow clear discrimination between nociception and pain. Physiological changes in response to noxious stimuli or the threat of a noxious stimulus might prove useful but, to date, application to invertebrates is limited. Behavior of the organism provides the greatest insights. Rapid avoidance learning and prolonged memory indicate central processing rather than simple reflex and are consistent with the experience of pain. Complex, prolonged grooming or rubbing may demonstrate an awareness of the specific site of stimulus application. Tradeoffs with other motivational systems indicate central processing, and an ability to use complex information suggests sufficient cognitive ability for the animal to have a fitness benefit from a pain experience. Available data are consistent with the idea of pain in some invertebrates and go beyond the idea of just nociception but are not definitive. In the absence of conclusive data, more humane care for invertebrates is suggested.

  6. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1980-08-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected over a 12 month interval. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented.

  7. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1981-01-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected for 12 months. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae, dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented. 15 references, 2 tables.

  8. Neuropeptides as targets for the development of anticonvulsant drugs.

    PubMed

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  9. Neuromodulatory function of neuropeptides in the normal CNS.

    PubMed

    Merighi, Adalberto; Salio, Chiara; Ferrini, Francesco; Lossi, Laura

    2011-12-01

    Neuropeptides are small protein molecules produced and released by discrete cell populations of the central and peripheral nervous systems through the regulated secretory pathway and acting on neural substrates. Inside the nerve cells, neuropeptides are selectively stored within large granular vesicles (LGVs), and commonly coexist in neurons with low-molecular-weight neurotransmitters (acetylcholine, amino acids, and catecholamines). Storage in LGVs is responsible for a relatively slow response to secretion that requires enhanced or repeated stimulation. Coexistence (i.e. the concurrent presence of a neuropeptide with other messenger molecules in individual neurons), and co-storage (i.e. the localization of two or more neuropeptides within individual LGVs in neurons) give rise to a complicated series of pre- and post-synaptic functional interactions with low-molecular-weight neurotransmitters. The typically slow response and action of neuropeptides as compared to fast-neurotransmitters such as excitatory/inhibitory amino acids and catecholamines is also due to the type of receptors that trigger neuropeptide actions onto target cells. Almost all neuropeptides act on G-protein coupled receptors that, upon ligand binding, activate an intracellular cascade of molecular enzymatic events, eventually leading to cellular responses. The latter occur in a time span (seconds or more) considerably longer (milliseconds) than that of low-molecular-weight fast-neurotransmitters, directly operating through ion channel receptors. As reviewed here, combined immunocytochemical visualization of neuropeptides and their receptors at the ultrastructural level and electrophysiological studies, have been fundamental to better unravel the role of neuropeptides in neuron-to-neuron communication.

  10. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens.

    PubMed

    Tanaka, Yoshiaki; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Noda, Hiroaki; Shinoda, Tetsuro

    2014-03-01

    The genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors were identified in the brown planthopper (BPH), Nilaparvata lugens (Stål) by transcriptome analysis (RNA-seq). Forty-eight candidate genes were found to encode neuropeptides or peptide hormones. These include all known insect neuropeptides and neurohormones, with the exception of neuropeptide-like precursor 2 (NPLP2) and trissin. The gene coding for prothoracicotropic hormone (PTTH) was first identified from hemimetabolous insect. A total of 57 putative neuropeptide GPCR genes were identified and phylogenetic analysis showed most of them to be closely related to insect GPCRs. A notable finding was the occurrence of vertebrate hormone receptors, thyrotropin-releasing hormone receptor (TRHR)-like GPCR and parathyroid hormone receptor (PTHR)-like GPCRs. These results suggest that N. lugens possesses the most comprehensive neuropeptide system yet found in insects. Moreover, our findings demonstrate the power of RNA-seq as a tool for analyzing the neuropeptide-related genes in the absence of whole genome sequence information.

  11. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion.

  12. Neuropeptide Y functions as a neuroproliferative factor.

    PubMed

    Hansel, D E; Eipper, B A; Ronnett, G V

    2001-04-19

    Neuropeptide Y (NPY) has a number of functions in mammalian physiology. Here we identify a role for NPY in promoting proliferation of postnatal neuronal precursor cells. NPY is synthesized in the postnatal olfactory epithelium by sustentacular cells, previously proposed to function only in structural support. Mice with a targeted deletion of NPY contain half as many dividing olfactory neuronal precursor cells as do controls. Furthermore, NPY-deficient mice develop significantly fewer olfactory neurons by adulthood. NPY acts on multipotent neuronal precursor or basal cells to activate rapidly and transiently the extracellular signal-regulated kinase (ERK)1/2 subgroup of mitogen-activated protein kinases. The NPY Y1 receptor subtype appears to mediate this effect. The ability of NPY to induce neuronal precursor proliferation is mediated by protein kinase C (PKC), indicating an upstream PKC-dependent activation of ERK1/2. These results indicate that NPY may regulate neuronal precursor proliferation in the adult mammal.

  13. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  14. [Galanin: a new biologically active gastrointestinal neuropeptide].

    PubMed

    Bauer, F E

    1990-03-01

    The 29 amino acid containing neuropeptide galanin is localized in the intrinsic nervous system of the entire gastrointestinal tract and the pancreas. It was found in man and several animal species. Molecular biology studies revealed different molecular forms of galanin in several mammalian species including man. The galanin precursor was also found. Galanin shows several potent pharmacological actions: it inhibits gastrointestinal motility in man. It also has an inhibitory effect on intestinal smooth muscle contractility of several animal species. These actions are mediated directly by opening of potassium channels and indirectly by inhibition of acetylcholine release. In addition galanin inhibits pancreatic hormone secretion (i.e. hypoinsulinemia, hyperglycemia) and partly the release of hormones localized in the gastrointestinal tract. On exocrine glands in man (salivary glands) galanin has hydrokinetic actions. The physiological role of galanin might be regulation of gastrointestinal motility, control of secretory function of intestine and a regulatory role in endocrine and exocrine gland secretion. PMID:1693024

  15. Effects of Pollution on Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Buikema, A. L., Jr.; Herricks, E. E.

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater invertebrates, covering publications of 1976-77. Some of the areas covered are: (1) toxicant effects on invertebrates; (2) microcosm and community effects, and (3) biological control of aquatic life. A list of 123 references is also presented. (HM)

  16. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.

  17. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    PubMed

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes.

  18. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach.

    PubMed

    Koziol, Uriel; Koziol, Miguel; Preza, Matías; Costábile, Alicia; Brehm, Klaus; Castillo, Estela

    2016-10-01

    Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes. PMID:27388856

  19. Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges.

    PubMed

    De Loof, Arnold

    2008-01-01

    In the recent decade, tremendous progress has been realized in insect endocrinology as the result of the application of a variety of advanced methods in neuropeptidome- and receptor research. Hormones of which the existence had been shown by bioassays four decades ago, e.g. bursicon (a member of the glycoprotein hormone family) and pupariation factor (Neb-pyrokinin 2, a myotropin), could be identified, along with their respective receptors. In control of diurnal rhythms, clock genes got company from the neuropeptide Pigment Dispersing Factor (PDF), of which the receptor could also be identified. The discovery of Inka cells and their function in metamorphosis was a true hallmark. Analysis of the genomes of Caenorhabditis elegans, Drosophila melanogaster and Apis mellifera yielded about 75, 100 and 200 genes coding for putative signaling peptides, respectively, corresponding to approximately 57, 100 and 100 peptides of which the expression could already be proven by means of mass spectrometry. The comparative approach invertebrates-vertebrates recently yielded indications for the existence of counterparts in insects for prolactin, atrial natriuretic hormone and Growth Hormone Releasing Hormone (GRH). Substantial progress has been realized in identifying the Halloween genes, a membrane receptor(s) for ecdysteroids, a nuclear receptor for methylfarnesoate, and dozens of GPCRs for insect neuropeptides. The major remaining challenges concern the making match numerous orphan GPCRs with orphan peptidic ligands, and elucidating their functions. Furthermore, the endocrine control of growth, feeding-digestion, and of sexual differentiation, in particular of males, is still poorly understood. The finding that the prothoracic glands produce an autocrine factor with growth factor-like properties and secrete proteins necessitates a reevaluation of their role in development. PMID:17716674

  20. Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas.

    PubMed

    Webster, Simon George; Wilcockson, David Charles; Mrinalini; Sharp, Jasmine Heloise

    2013-02-01

    Very little is known regarding the release patterns of neuropeptides involved in ecdysis of crustaceans compared to insects. In particular, the dynamics of release of the insect cuticle hardening hormone bursicon, which has only recently been discovered in crustaceans, is unknown. Bursicon has not previously been identified as a circulating neurohormone in these animals. Since patterns of release were likely to be ephemeral, bursicon, as well as two other neurohormones involved in the ecdysis program in crustaceans, crustacean cardioactive peptide (CCAP) and crustacean hyperglycaemic hormone (CHH) were measured in single haemolymph samples in Carcinus maenas. For bursicon, an ultrasensitive time resolved-fluoroimmunoassay (TR-FIA) was developed, which firstly involved its characterisation by HPLC, bioassay and immunoassay. Simultaneous measurement of three neurohormones was performed at unparalleled levels of resolution, which has not previously been reported in any invertebrate. Additionally, expression patterns and architecture of neurones expressing both bursicon and CCAP were determined in the CNS during the moult cycle. Bursicon and CCAP are released in a massive surge, likely a single global exocytotic event on emergence, just after release of CHH. Despite co-localisation of CCAP and bursicon in neurones of the CNS, observations suggest that differential packaging of CCAP can occur in the pericardial organs in a small population of secretory boutons, thus accounting for observations showing release of some CCAP during the penultimate stages of the ecdysis program. The results obtained vividly illustrate the dynamism of neuropeptide cascades occurring during crustacean ecdysis, and also allow proposal of a hypothesis of its endocrine control. PMID:23247273

  1. Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges.

    PubMed

    De Loof, Arnold

    2008-01-01

    In the recent decade, tremendous progress has been realized in insect endocrinology as the result of the application of a variety of advanced methods in neuropeptidome- and receptor research. Hormones of which the existence had been shown by bioassays four decades ago, e.g. bursicon (a member of the glycoprotein hormone family) and pupariation factor (Neb-pyrokinin 2, a myotropin), could be identified, along with their respective receptors. In control of diurnal rhythms, clock genes got company from the neuropeptide Pigment Dispersing Factor (PDF), of which the receptor could also be identified. The discovery of Inka cells and their function in metamorphosis was a true hallmark. Analysis of the genomes of Caenorhabditis elegans, Drosophila melanogaster and Apis mellifera yielded about 75, 100 and 200 genes coding for putative signaling peptides, respectively, corresponding to approximately 57, 100 and 100 peptides of which the expression could already be proven by means of mass spectrometry. The comparative approach invertebrates-vertebrates recently yielded indications for the existence of counterparts in insects for prolactin, atrial natriuretic hormone and Growth Hormone Releasing Hormone (GRH). Substantial progress has been realized in identifying the Halloween genes, a membrane receptor(s) for ecdysteroids, a nuclear receptor for methylfarnesoate, and dozens of GPCRs for insect neuropeptides. The major remaining challenges concern the making match numerous orphan GPCRs with orphan peptidic ligands, and elucidating their functions. Furthermore, the endocrine control of growth, feeding-digestion, and of sexual differentiation, in particular of males, is still poorly understood. The finding that the prothoracic glands produce an autocrine factor with growth factor-like properties and secrete proteins necessitates a reevaluation of their role in development.

  2. Advances in Mass Spectrometric Tools for Probing Neuropeptides

    NASA Astrophysics Data System (ADS)

    Buchberger, Amanda; Yu, Qing; Li, Lingjun

    2015-07-01

    Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.

  3. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    PubMed Central

    Bakos, Jan; Zatkova, Martina; Bacova, Zuzana; Ostatnikova, Daniela

    2016-01-01

    The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits. PMID:26881105

  4. [Effects of neuropeptides on interferon production in vitro].

    PubMed

    Kul'chikov, A E; Makarenko, A N

    2008-01-01

    The study of an interferon-inducing action of neuropeptides (a cerebrolysin model) on production of interferons by human blood leukocytes has shown that neuropeptides induce gamma-interferon production in the titer 267 IU/ml that determines one of the mechanisms of a neuroimmunocorrecting effect of cerebrolysin (Ebewe, Austria) in many neurological diseases (acute stroke, brain traumas and different neuroinfectious diseases). PMID:18720720

  5. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    PubMed

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  6. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    PubMed

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era. PMID:19361512

  7. Neuropeptides of the cotton fleahopper, Pseudatomoscelis seriatus (Reuter).

    PubMed

    Predel, Reinhard; Russell, William K; Russell, David H; Suh, Charles P-C; Nachman, Ronald J

    2012-03-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an economically important pest of cotton, and increasing concerns over resistance, detrimental effects on beneficial insects and safety issues associated with traditional insecticide applications have led to an interest in research on novel, alternative strategies for control. One such approach requires a more basic understanding of the neurohormonal system that regulates important physiological properties of the fleahopper; e.g. the expression of specific messenger molecules such as neuropeptides. Therefore we performed a peptidomic study of neural tissues from the fleahopper which led to the first identification of the sequences of native peptide hormones. These peptide hormones include the following neuropeptides: corazonin, short neuropeptide F (sNPF), myosuppressin, CAPA-pyrokinin and CAPA-PVK peptides. The CAPA-pyrokinin, sNPF, and CAPA-PVK peptides represent novel sequences. A comparison of fleahopper neuropeptides with those of related heteropteran species indicates that they are quite different. The sNPF of P. seriatus shows, among others, a novel substitution of Leu with Phe within the C-terminal region; a modification that sets it apart from the known sNPFs of not only other Heteroptera but of other arthropod species as well. The identity of the neuropeptides native to the fleahopper can aid in the potential development of biostable, bioavailable mimetic agonists and antagonists capable of disrupting the physiological functions that these neuropeptides regulate.

  8. Discovery of multiple neuropeptide families in the phylum Platyhelminthes.

    PubMed

    McVeigh, Paul; Mair, Gunnar R; Atkinson, Louise; Ladurner, Peter; Zamanian, Mostafa; Novozhilova, Ekaterina; Marks, Nikki J; Day, Tim A; Maule, Aaron G

    2009-09-01

    Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.

  9. Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2.

    PubMed

    Jones, Christopher E; Otara, Claire B; Younan, Nadine D; Viles, John H; Elphick, Maurice R

    2014-10-01

    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1 with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation.

  10. Amygdalar neuropeptide Y Y1 receptors mediate the anxiolytic-like actions of neuropeptide Y in the social interaction test.

    PubMed

    Sajdyk, T J; Vandergriff, M G; Gehlert, D R

    1999-03-01

    The effects of intra-amygdalar neuropeptide Y infusions were assessed in rats using the social interaction test. Neuropeptide Y administered into the central nucleus of the amygdala did not alter behavior, while injections into the basolateral nucleus of the amygdala produced an increased social interaction time. Furthermore, the anxiolytic-like effect was antagonized by co-administration of the potent neuropeptide Y Y1 receptor antagonist ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3304, but not with the inactive enantiomer ((R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphen ylacetyl)-argininamide trifluoroacetate) 3457. Therefore, neuropeptide Y produces an anxiolytic-like effect in the social interaction test through neuropetide Y Y1 receptors located in the basolateral amygdala.

  11. Neuropeptides and polypeptide hormones in echinoderms: new insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus.

    PubMed

    Rowe, Matthew L; Achhala, Sufyan; Elphick, Maurice R

    2014-02-01

    Echinoderms are of special interest for studies in comparative endocrinology because of their phylogenetic position in the animal kingdom as deuterostomian invertebrates. Furthermore, their pentaradial symmetry as adult animals provides a unique context for analysis of the physiological and behavioral roles of peptide signaling systems. Here we report the first extensive survey of neuropeptide and peptide hormone precursors in a species belonging to the class Holothuroidea. Transcriptome sequence data obtained from the sea cucumber Apostichopus japonicus were analyzed to identify homologs of precursor proteins that have recently been identified in the sea urchin Strongylocentrotus purpuratus (class Echinoidea). A total of 17 precursor proteins have been identified in A. japonicus, including precursors of peptides related to thyrotropin-releasing hormone, pedal peptide/orcokinin-type peptides, AN peptides/tachykinins, luqins, corticotropin-releasing hormone (CRH), GPA2-type glycoprotein hormone subunits and bursicon. In addition, an unusual finding was an A. japonicus calcitonin-type precursor protein (AjCTLPP), the first to be discovered that comprises two calcitonin-like peptides; this contrasts with the products of the alternatively-spliced calcitonin/CGRP gene in vertebrates, which comprise either calcitonin or CGRP. Collectively, the data obtained provide new insights on the evolution and diversity of neuropeptides and polypeptide hormones. Furthermore, because A. japonicus is one of several sea cucumber species that are used for human consumption, our findings may have practical and economic impact by providing a basis for neuroendocrine-based strategies to improve methods of aquaculture.

  12. Targeting the neuropeptide Y system in stress-related psychiatric disorders

    PubMed Central

    Enman, Nicole M.; Sabban, Esther L.; McGonigle, Paul; Van Bockstaele, Elisabeth J.

    2014-01-01

    Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. PMID:25506604

  13. Sensory neuropeptide effects in human skin.

    PubMed

    Fuller, R W; Conradson, T B; Dixon, C M; Crossman, D C; Barnes, P J

    1987-12-01

    1 Neuropeptides released from sensory nerves may account for cutaneous flare and wheal following local trauma. In 28 normal subjects we have studied the effects of four sensory neuropeptides given by intradermal injection on the forearm or back. 2 All peptides caused a flare distant from the site of injection, presumably due to an axon reflex. Substance P (SP) was the most potent (geometric mean dose causing 50% of maximum flare, 4.2 pmol). Neurokinin A (NKA) was the next most potent with neurokinin B (NKB) and calcitonin gene-related peptide (CGRP) the least. The distant flare response to SP, NKA and NKB was maximal at 5 min and disappeared within 2 h. 3 CGRP caused a local erythema over the site of injection at doses above 0.5 pmol which at higher doses lasted for up to 12 h. 4 SP, NKA and NKB caused wheals at doses above 5 pmol with SP and NKB being the most potent. CGRP (up to 250 pmol) did not consistently cause wheal formation. There was no significant effect of coinjection of CGRP upon the response to SP although there was a tendency for an enhancement of the wheal response. 5 The H1-histamine antagonist terfenadine (60 mg orally) significantly inhibited the wheal and distant flare response to histamine (5 nmol) and NKA, but not that caused by NKB. The distant flare of CGRP was also reduced but the local erythema was unaltered. 6. Aspirin (600 mg orally) significantly inhibited the distant flare response to SP, NKA and CGRP, but not that caused by NKB or histamine; the local erythema induced by CGRP was unaffected by aspirin. Aspirin also inhibited the wheal formed by NKA but not the wheal induced by the other substances. 7. These results suggest that tachykinins cause a distant flare response partially via the release of histamine and cyclo-oxygenase products, but cause a wheal by a direct effect on the skin microvasculature. The order of potency SP > NKB > NKA suggests that an SPp or NK, receptor is involved in the wheal response. CGRP by contrast has a

  14. The neuropeptide oxytocin modulates consumer brand relationships.

    PubMed

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-01-01

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers' attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one's favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands. PMID:26449882

  15. Neuropeptides and neurotransmitters in human placental villi.

    PubMed

    Zhang, C L; Cheng, L R; Wang, H; Zhuang, L Z; Huang, W Q

    1991-01-01

    The human placenta contains many kinds of bioactive substances which are more or less similar to those from the hypothalamic-pituitary-gonadal axis. Most of the studies were carried out mainly with term placenta. The present study, therefore, was attempted to identify, quantify and characterize these substances in the human placenta at the early pregnancy. Using the RIA, immunohistochemistry, HPLC, tissue culture and intrauterine injection methods, we have found that: (1) many kinds of neuropeptides and neurotransmitters are present in the placental villi; (2) LH-RH, NT and SRIF positive immunoreactive granules are localized in the cytotrophoblast and those of beta-EP, 5-HT positive granules in the syncytiotrophoblast; (3) synthetic LH-RH and dynorphin (Dyn) stimulate the hCG secretion of the early placental villi in vitro, and (4) the antisera of LH-RH, NT, Dyn and NE antagonist-alpha-MPT significantly reduced the number of blastocyst implantations in the early pregnant rat. These results indicate that in the human placenta there possibly exists a self-regulation mechanism for the synthesis and secretion of placental hormones and neurotransmitters. Therefore, the human placenta can be regarded as a neuroendocrine organ.

  16. The neuropeptide oxytocin modulates consumer brand relationships

    PubMed Central

    Fürst, Andreas; Thron, Jesko; Scheele, Dirk; Marsh, Nina; Hurlemann, René

    2015-01-01

    Each year, companies invest billions of dollars into marketing activities to embellish brands as valuable relationship partners assuming that consumer brand relationships (CBRs) and interpersonal relationships rest upon the same neurobiological underpinnings. Given the crucial role of the neuropeptide oxytocin (OXT) in social bonding, this study tests whether OXT-based mechanisms also determine the bond between consumers and brands. We conducted a randomized, placebo-controlled study involving 101 subjects and analyzed the effect of intranasal OXT on consumers’ attribution of relationship qualities to brands, brands paired with human celebrity endorsers, and familiar persons. OXT indeed promoted the attribution of relationship qualities not only in the case of social and semi-social stimuli, but also brands. Intriguingly, for subjects scoring high on autistic-like traits, the effect of OXT was completely reversed, evident in even lower relationship qualities across all stimulus categories. The importance of OXT in a CBR context is further corroborated by a three-fold increase in endogenous release of OXT following exposure to one’s favorite brand and positive associations between baseline peripheral OXT concentrations and brand relationship qualities. Collectively, our findings indicate that OXT not only plays a fundamental role in developing interpersonal relationships, but also enables relationship formation with objects such as brands. PMID:26449882

  17. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  18. Effects of pollution on freshwater invertebrates

    SciTech Connect

    Buikema, A.L. Jr.; Fenfield, E.F.; Pittinger, C.A.

    1983-06-01

    A literature review of studies on the effects of pollution on freshwater invertebrates is presented. PCBs, insecticides, and fungicides were the main pollutants studied, along with NH/sub 3/, Cd, Cr, Cu, Hg, and Zn. (JMT)

  19. Culturing larvae of marine invertebrates.

    PubMed

    Strathmann, Richard R

    2014-01-01

    Larvae of marine invertebrates cultured in the laboratory experience conditions that they do not encounter in nature, but development and survival to metamorphic competence can be obtained in such cultures. This protocol emphasizes simple methods suitable for a wide variety of larvae. Culturing larvae requires seawater of adequate quality and temperature within the tolerated range. Beyond that, feeding larvae require appropriate food, but a few kinds of algae and animals are sufficient as food for diverse larvae. Nontoxic materials include glass, many plastics, hot-melt glue, and some solvents, once evaporated. Cleaners that do not leave toxic residues after rinsing include dilute hydrochloric or acetic acid, sodium hypochlorite (commercial bleach), and ethanol. Materials that can leave toxic residues, such as formaldehyde, glutaraldehyde, detergents, and hand lotions, should be avoided, especially with batch cultures that lack continuously renewed water. Reverse filtration can be used to change water gently at varying frequencies, depending on temperature and the kinds of food that are provided. Bacterial growth can be limited by antibiotics, but antibiotics are often unnecessary. Survival and growth are increased by low concentrations of larvae and stirring of large or dense cultures. One method of stirring large numbers of containers is a rack of motor-driven paddles. Most of the methods and materials are inexpensive and portable. If necessary, a room within a few hours of the sea could be temporarily equipped for larval culture. PMID:24567204

  20. Anesthesia, analgesia, and euthanasia of invertebrates.

    PubMed

    Cooper, John E

    2011-01-01

    Invertebrate animals have long played an important role in biomedical research in such fields as genetics, physiology, and development. However, with few exceptions, scientists, veterinarians, and technicians have paid little attention to the anesthesia, analgesia, and euthanasia of these diverse creatures. Indeed, some standard research procedures are routinely performed without anesthesia. Yet various chemical agents are available for the immobilization or anesthesia of invertebrates, ranging from gases or volatile liquids that can be pumped into either an anesthetic chamber (for terrestrial species) or a container of water (aquatic species), to benzocaine and other substances for fish. Many invertebrates are not difficult to immobilize or anesthetize and the procedures recommended in this article appear to be safe; however, none should be considered totally risk-free. Analgesia of invertebrates is as yet a largely unexplored field; until scientific data are available, other measures can promote the well-being of these animals in the laboratory. For euthanasia, various methods (physical or chemical or a combination of both) have been recommended for different taxa of invertebrates, but most have not been properly studied under laboratory conditions and some can be problematic in the context of research procedures and tissue harvesting. Furthermore, relevant data are scattered, sometimes available only in languages other than English, and there is no international approach for seeking and collating such information. In this article I review various methods of anesthesia, analgesia, and euthanasia for terrestrial and aquatic invertebrates, as well as areas requiring further research. PMID:21709312

  1. Anesthesia, analgesia, and euthanasia of invertebrates.

    PubMed

    Cooper, John E

    2011-01-01

    Invertebrate animals have long played an important role in biomedical research in such fields as genetics, physiology, and development. However, with few exceptions, scientists, veterinarians, and technicians have paid little attention to the anesthesia, analgesia, and euthanasia of these diverse creatures. Indeed, some standard research procedures are routinely performed without anesthesia. Yet various chemical agents are available for the immobilization or anesthesia of invertebrates, ranging from gases or volatile liquids that can be pumped into either an anesthetic chamber (for terrestrial species) or a container of water (aquatic species), to benzocaine and other substances for fish. Many invertebrates are not difficult to immobilize or anesthetize and the procedures recommended in this article appear to be safe; however, none should be considered totally risk-free. Analgesia of invertebrates is as yet a largely unexplored field; until scientific data are available, other measures can promote the well-being of these animals in the laboratory. For euthanasia, various methods (physical or chemical or a combination of both) have been recommended for different taxa of invertebrates, but most have not been properly studied under laboratory conditions and some can be problematic in the context of research procedures and tissue harvesting. Furthermore, relevant data are scattered, sometimes available only in languages other than English, and there is no international approach for seeking and collating such information. In this article I review various methods of anesthesia, analgesia, and euthanasia for terrestrial and aquatic invertebrates, as well as areas requiring further research.

  2. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system.

  3. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    PubMed

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation. PMID:9551939

  4. Multiple Neuropeptide-Coding Genes Involved in Planarian Pharynx Extension.

    PubMed

    Shimoyama, Seira; Inoue, Takeshi; Kashima, Makoto; Agata, Kiyokazu

    2016-06-01

    Planarian feeding behavior involves three steps: moving toward food, extending the pharynx from their planarian's ventral side after arriving at the food, and ingesting the food through the pharynx. Although pharynx extension is a remarkable behavior, it remains unknown what neuronal cell types are involved in its regulation. To identify neurons involved in regulating pharynx extension, we quantitatively analyzed pharynx extension and sought to identify these neurons by RNA interference (RNAi) and in situ hybridization. This assay, when performed using planarians with amputation of various body parts, clearly showed that the head portion is indispensable for inducing pharynx extension. We thus tested the effects of knockdown of brain neurons such as serotonergic, GABAergic, and dopaminergic neurons by RNAi, but did not observe any effects on pharynx extension behavior. However, animals with RNAi of the Prohormone Convertase 2 (PC2, a neuropeptide processing enzyme) gene did not perform the pharynx extension behavior, suggesting the possible involvement of neuropeptide(s in the regulation of pharynx extension. We screened 24 neuropeptide-coding genes, analyzed their functions by RNAi using the pharynx extension assay system, and identified at least five neuropeptide genes involved in pharynx extension. These was expressed in different cells or neurons, and some of them were expressed in the brain, suggesting complex regulation of planarian feeding behavior by the nervous system. PMID:27268986

  5. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    PubMed

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of

  6. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.

    PubMed

    Hoyer, Daniel; Bartfai, Tamas

    2012-11-01

    The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of

  7. Peptidomics for the discovery and characterization of neuropeptides and hormones.

    PubMed

    Romanova, Elena V; Sweedler, Jonathan V

    2015-09-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.

  8. Peptidomics for the discovery and characterization of neuropeptides and hormones

    PubMed Central

    Romanova, Elena V.; Sweedler, Jonathan V.

    2015-01-01

    The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G-protein coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that likely are neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry-based technologies and experimental strategies that have been successful in achieving high throughput characterization of endogenous peptides in nervous and endocrine systems. PMID:26143240

  9. Neuropeptides and the microbiota-gut-brain axis.

    PubMed

    Holzer, Peter; Farzi, Aitak

    2014-01-01

    Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides

  10. Pathogenic involvement of neuropeptides in anxiety and depression.

    PubMed

    Alldredge, Brett

    2010-06-01

    Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.

  11. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms.

    PubMed

    Elphick, Maurice R

    2014-09-01

    The SALMFamides are a family of neuropeptides that occur in species belonging to the phylum Echinodermata. The prototypes for this neuropeptide family (S1 and S2) were discovered in starfish but subsequently SALMFamides were identified in other echinoderms. There are two types of SALMFamides: L-type, which have the C-terminal motif SxLxFamide, and F-type, which have the C-terminal motif SxFxFamide. They are derived from two types of precursor proteins: an L-type SALMFamide precursor, which comprises only L-type or L-type-like SALMFamides and an F-type SALMFamide precursor, which contains several F-type or F-type-like SALMFamides and, typically, one or more L-type SALMFamides. Thus, SALMFamides occur as heterogeneous mixtures of neuropeptides - a SALMFamide salmagundi. SALMFamides are produced by distinct populations of neurons in echinoderm larval and adult nervous systems and are present in the innervation of neuromuscular organs. Both L-type and F-type SALMFamides cause muscle relaxation in echinoderms and, for example, in starfish this effect of SALMFamides may mediate neural control of cardiac stomach eversion in species that feed extra-orally (e.g., Asterias rubens). The SALMFamide S1 also causes inhibition of neural release of a relaxin-like gonadotropin in the starfish Asterina pectinifera. An important issue that remains to be resolved are the relationships of SALMFamides with neuropeptides that have been identified in other phyla. However, it has been noted that the C-terminal SxLxFamide motif of L-type SALMFamides is a feature of some members of a bilaterian neuropeptide family that includes gonadotropin-inhibitory hormone (GnIH) in vertebrates and SIFamide-type neuropeptides in protostomes. Similarly, the C-terminal FxFamide motif of F-type SALMFamides is a feature of vertebrate QRFP (26RFa)-type neuropeptides. These sequence similarities may provide a basis for molecular identification of receptors that mediate effects of SALMFamides. Furthermore

  12. Control of breathing in invertebrate model systems.

    PubMed

    Bell, Harold J; Syed, Naweed I

    2012-07-01

    The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well. PMID:23723022

  13. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.

  14. Infertility in male aquatic invertebrates: a review.

    PubMed

    Lewis, Ceri; Ford, Alex T

    2012-09-15

    As a result of endocrine disruptor studies, there are numerous examples of male related reproductive abnormalities observed in vertebrates. Contrastingly, within the invertebrates there have been considerably less examples both from laboratory and field investigations. This has in part been due to a focus of female related endpoints, inadequate biomarkers and the low number of studies. Whether contaminant induced male infertility is an issue within aquatic invertebrates and their wider communities therefore remains largely unknown and represents a key knowledge gap in our understanding of pollutant impacts in aquatic wildlife. This paper reviews the current knowledge regarding pollutants impacting male infertility across several aquatic invertebrate phyla; which biomarkers are currently being used and where the science needs to be expanded. The limited studies conducted so far have revealed reductions in sperm numbers, examples of poor fertilisation success, DNA damage to spermatozoa and inhibition of sperm motility that can be induced by a range of environmental contaminants. This limited data is mainly comprised from laboratory studies with only a few studies of sperm toxicity in natural populations. Clearly, there is a need for further studies in this area, to include both laboratory and field studies from clean and reference sites, with a focus on broadcast spawners and those with direct fertilisation. Biomarkers developed for measuring sperm quantity and quality in vertebrates are easily transferable to invertebrates but require optimisation for particular species. We discuss how sperm tracking and techniques for measuring DNA strand breaks and sperm viability have been successfully transferred from human infertility clinics to aquatic invertebrate ecotoxicology. Linking sperm toxicity and male infertility effects to higher level impacts on the reproductive biology and dynamics of populations requires a much greater understanding of fertilisation dynamics and

  15. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  16. Functional roles of neuropeptides in the insect central nervous system

    NASA Astrophysics Data System (ADS)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  17. The insect capa neuropeptides impact desiccation and cold stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  18. Neuropeptide alterations in the tree shrew hypothalamus during volatile anesthesia.

    PubMed

    Fouillen, Laetitia; Petruzziello, Filomena; Veit, Julia; Bhattacharyya, Anwesha; Kretz, Robert; Rainer, Gregor; Zhang, Xiaozhe

    2013-03-27

    Neuropeptides are critical signaling molecules, involved in the regulation of diverse physiological processes including energy metabolism, pain perception and brain cognitive state. Prolonged general anesthesia has an impact on many of these processes, but the regulation of peptides by general anesthetics is poorly understood. In this study, we present an in-depth characterization of the hypothalamic neuropeptides of the tree shrew during volatile isoflurane/nitrous oxide anesthesia administered accompanying a neurosurgical procedure. Using a predicted-peptide database and hybrid spectral analysis, we first identified 85 peptides from the tree shrew hypothalamus. Differential analysis was then performed between control and experimental group animals. The levels of 12 hypothalamic peptides were up-regulated following prolonged general anesthesia. Our study revealed for the first time that several neuropeptides, including alpha-neoendorphin and somatostatin-14, were altered during general anesthesia. Our study broadens the scope for the involvement of neuropeptides in volatile anesthesia regulation, opening the possibility for investigating the associated regulatory mechanisms. PMID:23228960

  19. Mass Spectrometric Analysis of Spatio-Temporal Dynamics of Crustacean Neuropeptides

    PubMed Central

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2014-01-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in spatial domain and monitoring their dynamic changes in temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. PMID:25448012

  20. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  1. HISTOLOGICAL PREPARATION OF INVERTEBRATES FOR EVALUATING CONTAMINANT EFFECTS

    EPA Science Inventory

    Although many studies in toxicologic pathology evaluate the effects of toxicants on fishes because of their similarities with other vertebrates, invertebrates can also provide insights into toxicant impacts on ecosystems. Invertebrates not only serve as food resources (e.g., ...

  2. Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris.

    PubMed

    Liu, Wei-Hui; Chen, Yan; Bai, Xue-Wei; Yao, Hui-Min; Zhang, Xu-Guang; Yan, Xiu-Wen; Lai, Ren

    2016-09-01

    The present study was designed to identify immunomodulatory components from the leech salivary gland of Haemadipsa sylvestris. The Sephadex G-50, Resource(TM) S column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify the salivary gland extracts (SGE). Structural analysis of isolated compounds was based on Edman degradation and matrix assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cDNA encoding the precursor of the compound was cloned from the cDNA library of the salivary gland of H. sylvestris. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were assayed using an enzyme-linked immunosorbent assay (ELISA). The effects on cell proliferation and cell viability were observed using MTT assay. A novel neuropeptide Y (Neuropeptide Y-HS) from the leech salivary gland of H. sylvestris was purified and characterized. It was composed of 36 amino acid residues and the amino acid sequence was determined to be FLEPPERPAVFTSVEQMKSYIKALNDYYLLLGRPRF-NH2, containing an amidated C-terminus. It showed significant inhibitory effects on the production of inflammatory cytokines including TNF-α, IFN-γ, IL-6, and MCP-1. Neuropeptide Y was identified from leeches for the first time. The presence of neuropeptide Y-HS in leech salivary gland may help get blood meal from hosts and inhibit inflammation.

  3. Identification and characterization of a novel neuropeptide (neuropeptide Y-HS) from leech salivary gland of Haemadipsa sylvestris.

    PubMed

    Liu, Wei-Hui; Chen, Yan; Bai, Xue-Wei; Yao, Hui-Min; Zhang, Xu-Guang; Yan, Xiu-Wen; Lai, Ren

    2016-09-01

    The present study was designed to identify immunomodulatory components from the leech salivary gland of Haemadipsa sylvestris. The Sephadex G-50, Resource(TM) S column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify the salivary gland extracts (SGE). Structural analysis of isolated compounds was based on Edman degradation and matrix assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The cDNA encoding the precursor of the compound was cloned from the cDNA library of the salivary gland of H. sylvestris. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) were assayed using an enzyme-linked immunosorbent assay (ELISA). The effects on cell proliferation and cell viability were observed using MTT assay. A novel neuropeptide Y (Neuropeptide Y-HS) from the leech salivary gland of H. sylvestris was purified and characterized. It was composed of 36 amino acid residues and the amino acid sequence was determined to be FLEPPERPAVFTSVEQMKSYIKALNDYYLLLGRPRF-NH2, containing an amidated C-terminus. It showed significant inhibitory effects on the production of inflammatory cytokines including TNF-α, IFN-γ, IL-6, and MCP-1. Neuropeptide Y was identified from leeches for the first time. The presence of neuropeptide Y-HS in leech salivary gland may help get blood meal from hosts and inhibit inflammation. PMID:27667513

  4. Libbie Henrietta Hyman: Eminent Invertebrate Zoologist.

    ERIC Educational Resources Information Center

    Morgan, Rose M.

    1998-01-01

    Reviews the life and work of the famous invertebrate zoologist Libbie Henrietta Hyman. Focuses on her work at the American Museum of History and her role as informal mentor and valued colleague and collaborator to zoologists all over the world. Contains 17 references. (DDR)

  5. The Early Years: An Invertebrate Garden

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    For farmers and gardeners, slugs and snails may be serious pests that will limit the amount of harvest, but for a child, they represent a world to be explored. To teachers, however, invertebrates are tools for broadening students' understanding about animals, the connections between animals and habitats or plants, and an engaging subject to write…

  6. Conservation status of Chinese species: (2) Invertebrates.

    PubMed

    Xie, Yan; Wang, Sung

    2007-06-01

    A total of 2441 invertebrate species were evaluated using the IUCN Red List Criteria and Regional Guidelines. Approximately 30 experts were involved in this project, which covered a wide range of species, including jellyfish, corals, planarians, snails, mollusks, bivalves, decapods, benthic crustaceans, arachnids (spiders, scorpions), butterflies, moths, beetles, sea cucumbers, sea urchins, sea stars, acorn worms and lancelets. In general, invertebrate species in China were found to be severely threatened, with 0.9% being critically endangered, 13.44% endangered and 20.63% vulnerable. All species of hermatypic corals and planarians are threatened. More than 80% of evaluated species face serious threat due to habitat destruction by coral collection, logging, non-woody vegetation collection, timber plantations, non-timber plantations, extraction and/or livestock. Other threats are intrinsic factors, harvesting by humans, alien invasive species and pollution. The main intrinsic factors contributing to the high levels of threat are limited dispersal and restricted range. No conservation measures have been taken for 70% of the threatened invertebrates evaluated. Existing conservation measures include: strengthening of national and international legislation (Convention on International Trade in Endangered Species of Wild Fauna and Flora), increasing public awareness, studying population trends/monitoring, and establishment of protected areas. The major conservation measure employed is strengthening of policies. Relative to the situation worldwide (2006 IUCN Red List), there is little information available about invertebrate extinctions in China.

  7. Effects of pollution on freshwater invertebrates

    SciTech Connect

    Buikema

    1982-06-01

    The biological effects of acid rain, chlorination, heavy metals and other forms of pollution on freshwater invertebrates are examined in this review. Several methods for evaluating chronic toxicity to pesticide residues and synthetic fuels components are reviewed. The effects of pollutants is reviewed in detail for cladocera, amphipods, isopods, decapods, aquatic insects, molluscs, worms, and protozoa.(KRM)

  8. Halogenated Indole Alkaloids from Marine Invertebrates

    PubMed Central

    Pauletti, Patrícia Mendonça; Cintra, Lucas Silva; Braguine, Caio Guedes; da Silva Filho, Ademar Alves; Silva, Márcio Luís Andrade e; Cunha, Wilson Roberto; Januário, Ana Helena

    2010-01-01

    This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the 13C-NMR spectral data of these selected natural indole alkaloids is also provided. PMID:20559487

  9. 76 FR 61379 - Final Recovery Plan, Bexar County Karst Invertebrates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bexar County karst invertebrates were listed as endangered species on December 26, 2000 (65 FR 81419... Fish and Wildlife Service Final Recovery Plan, Bexar County Karst Invertebrates AGENCY: Fish and... Invertebrates under the Endangered Species Act of 1973, as amended (Act). These species occur in Bexar...

  10. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  11. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).

    PubMed

    Mayer, Georg; Hering, Lars; Stosch, Juliane M; Stevenson, Paul A; Dircksen, Heinrich

    2015-09-01

    Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects, and crustaceans (referred to here as pigment-dispersing hormone [PDH]). With regard to their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species; two in Onychophora, Priapulida, and Nematoda; and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, by using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like-immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli.

  12. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).

    PubMed

    Mayer, Georg; Hering, Lars; Stosch, Juliane M; Stevenson, Paul A; Dircksen, Heinrich

    2015-09-01

    Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects, and crustaceans (referred to here as pigment-dispersing hormone [PDH]). With regard to their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species; two in Onychophora, Priapulida, and Nematoda; and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, by using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like-immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli. PMID:25722044

  13. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    PubMed

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. PMID:27310180

  14. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family

    PubMed Central

    Semmens, Dean C.; Beets, Isabel; Rowe, Matthew L.; Blowes, Liisa M.; Oliveri, Paola; Elphick, Maurice R.

    2015-01-01

    Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin–neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario—the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are ‘missing links’ in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS). PMID:25904544

  15. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust.

    PubMed

    Hou, Li; Jiang, Feng; Yang, Pengcheng; Wang, Xianhui; Kang, Le

    2015-08-01

    Neuropeptides serve as the most important regulatory signals in insects. Many neuropeptides and their precursors have been identified in terms of the contig sequences of whole genome information of the migratory locust (Locusta migratoria), which exhibits a typical phenotypic plasticity in morphology, behavior and physiology. However, functions of these locust neuropeptides are largely unknown. In this study, we first revised the 23 reported neuropeptide precursor genes and identified almost all the neuropeptide precursors and corresponding products in L. migratoria. We further revealed the significant expansion profiles (such as AKH) and alternative splicing of neuropeptide genes (Lom-ITP, Lom-OK and Lom-NPF1). Transcriptomic analysis indicated that several neuropeptides, such as Lom-ACP and Lom-OK, displayed development-specific expression patterns. qRT-PCR data confirmed that most neuropeptide precursors were strongly expressed in the central nervous system. Fifteen neuropeptide genes displayed different expression levels between solitarious and gregarious locusts. These findings provide valuable clues to understand neuropeptide evolution and their functional roles in basic biology and phase transition in locusts.

  16. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides.

    PubMed

    Funkelstein, Lydiane; Beinfeld, Margery; Minokadeh, Ardalan; Zadina, James; Hook, Vivian

    2010-12-01

    Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.

  17. Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH sub 2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group

    SciTech Connect

    Grimmelikhuijzen, C.J.P.; Jacob, E.; Graff, D.; Reinscheid, R.K.; Nothacker, H.P. ); Rinehart, K.L.; Staley, A.L. )

    1990-07-01

    Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Asn-NH{sub 2}, the authors have purified a peptide from acetic acid extracts of the sea anemone Anthopleura elegantissima. By classical amino acid analyses, mass spectrometry, and {sup 1}H NMR spectroscopy, the structure of this peptide was determined as 3-phenyllactyl-Leu-Arg-Asn-NH{sub 2}. By using reversed-phase HPLC and a chiral mobile phase, it was shown that the 3-phenyllactyl group had the L configuration. Immunocytochemical staining with antiserum against Arg-Asn-NH{sub 2} showed that L-3-phenyllactyl-Leu-Arg-Asn-NH{sub 2} (Antho-RNamide) was localized in neutrons of sea anemones. The L-3-phenyllactyl group has not been found earlier in neuropeptides of vertebrates or higher invertebrates. They propose that this residue renders Antho-RNamide resistant to nonspecific aminopeptidases, thereby increasing the stability of the peptide after neuronal release.

  18. Brain clock driven by neuropeptides and second messengers

    NASA Astrophysics Data System (ADS)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  19. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  20. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans

    PubMed Central

    Leinwand, Sarah G.; Chalasani, Sreekanth H.

    2013-01-01

    Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic; however, the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a novel, sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, use BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large but not small changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switch the AWC olfactory sensory neuron into an interneuron in the salt circuit. Animals with disrupted insulin signaling have deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results show that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition. PMID:24013594

  1. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles. PMID:25314471

  2. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    PubMed

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  3. Identification of the first neuropeptides from the Amphipoda (Arthropoda, Crustacea).

    PubMed

    Christie, Andrew E

    2014-09-15

    Despite being used as models in the field of ecotoxicology, including use in studies of endocrine disruption, little is known about the hormonal systems of amphipods, particularly their peptidergic signaling systems. Here, transcriptome shotgun assembly (TSA) sequences were used to predict the structures of the first neuropeptides from members of this crustacean order. Using a well-established workflow, BLAST searches of the extant amphipod TSA data were conducted for putative peptide-encoding transcripts. The pre/preprohormones deduced from the identified TSA sequences were then used to predict the mature structures of amphipod neuropeptides. In total, 43 putative peptide-encoding transcripts were identified from three amphipods, Echinogammarus veneris, Hyalella azteca and Melita plumulosa. Collectively, 139 distinct mature peptides (110 from E. veneris alone) were predicted from these TSA sequences. The identified peptides included members of the adipokinetic hormone/red pigment concentrating hormone, allatostatin A, allatostatin B, allatostatin C, bursicon α, bursicon β, crustacean hyperglycemic hormone, diuretic hormone 31, FLRFamide, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone (PDH), proctolin, RYamide, SIFamide, sulfakinin and tachykinin-related peptide families. Of particular note were the identifications of orcokinins possessing SFDEIDR- rather than the typical NFDEIDR- amino-termini, e.g. SFDEINRSNFGFN, a carboxyl-terminally amidated orcokinin, i.e. SFDEINRSNFGFSamide, PDHs longer than the stereotypical 18 amino acids, e.g. NSELLNTLLGSKSLAALRAAamide, and a 13 rather than 12 amino acid long SIFamide, i.e. GPYRKPPFNGSIFamide. These data not only provide the first descriptions of native amphipod neuropeptides, but also represent a new resource for initiating investigations of peptidergic signaling in the Amphipoda.

  4. Neuroanatomical distribution of angiotensin-II-like neuropeptide within the central nervous system of the crab Chasmagnathus; physiological changes triggered by water deprivation.

    PubMed

    Frenkel, Lia; Dimant, Beatriz; Portiansky, Enrique L; Imboden, Hans; Maldonado, Héctor; Delorenzi, Alejandro

    2010-07-01

    The angiotensins constitute a neuropeptidergic system that emerged early in evolution. Their classical osmoregulatory and dipsogenic functions and their mnemonic actions have been demonstrated both in vertebrates and in some invertebrates. Previously, we have shown that, in the euryhaline and semiterrestrial crab Chasmagnathus granulatus, water deprivation correlates with an increased level of brain angiotensin-II-like neuropeptide/s (ANGII-like) and improves memory processes through ANGII receptors. We have proposed that the release of brain angiotensins in response to water shortages is an ancient mechanism for coordinating various functions that, together, enable organisms to tolerate this environmental change. Here, we have evaluated the physiological changes in ANGII-like levels in diverse structures of the central nervous system of these animals during water deprivation. The neuroanatomical distribution of ANGII-like is described in the optic lobes and brain of Chasmagnathus granulatus and the physiological changes in ANGII-like distribution in various brain neuropils is evaluated after water deprivation. Our results indicate that ANGII-like is widely distributed, especially in the medial protocerebrum. After 2 h of water deprivation, ANGII-like immunoreactivity increases in the central body and decreases in the olfactory neuropil and, after 6 h of water deprivation, is markedly reduced in several brain areas. Although further experiments are needed to establish that the angiotensinergic system is involved in the balance of body fluids in this crab, our results suggest that ANGII regulates several functions during water shortages.

  5. Neuropeptide feedback modifies odor-evoked dynamics in C. elegans olfactory neurons

    PubMed Central

    Chalasani, Sreekanth H.; Kato, Saul; Albrecht, Dirk R.; Nakagawa, Takao; Abbott, L. F.; Bargmann, Cornelia I.

    2010-01-01

    Many neurons release classical transmitters together with neuropeptide cotransmitters whose functions are incompletely understood. Here we define the relationship between two transmitters in the olfactory system of Caenorhabditis elegans, showing that a neuropeptide-to-neuropeptide feedback loop alters sensory dynamics in primary olfactory neurons. The AWC olfactory neuron is glutamatergic and also expresses the peptide NLP-1. nlp-1 mutants have increased AWC-dependent behaviors, suggesting that NLP-1 limits the normal response. The receptor for NLP-1 is the G protein-coupled receptor NPR-11, which acts in postsynaptic AIA interneurons. Feedback from AIA interneurons modulates odor-evoked calcium dynamics in AWC olfactory neurons and requires INS-1, a neuropeptide released from AIA. The neuropeptide feedback loop dampens behavioral responses to odors on short and long timescales. Our results point to neuronal dynamics as a site of behavioral regulation and reveal the ability of neuropeptide feedback to remodel sensory networks on multiple timescales. PMID:20364145

  6. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  7. Mechanisms involved in the regulation of neuropeptide-mediated neurite outgrowth: a minireview.

    PubMed

    Lestanova, Z; Bacova, Z; Bakos, Jan

    2016-04-01

    The present knowledge, regarding the neuronal growth and neurite extension, includes neuropeptide action in the central nervous system. Research reports have brought much information about the multiple intracellular signaling pathways of neuropeptides. However, regardless of the differences in the local responses elicited by neuropeptides, there exist certain functional similarities in the effects of neuropeptides, mediated by their receptors. In the present review, data of the relevant studies, focused on G protein-coupled receptors activated by neuropeptides, are summarized. Particularly, receptors that activate phosphatidylinositol-calcium system and protein kinase C pathways, resulting in the reorganization of the neuronal cytoskeleton and changes in the neuronal morphology, are discussed. Based on our data received, we are showing that oxytocin increases the gene expression of GTPase cell division cycle protein 42 (Cdc42), implicated in many aspects of the neuronal growth and morphology. We are also paying a special attention to neurite extension and retraction in the context of neuropeptide regulation. PMID:27560639

  8. Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons

    PubMed Central

    Adori, Csaba; Barde, Swapnali; Bogdanovic, Nenad; Uhlén, Mathias; Reinscheid, Rainer R.; Kovacs, Gabor G.; Hökfelt, Tomas

    2015-01-01

    Neuropeptide S (NPS) is a regulatory peptide with potent pharmacological effects. In rodents, NPS is expressed in a few pontine cell clusters. Its receptor (NPSR1) is, however, widely distributed in the brain. The anxiolytic and arousal-promoting effects of NPS make the NPS–NPSR1 system an interesting potential drug target in mood-related disorders. However, so far possible disease-related mechanisms involving NPS have only been studied in rodents. To validate the relevance of these animal studies for i.a. drug development, we have explored the distribution of NPS-expressing neurons in the human pons using in situ hybridization and stereological methods and we compared the distribution of NPS mRNA expressing neurons in the human and rat brain. The calculation revealed a total number of 22,317 ± 2411 NPS mRNA-positive neurons in human, bilaterally. The majority of cells (84%) were located in the parabrachial area in human: in the extension of the medial and lateral parabrachial nuclei, in the Kölliker-Fuse nucleus and around the adjacent lateral lemniscus. In human, in sharp contrast to the rodents, only very few NPS-positive cells (5%) were found close to the locus coeruleus. In addition, we identified a smaller cell cluster (11% of all NPS cells) in the pontine central gray matter both in human and rat, which has not been described previously even in rodents. We also examined the distribution of NPSR1 mRNA-expressing neurons in the human pons. These cells were mainly located in the rostral laterodorsal tegmental nucleus, the cuneiform nucleus, the microcellular tegmental nucleus region and in the periaqueductal gray. Our results show that both NPS and NPSR1 in the human pons are preferentially localized in regions of importance for integration of visceral autonomic information and emotional behavior. The reported interspecies differences must, however, be considered when looking for targets for new pharmacotherapeutical interventions. PMID:26441556

  9. Ethics and invertebrates: a cephalopod perspective.

    PubMed

    Mather, Jennifer A; Anderson, Roland C

    2007-05-01

    This paper first explores 3 philosophical bases for attitudes to invertebrates, Contractarian/Kantian, Utilitarian, and Rights-based, and what they lead us to conclude about how we use and care for these animals. We next discuss the problems of evaluating pain and suffering in invertebrates, pointing out that physiological responses to stress are widely similar across the animal kingdom and that most animals show behavioral responses to potentially painful stimuli. Since cephalopods are often used as a test group for consideration of pain, distress and proper conditions for captivity and handling, we evaluate their behavioral and cognitive capacities. Given these capacities, we then discuss practical issues: minimization of their pain and suffering during harvesting for food; ensuring that captive cephalopods are properly cared for, stimulated and allowed to live as full a life as possible; and, lastly, working for their conservation. PMID:17578251

  10. Modeling zinc toxicity for terrestrial invertebrates.

    PubMed

    Lock, K; Janssen, C R

    2001-09-01

    Acute and chronic ecotoxicity tests with zinc were performed with the earthworm Eisenia fetida, the potworm Enchytraeus albidus, and the springtail Folsomia candida. To assess the influence of the soil type on zinc toxicity for these soil invertebrates, these tests were carried out in a standard artificial soil, a sandy and a loamy field soil. Based on the results of this experimental work and data taken from literature, models were developed relating the ecotoxicity of zinc to the most important parameters controlling bioavailability: pH and cation exchange capacity. Models were developed for E. fetida and F. candida using the regression technique partial least squares projection to latent structures (PLS). Acute as well as chronic toxicity data of both organisms could be normalized on the basis of the pH and the cation exchange capacity of the test soils. For other terrestrial invertebrates, not enough data were available to develop reliable models.

  11. The intriguing mission of neuropeptide Y in the immune system.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava

    2013-07-01

    For many years, the central nervous system and the immune system were considered two autonomous entities. However, extensive research in the field of neuroimmunomodulation during the past decades has demonstrated the presence of different neuropeptides and their respective receptors in the immune cells. More importantly, it has provided evidence for the direct effects of neuropeptides on the immune cell functions. Neuropeptide Y (NPY) is generally considered the most abundant peptide in the central and peripheral nervous system. However, it is also distinguished by exhibiting pleiotropic functions in many other physiological systems, including the immune system. NPY affects the functions of the cells of the adaptive and innate immunity. In this respect, NPY is known to modulate immune cell trafficking, T helper cell differentiation, cytokine secretion, natural killer cell activity, phagocytosis and the production of reactive oxygen species. The specific Y receptors have been found in immune cells, and their expression is amplified upon immune stimulation. Different Y receptor subtypes may mediate an opposite effect of NPY on the particular function, thus underlining its regulatory role. Since the immune cells are capable of producing NPY upon appropriate stimulation, this peptide can regulate immune cell functions in an autocrine/paracrine manner. NPY also has important implications in several immune-mediated disorders, which affirms the clear need for further investigation of its role in either the mechanisms of the disease development or its possible therapeutic capacity. This review summarises the key points of NPY's mission throughout the immune system.

  12. Parasite neuropeptide biology: Seeding rational drug target selection?

    PubMed Central

    McVeigh, Paul; Atkinson, Louise; Marks, Nikki J.; Mousley, Angela; Dalzell, Johnathan J.; Sluder, Ann; Hammerland, Lance; Maule, Aaron G.

    2011-01-01

    The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components – putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths. PMID:24533265

  13. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  14. Insect capa neuropeptides impact desiccation and cold tolerance.

    PubMed

    Terhzaz, Selim; Teets, Nicholas M; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G; Nachman, Ronald J; Dow, Julian A T; Denlinger, David L; Davies, Shireen-A

    2015-03-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.

  15. "Neuropeptides in the brain defense against distant organ damage".

    PubMed

    Hamasaki, Mike Yoshio; Barbeiro, Hermes Vieira; Barbeiro, Denise Frediani; Cunha, Débora Maria Gomes; Koike, Marcia Kiyomi; Machado, Marcel Cerqueira César; Pinheiro da Silva, Fabiano

    2016-01-15

    Delirium, or acute confusional state, is a common manifestation in diseases that originate outside the central nervous system, affecting 30-40% of elderly hospitalized patients and up to 80% of the critically ill, even though it remains unclear if severe systemic inflammation is able or not to induce cellular disturbances and immune activation in the brain. Neuropeptides are pleotropic molecules heterogeneously distributed throughout the brain and possess a wide spectrum of functions, including regulation of the inflammatory response, so we hypothesized that they would be the major alarm system in the brain before overt microglia activation. In order to investigate this hypothesis, we induced acute pancreatitis in 8-10week old rats and collected brain tissue, 12 and 24h following pancreatic injury, to measure neuropeptide and cytokine tissue levels. We found significantly higher levels of β-endorphin, orexin and oxytocin in the brain of rats submitted to pancreatic injury, when compared to healthy controls. Interestingly, these differences were not associated with increased local cytokine levels, putting in evidence that neuropeptide release occurred independently of microglia activation and may be a pivotal alarm system to initiate neurologic reactions to distant inflammatory non-infectious aggression.

  16. Sensory neurobiological analysis of neuropeptide modulation of meal size.

    PubMed

    Schwartz, Gary J; Azzara, Anthony V

    2004-08-01

    Gerry Smith's emphasis on the meal as the functional unit of ingestion spurred experiments designed to (1) identify oral and postoral stimuli that affect meal size, and (2) identify peripheral and central neural mechanisms involved in the processing of sensory signals generated by these stimuli. His observations that gut-brain peptides can limit meal size were important in formulating the idea that neuropeptides involved in the control of food intake modulate the peripheral and central neural processing of meal-stimulated sensory signals. This focus on meal size continues to foster the development of hypotheses and the design of experiments that characterize the sites and modes of action of feeding modulatory neuropeptides. These investigations have focused attention on the gut-brain neuraxis as a critical sensory pathway in the control of ingestive behavior, and have revealed important integrative properties of peripheral and central neurons along this axis. The neuromodulatory function of peptides that alter food intake is supported by their ability to recruit the activation of neurons at multiple central nodes of the gut-brain axis and to affect the neural processing and behavioral potency of meal-related gastrointestinal signals important in the negative feedback control of meal size. This sensory neurobiological perspective may also be applied to determine whether feeding modulatory neuropeptides affect the neural and behavioral potency of oral positive feedback signals that promote ingestion.

  17. Suprachiasmatic Nucleus Neuropeptide Expression in Patients with Huntington's Disease

    PubMed Central

    van Wamelen, Daniel J.; Aziz, N. Ahmad; Anink, Jasper J.; van Steenhoven, Robin; Angeloni, Debora; Fraschini, Franco; Jockers, Ralf; Roos, Raymund A. C.; Swaab, Dick F.

    2013-01-01

    Study Objective: To study whether sleep and circadian rhythm disturbances in patients with Huntington's disease (HD) arise from dysfunction of the body's master clock, the hypothalamic suprachiasmatic nucleus. Design: Postmortem cohort study. Patients: Eight patients with HD and eight control subjects matched for sex, age, clock time and month of death, postmortem delay, and fixation time of paraffin-embedded hypothalamic tissue. Measurements and Results: Using postmortem paraffin-embedded tissue, we assessed the functional integrity of the suprachiasmatic nucleus in patients with HD and control subjects by determining the expression of two major regulatory neuropeptides, vasoactive intestinal polypeptide and arginine vasopressin. Additionally, we studied melatonin 1 and 2 receptor expression. Compared with control subjects, the suprachiasmatic nucleus contained 85% fewer neurons immunoreactive for vasoactive intestinal polypeptide and 33% fewer neurons for arginine vasopressin in patients with HD (P = 0.002 and P = 0.027). The total amount of vasoactive intestinal polypeptide and arginine vasopressin messenger RNA was unchanged. No change was observed in the number of melatonin 1 or 2 receptor immunoreactive neurons. Conclusions: These findings indicate posttranscriptional neuropeptide changes in the suprachiasmatic nucleus of patients with HD, and suggest that sleep and circadian rhythm disorders in these patients may at least partly arise from suprachiasmatic nucleus dysfunction. Citation: van Wamelen DJ; Aziz NA; Anink JJ; van Steenhoven R; Angeloni D; Fraschini F; Jockers R; Roos RAC; Swaab DF. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's disease. SLEEP 2013;36(1):117–125. PMID:23288978

  18. [Modification of the FF neuropeptide enhances its hypertensive effect].

    PubMed

    Kapel'ko, V I; Bespalova, Zh D; Efremov, E E; Lakomkin, V L; Orlova, Ts R; Lakomkin, S V; Sidorova, M V; Az'muko, A A; Molokoedov, A S; Sharf, T V

    2009-05-01

    Neuropeptide FF (H-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) injected intravenously temporarily enhanced the arterial pressure (AP) and the heart rate (HR). However, its role in the regulation of blood circulation is obscure. To study the properties of the molecule, its analogue was synthesized, in which proline in position 7 was substituted with glycine, and leucine in the position 2 with norleucine. Modified neuropeptide FF (FFm) also temporarily and in a dose-dependent manner increased the AP and HR; however, the equal degree of increase was reached at doses of FFm being 5-7 times lesser as compared with the natural peptide. The application of the FFm at hemorrhagic shock excluded mortality of animals during the experiment, considerably increased the degree of AP and HR restoration in the remaining experiments, and improved the survival of animals in 24 hours. It has been found that the level of antibodies to the fragment of hFF1 receptor in the serum is lower in spontaneously hypertensive rats SHR as compared with Wistar rats, but it is increased in patients of cardiological profile as compared with donors. The findings suggest involvement of neuropeptide FF in the regulation of blood circulation; however, the precise mechanisms remain to be determined.

  19. Effects of nanomaterials on marine invertebrates.

    PubMed

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on

  20. Effects of nanomaterials on marine invertebrates.

    PubMed

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on

  1. Relationship between invertebrate fauna and bromeliad size.

    PubMed

    Araújo, V A; Melo, S K; Araújo, A P A; Gomes, M L M; Carneiro, M A A

    2007-11-01

    Several bromeliads species store water and organic substrates, allowing the establishment of phytotelmata and associated fauna on their leaves. In this study, we sampled 70 individuals of Vriesea sp. (Carrière) (Bromeliaceae), in rupestrian fields in the Serra de Ouro Branco-MG, Brazil. The relationships between invertebrate species richness and abundance and size of bromeliads were tested using multiple regression. We found 19 species associated with bromeliads, mainly Diptera larvae. The abundance of the phytotelmate fauna increased principally in relation to the volume of water in the bromeliad reservoir. Phytotelmata richness was affected principally by diameter of the reservoir. There was a significant relationship between the abundance and richness of invertebrates associated with leaves with diameter and height of the plant. Invertebrate richness was better explained by abundance of individuals. These results suggest that the increase of richness was attended by higher numbers of microhabitats and more space for colonization of bigger bromeliads. Additionally, there was more chance of sampling different species in locales with greater abundance of individuals.

  2. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  3. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity

    PubMed Central

    Boughton, C K; Murphy, K G

    2013-01-01

    Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 PMID:23121386

  4. At the Transition from Invertebrates to Vertebrates, a Novel GnRH-Like Peptide Emerges in Amphioxus

    PubMed Central

    Roch, Graeme J.; Tello, Javier A.; Sherwood, Nancy M.

    2014-01-01

    Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily. PMID:24361996

  5. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus.

    PubMed

    Roch, Graeme J; Tello, Javier A; Sherwood, Nancy M

    2014-04-01

    Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily.

  6. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus.

    PubMed

    Roch, Graeme J; Tello, Javier A; Sherwood, Nancy M

    2014-04-01

    Gonadotropin-releasing hormone (GnRH) is a critical reproductive regulator in vertebrates. Homologous peptides are also found in invertebrates, with a variety of characterized functions. In the amphioxus, an invertebrate that provides the best model for the transition to vertebrates, four GnRH receptors (GnRHRs) were previously described, but their native ligands were not identified. Using a more sensitive search methodology with hidden Markov models, we identified the first GnRH-like peptide confirmed in the amphioxus Branchiostoma floridae. This peptide specifically activated one of the four GnRHRs. Although the primary structure of this peptide was divergent from any previously isolated GnRH peptide, the minimal conserved residues found in all other GnRH superfamily members were retained. The peptide was immunolocalized in proximity of the central canal of the anterior nerve cord, a region where other neuropeptides and receptors have been found. Additionally, the amphioxus GnRH-like gene was positioned in a locus surrounded by syntenic homologs of the human GnRH paralogon. The amphioxus GnRH-like peptide, with its distinct primary structure, activated a receptor with equal potency to multiple ligands that span the GnRH superfamily. PMID:24361996

  7. Conference Summary

    NASA Technical Reports Server (NTRS)

    Harrington, James L., Jr.

    2000-01-01

    Celebrations and special events were in order this year as the Minority University-Space Interdisciplinary Network (MU-SPIN) Program and NASA's Minority University Research and Education Division (MURED) both reached their 10th anniversaries. In honor of this occasion, the 2000 Annual Users' Conference held at Morris Brown College (MBC) in Atlanta, Georgia, September 11-15, 2000, was the first to be jointly hosted by MU-SPIN and MURED. It was particularly fitting that this anniversary should fall in the year 2000. The start of the new millennium propelled us to push bold new ideas and renew our commitment to minority university participation in all areas of NASA. With the theme 'Celebrating Our Tenth Year With Our Eyes on the Prize,' the conference provided a national forum for showcasing successful MU-SPIN and MURED Program (MUREP) experiences to enhance faculty/student development in areas of scientific and technical research and education. Our NASA-relevant conference agenda resulted in a record-breaking 220 registered attendees. Using feedback from past participants, we designed a track of student activities closely tailored to their interests. The resulting showcase of technical assistance and best practices set a new standard for our conferences in the years to come. This year's poster session was our largest ever, with over 50 presentations from students, faculty, and teachers. Posters covered a broad range of NASA activities from 'A Study of the Spiral Galaxy M101' to 'Network Cabling Characteristics.'

  8. Effects of proposed physical ballast tank treatments on aquatic invertebrate resting eggs.

    PubMed

    Raikow, David F; Reid, David F; Blatchley, Ernest R; Jacobs, Gregory; Landrum, Peter F

    2007-04-01

    Adaptations in aquatic invertebrate resting eggs that confer protection from natural catastrophic events also could confer protection from treatments applied to ballast water for biological invasion vector management. To evaluate the potential efficacy of physical ballast water treatment methods, the present study examined the acute toxicity of heat (flash and holding methods), ultraviolet (UV) radiation (254 nm), and deoxygenation (acute and chronic) on resting eggs of the freshwater cladoceran Daphnia mendotae and the marine brine shrimp Artemia sp. Both D. mendotae and Artemia sp. were similarly sensitive to flash exposures of heat (100% mortality at 70 degrees C), but D. mendotae were much more sensitive to prolonged exposures. Exposure to 4,000 mJ/cm2 of UV radiation resulted in mortality rates of 59% in Artemia sp. and 91% in D. mendotae. Deoxygenation to an oxygen concentration of 1 mg/L was maximally toxic to both species. Deoxygenation suppressed hatching of D. mendotae resting eggs at oxygen concentrations of less than 5.5 mg/L and of Artemia sp. resting eggs at concentrations of less than 1 mg/L. Results suggest that UV radiation and deoxygenation are not viable treatment methods with respect to invertebrate resting eggs because of the impracticality of producing sufficient UV doses and the suppression of hatching at low oxygen concentrations. Results also suggest that the treatment temperatures required to kill resting eggs are much higher than those reported to be effective against other invertebrate life stages and species. The results, however, do not preclude the effectiveness of these treatments against other organisms or life stages. Nevertheless, if ballast tank treatment systems employing the tested methods are intended to include mitigation of viable resting eggs, then physical removal of large resting eggs and ephippia via filtration would be a necessary initial step. PMID:17447556

  9. Effects of proposed physical ballast tank treatments on aquatic invertebrate resting eggs.

    PubMed

    Raikow, David F; Reid, David F; Blatchley, Ernest R; Jacobs, Gregory; Landrum, Peter F

    2007-04-01

    Adaptations in aquatic invertebrate resting eggs that confer protection from natural catastrophic events also could confer protection from treatments applied to ballast water for biological invasion vector management. To evaluate the potential efficacy of physical ballast water treatment methods, the present study examined the acute toxicity of heat (flash and holding methods), ultraviolet (UV) radiation (254 nm), and deoxygenation (acute and chronic) on resting eggs of the freshwater cladoceran Daphnia mendotae and the marine brine shrimp Artemia sp. Both D. mendotae and Artemia sp. were similarly sensitive to flash exposures of heat (100% mortality at 70 degrees C), but D. mendotae were much more sensitive to prolonged exposures. Exposure to 4,000 mJ/cm2 of UV radiation resulted in mortality rates of 59% in Artemia sp. and 91% in D. mendotae. Deoxygenation to an oxygen concentration of 1 mg/L was maximally toxic to both species. Deoxygenation suppressed hatching of D. mendotae resting eggs at oxygen concentrations of less than 5.5 mg/L and of Artemia sp. resting eggs at concentrations of less than 1 mg/L. Results suggest that UV radiation and deoxygenation are not viable treatment methods with respect to invertebrate resting eggs because of the impracticality of producing sufficient UV doses and the suppression of hatching at low oxygen concentrations. Results also suggest that the treatment temperatures required to kill resting eggs are much higher than those reported to be effective against other invertebrate life stages and species. The results, however, do not preclude the effectiveness of these treatments against other organisms or life stages. Nevertheless, if ballast tank treatment systems employing the tested methods are intended to include mitigation of viable resting eggs, then physical removal of large resting eggs and ephippia via filtration would be a necessary initial step.

  10. Overview of the conference and the field.

    PubMed

    Sternberg, E M

    1998-05-01

    The field of neuroimmune interactions is a prime example of interdisciplinary research spanning immunology, neurobiology, neuroendocrinology, and behavioral sciences. It also exemplifies research from the molecular to the clinical domain. The greatest challenge of the field, which this conference seeks to stimulate, is research that is at the same time precise, focused, and integrative. Several levels of interdisciplinary overlap will be highlighted. At the molecular level, neuro- and immune mediator molecules or their receptors may be members of the same superfamily or may regulate each other's expression or function. Most extensively studied are cytokine-neuropeptide/neurotransmitter interactions, including expression of cytokines within the central nervous system and production of neuropeptides by immune cells or at inflammatory sites. Advances relating cytokine-neurohormone interactions to mechanisms of apoptosis will ultimately shed light on the role of neuroimmune interactions in neuronal cell death and survival and immune cell selection, processes important in neuronal plasticity and immune specificity. At a systems level, advances have been made in cross-disciplinary application of modes of thinking. Incorporation of neurobiology's appreciation of anatomical organization, endocrinology's temporal dimension of neurohormonal secretion, and immunology's understanding of stimulus specificity all contribute to a more precise definition of how these complex systems interact at multiple levels. More precise understanding of effects of disruptions of these communications on disease susceptibility and expression will clarify how perturbations of one system, such as stimulation of the neuroendocrine stress response, might affect expression of disease in the other, such as autoimmune/inflammatory or infectious diseases. PMID:9629231

  11. Brain and behavioral lateralization in invertebrates

    PubMed Central

    Frasnelli, Elisa

    2013-01-01

    Traditionally, only humans were thought to exhibit brain and behavioral asymmetries, but several studies have revealed that most vertebrates are also lateralized. Recently, evidence of left–right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. Here I present some examples in invertebrates of sensory and motor asymmetries, as well as asymmetries in the nervous system. I illustrate two cases where an asymmetric brain is crucial for the development of some cognitive abilities. The first case is the nematode Caenorhabditis elegans, which has asymmetric odor sensory neurons and taste perception neurons. In this worm left/right asymmetries are responsible for the sensing of a substantial number of salt ions, and lateralized responses to salt allow the worm to discriminate between distinct salt ions. The second case is the fruit fly Drosophila melanogaster, where the presence of asymmetry in a particular structure of the brain is important in the formation or retrieval of long-term memory. Moreover, I distinguish two distinct patterns of lateralization that occur in both vertebrates and invertebrates: individual-level and population-level lateralization. Theoretical models on the evolution of lateralization suggest that the alignment of lateralization at the population level may have evolved as an evolutionary stable strategy in which individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. This implies that lateralization at the population-level is more likely to have evolved in social rather than in solitary species. I evaluate this new hypothesis with a specific focus on insects showing different level of sociality. In particular, I present a series of studies on antennal asymmetries in honeybees and other related species of bees, showing how insects may be extremely useful to test the

  12. Invertebrates in testing of environmental chemicals: are they alternatives?

    PubMed Central

    Lagadic, L; Caquet, T

    1998-01-01

    An enlarged interpretation of alternatives in toxicology testing includes the replacement of one animal species with another, preferably a nonmammalian species. This paper reviews the potential of invertebrates in testing environmental chemicals and provides evidence of their usefulness in alternative testing methodologies. The first part of this review addresses the use of invertebrates in laboratory toxicology testing. Problems in extrapolating results obtained in invertebrates to those obtained from vertebrates are noted, suggesting that invertebrates can essentially be used in addition to rather than as replacements for vertebrates in laboratory toxicity tests. However, evaluation of the ecologic impact of environmental chemicals must include defining end points that may frequently differ from those classically used in biomedical research. In this context, alternative approaches using invertebrates may be more pertinent. The second part of the review therefore focuses on the use of invertebrates in situ to assess the environmental impact of pollutants. Advantages of invertebrates in ecotoxicologic investigation are presented for their usefulness for seeking mechanistic links between effects occurring at the individual level and consequences for higher levels of biologic organization (e.g., population and community). In the end, it is considered that replacement of vertebrates by invertebrates in ecotoxicity testing is likely to become a reality when basic knowledge of metabolic, physiologic, and developmental patterns in the latter will be sufficient to assess the effect of a given chemical through end points that could be different between invertebrates and vertebrates. PMID:9599707

  13. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  14. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  15. Nutrient-specific foraging in invertebrate predators.

    PubMed

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  16. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.

  17. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  18. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  19. Role of the neuropeptide, bombesin, in bile secretion.

    PubMed Central

    Cho, W. K.

    1997-01-01

    Since ancient times, bile secretion has been considered vital for maintaining health. One of the main functions of bile secretion is gastric acid neutralization with biliary bicarbonate during a meal or Pavlovian response. Although the liver has many extrinsic and intrinsic nerve innervations, the functional role of these nerves in biliary physiology is poorly understood. To understand the role of neural regulation in bile secretion, our recent studies on the effect of bombesin, a neuropeptide, on bile secretion and its underlying mechanisms will be reviewed. Using isolated perfused rat livers (IPRL) from both normal and 2 week bile duct ligated rats, as well as hepatocyte couplets and isolated bile duct units (IBDU) from normal rat livers, bombesin was shown to stimulate biliary bicarbonate and fluid secretion from bile ducts. Detailed pH studies indicated that bombesin stimulated the activity of Cl-/HCO3- exchanger, which was counterbalanced by a secondary activation of electrogenic Na+/HCO3- symport. Quantitative videomicroscopic studies showed that bombesin-stimulated fluid secretion in IBDU was dependent on Cl- and HCO3- in the media, anion exchanger(s), Cl- and K+ channels, and carbonic anhydrase, but not on the microtubular system. Furthermore, this bombesin response is inhibited by somatostatin but not substance P. Finally, studies of secondary messengers in isolated cholangiocytes and IBDU indicated that bombesin had no effect on intracellular cAMP, cGMP, or Ca++ levels in cholangiocytes. These results provide evidence that neuropeptides such as bombesin can directly stimulate fluid and bicarbonate secretion from cholangiocytes by activating luminal Cl-/HCO3- exchange, but by different mechanisms from those established for secretin. These findings, in turn, suggest that neuropeptides may play an important regulatory role in biliary transport and secretion. Thus, this neuropeptidergic regulation of bile secretion may provide a plausible mechanism for the

  20. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).

    PubMed

    In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail

    2016-08-01

    The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation. PMID:27328253

  1. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication.

    PubMed

    Ma, Wenhui; Zhang, Xuemin; Shi, Shushan; Zhang, Yingze

    2013-06-01

    Neuropeptides released from the skeletal nerve fibers have neurotransmitter and immunoregulatory roles; they exert paracrine biological effects on bone cells present close to the nerve endings expressing these signaling molecules. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), Neuropeptide Y (NPY) and tyrosine hydroxylase (TH) on the cell viability and function of the human osteoblasts, and comparing their difference in the role of regulating bone formation. Cultures of normal human osteoblasts were treated with SP, CGRP, VIP, NPY or TH at three concentrations. We found that each of the five neuropeptides induced increases in cell viability of human osteoblasts. The stimulatory action of NPY was the highest, followed by VIP, SP and TH, while CGRP had the lowest stimulatory effect. The viability index of osteoblasts was inversely associated with the concentration of neuropeptides, and positively with the time of exposure. Moreover, the five neuropeptides increased the ALP activity and osteocalcin to different extents in a dose-dependent manner. The GJIC of osteoblasts was significantly promoted by neuropeptides. The results demonstrated that neuropeptides released from skeletal nerve endings after a stimulus appeared to be able to induce the proliferation and activity of osteoblasts via enhancing GJIC between cells, and further influence the bone formation. These findings may contribute toward a better understanding of the neural influence on bone remodeling and improving treatments related to bone diseases.

  2. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).

    PubMed

    In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail

    2016-08-01

    The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.

  3. CGRP as a neuropeptide in migraine: lessons from mice

    PubMed Central

    Russo, Andrew F

    2015-01-01

    Migraine is a neurological disorder that is far more than just a bad headache. A hallmark of migraine is altered sensory perception. A likely contributor to this altered perception is the neuropeptide calcitonin gene-related peptide (CGRP). Over the past decade, CGRP has become firmly established as a key player in migraine. Although the mechanisms and sites of action by which CGRP might trigger migraine remain speculative, recent advances with mouse models provide some hints. This brief review focuses on how CGRP might act as both a central and peripheral neuromodulator to contribute to the migraine-like symptom of light aversive behaviour in mice. PMID:26032833

  4. Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides.

    PubMed

    Hori, I

    1997-01-01

    The regeneration blastema consists of three cell types, undifferentiated cells, regenerative cells, and differentiated cells all of which can be identified by their ultrastructural characteristics. Quantitative changes in the numbers of these cells within the blastema offer important clues about the detailed process of regeneration. When decapitated worms were allowed to regenerate in neuropeptide-containing tap water, the undifferentiated cells accumulated rapidly and initiated blastema formation. These cells were then replaced with regenerative cells, and subsequently with differentiated cells. In the non-treated regenerating worms, the proportion of undifferentiated cells was much lower than in the neuropeptide-treated ones. The results of this study indicate that neuropeptides have a remarkable effect on the early stage of regeneration in planarians. Immunoelectron microscopy using a gold-conjugated anti-neuropeptide antiserum revealed the presence of neuropeptides in some kinds of parenchymal cells in the post-blastemal area.

  5. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.

    PubMed

    Patananan, Alexander N; Budenholzer, Lauren M; Pedraza, Maria E; Torres, Eric R; Adler, Lital N; Clarke, Steven G

    2015-03-01

    l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.

  6. Influence of acid precipitation on stream invertebrates

    SciTech Connect

    Burton, T.M.; Allan, J.W.

    1983-09-01

    Five species of invertebrates, Asellus intermedius an isopod, Lepidostoma liba and Pycnopsyche sp., two species of caddisflies, Physa heterostropha, a snail, and a Nemoura sp., a stonefly, were tested for 30 days in 5 separate experiments for susceptibility to acidification to pH 4.0 and pH 5.0 alone or in combination with 250 to 500 micrograms Al/L. The effects of organic matter on the susceptibility of these invertebrates to acidification and aluminum toxicity were also tested. Acidification alone of natural stream water to pH 4.0 resulted in significant mortality for all 5 species. The addition of 500 micrograms Al/L significantly increased this mortality. Experiments with distilled water with inorganic chemistry adjusted to simulate natural stream water demonstrated that the absence of organic matter strongly resulted in much greater aluminum toxicity at low pH's and in somewhat greater susceptibility to acidification alone. The addition of citrate as an organic ligand decreased this effect. Thus, acidification effects for these 5 species for 30-day exposure periods only occurred at pH levels less than pH 5 and at aluminum levels greater than 250 micrograms Al/L. The threshold for effects, thus, was between pH 5 and pH 4 and between 250 and 500 micrograms Al/L. 19 references, 4 figures, 4 tables.

  7. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate

    PubMed Central

    Patananan, Alexander N.; Budenholzer, Lauren M.; Pedraza, Maria E.; Torres, Eric R.; Adler, Lital N.; Clarke, Steven G.

    2015-01-01

    L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role. PMID:25668719

  8. ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake.

    PubMed

    Wardman, Jonathan H; Berezniuk, Iryna; Di, Shi; Tasker, Jeffrey G; Fricker, Lloyd D

    2011-01-01

    ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat) mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat) mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.

  9. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  10. APS Conference on Understanding the Biological Clock: From Genetics to Physiology

    NASA Technical Reports Server (NTRS)

    Frank, Martin

    1996-01-01

    The Conference was designed to take advantage of the fusion of two intellectually dominant but heretofore separate lines of clock research, vertebrate physiology and invertebrate and microbial genetics. The APS Conference attracted 251 scientists, 68 of whom were students. In addition to the excellent speaker program organized by Dunlap and Loros, the attendees also submitted 93 volunteer abstracts that were programmed in poster sessions. Thirty-four percent of the submitted abstracts were first authorized by a female student or scientist.

  11. Conference Summary

    NASA Astrophysics Data System (ADS)

    Ellis, R. S.

    2008-10-01

    This first Subaru international conference has highlighted the remarkably diverse and significant contributions made using the 8.2m Subaru telescope by both Japanese astronomers and the international community. As such, it serves as a satisfying tribute to the pioneering efforts of Professors Keiichi Kodaira and Sadanori Okamura whose insight and dedication is richly rewarded. Here I try to summarize the recent impact of wide field science in extragalactic astronomy and cosmology and take a look forward to the key questions we will address in the near future.

  12. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  13. Short neuropeptide F is a sleep-promoting inhibitory modulator

    PubMed Central

    Shang, Yuhua; Donelson, Nathan C.; Vecsey, Christopher G.; Guo, Fang; Rosbash, Michael; Griffith, Leslie C.

    2013-01-01

    SUMMARY To advance the understanding of sleep regulation, we screened for sleep-promoting cells and identified neurons expressing neuropeptide Y-like short neuropeptide F (sNPF). Sleep-induction by sNPF meets all relevant criteria. Rebound sleep following sleep deprivation is reduced by activation of sNPF neurons and flies even experience negative sleep rebound upon cessation of sNPF neuronal stimulation, indicating that sNPF provides an important signal to the sleep homeostat. Only a subset of sNPF-expressing neurons, which includes the small ventrolateral clock neurons, is sleep-promoting. Their release of sNPF increases sleep consolidation in part by suppressing the activity of wake-promoting large ventrolateral clock neurons, and suppression of neuronal firing may be the general response to sNPF receptor activation. sNPF acutely increases sleep without altering feeding behavior, which it affects only on a much longer time scale. The profound effect of sNPF on sleep indicates that it is an important sleep-promoting molecule. PMID:24094110

  14. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures. PMID:25963417

  15. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila

    PubMed Central

    Zhang, Mo; Loschek, Laura F.; Grunwald Kadow, Ilona C.

    2016-01-01

    A female’s reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female’s preference for important nutrients, thereby ensuring optimal conditions for her growing progeny. PMID:27145127

  16. Allatotropin: An Ancestral Myotropic Neuropeptide Involved in Feeding

    PubMed Central

    Alzugaray, María Eugenia; Adami, Mariana Laura; Diambra, Luis Anibal; Hernandez-Martinez, Salvador; Damborenea, Cristina; Noriega, Fernando Gabriel; Ronderos, Jorge Rafael

    2013-01-01

    Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. PMID:24143240

  17. Neuropeptide Y Y1 receptor effects on pulpal nociceptors.

    PubMed

    Gibbs, J L; Hargreaves, K M

    2008-10-01

    Neuropeptide Y (NPY) is an important modulatory neuropeptide that regulates several physiological systems, including the activity of sensory neurons. We evaluated whether activation of the NPY Y1 receptor could modulate the activity of capsaicin-sensitive nociceptors in trigeminal ganglia and dental pulp. We tested this hypothesis by measuring capsaicin-stimulated calcitonin gene-related peptide release (CGRP) as a measure of nociceptor activity. Capsaicin-evoked CGRP release was inhibited by 50% (p < 0.05) in trigeminal ganglia and by 26% (p < 0.05) in dental pulp when tissues were pre-treated with [Leu(31),Pro(34)]NPY. The Y1 receptor was found to co-localize with the capsaicin receptor TRPV1 in trigeminal ganglia. These results demonstrate that activation of the Y1 receptor results in the inhibition of the activity of capsaicin-sensitive nociceptors in the trigeminal ganglia and dental pulp. These findings are relevant to the physiological modulation of dental nociceptors by endogenous NPY and demonstrate an important novel analgesic target for the treatment of dental pain.

  18. NeuroPID: a classifier of neuropeptide precursors.

    PubMed

    Karsenty, Solange; Rappoport, Nadav; Ofer, Dan; Zair, Adva; Linial, Michal

    2014-07-01

    Neuropeptides (NPs) are short secreted peptides produced in neurons. NPs act by activating signaling cascades governing broad functions such as metabolism, sensation and behavior throughout the animal kingdom. NPs are the products of multistep processing of longer proteins, the NP precursors (NPPs). We present NeuroPID (Neuropeptide Precursor Identifier), an online machine-learning tool that identifies metazoan NPPs. NeuroPID was trained on 1418 NPPs annotated as such by UniProtKB. A large number of sequence-based features were extracted for each sequence with the goal of capturing the biophysical and informational-statistical properties that distinguish NPPs from other proteins. Training several machine-learning models, including support vector machines and ensemble decision trees, led to high accuracy (89-94%) and precision (90-93%) in cross-validation tests. For inputs of thousands of unseen sequences, the tool provides a ranked list of high quality predictions based on the results of four machine-learning classifiers. The output reveals many uncharacterized NPPs and secreted cell modulators that are rich in potential cleavage sites. NeuroPID is a discovery and a prediction tool that can be used to identify NPPs from unannotated transcriptomes and mass spectrometry experiments. NeuroPID predicted sequences are attractive targets for investigating behavior, physiology and cell modulation. The NeuroPID web tool is available at http:// neuropid.cs.huji.ac.il.

  19. Regional distribution of neuropeptide processing endopeptidases in adult rat brain.

    PubMed

    Berman, Y L; Rattan, A K; Carr, K; Devi, L

    1994-01-01

    Many peptide hormone and neuropeptide precursors undergo post-translational processing at mono- and/or dibasic residues. An enzymatic activity capable of processing prodynorphin at a monobasic processing site designated 'dynorphin converting enzyme' has been previously reported in rat rain and bovine pituitary. In this study the distribution of dynorphin converting enzyme activity in ten regions of rat brain has been compared with the distribution of subtilisin-like processing enzymes and with the immuno-reactive dynorphin peptides. The distribution of dynorphin converting enzyme activity generally matches the distribution of immuno-reactive dynorphin B-13 in most but not all brain regions. The regions that are known to have a relatively large number of immuno-reactive dynorphin-neurons also contain high levels of dynorphin converting enzyme activity. The distribution of dynorphin converting enzyme activity does not match the distribution of subtilisin-like processing enzyme or carboxypeptidase E activities. Taken together the data support the possibility that the dynorphin converting enzyme is involved in the maturation of dynorphin, as well as other neuropeptides, and peptide hormones.

  20. Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila.

    PubMed

    Hussain, Ashiq; Üçpunar, Habibe K; Zhang, Mo; Loschek, Laura F; Grunwald Kadow, Ilona C

    2016-05-01

    A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny. PMID:27145127

  1. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures.

  2. Immunopathological study of neuropeptide expression in human salivary gland neoplasms.

    PubMed

    Hayashi, Y; Deguchi, H; Nakahata, A; Kurashima, C; Hirokawa, K

    1990-01-01

    The immunoreactivity of anti-neuron-specific enolase (NSE) and anti-Leu-7 on formalin-fixed sections of human salivary gland neoplasms was determined by the avidin-biotin-peroxidase complex method. In addition, neuropeptides, such as vasoactive intestinal polypeptide, somatostatin, and substance P, in human salivary gland neoplasms were expressed, whereas other polypeptides, including glucagon, cholecystokinin, leu-enkephalin and calcitonin, were absent. When 182 paraffin-embedded examples of human salivary gland tumors, including 112 benign and 70 malignant neoplasms, were examined immunohistochemically, positive immunoreactivity was observed in: 51 cases with NSE (59%) and 46 cases with Leu-7 (54%) of 86 pleomorphic adenomas; 11 cases with Leu-7 (61%) of 18 Warthin's tumors; 7 cases with Leu-7 (58%) of 12 acinic cell carcinomas; 5 cases with NSE (31%) of 16 adenoid cystic carcinomas; 5 cases with NSE (42%) and 4 cases with Leu-7 (33%) of 12 adenocarcinomas; 4 cases with NSE (25%) and 6 cases with Leu-7 (38%) of 16 undifferentiated carcinomas. The other tumors, such as oxyphilic adenomas, basal cell adenomas, epidermoid carcinomas, and mucoepidermoid carcinomas, were nonreactive. Neuropeptides were observed in the neoplastic epithelial cells of certain tumors such as Warthin's tumors, acinic cell carcinomas, adenocarcinomas and undifferentiated carcinomas. These findings suggest the possibility that cells of neuroendocrine origin, present in certain neoplastic salivary gland epithelia may play a significant role in the histogenesis of human salivary gland neoplasms.

  3. Invertebrate communities of small streams in northeastern Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1990-01-01

    Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)

  4. Attitudes toward Invertebrates: Are Educational "Bug Banquets" Effective?

    ERIC Educational Resources Information Center

    Looy, Heather; Wood, John R.

    2006-01-01

    Scientists have used educational presentations and "bug banquets" to alter widespread negative attitudes toward invertebrates. In this article, the authors explore whether such presentations have a measurable affect on attitudes. Junior high, high school, and university students completed an attitude survey focusing on invertebrates in general and…

  5. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  6. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  7. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  8. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  9. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  10. Nutraceutical functionalities of polysaccharides from marine invertebrates.

    PubMed

    Choi, Byeong-Dae; Choi, Yeung Joon

    2012-01-01

    Many researchers are seeking functional materials from marine resources. These marine resources can be used as traditional food additives, and specifically, these are based on polysaccharides. To date, there is a big opportunity to develop new high-value added products with indispensable functional characteristics, which can be used in nutraceuticals either as additives or supplements. Also, a crossover in the pharmaceutical market may be established. Some glycosaminoglycans (GAGs) mimetic-type molecules are already being utilized in the field of nutrition as well as in the cosmetics industry. This chemical is used as a dietary supplement to maintain the structure and function of cartilages, for the relief of pain caused by osteoarthritic joints, and can also be used as an anti-inflammatory agent. Recently, in relation to the prevalence of mad cow disease and avian influenza, the production of GAGs from marine invertebrates offers new market opportunities as compared with that obtained from bovine or avian livestock. PMID:22361178

  11. Pesticides reduce regional biodiversity of stream invertebrates.

    PubMed

    Beketov, Mikhail A; Kefford, Ben J; Schäfer, Ralf B; Liess, Matthias

    2013-07-01

    The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed. PMID:23776226

  12. The effect of lindane on terrestrial invertebrates.

    PubMed

    Lock, K; De Schamphelaere, K A C; Janssen, C R

    2002-02-01

    Acute and chronic ecotoxicity tests with lindane were carried out using the soil invertebrates Eisenia fetida, Enchytraeus albidus, and Folsomia candida. To assess the influence of soil type on the bioavailability, these tests were carried out in a standard artificial OECD soil and in sandy and loamy field soil. For each species, differences in lindane toxicity were observed for the three soil types. These differences were, however, not related to the organic matter content. The relative differences in lindane toxicity between the soils was species-specific. These results therefore indicate that the pore-water hypothesis, i.e., the pore-water contaminant fraction being the toxicological bioavailable fraction, is not always applicable for organic substances. NOEC, NEC, as well as EC10 data were subsequently used to calculate hazardous concentrations for 5% of the species; this methodology, aimed at setting environmental quality criteria, is discussed.

  13. Pesticides reduce regional biodiversity of stream invertebrates

    PubMed Central

    Beketov, Mikhail A.; Kefford, Ben J.; Schäfer, Ralf B.; Liess, Matthias

    2013-01-01

    The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed. PMID:23776226

  14. JAKs and STATs in invertebrate model organisms.

    PubMed

    Dearolf, C R

    1999-09-01

    Invertebrate organisms provide systems to elucidate the developmental roles of Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathways, thereby complementing research conducted with mammalian cells and animals. Components of the JAK/STAT protein pathway have been identified and characterized in the fruit fly Drosophila melanogaster and the cellular slime mold Dictyostelium discoideum. This review summarizes the molecular and genetic data obtained from these model organisms. In particular, a Drosophila JAK/STAT pathway regulates normal segmentation, cell proliferation, and differentiation, and hyperactivation of the pathway leads to tumor formation and leukemia-like defects. A Dictyostelium STAT regulates the development of stalk cells during the multicellular part of the life cycle. Future research utilizing these organisms should continue to provide insights into the roles and regulation of these proteins and their signaling pathways. PMID:10526575

  15. Effect of beta-adrenoceptors on the behaviour induced by the neuropeptide glutamic acid isoleucine amide.

    PubMed

    Sánchez-Borzone, Mariela E; Attademo, Andrés; Baiardi, Gustavo; Celis, María Ester

    2007-07-30

    Excessive grooming behaviour is induced by intracerebroventricular injections of the neuropeptide glutamic acid isoleucine amide (neuropeptide-EI), via the activation of A-10 dopaminergic neurons and the noradrenergic system. Our object was to study the latter system involved in these behaviours, using male Wistar rats weighing 250-300 g with i.c.v. implants. The results show that all the adrenoceptor antagonists "per se" do not affect excessive grooming behaviour or motor activity. Intracerebroventricular administration of propranolol, a general beta-adrenoceptor antagonist, before neuropeptide-EI, inhibited the induced excessive grooming behaviour in a dose dependent manner. Metoprolol, a beta(1)-adrenoceptor antagonist, also blocked this behaviour. However, intracerebroventricular injections of phentolamine, an alpha-adrenoceptor antagonist, and ((+/-)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol), a beta(2)-adrenoceptor antagonist, had no effect on the behaviour induced by neuropeptide-EI induced behaviour for any of the doses tested. On the other hand, isoproterenol, a general beta-adrenoceptor agonist and dobutamine, a beta(1)-adrenoceptor agonist, both elicited similar behaviours as those induced by neuropeptide-EI. These results support the hypothesis that a relationship exists between neuropeptide-EI and beta-adrenoceptors, more specifically the beta(1)-adrenoceptor, as found with other similar endogenous peptides such as neurotensin, cholecystin, substance P and alpha-melanocyte stimulating hormone. Hence, neuropeptide-EI could probably be exerting a neuromodulating effect on the central nervous system.

  16. Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.

    PubMed

    Hapiak, Vera; Summers, Philip; Ortega, Amanda; Law, Wen Jing; Stein, Andrew; Komuniecki, Richard

    2013-08-28

    Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.

  17. Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides.

    PubMed

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2015-07-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  18. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    PubMed

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  19. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    PubMed

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides.

  20. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    PubMed

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects. PMID:24625277

  1. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    PubMed

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides. PMID:27546573

  2. RFamide neuropeptide actions on the molluscan ventricle: Interactions with primary neurotransmitters.

    PubMed

    Moulis, A; Huddart, H

    2006-01-01

    Different RFamide neuropeptides, some of non-molluscan origin, were examined for their effect on the ventricles of Buccinum undatum and Busycon canaliculatum. None of the peptides tested were inhibitory on these ventricles. All the peptides were extremely active, causing excitation of the preparations at low concentrations. The neuropeptides were then tested with the primary neurotransmitters. In the case of serotonin, the excitatory primary neurotransmitter, the RFamide neuropeptides induced a response, which was greatly enhanced by serotonin. Acetylcholine, the inhibitory neurotransmitter, induced relaxation whenever added, following a neuropeptide. The neuropeptides seemed to be independent of external Ca(2+), since in Ca(2+)-free media tension was induced. On the contrary, serotonin was dependent on external Ca(2+). These findings indicate that the neuropeptides generated tension via a different receptor to that of the primary neurotransmitters, using a different 2nd messenger and activating different Ca(2+) sources. Finally, the parent neuropeptide Phe-Leu-Arg-Phe-NH(2), when added following a different RFamide peptide, excited the preparation further, thus indicating the presence of a receptor that has higher affinity for some structures than others. When Phe-Met-Arg-Phe-NH(2) followed Phe-Leu-Arg-Phe-NH(2), no such response was recorded since the latter is of higher potency than the former.

  3. WATER TRANSPORT IN INVERTEBRATE PERIPHERAL NERVE FIBERS

    PubMed Central

    Nevis, Arnold H.

    1958-01-01

    Osmotic and diffusion permeabilities (Pf and Pd) of invertebrate nerve fibers to tritiated water were measured to determine what water flux studies could reveal about "the nerve membrane" and to directly test the possibility of active transport of water into or out of invertebrate nerve fibers. Pf/Pd ratios for lobster walking leg nerve fibers were found to be about 20 ± 7 at 14°C. Pd measurements were made for squid giant axons at 25°C. and found to yield a value of 4 x 10–4 cm.–1 sec.–1. When combined with the data of D. K. Hill for Pf, a Pf/Pd ratio of 21 ± 5 is obtained. These Pf/Pd ratios correspond to "effective pore radii" of about 16 ± 4 angstrom units, according to theories developed by Koefoed-Johnsen and Ussing and independently by Pappenheimer and his colleagues. Variations of water flux ratios with temperatures were studied and apparent activation energies calculated for both diffusion experiments and osmotic filtration experiments using the Arrhenius equation, and found to be close to 3 to 5 cal. per mole of water transferred. Cyanide (5 x 10–3 molar) and iodoacetate (1 x 10–3 molar) poisoned lobster leg nerve fibers showed no appreciable change in diffusion or osmotic filtration water effluxes. Caution in interpreting these proposed channels as simple pores was emphasized, but the possibility that such channels exist and are related to ionic flow is not incompatible with electrophysiological data. PMID:13525675

  4. The effects of PAH contamination on soil invertebrate communities

    SciTech Connect

    Snow-Ashbrook, J.L.; Erstfeld, K.M.

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  5. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts.

    PubMed

    Bourne, David G; Dennis, Paul G; Uthicke, Sven; Soo, Rochelle M; Tyson, Gene W; Webster, Nicole

    2013-07-01

    Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities.

  6. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts

    PubMed Central

    Bourne, David G; Dennis, Paul G; Uthicke, Sven; Soo, Rochelle M; Tyson, Gene W; Webster, Nicole

    2013-01-01

    Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities. PMID:23303372

  7. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    PubMed

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  8. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    PubMed

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  9. NEUROENDOCRINE ACTIONS AND REGULATION OF HYPOTHALAMIC NEUROPEPTIDE Y DURING LACTATION

    PubMed Central

    Crowley, W,R.; Ramoz, G.; Torto, R.; Keefe, K.A.; Wang, J. J.; Kalra, S. P.

    2007-01-01

    The expression of neuropeptide Y (NPY) and its co-messenger, agouti-related peptide (AgRP), in arcuate neurons of the hypothalamus is increased during lactation in rats. Our research has been addressing the questions of the physiological actions of these peptides during lactation and the physiological signals associated with lactation that result in increased expression of their genes. Our studies indicate that NPY and AgRP exert pleiotropic actions during lactation that help integrate neuroendocrine regulation of energy balance with controls over anterior and posterior pituitary hormone secretion. Further, reciprocal signaling to the NPY/AgRP system by leptin and ghrelin is responsible for the changes in expression of these hypothalamic peptides in lactating animals, and thus, may contribute to regulation of food intake and the various neuroendocrine adaptations of lactation. PMID:17241697

  10. Neuropeptide Y Y2 receptor in health and disease.

    PubMed

    Parker, S L; Balasubramaniam, A

    2008-02-01

    We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed. PMID:17828288

  11. Microwave irradiation increases recovery of neuropeptides from brain tissues

    SciTech Connect

    Theodorsson, E.; Stenfors, C.; Mathe, A.A. )

    1990-11-01

    The effect of focused high energy microwave treatment (MW) on brain concentrations and molecular forms of substance P, neurokinin A, neuropeptide Y, neurotensin, galanin and calcitonin gene-related peptide was investigated. Groups of rats were treated as follows: (1) MW, storage for 60 min at 22 degrees C, (2) Decapitation, storage for 60 min at 22 degrees C, (3) Decapitation, storage for 60 min at 22 degrees C, MW treatment, (4) MW, decapitation, storage for 2 min at 22 degrees C and 5. Decapitation, storage for 2 min at 22 degrees C. Peptide concentrations were in all instances highest in the MW sacrificed groups. MW increased the concentration of intact peptides by rapid inhibition of peptidase activity and increase in peptide solubility/extractability.

  12. The effect of obesogenic diets on brain Neuropeptide Y.

    PubMed

    Gumbs, Myrtille C R; van den Heuvel, José K; la Fleur, Susanne E

    2016-08-01

    Obesity is a major health problem characterized by accumulated fat mass. The availability of an energy-dense, highly palatable diet plays an important role in obesity development. Neuropeptide Y (NPY), an orexigenic peptide, is affected by dietary composition and NPY can affect dietary preference. The hypothalamic NPY system is well characterized and has been studied in several models of obesity. However, findings from models of diet-induced obesity are not straightforward. In addition, NPY plays a role in (food-)motivated behaviors and interacts with the mesolimbic dopamine system, both of which are altered in obesity. We here review the effect of obesogenic diets on NPY levels in the hypothalamus and reward-related regions. PMID:27132202

  13. Salusin-β as a powerful endogenous antidipsogenic neuropeptide

    PubMed Central

    Suzuki-Kemuriyama, Noriko; Nakano-Tateno, Tae; Tani, Yuji; Hirata, Yukio; Shichiri, Masayoshi

    2016-01-01

    Salusin-β is an endogenous parasympathomimetic peptide, predominantly localized to the hypothalamus and posterior pituitary. Subcutaneously administered salusin-β (50 nmol/mouse) significantly increased water intake but did not affect locomotor activity or food intake. The salusin-β-induced increase in water intake was completely abrogated by pretreatment with muscarinic antagonist, atropine sulphate. In contrast, intracerebroventricular injection of salusin-β, at lower doses (10–100 fmol/mouse) caused a long-lasting decrease in water intake and locomotor activity throughout the entire dark phase of the diurnal cycle. Pre-injection of intracerebroventricular anti-salusin-β IgG completely abrogated the central salusin-β mediated suppression of water intake and locomotor activity. These results demonstrate contrasting actions of salusin-β in the control of water intake via the central and peripheral systems and highlight it as a potent endogenous antidipsogenic neuropeptide. PMID:26869388

  14. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation.

    PubMed

    Jhamandas, Jack H; Goncharuk, Valeri

    2013-01-01

    Neuropeptide FF (NPFF) is an octapeptide belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain including central cardiovascular and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat and human brain. Herein, we review evidence for the role of NPFF in central regulation of blood pressure particularly within the brainstem and the hypothalamic paraventricular nucleus (PVN). At a cellular level, NPFF demonstrates distinct responses in magnocellular and parvocellular neurons of the PVN, which regulate the secretion of neurohypophyseal hormones and sympathetic outflow, respectively. Finally, the presence of NPFF system in the human brain and its alterations within the hypertensive brain are discussed.

  15. Platelet neuropeptide Y is critical for ischemic revascularization in mice

    PubMed Central

    Tilan, Jason U.; Everhart, Lindsay M.; Abe, Ken; Kuo-Bonde, Lydia; Chalothorn, Dan; Kitlinska, Joanna; Burnett, Mary Susan; Epstein, Stephen E.; Faber, James E.; Zukowska, Zofia

    2013-01-01

    We previously reported that the sympathetic neurotransmitter neuropeptide Y (NPY) is potently angiogenic, primarily through its Y2 receptor, and that endogenous NPY is crucial for capillary angiogenesis in rodent hindlimb ischemia. Here we sought to identify the source of NPY responsible for revascularization and its mechanisms of action. At d 3, NPY−/− mice demonstrated delayed recovery of blood flow and limb function, consistent with impaired collateral conductance, while ischemic capillary angiogenesis was reduced (∼70%) at d 14. This biphasic temporal response was confirmed by 2 peaks of NPY activation in rats: a transient early increase in neuronally derived plasma NPY and increase in platelet NPY during late-phase recovery. Compared to NPY-null platelets, collagen-activated NPY-rich platelets were more mitogenic (∼2-fold vs. ∼1.6-fold increase) for human microvascular endothelial cells, and Y2/Y5 receptor antagonists ablated this difference in proliferation. In NPY+/+ mice, ischemic angiogenesis was prevented by platelet depletion and then restored by transfusion of platelets from NPY+/+ mice, but not NPY−/− mice. In thrombocytopenic NPY−/− mice, transfusion of wild-type platelets fully restored ischemia-induced angiogenesis. These findings suggest that neuronally derived NPY accelerates the early response to femoral artery ligation by promoting collateral conductance, while platelet-derived NPY is critical for sustained capillary angiogenesis.—Tilan, J. U., Everhart, L. M., Abe, K., Kuo-Bonde, L., Chalothorn, D., Kitlinska, J., Burnett, M. S., Epstein, S. E., Faber, J. E., Zukowska, Z. Platelet neuropeptide Y is critical for ischemic revascularization in mice. PMID:23457218

  16. GABA excitation in mouse hilar neuropeptide Y neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N

    2007-01-01

    Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 ± 1.0 mV afterhyperpolarization, a mean input resistance of 335 ± 26 mΩ, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca2+-free/high-Mg2+ bath solution using cell-attached recording. GABAA receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits. PMID:17204505

  17. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  18. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions

    PubMed Central

    Pintér, Erika; Pozsgai, Gábor; Hajna, Zsófia; Helyes, Zsuzsanna; Szolcsányi, János

    2014-01-01

    Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed. PMID:23432438

  19. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain☆

    PubMed Central

    Dong, Changzheng; Zhao, Wenqing; Li, Wenling; Lv, Peiyuan; Dong, Xiufang

    2013-01-01

    Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors. PMID:25206425

  20. Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry.

    PubMed

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2012-08-30

    Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.

  1. Conference summary

    NASA Astrophysics Data System (ADS)

    Rebolo, R.

    ``Brown dwarfs come of age" was a stimulating conference attended by a large number of very active researchers, including many young students and post-docs who were largely responsible for the lively atmosphere that we enjoyed during the full meeting. Major theoretical and observational challenges currently faced in the study of brown dwarfs were reviewed. Key spectroscopic work is being conducted to determine atmospheric temperatures, surface gravities and metallicities, essential to understand the evolution of substellar objects. Research on ultracool atmospheres is extended down to temperatures typical of the atmosphere of the Earth. Characterisation of brown dwarfs at all wavelengths from X-ray to radio is ongoing and investigation of time domain phenomena reveal interesting new processes in cool atmospheres. In addition to talks on these topics, a large number of presentations addressed the formation and evolution of brown dwarfs, the lower end of the Initial Mass Function, the properties of substellar binaries, the angular momentum and disk evolution in very low-mass systems, results of large scale surveys aimed to find the lowest luminosity and coolest brown dwarfs, searches in star clusters delineating the evolution with age of the properties of brown dwarfs, binary searches and subsequent follow-up work enabling dynamical mass determinations. The excellent level of the review talks, oral and poster presentations and the work of the enthusiastic researchers that attended the meeting ensure a brilliant future for substellar research 18 years after the discovery of the first brown dwarfs.

  2. Localization and characterization of neuropeptide Y-like peptides in the brain and islet organ of the anglerfish (Lophius americanus).

    PubMed

    Noe, B D; Milgram, S L; Balasubramaniam, A; Andrews, P C; Calka, J; McDonald, J K

    1989-08-01

    Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2673525

  3. Naloxone-induced anorexia increases neuropeptide Y concentrations in the dorsomedial hypothalamus: evidence for neuropeptide Y-opioid interactions in the control of food intake.

    PubMed

    Lambert, P D; Wilding, J P; al-Dokhayel, A A; Gilbey, S G; Ghatei, M A; Bloom, S R

    1994-01-01

    We measured neuropeptide Y (NPY) concentration in microdissected hypothalamic nuclei, by radioimmunoassay, and NPY mRNA in the hypothalamus in rats treated systemically with the nonspecific opioid antagonist, naloxone, to produce mild anorexia. Twenty rats were treated with daily SC injections of naloxone (7.5 mg/kg); 20 were treated with vehicle alone. Naloxone produced a 7% reduction in food intake (p < 0.01) and a reduction in weight gain (p < 0.002). Neuropeptide Y concentrations were increased specifically in the dorsomedial nucleus of the hypothalamus (DMN) in rats treated with naloxone (6.8 +/- 0.7 fmol/micrograms protein vs. 3.1 +/- 1.0 fmol/micrograms protein, p < 0.05, n = 10 per group). Total hypothalamic NPY mRNA was unchanged. Neuropeptide Y-opioid interactions may be important in the control of food intake.

  4. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction.

  5. Neuropeptides and central control of sexual behaviour from the past to the present: a review.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2013-09-01

    Of the numerous neuropeptides identified in the central nervous system, only a few are involved in the control of sexual behaviour. Among these, the most studied are oxytocin, adrenocorticotropin, α-melanocyte stimulating hormone and opioid peptides. While opioid peptides inhibit sexual performance, the others facilitate sexual behaviour in most of the species studied so far (rats, mice, monkeys and humans). However, evidence for a sexual role of gonadotropin-releasing hormone, corticotropin releasing factor, neuropeptide Y, galanin and galanin-like peptide, cholecystokinin, substance P, vasoactive intestinal peptide, vasopressin, angiotensin II, hypocretins/orexins and VGF-derived peptides are also available. Corticotropin releasing factor, neuropeptide Y, cholecystokinin, vasopressin and angiotensin II inhibit, while substance P, vasoactive intestinal peptide, hypocretins/orexins and some VGF-derived peptide facilitate sexual behaviour. Neuropeptides influence sexual behaviour by acting mainly in the hypothalamic nuclei (i.e., lateral hypothalamus, paraventricular nucleus, ventromedial nucleus, arcuate nucleus), in the medial preoptic area and in the spinal cord. However, it is often unclear whether neuropeptides influence the anticipatory phase (sexual arousal and/or motivation) or the consummatory phase (performance) of sexual behaviour, except in a few cases (e.g., opioid peptides and oxytocin). Unfortunately, scarce information has been added in the last 15 years on the neural mechanisms by which neuropeptides influence sexual behaviour, most studied neuropeptides apart. This may be due to a decreased interest of researchers on neuropeptides and sexual behaviour or on sexual behaviour in general. Such a decrease may be related to the discovery of orally effective, locally acting type V phosphodiesterase inhibitors for the therapy of erectile dysfunction. PMID:23851261

  6. Determining detection sensitivity and methods for invertebrate sampling

    EPA Science Inventory

    This meeting is intended to communicate Great Lakes invasive species early detection science to state management agencies to assist them in implementing monitoring. My presentation summaries lessons learned concerning invertebrate monitoring in the course of ORD research on earl...

  7. Biomonitors of stream quality on agricultural areas: fish versus invertebrates

    USGS Publications Warehouse

    Berkman, Hilary E.; Rabeni, Charles F.; Boyle, Terence P.

    1986-01-01

    Although the utility of using either fish or benthic invertebrates as biomonitors of stream quality has been clearly shown, there is little comparative information on the usefulness of the groups in any particular situation. We compared fish to invertebrate assemblages in their ability to reflect habitat quality of sediment-impacted streams in agricultural regions of northeast Missouri, USA. Habitat quality was measured by a combination of substrate composition, riparian type, buffer strip width, and land use. Invertebrates were more sensitive to habitat differences when structural measurements, species diversity and ordination, were used. Incorporating ecological measurements, by using the Index of Biological Integrity, increased the information obtained from the fish assemblage. The differential response of the two groups was attributed to the more direct impact of sediments on invertebrate life requisites; the impact of sedimentation on fish is considered more indirect and complex, affecting feeding and reproductive mechanisms.

  8. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  9. Biogeography of Nearshore Subtidal Invertebrates in the Gulf of Maine

    EPA Science Inventory

    The biogeography of nearshore benthic invertebrates in the Gulf of Maine was studied to compare recent data with historical biogeographic studies, define physical-chemical factors affecting species distributions, and provide information needed to calibrate benthic indices of envi...

  10. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  11. Logging cuts the functional importance of invertebrates in tropical rainforest

    PubMed Central

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  12. Invertebrate Specific D1-like Dopamine Receptor in Control of Salivary Glands in the Black-Legged Tick Ixodes scapularis

    PubMed Central

    Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong

    2014-01-01

    The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in the vertebrates during evolution. InvD1L expressed in CHO-K1 cells was activated by dopamine with a median effective dose (EC50) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells. PMID:24307522

  13. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis.

    PubMed

    Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong

    2014-06-15

    The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate-specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in vertebrates during evolution. InvD1L expressed in Chinese hamster ovary (CHO)-K1 cells was activated by dopamine with a median effective dose (EC50 ) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells.

  14. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    PubMed

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning.

  15. The Endoparasitoid, Cotesia vestalis, Regulates Host Physiology by Reprogramming the Neuropeptide Transcriptional Network

    PubMed Central

    Shi, Min; Dong, Shuai; Li, Ming-tian; Yang, Yan-yan; Stanley, David; Chen, Xue-xin

    2015-01-01

    Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid. PMID:25640113

  16. Rapid Preconcentration for Liquid Chromatography-Mass Spectrometry Assay of Trace Level Neuropeptides

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Mabrouk, Omar S.; Kennedy, Robert T.

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ˜30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.

  17. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    PubMed

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  18. Red List of macrofaunal benthic invertebrates of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Petersen, G. H.; Madsen, P. B.; Jensen, K. T.; van Bernem, K. H.; Harms, J.; Heiber, W.; Kröncke, I.; Michaelis, H.; Rachor, E.; Reise, K.; Dekker, R.; Visser, G. J. M.; Wolff, W. J.

    1996-10-01

    In the Wadden Sea, in total, 93 species of macrofaunal benthic invertebrates are threatened in at least one subregion. Of these, 72 species are threatened in the entire area and are therefore placed on the trilateral Red List. 7 species are (probably) extinct in the entire Wadden Sea area. The status of 9 species of macrofaunal invertebrates is critical, 13 species are (probably) endangered, the status of 25 species is (probably) vulnerable and of 17 species (probably) susceptible.

  19. Effects of neonicotinoids and fipronil on non-target invertebrates.

    PubMed

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large

  20. Sampling and quantifying invertebrates from drinking water distribution mains.

    PubMed

    van Lieverloo, J Hein M; Bosboom, Dick W; Bakker, Geo L; Brouwer, Anke J; Voogt, Remko; De Roos, Josje E M

    2004-03-01

    Water utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated. The presented method for collecting invertebrates consists of unidirectionally flushing a mains section with a flow rate of 1 ms(-1) and filtering the flushed water in two separate flows with 500 microm and 100 microm mesh plankton gauze filters. Removal efficiency from mains was evaluated in nine experiments by collecting the invertebrates removed from the mains section by intensive cleaning immediately subsequent to sampling. Of 12 taxa distinguished, all except case-building Chironomidae larvae (2%) and Oligochaeta (30%) were removed well (51-75%). Retention of invertebrates in 100 microm filters was evaluated by filtering 39 filtrates using 30 microm filters. Except for flexible and small invertebrates such as Turbellaria (13%), Nematoda (11%) and Copepoda larvae (24%), most taxa were well retained in the 100 microm filters (53-100%). During sample processing, the method for taking sub-samples with a 10 ml pipette from the suspension of samples with high sediment concentrations was found to perform well in 75% of the samples. During a 2-year national survey in the Netherlands and consecutive investigations, the method appeared to be very suitable to assess the abundance of most invertebrate taxa in drinking water distribution systems and to be practicable for relatively inexperienced sampling and lab technicians. Although the numbers of small, less abundant or sessile taxa were not accurately assessed using the method, these taxa probably should not be the primary focus of monitoring by water utilities, as consumer complaints are not likely to be caused by these invertebrates. The accuracy of

  1. Identifying and managing threatened invertebrates through assessment of coextinction risk.

    PubMed

    Moir, Melinda L; Vesk, Peter A; Brennan, Karl E C; Keith, David A; McCarthy, Michael A; Hughes, Lesley

    2011-08-01

    Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host-breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host-breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host-breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.

  2. Invertebrate community response to a shifting mosaic of habitat

    USGS Publications Warehouse

    Engle, David M.; Fuhlendorf, S.D.; Roper, A.; Leslie, David M.

    2008-01-01

    Grazing management has focused largely on promoting vegetation homogeneity through uniform distribution of grazing to minimize area in a pasture that is either heavily disturbed or undisturbed. An alternative management model that couples grazing and fire (i.e., patch burning) to promote heterogeneity argues that grazing and fire interact through a series of positive and negative feedbacks to cause a shifting mosaic of vegetation composition and structure across the landscape. We compared patch burning with traditional homogeneity-based management in tallgrass prairie to determine the influence of the two treatments on the aboveground invertebrate community. Patch burning resulted in a temporal flush of invertebrate biomass in patches transitional between unburned and patches burned in the current year. Total invertebrate mass was about 50% greater in these transitional patches within patch-burned pastures as compared to pastures under traditional, homogeneity-based management. Moreover, the mosaic of patches in patch-burned pastures contained a wider range of invertebrate biomass and greater abundance of some invertebrate orders than did the traditionally managed pastures. Patch burning provides habitat that meets requirements for a broad range of invertebrate species, suggesting the potential for patch burning to benefit other native animal assemblages in the food chain.

  3. Steroidal regulation of hypothalamic neuropeptide Y release and gene expression.

    PubMed

    Sahu, A; Phelps, C P; White, J D; Crowley, W R; Kalra, S P; Kalra, P S

    1992-06-01

    Neuropeptide Y (NPY) readily stimulates the release of hypothalamic LHRH and pituitary LH release in intact and gonadal steroid-primed gonadectomized rats. We have now tested the hypothesis that the release and synthesis of hypothalamic NPY may be regulated by gonadal steroids. To measure the effects of gonadal hormones on NPY release, a permanent push-pull cannula was implanted in the anterior pituitary (AP) of sham castrated (controls) or castrated (CAST) male rats, and 1 week later, the AP was perfused with artificial cerebrospinal fluid over a 3-4 h period. NPY concentrations in the perfusates collected at 10-min intervals were measured by RIAs. The NPY release pattern in the AP was episodic in both intact and CAST rats, and the frequency of NPY episodes was similar in two groups. However, the amount of NPY detected in the AP of CAST rats was significantly less than that of intact rats because the mean rate of release and the amplitude of NPY episodes in the perfusates of CAST rats were significantly reduced. This observation of attenuated hypothalamic NPY output in vivo and previous evidence of decreased hypothalamic NPY contents after CAST implied that the synthesis of hypothalamic NPY may be regulated by testicular secretions. Therefore, the effects of testosterone (T)-replacement on preproNPY messenger RNA (mRNA) in the medial basal hypothalamus (MBH) was evaluated. Rats were CAST and received either empty or T-filled Silastic capsules sc. Two weeks later, the level of perproNPY mRNA in the MBH was determined by solution hybridization/ribonuclease protection assay using a complementary RNA probe complementary to the rat NPY precursor mRNA. We observed that the levels of preproNPY mRNA were 2-fold higher in the MBH of T-replaced CAST as compared to control CAST rats. These findings are consistent with the hypothesis that gonadal steroids enhance the neurosecretory activity of hypothalamic NPYergic neurons, and for the first time reveal a coupling between the

  4. Invertebrate Models for Coenzyme Q10 Deficiency

    PubMed Central

    Fernández-Ayala, Daniel J.M.; Jiménez-Gancedo, Sandra; Guerra, Ignacio; Navas, Plácido

    2014-01-01

    The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients. PMID:25126050

  5. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis

    PubMed Central

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  6. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis.

    PubMed

    Xu, Gang; Gu, Gui-Xiang; Teng, Zi-Wen; Wu, Shun-Fan; Huang, Jia; Song, Qi-Sheng; Ye, Gong-Yin; Fang, Qi

    2016-01-01

    In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors. PMID:27353701

  7. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.

  8. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species. PMID:26783017

  9. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  10. Role of neuropeptides in learning versus performance: focus on vasopressin.

    PubMed

    Koob, G F; Lebrun, C; Bluthé, R M; Dantzer, R; Le Moal, M

    1989-01-01

    Neuropeptides that have classical hormonal functions via the pituitary have been implicated in cognitive function. Systemically and centrally administered arginine vasopressin (AVP) has been well documented to prolong extinction and improve consolidation in avoidance tasks. However, major questions have centered on the physiological mechanism of action for these effects and whether these cognitive enhancing actions reflect learning or performance. Work with vasopressin antagonists has led to the hypothesis that the effects of systemically administered AVP may be mediated peripherally and may be secondary to increases in blood pressure and activating effects. Centrally administered AVP, however, can also facilitate memory and recent work using an olfactory social memory task suggests that these effects may be mediated, at least in part, by AVP systems in the lateral septum. These results suggest that the cognitive enhancing actions of AVP may involve two parallel, but ultimately homologous, systems at the functional level. Pituitary-derived AVP may facilitate memory actions through more nonspecific (performance) effects, whereas centrally derived AVP may facilitate memory actions through more direct effects on the neural substrates of memory processing in the limbic system.

  11. Evolution of neuropeptide Y and its related peptides.

    PubMed

    Larhammar, D; Blomqvist, A G; Söderberg, C

    1993-11-01

    1. The neuropeptide Y (NPY) family of peptides includes also the gut endocrine peptide YY (PYY), tetrapod pancreatic polypeptide (PP), and fish pancreatic peptide-tyrosine (PY). All peptides are 36 amino acids long. 2. Sequences from many types of vertebrates show that NPY has remained extremely well conserved throughout vertebrate evolution with 92% identity between mammals and cartilaginous fishes. 3. PYY has 97-100% identity between cartilaginous fishes and bony fishes, but is less conserved in amphibians and mammals (83% identity between amphibians and sharks and 75% identity between mammals and sharks). 4. NPY and PYY share 70-80% identity in most species. 5. Both NPY and PYY were present in the early vertebrate ancestor because both peptides have been found in lampreys. 6. The tissue distribution appears to have been largely conserved between phyla, except that PYY has more widespread neuronal expression in lower vertebrates. 7. Pancreatic polypeptide has diverged considerably among tetrapods leaving only 50% identity between mammals, birds/reptiles and frogs. 8. Several lines of evidence suggest that the PP gene arose by duplication of the PYY gene, probably in the early evolution of the tetrapods. 9. The pancreatic peptide PY found in anglerfish and daddy sculpin may have resulted from an independent duplication of the PYY gene. 10. The relationships of the recently described mollusc and worm peptides NPF and PYF with the NPY family still appear unclear. PMID:7905810

  12. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters.

    PubMed

    Paul, Matthew J; Freeman, David A; Park, Jin Ho; Dark, John

    2005-09-01

    Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb < 32 degrees C for at least 30 min). Neither the incidence of torpor nor its depth or duration was related to NPY dose. Both likelihood and magnitude of response varied within animals on different test days. NPY decreased 24-h food intake and this was exaggerated in the animals reaching criterion for torpor; the decrease in food intake was positively correlated with the magnitude of the decrease in Tb. The mild hypothermia seen in homeothermic laboratory rats after NPY injected ICV is exaggerated, often greatly, in the heterothermic Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.

  13. Genetic comparison of seizure control by norepinephrine and neuropeptide Y.

    PubMed

    Weinshenker, D; Szot, P; Miller, N S; Rust, N C; Hohmann, J G; Pyati, U; White, S S; Palmiter, R D

    2001-10-01

    Epilepsy is a disease of neuronal hyperexcitability, and pharmacological and genetic studies have identified norepinephrine (NE) and neuropeptide Y (NPY) as important endogenous regulators of neuronal excitability. Both transmitters signal through G-protein-coupled receptors, are expressed either together or separately, and are abundant in brain regions implicated in seizure generation. NPY knock-out (NPY KO) and dopamine beta-hydroxylase knock-out (DBH KO) mice that lack NE are susceptible to seizures, and agonists of NE and NPY receptors protect against seizures. To examine the relative contributions of NE and NPY to neuronal excitability, we tested Dbh;Npy double knock-out (DKO) mice for seizure sensitivity. In general, DBH KO mice were much more seizure-sensitive than NPY KO mice and had normal NPY expression, demonstrating that an NPY deficiency did not contribute to the DBH KO seizure phenotype. DKO mice were only slightly more sensitive than DBH KO mice to seizures induced by kainic acid, pentylenetetrazole, or flurothyl, although DKO mice were uniquely prone to handling-induced seizures. NPY contributed to the seizure phenotype of DKO mice at high doses of convulsant agents and advanced stages of seizures. These data suggest that NE is a more potent endogenous anticonvulsant than NPY, and that NPY has the greatest contribution under conditions of extreme neuronal excitability.

  14. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    SciTech Connect

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ({sup 3}H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ({sup 3}H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake.

  15. Ant Trail Pheromone Biosynthesis Is Triggered by a Neuropeptide Hormone

    PubMed Central

    Choi, Man-Yeon; Vander Meer, Robert K.

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  16. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone.

    PubMed

    Choi, Man-Yeon; Vander Meer, Robert K

    2012-01-01

    Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN) was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200) have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG) of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia) or PBAN receptor gene (in DG) expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta. PMID:23226278

  17. The adipokinetic neuropeptide of Mantodea. Sequence elucidation and evolutionary relationships.

    PubMed

    Gäde, G

    1991-03-01

    A neuropeptide with adipokinetic activity in Locusta migratoria and the mantid Empusa pennata, and hypertrehalosaemic activity in Periplaneta americana, was isolated by reversed-phase high performance liquid chromatography from corpora cardiaca of the mantids E. pennata and Sphodromantis sp. After brief enzymatic digestion by 5-oxoprolylpeptidase the primary structure of the peptide of each species was determined by pulsed-liquid phase sequencing employing Edman degradation. The C-terminus of both peptides was blocked, as indicated by the lack of digestion with carboxypeptidase A. The peptides of both species were identical: a blocked, uncharged octapeptide with the sequence L-Glu-Val-Asn-Phe-Thr-Pro-Asn-Trp-NH2. The peptide is now called mantid adipokinetic hormone (Emp-AKH). The synthetic peptide was chromatographically indistinguishable from the natural compound and increased blood lipids in locusts and blood carbohydrates in cockroaches when administered in low doses. The structural features clearly define the peptide as a novel member of the large AKH/RPCH-family of peptides. Seven amino-acid residues are at identical positions in Emp-AKH when compared with the adipokinetic hormone of a dragonfly (Lia-AKH) and the hypertrehalosaemic hormone I from the American cockroach (Pea-CAH-I). Evolutionary relationships to other insect orders are discussed.

  18. Neuropeptides degranulate serous cells of ferret tracheal glands

    SciTech Connect

    Gashi, A.A.; Borson, D.B.; Finkbeiner, W.E.; Nadel, J.A.; Basbaum, C.B.

    1986-08-01

    To determine whether serous or mucous cells in tracheal submucosal glands respond to the neuropeptides substance P (SP) and vasoactive intestinal peptide (VIP). The authors studied the peptide-induced changes in gland cell morphology accompanying release of TVSO4-labeled macromolecules from tracheal explants of ferrets. Explants were labeled for 1 h in medium containing TVSO4 and washed for 3.5 additional hours. Base-line secretion in the absence of drugs declined between 1.5 and 3.5 h after the pulse. Between 2.5 and 3.5 h, the average percent change in counts per minute recovered per sample period was not significantly different from zero. Substance P and VIP added 4 h after labeling each increased greatly the release of TVSO4-labeled macromolecules above base line. Bethanechol, a muscarinic-cholinergic agonist, increased secretion by an average of 142% above base line. Light and electron microscopy of the control tissues showed glands with narrow lumens and numerous secretory granules. Glands treated with SP or VIP had enlarged lumens and the serous cells were markedly degranulated. These phenomena were documented by morphometry and suggest that SP and VIP cause secretion from glands at least partially by stimulating exocytosis from serous cells.

  19. Phylogenetic appearance of Neuropeptide S precursor proteins in tetrapods

    PubMed Central

    Reinscheid, Rainer K.

    2007-01-01

    Sleep and emotional behavior are two hallmarks of vertebrate animal behavior, implying that specialized neuronal circuits and dedicated neurochemical messengers may have been developed during evolution to regulate such complex behaviors. Neuropeptide S (NPS) is a newly identified peptide transmitter that activates a typical G protein-coupled receptor. Central administration of NPS produces profound arousal, enhances wakefulness and suppresses all stages of sleep. In addition, NPS can alleviate behavioral responses to stress by producing anxiolytic-like effects. A bioinformatic analysis of current genome databases revealed that the NPS peptide precursor gene is present in all vertebrates with the exception of fish. A high level of sequence conservation, especially of aminoterminal structures was detected, indicating stringent requirements for agonist-induced receptor activation. Duplication of the NPS precursor gene was only found in one out of two marsupial species with sufficient genome coverage (Monodelphis domestica; opossum), indicating that the duplicated opossum NPS sequence might have arisen as an isolated event. Pharmacological analysis of both Monodelphis NPS peptides revealed that only the closely related NPS peptide retained agonistic activity at NPS receptors. The duplicated precursor might be either a pseudogene or could have evolved different receptor selectivity. Together, these data show that NPS is a relatively recent gene in vertebrate evolution whose appearance might coincide with its specialized physiological functions in terrestrial vertebrates. PMID:17293003

  20. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  1. Mapping of Neuropeptides in the Crustacean Stomatogastric Nervous System by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve ( stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  2. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry.

    PubMed

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  3. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine.

    PubMed Central

    Minth, C D; Bloom, S R; Polak, J M; Dixon, J E

    1984-01-01

    In vitro translation of the RNA isolated from a human pheochromocytoma demonstrated that this tumor contained a mRNA encoding a 10.5-kDa protein, which was immunoprecipitated with antiserum raised against porcine neuropeptide Y. Double-stranded cDNA was synthesized from total RNA and inserted into the Pst I site of pUC8. Transformants containing the neuropeptide Y cDNA were identified using the mixed hybridization probe d[A-(A,G)-(A,G)-T-T-(A,G,T)-A-T-(A,G)-T-A-(A,G)-T-G]. The probe sequences were based on the known amino acid sequence, His-Tyr-Ile-Asn-Leu, found in porcine neuropeptide Y. The nucleotide sequence of the cDNA was determined and contained 86 and 174 bases in the 5'- and 3'-untranslated regions, respectively. The coding sequence consisted of 291 bases, suggesting a precursor to neuropeptide Y that was 97 amino acids long (10,839 Da). The deduced amino acid sequence of the precursor suggested that there were at least two sites of proteolytic processing, which would generate three peptides having 28 (signal peptide), 36 (human neuropeptide Y), and 30 (COOH-terminal peptide) amino acid residues. A partial NH2-terminal sequence obtained by Edman degradation of the immunoprecipitated in vitro translation product identified the positions of methionine and leucine in the first 30 residues of the prepropeptide. A highly sensitive single-stranded complementary mRNA hybridization probe specific for neuropeptide Y mRNA was prepared using the bacteriophage SP6 promoter. This probe was used to identify a mRNA corresponding to neuropeptide Y of approximately 800 bases. Images PMID:6589611

  4. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    PubMed

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process. PMID:25464890

  5. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models.

    PubMed

    Shannon, Harlan E; Yang, Lijuan

    2004-01-01

    Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.

  6. Invertebrates as model organisms for research on aging biology

    PubMed Central

    Murthy, Mahadev; Ram, Jeffrey L.

    2015-01-01

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity. PMID:26241448

  7. Piscicides and invertebrates: after 70 years, does anyone really know?

    USGS Publications Warehouse

    Vinson, M.R.; Dinger, E.C.; Vinson, D.K.

    2010-01-01

    The piscicides rotenone and antimycin have been used for more than 70 years to manage fish populations by eliminating undesirable fish species. The effects of piscicides on aquatic invertebrate assemblages are considered negligible by some and significant by others. This difference of opinion has created contentious situations and delayed native fish restoration projects. We review the scientific evidence and report that short-term ( 1 year) impacts are largely unknown. Recovery of invertebrate assemblages following treatments ranged from a few months for abundances of common taxa to several years for rarer taxa. Variation in reported effects was primarily due to natural variation among species and habitats and a lack of adequate pre- and post-treatment sampling which prevents determining the true impacts to invertebrate assemblages. The factors most likely to influence impacts and recovery of aquatic invertebrate assemblages following piscicide treatments are: (1) concentration, duration, and breadth of the piscicide treatment; (2) invertebrate morphology and life history characteristics, including surface area to volume ratios, type of respiration organs, generation time, and propensity to disperse; (3) refugia presence; and (4) distance from colonization sources.

  8. Invertebrates that aestivate in dry basins of Carolina bay wetlands.

    SciTech Connect

    Dietz-Brantley, Susan, E.; Taylor, Barbera, E.; Batzer, Darold, P.; DeBiase, Adrienne, E.

    2002-12-01

    Dietz-Brantley, S.E., B.E. Taylor, D.P. Batzer, and A.E. DeBiase. 2002. Invertebrates that aestivate in dry basins of carolina bay wetlands. Wetlands 22(4):767-775. Water levels fluctuate widely in Carolina bay wetlands and most dry periodically. Aquatic organisims inhabiting these wetlands have the capacity to either resist desication or to recolonize newly flooded habitats. The objective of this study was to determine which invertebrates aestivate in the soil of dry Carolina bays and to describe how differences in habitat affect the composition of aestivating invertebrates. Eight Carolina bays located on the Savannah River Site (SRS) near Aiken, South Carolina, USA were examined for this study. Although all of the wetlands dried seasonally, three of the wetlands were relatively wet (inundated 47-92% of the year on average), one was intermediate, and four were relatively dry (inundated 20% of the year on average). Sections of soil were removed from each bay during August and November when all sites were dry, placed into tubs, flooded, and covered with fine mesh. Invertebrates were sampled from the water biweekly for four weeks. Invertebrate assemblages were contrasted between naturally inundated bays and rehydrated samples, wetter and drier bays, August and November collections, and remnant ditches and the main basins.

  9. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    PubMed

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  10. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption.

    PubMed

    André, A; Ruivo, R; Gesto, M; Castro, L Filipe C; Santos, M M

    2014-11-01

    Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.

  11. Key factors for the emergence of collective decision in invertebrates.

    PubMed

    Jeanson, Raphaël; Dussutour, Audrey; Fourcassié, Vincent

    2012-01-01

    In many species of group living invertebrates, in particular arthropods, collective decisions can emerge from the combined actions of individuals and the direct or indirect interactions between individuals. These decisions allow groups of individuals to respond quickly and accurately to changes that occur in their environment. Examples of such decisions are found in a variety of invertebrate taxa and in many different contexts, e.g., exploring a new territory, foraging for food, finding a suitable location where to aggregate or to establish a nest, defending oneself against predators, etc. In this paper we review the collective decisions that have been documented in different invertebrate taxa where individuals are known to live temporarily or permanently in social or gregarious groups. We first present some simple examples of collective decisions involving the choice between two alternatives. We then define the fundamental rules required for these collective decisions to emerge throughout the invertebrate taxon, from simple organisms such as caterpillars, to animals endowed with highly developed perceptive and cognitive capacities such as ants and bees. The presentation of these rules gives us the opportunity to illustrate one of the pitfalls of the study of collective choice in animals by showing through computer simulations how a choice between two alternatives can be misinterpreted as the result of the action of self-organized mechanisms. In the second part, we discuss the peculiarities of collective decisions in invertebrates, their properties, and characteristics. We conclude by discussing the issue of individual complexity in collective decision-making process.

  12. A thesaurus for soil invertebrate trait-based approaches.

    PubMed

    Pey, Benjamin; Laporte, Marie-Angélique; Nahmani, Johanne; Auclerc, Apolline; Capowiez, Yvan; Caro, Gaël; Cluzeau, Daniel; Cortet, Jérôme; Decaëns, Thibaud; Dubs, Florence; Joimel, Sophie; Guernion, Muriel; Briard, Charlène; Grumiaux, Fabien; Laporte, Baptiste; Pasquet, Alain; Pelosi, Céline; Pernin, Céline; Ponge, Jean-François; Salmon, Sandrine; Santorufo, Lucia; Hedde, Mickaël

    2014-01-01

    Soil invertebrates are known to be much involved in soil behaviour and therefore in the provision of ecosystem services. Functional trait-based approaches are methodologies which can be used to understand soil invertebrates' responses to their environment. They (i) improve the predictions and (ii) are less dependent on space and time. The way traits have been used recently has led to misunderstandings in the integration and interpretation of data. Trait semantics are especially concerned. The aim of this paper is to propose a thesaurus for soil invertebrate trait-based approaches. T-SITA, an Internet platform, is the first initiative to deal with the semantics of traits and ecological preferences for soil invertebrates. It reflects the agreement of a scientific expert community to fix semantic properties (e.g. definition) of approximately 100 traits and ecological preferences. In addition, T-SITA has been successfully linked with a fully operational database of soil invertebrate traits. Such a link enhances data integration and improves the scientific integrity of data. PMID:25310431

  13. Key Factors for the Emergence of Collective Decision in Invertebrates

    PubMed Central

    Jeanson, Raphaël; Dussutour, Audrey; Fourcassié, Vincent

    2012-01-01

    In many species of group living invertebrates, in particular arthropods, collective decisions can emerge from the combined actions of individuals and the direct or indirect interactions between individuals. These decisions allow groups of individuals to respond quickly and accurately to changes that occur in their environment. Examples of such decisions are found in a variety of invertebrate taxa and in many different contexts, e.g., exploring a new territory, foraging for food, finding a suitable location where to aggregate or to establish a nest, defending oneself against predators, etc. In this paper we review the collective decisions that have been documented in different invertebrate taxa where individuals are known to live temporarily or permanently in social or gregarious groups. We first present some simple examples of collective decisions involving the choice between two alternatives. We then define the fundamental rules required for these collective decisions to emerge throughout the invertebrate taxon, from simple organisms such as caterpillars, to animals endowed with highly developed perceptive and cognitive capacities such as ants and bees. The presentation of these rules gives us the opportunity to illustrate one of the pitfalls of the study of collective choice in animals by showing through computer simulations how a choice between two alternatives can be misinterpreted as the result of the action of self-organized mechanisms. In the second part, we discuss the peculiarities of collective decisions in invertebrates, their properties, and characteristics. We conclude by discussing the issue of individual complexity in collective decision-making process. PMID:22933990

  14. Effects of loratadine and cetirizine on serum levels of neuropeptides in patients with chronic urticaria.

    PubMed

    Başak, Pinar Y; Vural, Huseyin; Kazanoglu, Oya O; Erturan, Ijlal; Buyukbayram, Halil I

    2014-12-01

    H1-receptor inhibiting drugs, namely loratadine and cetirizine, were frequently used in treatment of chronic urticaria. Urticarial weal and flare reactions, a neurogenic reflex due to neuropeptides, were reported to be more effectively inhibited by cetirizine than loratadine. The aim of this study was to determine and compare the effects of systemic loratadine and cetirizine treatments on serum levels of selected neuropeptides in chronic urticaria. Treatment groups of either systemic loratadine or cetirizine (10 mg/d), consisting of 16 and 22 patients, respectively, were included. Serum levels of stem cell factor (SCF), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), and substance P (SP) were detected before and after one week of treatment with antihistamines. Serum NPY and VIP levels were significantly decreased when compared before and after treatment with antihistamines (P < 0.001 and P < 0.01, respectively). SCF and NGF values were also decreased after antihistamine treatment (P < 0.05). Post-treatment levels of CGRP were significantly higher compared with pretreatment values, while no significant difference was detected between pre and post treatment levels of SP. Cetirizine was significantly more effective than loratadine on lowering serum levels of SCF among the other neuropeptides. Systemic loratadine and cetirizine treatments in patients with chronic urticaria precisely caused variations in serum levels of neuropeptides. The predominant effect of cetirizine compared to loratadine on reducing serum SCF levels might be explained with anti-inflammatory properties of cetirizine.

  15. Antimicrobial activity of Substance P and Neuropeptide Y against laboratory strains of bacteria and oral microorganisms.

    PubMed

    Hansen, Christopher J; Burnell, Kindra K; Brogden, Kim A

    2006-08-01

    Infection and inflammation of mucosal tissue may induce the production of neuropeptides, specifically Substance P and Neuropeptide Y. Since these neuropeptides are similar to antimicrobial peptides in their amino acid composition, amphipathic design, cationic charge, and size, we wanted to determine if they had antimicrobial activity against a panel of common bacteria and oral microorganisms using the radial diffusion assay. Neuropeptide Y and Substance P had antimicrobial activity against E. coli (MIC 20.6+/-5.5 microg/ml SEM and 71.5+/-15 SEM microg/ml, respectively), but did not have activity against laboratory strains of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Serratia marcescens (MIC>500 microg/ml) nor oral strains of Streptococcus mutans, Candida albicans, and Actinobacillus actinomycetemcomitans (MIC>500 microg/ml). While Substance P and Neuropeptide Y did not have direct antimicrobial activity against the microorganisms tested, they still may stimulate local epithelial cells to produce other innate immune factors like defensins and cathelicidins. However, this remains to be determined.

  16. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  17. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  18. Calcium signals and oocyte maturation in marine invertebrates.

    PubMed

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates. PMID:26679945

  19. Pro-oxidant and antioxidant processes in aquatic invertebrates.

    PubMed

    Canesi, Laura

    2015-03-01

    Most aquatic organisms behave as conformers with respect to environmental variables, including changes in O2 availability. Aquatic species that show tolerance to hypoxia/anoxia or hyperoxia can be excellent models for investigating physiological and biochemical adaptations that deal with changing O2 and consequent changes in metabolic rate and production of reactive oxygen species (ROS). Here, I summarize selected data on ROS production and antioxidant defenses in a model marine invertebrate, the bivalve Mytilus, under different environmental and physiological conditions. An example of other bivalves adapted to particular environments (the Antarctic Sea) is also reported. These studies contributed to the knowledge on pro-oxidant and antioxidant processes in aquatic invertebrates from comparative and environmental perspectives. A common role for metallothioneins in antioxidant protection in mammals and aquatic invertebrates is underlined in different conditions, from human disease to responses to environmental exposure to heavy metals.

  20. Sequence diversity and evolution of antimicrobial peptides in invertebrates.

    PubMed

    Tassanakajon, Anchalee; Somboonwiwat, Kunlaya; Amparyup, Piti

    2015-02-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.

  1. The genetics of host-virus coevolution in invertebrates.

    PubMed

    Obbard, Darren J; Dudas, Gytis

    2014-10-01

    Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.

  2. Experimental evidence of pollination in marine flowers by invertebrate fauna

    PubMed Central

    van Tussenbroek, Brigitta I.; Villamil, Nora; Márquez-Guzmán, Judith; Wong, Ricardo; Monroy-Velázquez, L. Verónica; Solis-Weiss, Vivianne

    2016-01-01

    Pollen transport by water-flow (hydrophily) is a typical, and almost exclusive, adaptation of plants to life in the marine environment. It is thought that, unlike terrestrial environments, animals are not involved in pollination in the sea. The male flowers of the tropical marine angiosperm Thalassia testudinum open-up and release pollen in mucilage at night when invertebrate fauna is active. Here we present experimental evidence that, in the absence of water-flow, these invertebrates visit the flowers, carry and transfer mucilage mass with embedded pollen from the male flowers to the stigmas of the female flowers. Pollen tubes are formed on the stigmas, indicating that pollination is successful. Thus, T. testudinum has mixed abiotic–biotic pollination. We propose a zoobenthophilous pollination syndrome (pollen transfer in the benthic zone by invertebrate animals) which shares many characteristics with hydrophily, but flowers are expected to open-up during the night. PMID:27680661

  3. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    PubMed

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  4. Invertebrates as a source of emerging human pathogens.

    PubMed

    Waterfield, Nicholas R; Wren, Brendan W; Ffrench-Constant, Richard H

    2004-10-01

    Despite their importance, little is known about the origins of many emerging human pathogens. However, given the age and current predominance of invertebrates, it is likely that bacteria-invertebrate interactions are not only a present source of human pathogens but have also shaped their evolution. Pathogens of invertebrate and unicellular organisms represent an extensive reservoir of bacterial strains equipped with virulence factors that evolved to overcome the innate immune responses of their hosts. This reservoir might represent a source of new human pathogenic strains and might also foster the spread of novel virulence factors into existing human commensal or pathogenic bacteria. This article examines the available evidence for this concept by examining pairs of closely related bacteria, one of which is benign, but insect associated, and one of which is a human pathogen.

  5. From bouncy legs to poisoned arrows: elastic movements in invertebrates.

    PubMed

    Patek, S N; Dudek, D M; Rosario, M V

    2011-06-15

    Elastic mechanisms in the invertebrates are fantastically diverse, yet much of this diversity can be captured by examining just a few fundamental physical principles. Our goals for this commentary are threefold. First, we aim to synthesize and simplify the fundamental principles underlying elastic mechanisms and show how different configurations of basic building blocks can be used for different functions. Second, we compare single rapid movements and rhythmic movements across six invertebrate examples - ranging from poisonous cnidarians to high-jumping froghoppers - and identify remarkable functional properties arising from their underlying elastic systems. Finally, we look to the future of this field and find two prime areas for exciting new discoveries - the evolutionary dynamics of elastic mechanisms and biomimicry of invertebrate elastic materials and mechanics. PMID:21613512

  6. Competition of Invertebrates Mixed Culture in the Closed Aquatic System

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The study considers the experimental model of interactions between invertebrates (the cilates Paramecium caudatum, Paramecium bursaria and the rotifers Brachionis plicatilis) in the closed aquatic system. The infusoria P.caudatum can feed on yeast, bacteria and chlorella; in this experiment growth and reproduction were maintained by bacteria only. The P.bursaria - zoochlorella endosymbiosis is a natural model of a simple biotic cycle. P.bursaria consumes glucose and oxygen released by zoochlorella in the process of biosynthesis and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. The rotifers Br. plicatilis can consume algae, bacteria and detritus. Thus in experiment with the mixed culture of invertebrates they can use different food sources. However with any initial percentage of the invertebrates the end portion of P.bursaria reaches 90-99

  7. Land Use and Hydrogeological Characteristics Influence Groundwater Invertebrate Communities.

    PubMed

    Tione, María Laura; Bedano, José Camilo; Blarasin, Mónica

    2016-08-01

    We examine the influence of land use and hydrogeological characteristics on the abundance, composition and structure of groundwater invertebrate communities in a loessic aquifer from Argentina. Seven wells, selected according to surrounding land use and hydrogeological characteristics, were sampled twice. Groundwater was characterized as sodium bicarbonate, bicarbonate sulfate or sulfate type. NO3(-) was detected in all samples. Land use in the area surrounding the well, unsaturated zone thickness and geochemical characteristics of groundwater influenced the abundance, composition and community structure of groundwater invertebrates. Copepoda, Oligochaeta, Cladocera, Ostracoda and Amphipoda were highly influenced by land use, particularly by point pollution sources that produced higher abundance and changes in taxonomic composition. The lowest invertebrate abundance was observed at the wells situated in areas with the thickest unsaturated zone. Groundwater salinity and geochemical type influenced the presence of certain species, particularly Stygonitocrella sp. PMID:27456146

  8. Calcium signals and oocyte maturation in marine invertebrates.

    PubMed

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates.

  9. Gene expression and pharmacology of nematode NLP-12 neuropeptides.

    PubMed

    McVeigh, Paul; Leech, Suzie; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2006-05-31

    This study examines the biology of NLP-12 neuropeptides in Caenorhabditis elegans, and in the parasitic nematodes Ascaris suum and Trichostrongylus colubriformis. DYRPLQFamide (1 nM-10 microM; n > or =6) produced contraction of innervated dorsal and ventral Ascaris body wall muscle preparations (10 microM, 6.8+/-1.9 g; 1 microM, 4.6+/-1.8 g; 0.1 microM, 4.1+/-2.0 g; 10 nM, 3.8+/-2.0 g; n > or =6), and also caused a qualitatively similar, but quantitatively lower contractile response (10 microM, 4.0+/-1.5 g, n=6) on denervated muscle strips. Ovijector muscle displayed no measurable response (10 microM, n=5). nlp-12 cDNAs were characterised from A. suum (As-nlp-12) and T. colubriformis (Tc-nlp-12), both of which show sequence similarity to C. elegans nlp-12, in that they encode multiple copies of -LQFamide peptides. In C. elegans, reverse transcriptase (RT)-PCR analysis showed that nlp-12 was transcribed throughout the life cycle, suggesting that DYRPLQFamide plays a constitutive role in the nervous system of this nematode. Transcription was also identified in both L3 and adult stages of T. colubriformis, in which Tc-nlp-12 is expressed in a single tail neurone. Conversely, As-nlp-12 is expressed in both head and tail tissue of adult female A. suum, suggesting species-specific differences in the transcription pattern of this gene.

  10. Gut Lymphocyte Phenotype Changes after Parenteral Nutrition and Neuropeptide Administration

    PubMed Central

    Jonker, Mark A; Heneghan, Aaron F; Fechner, John H; Pierre, Joseph F; Sano, Yoshifumi; Lan, Jinggang; Kudsk, Kenneth A

    2016-01-01

    STRUCTURED ABSTRACT Objective Define gut associated lymphocyte phenotype (GALT) changes with parenteral nutrition (PN) and PN with bombesin (BBS). Summary Background Data PN reduces respiratory tract (RT) & GALT Peyer’s patch and lamina propria (LP) lymphocytes, lowers gut and RT IgA levels and destroys established RT antiviral & antibacterial immunity. BBS, an enteric nervous system (ENS) neuropeptide, reverses PN-induced IgA and RT immune defects. Methods Exp 1: IV-cannulated ICR mice received Chow, PN or PN + BBS injections for 5 days. LSR-II flow cytometer analyzed PP and LP isolated lymphocytes for homing phenotypes (L-selectin+ & LPAM-1+) and state of activation (CD25+, CD44+) in T (CD3+) cell subsets (CD4+ & CD8+) along with homing phenotype (L-selectin+ & LPAM-1+) in naive B (IgD+) and antigen-activated (IgD− or IgM+) B (CD45R/B220+) cells. Exp 2: Following initial experiment 1 protocol, LP T regulatory (Treg) cell phenotype was evaluated by Foxp3 expression. Results Exp 1: PN significantly reduced LP 1) CD4+CD25+ (activated) and 2) CD4+CD25+LPAM-1+ (activated cells homed to LP) T cells while PN-BBS assimilated Chow levels. PN significantly reduced LP 1) IgD+ (naïve), 2) IgD-LPAM+ (antigen-activated homed to LP) and CD44+ memory B cells while PN-BBS assimilated Chow levels. Exp 2: PN significantly reduced LP CD4+CD25+Foxp3+ Treg cells compared to Chow mice while PN+BBS assimilated Chow levels. Conclusions PN reduces LP activated and regulatory T cells as well as naïve and memory B cells. BBS addition to PN maintains these cell phenotypes, demonstrating the intimate involvement of the ENS in mucosal immunity. PMID:25563877

  11. Limited neuropeptide Y precursor processing in unfavourable metastatic neuroblastoma tumours.

    PubMed

    Bjellerup, P; Theodorsson, E; Jörnvall, H; Kogner, P

    2000-07-01

    Neuropeptide Y (NPY) is found at high concentrations in neural crest-derived tumours and has been implicated as a regulatory peptide in tumour growth and differentiation. Neuroblastomas, ganglioneuromas and phaeochromocytomas with significant concentrations of NPY-like immunoreactivity were investigated for different molecular forms of NPY and for significance of proNPY processing. Gel-permeation chromatography identified intact NPY (1-36) in all tumours, whereas proNPY (69 amino acids) was detected only in control adrenal tissue and malignant neuroblastomas. Purification of NPY-like immunoreactivity in tumour extracts and structural characterization revealed that both NPY (1-36) and the truncated form NPY (3-36) was present. The degree of processing of proNPY to NPY in tumour tissue was lower in advanced neuroblastomas with regional or metastatic spread (stage 3 and 4) (n = 6), (41%, 12-100%, median, range), compared to the less aggressive stage 1, 2 and 4S tumours (n = 12), (93%; 69-100%), (P= 0.012). ProNPY processing of less than 50% was correlated with poor clinical outcome (P = 0.004). MYCN oncogene amplification was also correlated to a low degree of proNPY processing (P = 0.025). In summary, a low degree of proNPY processing was correlated to clinical advanced stage and poor outcome in neuroblastomas. ProNPY/NPY processing generated molecular forms of NPY with known differences in NPY-receptor selectivity, implicating a potential for in vivo modulation of NPY-like effects in tumour tissue.

  12. The hypothalamic neuropeptide FF network is impaired in hypertensive patients

    PubMed Central

    Goncharuk, Valeri D; Buijs, Ruud M; Jhamandas, Jack H; Swaab, Dick F

    2014-01-01

    Background The human hypothalamus contains the neuropeptide FF (NPFF) neurochemical network. Animal experiments demonstrated that NPFF is implicated in the central cardiovascular regulation. We therefore studied expression of this peptide in the hypothalamus of individuals who suffered from essential hypertension (n = 8) and died suddenly due to acute myocardial infarction (AMI), and compared to that of healthy individuals (controls) (n = 6) who died abruptly due to mechanical trauma of the chest. Methods The frozen right part of the hypothalamus was cut coronally into serial sections of 20 μm thickness, and each tenth section was stained immunohistochemically using antibody against NPFF. The central section through each hypothalamic nucleus was characterized by the highest intensity of NPFF immunostaining and thus was chosen for quantitative densitometry. Results In hypertensive patients, the area occupied by NPFF immunostained neuronal elements in the central sections through the suprachiasmatic nucleus (SCh), paraventricular hypothalamic nucleus (Pa), bed nucleus of the stria terminalis (BST), perinuclear zone (PNZ) of the supraoptic nucleus (SON), dorso- (DMH), ventromedial (VMH) nuclei, and perifornical nucleus (PeF) was dramatically decreased compared to controls, ranging about six times less in the VMH to 15 times less in the central part of the BST (BSTC). The NPFF innervation of both nonstained neuronal profiles and microvasculature was extremely poor in hypertensive patients compared to control. Conclusions The decreased NPFF expression in the hypothalamus of hypertensive patients might be a cause of impairment of its interaction with other neurochemical systems, and thereby might be involved in the pathogenesis of the disease. PMID:25161813

  13. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony

    PubMed Central

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A.; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J.; Petzold, Linda R.; Herzog, Erik D.

    2013-01-01

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light–dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag. PMID:24167276

  14. Effects of a Skin Neuropeptide (Substance P) on Cutaneous Microflora

    PubMed Central

    Mijouin, Lily; Hillion, Mélanie; Ramdani, Yasmina; Jaouen, Thomas; Duclairoir-Poc, Cécile; Follet-Gueye, Marie-Laure; Lati, Elian; Yvergnaux, Florent; Driouich, Azzedine; Lefeuvre, Luc; Farmer, Christine; Misery, Laurent; Feuilloley, Marc G. J.

    2013-01-01

    Background Skin is the largest human neuroendocrine organ and hosts the second most numerous microbial population but the interaction of skin neuropeptides with the microflora has never been investigated. We studied the effect of Substance P (SP), a peptide released by nerve endings in the skin on bacterial virulence. Methodology/Principal Findings Bacillus cereus, a member of the skin transient microflora, was used as a model. Exposure to SP strongly stimulated the cytotoxicity of B. cereus (+553±3% with SP 10−6 M) and this effect was rapid (<5 min). Infection of keratinocytes with SP treated B. cereus led to a rise in caspase1 and morphological alterations of the actin cytoskeleton. Secretome analysis revealed that SP stimulated the release of collagenase and superoxide dismutase. Moreover, we also noted a shift in the surface polarity of the bacteria linked to a peel-off of the S-layer and the release of S-layer proteins. Meanwhile, the biofilm formation activity of B. cereus was increased. The Thermo unstable ribosomal Elongation factor (Ef-Tu) was identified as the SP binding site in B. cereus. Other Gram positive skin bacteria, namely Staphylococcus aureus and Staphylococcus epidermidis also reacted to SP by an increase of virulence. Thermal water from Uriage-les-Bains and an artificial polysaccharide (Teflose®) were capable to antagonize the effect of SP on bacterial virulence. Conclusions/Significance SP is released in sweat during stress and is known to be involved in the pathogenesis of numerous skin diseases through neurogenic inflammation. Our study suggests that a direct effect of SP on the skin microbiote should be another mechanism. PMID:24250813

  15. Hypothalamic neuropeptide systems and anticipatory weight change in Siberian hamsters.

    PubMed

    Adam, C L; Mercer, J G

    2001-01-01

    Seasonal animals are able both to programme changes in body weight in response to annual changes in photoperiod (anticipatory regulation) and to correct changes in body weight caused by imposed energetic demand (compensatory regulation). Experimental evidence from the Siberian hamster suggests that seasonally appropriate body weight is continually reset according to photoperiodic history, even when actual body weight is driven away from this target weight by manipulation of energy intake. These characteristics constitute the "sliding set point" of seasonal body weight regulation. To define the mechanisms and molecules underlying anticipatory body weight regulation, we are investigating the involvement of hypothalamic systems with an established role in the compensatory defence of body weight. Weight loss or restricted growth induced by short days (SD) results in low circulating leptin compared with long day (LD) controls. However, this chronic low leptin signal is read differently from acute low leptin resulting from food deprivation; leptin receptor gene expression in the hypothalamic arcuate nucleus (ARC) is lower in SD, whereas food deprivation increases expression levels, suggesting changes in sensitivity to leptin feedback. SD alterations in mRNA levels for a number of hypothalamic neuropeptide and receptor genes appear counter-intuitive for a SD body weight trajectory. However, early increases in ARC cocaine-and amphetamine-regulated transcript (CART) gene expression in SDs could be involved in driving body weight loss or growth restriction. The sites of photoperiod interaction with energy balance neuronal circuitry and the neurochemical encoding of body weight set point require full characterisation. Study of anticipatory regulation in seasonal animals offers new insight into body weight regulation across mammalian species, including man.

  16. A generalized model for estimating the energy density of invertebrates

    USGS Publications Warehouse

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED  =  22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  17. Predicting subtle behavioral responses of invertebrates to soil contaminants

    SciTech Connect

    Donkin, S.G.

    1995-12-31

    At concentration levels well below those which cause death and injury to soil invertebrates, a toxic chemical plume may yet effectively damage a soil ecosystem by triggering avoidance behavior among sensitive invertebrates as they move along the concentration gradient. The result may be a soil ecosystem lacking the benefits of effective nutrient cycling and mineralization which a thriving invertebrate population provides. While determining actual detection limits of invertebrates for chemical gradients in soils is experimentally difficult, theoretical calculations have suggested that such limits may be extremely low, and hence many organisms may sense and avoid concentrations of chemicals far below levels commonly considered acceptable. The minimum gradient (G) that can be detected by a receptor depends on the receptor radius (R), the chemical concentration (C), the diffusion constant of the chemical (D), the velocity of the organism (v), and the time over which the receptor integrates the chemical signal (t). In addition, the characteristics of that gradient are determined by interactions between the chemical and the soil particles (sorption/desorption), and advection through the pore spaces. The example of lead (Pb), a neurotoxic metal with demonstrated behavioral effects on the free-living nematode Caenorhabditis elegans, is used to model a chemical migrating through a soil. Based on experimentally determined Pb concentrations which elicited avoidance behavior in nematodes, and sorption characteristics of defined Pb-soil systems, the minimum detectable gradient (G) produced by a solubilized Pb plume in several soils was modeled. The results predict maximum allowable Pb levels in a soil if a healthy invertebrate community is desired, and suggest areas for further research into the subtle behavioral effects of environmental toxicants ore sensitive invertebrates.

  18. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  19. The action of RFamide neuropeptides on molluscs, with special reference to the gastropods Buccinum undatum and Busycon canaliculatum.

    PubMed

    Moulis, Alexander

    2006-05-01

    The ever-growing RFamide neuropeptide superfamily has members in all animal phyla. Their effects in molluscs, on both smooth and cardiac muscle as well as on neurons, has been studied in detail. These neuropeptides exert a variety of functions: excitatory, inhibitory or even biphasic. Firstly, the literature on the excitatory effect of the RFamide neuropeptides on molluscan muscle and neurons has been reviewed, with greater emphasis and examples from the gastropods Buccinum undatum and Busycon canaliculatum. The peptides seem to be potent activators of contraction, sometimes generating slow tonic force and other times twitch activity. Secondly, the literature on the inhibitory effect of the superfamily has been reviewed. These peptides can exert an inhibitory effect, hyperpolarizing the cells rather than depolarizing them. Thirdly, the neuropeptides may play a variety of other roles, such as contributing to the regulation or maturation process of the animals. There have been cases recorded of RFamide neuropeptides acting as potent venoms in members of the Conus sp. The pathway of action of these multiple roles, their interaction with the parent neurotransmitters acetylcholine and serotonin, as well as the calcium dependency of the RFamide neuropeptides has been discussed, again with special reference to the above mentioned gastropods. A better understanding of the mode of action, the effects, and the importance of the RFamide neuropeptides on molluscan physiology and pharmacology has been attempted by reviewing the existing literature, recognizing the importance of the RFamide neuropeptide actions on molluscs.

  20. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line.

    PubMed

    Ankö, Minna-Liisa; Panula, Pertti

    2006-01-01

    Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.

  1. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    USGS Publications Warehouse

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  2. Meroterpenes from Marine Invertebrates: Structures, Occurrence, and Ecological Implications

    PubMed Central

    Menna, Marialuisa; Imperatore, Concetta; D’Aniello, Filomena; Aiello, Anna

    2013-01-01

    Meroterpenes are widely distributed among marine organisms; they are particularly abundant within brown algae, but other important sources include microorganisms and invertebrates. In the present review the structures and bioactivities of meroterpenes from marine invertebrates, mainly sponges and tunicates, are summarized. More than 300 molecules, often complex and with unique skeletons originating from intra- and inter-molecular cyclizations, and/or rearrangements, are illustrated. The reported syntheses are mentioned. The issue of a potential microbial link to their biosynthesis is also shortly outlined. PMID:23685889

  3. Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling.

    PubMed

    Cohen, Merav; Reale, Vincenzina; Olofsson, Birgitta; Knights, Andrew; Evans, Peter; de Bono, Mario

    2009-04-01

    Animals modify food-seeking behavior and metabolism according to perceived food availability. Here we show that, in the roundworm C. elegans, release of neuropeptides from interneurons that are directly postsynaptic to olfactory, gustatory, and thermosensory neurons coordinately regulates behavior and metabolism. Animals lacking these neuropeptides, encoded by the flp-18 gene, are defective in chemosensation and foraging, accumulate excess fat, and exhibit reduced oxygen consumption. Two G protein-coupled receptors of the NPY/RFamide family, NPR-4 and NPR-5, are activated by FLP-18 peptides in vitro and exhibit mutant phenotypes that recapitulate those of flp-18 mutants. Our data suggest that sensory input can coordinately regulate behavior and metabolism via NPY/RFamide-like receptors. They suggest that peptidergic feedback from interneurons regulates sensory neuron activity, and that at least some of this communication occurs extrasynaptically. Extrasynaptic neuropeptide signaling may greatly increase the computational capacity of neural circuits. PMID:19356718

  4. Lipid-Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer.

    PubMed

    Gopalakrishnan, Gopakumar; Lepetre, Sinda; Maksimenko, Andrei; Mura, Simona; Desmaële, Didier; Couvreur, Patrick

    2015-05-01

    Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides-Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration. It is demonstrated, on an experimental model of human pancreatic adenocarcinoma, that lipid conjugation of Met-Enk enhances its tumor suppression efficacy compared to its nonlipidated counterparts, both in vitro and in vivo. More strikingly, the in vivo studies show that a combination therapy with a reduced concentration of Gemcitabine has suppressed the tumor growth considerably even three weeks after the last treatment.

  5. Distribution of neuropeptides in the antennal lobes of male Spodoptera littoralis.

    PubMed

    Kromann, Sophie H; Hansson, Bill S; Ignell, Rickard

    2013-11-01

    Olfaction is an important sensory modality that regulates a plethora of behavioural expressions in insects. Processing of olfactory information takes place in the primary olfactory centres of the brain, namely the antennal lobes (ALs). Neuropeptides have been shown to be present in the olfactory system of various insect species. In the present study, we analyse the distribution of tachykinin, FMRFamide-related peptides, allatotropin, allatostatin, myoinhibitory peptides and SIFamide in the AL of the male Egyptian cotton leafworm, Spodoptera littoralis. Immunocytochemical analyses revealed that most neuropeptides were expressed in different subpopulations of AL neurons. Their arborisation patterns within the AL suggest a significant role of neuropeptide signalling in the modulation of AL processing. In addition to local interneurons, our analysis also revealed a diversity of extrinsic peptidergic neurons that connected the antennal lobe with other brain centres. Their distributions suggest that extrinsic neurons perform various types of context-related modulation. PMID:23955643

  6. Rapid preconcentration for liquid chromatography-mass spectrometry assay of trace level neuropeptides.

    PubMed

    Zhou, Ying; Mabrouk, Omar S; Kennedy, Robert T

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MS(n)) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MS(n) based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ∼30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MS(n) measurement of neuropeptides in vivo more practical.

  7. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    PubMed

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  8. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    PubMed

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  9. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide

    NASA Astrophysics Data System (ADS)

    Erwin, P. M.; Szmant, A. M.

    2010-12-01

    Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (<1 h) and resulted in >96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and

  10. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to post-fracture nociceptive sensitization

    PubMed Central

    Shi, Xiaoyou; Guo, Tian-zhi; Wei, Tzuping; Li, Wen-wu; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture induces exaggerated substance P (SP) and CGRP signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hindlimbs of rats similar to those seen in complex regional pain syndrome (CRPS). Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture induced exaggerated neuropeptide signaling up-regulates spinal inflammatory mediator expression, leading to post-fracture hindlimb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hindlimb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on post-fracture pain behavior and spinal inflammatory mediator expression. Hindlimb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, NGF) were observed at 4 weeks after fracture in rats. Fracture induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor and these mice had attenuated post-fracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or NGF each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling up-regulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of CRPS. PMID:25932690

  11. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  12. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization.

    PubMed

    Shi, Xiaoyou; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-Wu; Clark, David J; Kingery, Wade S

    2015-10-01

    Tibia fracture induces exaggerated substance P (SP) and calcitonin gene-related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome. PMID:25932690

  13. Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization.

    PubMed

    Shi, Xiaoyou; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-Wu; Clark, David J; Kingery, Wade S

    2015-10-01

    Tibia fracture induces exaggerated substance P (SP) and calcitonin gene-related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome.

  14. Neuropeptide S reduces mouse aggressiveness in the resident/intruder test through selective activation of the neuropeptide S receptor.

    PubMed

    Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Trapella, Claudio; Gavioli, Elaine C

    2015-10-01

    Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. Moreover the putative role played by the endogenous NPS/NPSR system in regulating mice aggressiveness was investigating using mice lacking the NPSR receptor (NPSR(-/-)) and the NPSR selective antagonists [(t)Bu-D-Gly(5)]NPS and SHA 68. NPS (0.01-1 nmol, icv) reduced, in a dose dependent manner, both the time that resident mice spent attacking the intruder mice and their number of attacks, producing pharmacological effects similar to those elicited by the standard anti-aggressive drug valproate (300 mg/kg, ip). This NPS effect was evident in NPSR wild type (NPSR(+/+)) mice but completely disappeared in NPSR(-/-) mice. Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.

  15. Lumbar cerebrospinal fluid concentrations of somatostatin and neuropeptide Y in multiple sclerosis

    SciTech Connect

    Vecsei, L.; Csala, B.; Widerloev, E.E.; Ekman, R.; Czopf, J.; Palffy, G. )

    1990-09-01

    The cerebrospinal fluid (CSF) concentrations of somatostatin and neuropeptide Y were investigated by use of radioimmunoassay in patients suffering from chronic progressive multiple sclerosis. The somatostatin level was significantly decreased in the CSF of patients with multiple sclerosis compared to the control group. The magnitude of this change was more pronounced in patients with severe clinical symptoms of the illness. The CSF neuropeptide Y concentration did not differ from the control values. These findings suggest a selective involvement of somatostatin neurotransmission in multiple sclerosis.

  16. Immunohistochemical study of the neuropeptides in the stellate ganglion of the water buffalo.

    PubMed

    Nasu, T; De Ocampo, G; Molina, H A; Tateyama, S; Morimoto, M

    2000-05-01

    The localization of some neuropeptides including neuropeptide Y (NPY), substance P (SP), calcitonin gene related peptide (CGRP), vasoactive intestinal peptide (VIP), galanin (Gal), methionine enkephalin (M-ENK), tyrosine hydroxylase (TH) immunoreactivity was studied in the stellate ganglion (SG) of water buffalo. NPY, SP, Gal and TH immunoreactivities were present in almost all of the ganglion cells. NPY, SP, Gal, SP, CGRP, VIP and M-ENK immunoreactive nerve fibers were also seen in the SG. The localization and pattern of distribution of these peptides in the water buffalo stellate ganglion were compared with those in stellate ganglia of other mammalian species.

  17. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    PubMed

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  18. Application of multiple index development approaches to benthic invertebrate data from the Virginian Biogeographic Province

    EPA Science Inventory

    Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...

  19. Invertebrate colonization of leaves and roots within sediments of intermittent coastal plain streams across hydrologic phases

    EPA Science Inventory

    We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots and plastic roots) among three intermittent Coastal Plain streams over a one year period. Invertebrate density was significantly lower in root litterbags than in plastic root l...

  20. WETLAND INVERTEBRATE COMMUNITY RESPONSES TO VARYING EMERGENT LITTER IN A PRAIRIE POTHOLE EMERGENT MARSH

    EPA Science Inventory

    Plant litter produced in the interior of dense emergent stands may directly or indirectly influence invertebrate communities. Low litter may provide structure and refuge to invertebrates while high litter may shade out vegetation and algae and decrease oxygen concentrations. With...

  1. Effects of intravenous neuropeptide Y on insulin secretion and insulin sensitivity in skeletal muscle in normal rats.

    PubMed

    Vettor, R; Pagano, C; Granzotto, M; Englaro, P; Angeli, P; Blum, W F; Federspil, G; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1998-11-01

    Intracerebroventricular administration of neuropeptide Y to normal rats induces a syndrome characterised by obesity, hyperinsulinaemia, insulin resistance and over expression of the adipose tissue ob gene. Little is known about the effect of circulating neuropeptide Y on glucose metabolism, insulin secretion and leptin. We therefore aimed to evaluate the effect of an intravenous infusion of neuropeptide Y on glucose disposal, endogenous glucose production, whole body glycolytic flux, and glucose storage as assessed during euglycaemic hyperinsulinaemic clamp. In addition, the insulin-stimulated glucose utilisation index in individual tissues was measured by the 2-deoxy-[1-3H]-glucose technique. The effect of neuropeptide Y on insulin secretion was evaluated by hyperglycaemic clamp. Infusion did not induce any change in endogenous glucose production during basal conditions or at the end of the clamp. Glucose disposal was significantly increased in the rats given neuropeptide Y compared with controls (27.8 +/- 1.3 vs 24.3 +/- 1.6 mg x min(-1) x kg(-1); p < 0.05) as was the glycolytic flux (18.9 +/- 1.6 vs 14.4 +/- 0.8 mg x min(-1) x kg(-1); p < 0.05), while glucose storage was comparable in the two groups. In skeletal muscle, the glucose utilisation index was increased significantly in rats given neuropeptide Y. The glucose utilisation index in subcutaneous and epididimal adipose tissue was not significantly different between the two groups. Plasma leptin was significantly increased by hyperinsulinaemia, but was not affected by neuropeptide Y infusion. Both the early and late phase of the insulin response to hyperglycaemia were significantly reduced by neuropeptide Y. In conclusion neuropeptide Y infusion may increase insulin-induced glucose disposal in normal rats, accelerating its utilisation through the glycolytic pathway. Neuropeptide Y reduces both phases of the insulin response to hyperglycaemia.

  2. Detection of betanodaviruses in apparently healthy aquarium fishes and invertebrates.

    PubMed

    Gomez, Dennis Kaw; Lim, Dong Joo; Baeck, Gun Wook; Youn, Hee Jeong; Shin, Nam Shik; Youn, Hwa Young; Hwang, Cheol Yong; Park, Jun Hong; Park, Se Chang

    2006-12-01

    Betanodaviruses are the causative agents of viral nervous necrosis (VNN) in cultured marine fish. A total of 237 apparently healthy aquarium fish, marine (65 species) and freshwater (12 species) fishes and marine invertebrates (4 species), which were stocked in a commercial aquarium in Seoul, South Korea, were collected from November 2005 to February 2006. The brains of the fish and other tissues of the invertebrates were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR to detect betanodavirus. Positive nested PCR results were obtained from the brains of 8 marine fish species (shrimp fish Aeoliscus strigatus, milkfish Chanos chanos, three spot damsel Dascyllus trimaculatus, Japanese anchovy Engraulis japonicus, pinecone fish Monocentris japonica, blue ribbon eel Rhinomuraena quaesita, look down fish Selene vomer, yellow tang Zebrasoma flavesenes), 1 marine invertebrate species (spiny lobster Pamulirus versicolor), and 2 freshwater fish species (South American leaf fish Monocirrhus polyacanthus and red piranha Pygocentrus nattereri). The detection rate in nested PCR was 11/237 (4.64%). These subclinically infected aquarium fish and invertebrates may constitute an inoculum source of betanodaviruses for cultured fishes in the Korean Peninsula. PMID:17106229

  3. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    ERIC Educational Resources Information Center

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  4. Use of Invertebrate Animals to Teach Physiological Principles.

    ERIC Educational Resources Information Center

    Deyrup-Olsen, Ingrith; Linder, Thomas M.

    1991-01-01

    The advantages of using invertebrates in teaching physiological principles are discussed. The ability to illustrate with greater clarity physiological principles, the range and variety of physiological processes available for examination, and the unlimited possibilities for student research are topics of discussion. (KR)

  5. Trends in Children's Concepts of Vertebrate and Invertebrate.

    ERIC Educational Resources Information Center

    Braund, Martin

    1998-01-01

    Presents the results of a cross-age study of 7- to 15-year-old children on their thinking about vertebrate and invertebrate animals. Suggests experiences that could be included in the school science curriculum and argues for more classroom work relating structure with function in order to address students' conceptual difficulties. (Contains 18…

  6. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    PubMed Central

    2010-01-01

    Background Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. Results We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. Conclusions The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses. PMID:21062451

  7. Detection of betanodaviruses in apparently healthy aquarium fishes and invertebrates.

    PubMed

    Gomez, Dennis Kaw; Lim, Dong Joo; Baeck, Gun Wook; Youn, Hee Jeong; Shin, Nam Shik; Youn, Hwa Young; Hwang, Cheol Yong; Park, Jun Hong; Park, Se Chang

    2006-12-01

    Betanodaviruses are the causative agents of viral nervous necrosis (VNN) in cultured marine fish. A total of 237 apparently healthy aquarium fish, marine (65 species) and freshwater (12 species) fishes and marine invertebrates (4 species), which were stocked in a commercial aquarium in Seoul, South Korea, were collected from November 2005 to February 2006. The brains of the fish and other tissues of the invertebrates were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR to detect betanodavirus. Positive nested PCR results were obtained from the brains of 8 marine fish species (shrimp fish Aeoliscus strigatus, milkfish Chanos chanos, three spot damsel Dascyllus trimaculatus, Japanese anchovy Engraulis japonicus, pinecone fish Monocentris japonica, blue ribbon eel Rhinomuraena quaesita, look down fish Selene vomer, yellow tang Zebrasoma flavesenes), 1 marine invertebrate species (spiny lobster Pamulirus versicolor), and 2 freshwater fish species (South American leaf fish Monocirrhus polyacanthus and red piranha Pygocentrus nattereri). The detection rate in nested PCR was 11/237 (4.64%). These subclinically infected aquarium fish and invertebrates may constitute an inoculum source of betanodaviruses for cultured fishes in the Korean Peninsula.

  8. Invertebrate community composition differs between invasive herb alligator weed and native sedges

    NASA Astrophysics Data System (ADS)

    Bassett, Imogen E.; Paynter, Quentin; Beggs, Jacqueline R.

    2012-05-01

    Chemical and/or architectural differences between native and exotic plants may influence invertebrate community composition. According to the enemy release hypothesis, invasive weeds should host fewer and less specialised invertebrates than native vegetation. Invertebrate communities were compared on invasive Alternanthera philoxeroides (alligator weed) and native sedges (Isolepis prolifer and Schoenoplectus tabernaemontani) in a New Zealand lake. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Lower invertebrate abundance, richness and proportionally fewer specialists were predicted on A. philoxeroides compared to native sedges, but with greatest differences between A. philoxeroides and S. tabernaemontani. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Invertebrate abundance showed taxa-specific responses, rather than consistently lower abundance on A. philoxeroides. Nevertheless, as predicted, invertebrate fauna of A. philoxeroides was more similar to that of I. prolifer than to S. tabernaemontani. The prediction of a depauperate native fauna on A. philoxeroides received support from some but not all taxa. All vegetation types hosted generalist-dominated invertebrate communities with simple guild structures. The enemy release hypothesis thus had minimal ability to predict patterns in this system. Results suggest the extent of architectural and chemical differences between native and invasive vegetation may be useful in predicting the extent to which they will host different invertebrate communities. However, invertebrate ecology also affects whether invertebrate taxa respond positively or negatively to weed invasion. Thus, exotic vegetation may support distinct invertebrate communities despite similar overall invertebrate abundance to native vegetation.

  9. The Overlooked Biodiversity of Flower-Visiting Invertebrates

    PubMed Central

    Wardhaugh, Carl W.; Stork, Nigel E.; Edwards, Will; Grimbacher, Peter S.

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness. PMID

  10. Mallard duckling growth and survival in relation to aquatic invertebrates

    USGS Publications Warehouse

    Cox, R.R.; Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Johnson, D.H.; Butler, Malcolm G.

    1998-01-01

    Identification and assessment of the relative importance of factors affecting duckling growth and survival are essential for effective management of mallards on breeding areas. For each of 3 years (1993-95), we placed F1-generation wild mallard (Anas platyrhynchos) females on experimental wetlands and allowed them to mate, nest, and rear broods for 17 days. We manipulated invertebrate densities by introducing fathead minnows (Pimephales promelas) at high densities in half of the wetlands on which broods were confined. Day-17 body mass of surviving ducklings (n = 183) was greater for ducklings that were heavier at hatch; the difference averaged 1.7 g at day 17 for each 1.0 g at hatch (P = 0.047). Growth ratio (the proportion of body mass attained by ducklings when they were last measured relative to that predicted for wild female mallard ducklings) also was positively related to body mass at hatch (P = 0.004). Mean day-17 body mass and mean growth ratio of ducklings per brood (each adjusted for body mass at hatch) were positively related to numbers of aquatic invertebrates (Ps < 0.001) and negatively related to variance in the daily minimum air temperature during the exposure period (Ps < 0.020). Early growth of mallards was more sensitive to variation in numbers of invertebrates than to air temperature or biomass of invertebrates. Duckling survival was positively related to growth ratio (P < 0.001). Our study provides parameter estimates that are essential for modeling growth and survival of mallard ducklings. We emphasize the need for conserving brood-rearing wetlands in the Prairie Pothole Region that are capable of supporting high densities of aquatic invertebrates.

  11. Crawling to Collapse: Ecologically Unsound Ornamental Invertebrate Fisheries

    PubMed Central

    Rhyne, Andrew; Rotjan, Randi; Bruckner, Andrew; Tlusty, Michael

    2009-01-01

    Background Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery. The last decade has seen aquarium hobbyists shift their display preference from fish-only tanks to miniature reef ecosystems that include many invertebrate species, creating increased demand without proper oversight. The once small ornamental fishery has become an invertebrate-dominated major industry supplying five continents. Methodology/Principal Findings Here, we analyzed the Florida Marine Life Fishery (FLML) landing data from 1994 to 2007 for all invertebrate species. The data were organized to reflect both ecosystem purpose (in the wild) and ecosystem services (commodities) for each reported species to address the following question: Are ornamental invertebrates being exploited for their fundamental ecosystem services and economic value at the expense of reef resilience? We found that 9 million individuals were collected in 2007, 6 million of which were grazers. Conclusions/Significance The number of grazers now exceeds, by two-fold, the number of specimens collected for curio and ornamental purposes altogether, representing a major categorical shift. In general, landings have increased 10-fold since 1994, though the number of licenses has been dramatically reduced. Thus, despite current management strategies, the FLML Fishery appears to be crawling to collapse. PMID:20027312

  12. Effects of stream enclosures on drifting invertebrates and fish growth

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2006-01-01

    Stream ecologists often use enclosure experiments to investigate predator-prey interactions and competition within and among fish species. The design of enclosures, manipulation of species densities, and method of replication may influence experimental results. We designed an experiment with enclosure cages (1 m2, 6-mm mesh) to examine the relative influence of fish size, density, and prey availability on growth of brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and slimy sculpin (Cottus cognatus) within enclosures in Valley Creek, Minnesota. In addition, we examined water flow and invertebrate drift entering enclosures and in open riffles to investigate whether enclosures reduced the supply of invertebrate prey. Growth of small (age-0) brook and brown trout was not influenced by fish density, but growth of larger (age-1) trout generally decreased as density increased. Sculpin growth was not related to fish size or density, but increased with mean size of invertebrates in the drift. Enclosures reduced water flow and tended to reduce invertebrate drift rate, although total drift rate (ind./min), total drift density (ind./m3), and mean size of invertebrates were not significantly different inside enclosures compared to adjacent stream riffles. Enclosures had no effect on drift rate or size of Gammarus pseudolimnaeus, the main prey item for trout and sculpin in Valley Creek. Overall, our analyses indicated that reductions of prey availability by enclosures did not influence fish growth. Trout growth may have been limited at larger sizes and densities because of increased activity costs of establishing and defending territories, whereas sculpin growth was related to availability of large prey, a factor not influenced by enclosures. ?? 2006 by The North American Benthological Society.

  13. The overlooked biodiversity of flower-visiting invertebrates.

    PubMed

    Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will; Grimbacher, Peter S

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.

  14. Microglia-Induced Maladaptive Plasticity Can Be Modulated by Neuropeptides In Vivo

    PubMed Central

    Morara, Stefano; Colangelo, Anna Maria; Provini, Luciano

    2015-01-01

    Microglia-induced maladaptive plasticity is being recognized as a major cause of deleterious self-sustaining pathological processes that occur in neurodegenerative and neuroinflammatory diseases. Microglia, the primary homeostatic guardian of the central nervous system, exert critical functions both during development, in neural circuit reshaping, and during adult life, in the brain physiological and pathological surveillance. This delicate critical role can be disrupted by neural, but also peripheral, noxious stimuli that can prime microglia to become overreactive to a second noxious stimulus or worsen underlying pathological processes. Among regulators of microglia, neuropeptides can play a major role. Their receptors are widely expressed in microglial cells and neuropeptide challenge can potently influence microglial activity in vitro. More relevantly, this regulator activity has been assessed also in vivo, in experimental models of brain diseases. Neuropeptide action in the central nervous system has been associated with beneficial effects in neurodegenerative and neuroinflammatory pathological experimental models. This review describes some of the mechanisms of the microglia maladaptive plasticity in vivo and how neuropeptide activity can represent a useful therapeutical target in a variety of human brain pathologies. PMID:26273481

  15. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    PubMed

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice. PMID:26610903

  16. Neuropeptide Y protects against methamphetamine-induced neuronal apoptosis in the mouse striatum.

    PubMed

    Thiriet, Nathalie; Deng, Xiaolin; Solinas, Marcello; Ladenheim, Bruce; Curtis, Wendy; Goldberg, Steven R; Palmiter, Richard D; Cadet, Jean Lud

    2005-06-01

    Methamphetamine (METH) is an illicit drug that causes neuronal apoptosis in the mouse striatum, in a manner similar to the neuronal loss observed in neurodegenerative diseases. In the present study, injections of METH to mice were found to cause the death of enkephalin-positive projection neurons but not the death of neuropeptide Y (NPY)/nitric oxide synthase-positive striatal interneurons. In addition, these METH injections were associated with increased expression of neuropeptide Y mRNA and changes in the expression of the NPY receptors Y1 and Y2. Administration of NPY in the cerebral ventricles blocked METH-induced apoptosis, an effect that was mediated mainly by stimulation of NPY Y2 receptors and, to a lesser extent, of NPY Y1 receptors. Finally, we also found that neuropeptide Y knock-out mice were more sensitive than wild-type mice to METH-induced neuronal apoptosis of both enkephalin- and nitric oxide synthase-containing neurons, suggesting that NPY plays a general neuroprotective role within the striatum. Together, our results demonstrate that neuropeptide Y belongs to the class of factors that maintain neuronal integrity during cellular stresses. Given the similarity between the cell death patterns induced by METH and by disorders such as Huntington's disease, our results suggest that NPY analogs might be useful therapeutic agents against some neurodegenerative processes.

  17. The neuropeptide F (NPF) encoding gene from the cestode, Moniezia expansa.

    PubMed

    Mair, G R; Halton, D W; Shaw, C; Maule, A G

    2000-01-01

    Neuropeptide F (NPF) is an abundantly expressed neuropeptide in platyhelminth nervous systems, and exhibits a moderate, myogenic effect on muscle preparations of parasitic flatworms. NPF displays structural similarities to peptides from molluscs and vertebrate members of the neuropeptide Y (NPY)-superfamily of peptides. NPY is one of the most abundant and highly conserved neuropeptides within vertebrates and similarities between the gene organization of NPY, pancreatic polypeptide (PP) and peptide tyrosine tyrosine (PYY), suggest a common evolutionary origin of this peptide family. Dual localization analyses coupled with confocal scanning laser microscopy revealed a close spatial relationship between NPF-containing nerves and muscle fibres in M. expansa. Molecular cloning techniques identified the M. expansa NPF (mxNPF) precursor and characterized the isolated transcript which encodes an open reading frame of 57 amino acids. The transcript possesses a 17 amino acid signal peptide and the mature NPF sequence (39 amino acids) followed by a carboxyterminal glycyl extension. Sequence analysis of genomic DNA identified a product which possessed a 54 base pair intron with consensus sequences for 5' and 3' splice sites. The M. expansa npf gene possesses a phase 2 intron within the penultimate arginyl residue, a characteristic feature of NPY superfamily peptide-genes. The intron-exon organization of the npf gene, coupled with the abundant expression of NPF within the nervous systems of flatworms, suggests an early evolutionary origin for this peptide transmitter family within the nervous systems of basal bilaterian metazoans.

  18. Role of neuropeptides in anxiety, stress, and depression: from animals to humans.

    PubMed

    Kormos, Viktória; Gaszner, Balázs

    2013-12-01

    Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.

  19. Transgenic n-3 PUFAs enrichment leads to weight loss via modulating neuropeptides in hypothalamus.

    PubMed

    Ma, Shuangshuang; Ge, Yinlin; Gai, Xiaoying; Xue, Meilan; Li, Ning; Kang, Jingxuan; Wan, Jianbo; Zhang, Jinyu

    2016-01-12

    Body weight is related to fat mass, which is associated with obesity. Our study explored the effect of fat-1 gene on body weight in fat-1 transgenic mice. In present study, we observed that the weight/length ratio of fat-1 transgenic mice was lower than that of wild-type mice. The serum levels of triglycerides (TG), cholesterol (CT), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c) and blood glucose (BG) in fat-1 transgenic mice were all decreased. The weights of peri-bowels fat, perirenal fat and peri-testicular fat in fat-1 transgenic mice were reduced. We hypothesized that increase of n-3 PUFAs might alter the expression of hypothalamic neuropeptide genes and lead to loss of body weight in fat-1 transgenic mice. Therefore, we measured mRNA levels of appetite neuropeptides, Neuropeptide Y (NPY), Agouti-related peptides (AgRP), Proopiomelanocortin (POMC), Cocaine and amphetamine regulated transcript (CART), ghrelin and nesfatin-1 in hypothalamus by real-time PCR. Compared with wild-type mice, the mRNA levels of CART, POMC and ghrelin were higher, while the mRNA levels of NPY, AgRP and nesfatin-1 were lower in fat-1 transgenic mice. The results indicate that fat-1 gene or n-3 PUFAs participates in regulation of body weight, and the mechanism of this phenomenon involves the expression of appetite neuropeptides and lipoproteins in fat-1 transgenic mice.

  20. Cerebrospinal fluid prohormone processing and neuropeptides stimulating feed intake of dairy cows during early lactation.

    PubMed

    Kuhla, Björn; Laeger, Thomas; Husi, Holger; Mullen, William

    2015-02-01

    After parturition, feed intake of dairy cows increases within the first weeks of lactation, but the molecular mechanisms stimulating or delaying the slope of increase are poorly understood. Some of the molecules controlling feed intake are neuropeptides that are synthesized as propeptides and subsequently processed before they bind to specific receptors in feeding centers of the brain. Cerebrospinal fluid surrounds most of the feed intake regulatory centers and contains numerous neuropeptides. In the present study, we used a proteomic approach to analyze the neuropeptide concentrations in cerebrospinal fluid taken from dairy cows between day -18 and -10, and between day +10 and +20 relative to parturition. We found 13 proteins which were only present in samples taken before parturition, 13 proteins which were only present in samples taken after parturition, and 25 proteins which were commonly present, before and after parturition. Among them, differences in pro-neuropeptide Y, proenkephalin-A, neuroendocrine convertase-2, neurosecretory protein VGF, chromogranin-A, and secretogranin-1 and -3 concentrations relative to parturition highlight propeptides and prohormone processings involved in the control of feed intake and energy homeostasis. Scaffold analysis further emphasized an increased tone of endogenous opioids associated with the postparturient increase of feed intake.

  1. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  2. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough.

  3. Feed intake of gilts following intracerebroventicular injection of the novel hypothalamic RFamide (RFa) neuropeptide, 26RFa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RFamide (RFa) peptides have been implicated in a broad spectrum of biological processes including energy expenditure and feed intake. 26RFa is a recently discovered hypothalamic neuropeptide that altered the release of pituitary hormones and stimulated feed intake via a NPY-specific mechanism in rat...

  4. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  5. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  6. RFamide neuropeptide actions on molluscan proboscis smooth muscle: interactions with primary neurotransmitters.

    PubMed

    Moulis, A; Huddart, H

    2004-07-01

    The potency (muscle force-generated) of a number of long-chain RFamide neuropeptides was examined in mechanical experiments with the radular-retractor and radular-sac muscles of gastropods Buccinum undatum and Neptunea antiqua. Many of the heptapeptides, octapeptides and the decapeptide LMS were found to induce greater contraction than FMRFamide in both smooth muscles and in both species. RFamide neuropeptides interacted with the neurotransmitter acetylcholine in an additive way and RFamide-induced contractions were inhibited by the neuromodulator serotonin. Pre-treatment with a calcium-free saline completely abolished acetylcholine-induced responses but only partially inhibited RFamide responses in the muscles, suggesting that acetylcholine acts to cause influx of extracellular calcium for contraction. In contrast, RFamide neuropeptides may mobilise intracellular calcium to maintain sustained tonic force in calcium-free conditions. This suggests that an additional involvement of a fast calcium channel may be present in the RFamide responses, since loss of the usual superimposed twitch activity is observed. Force regulation in these muscles appears to result from a complex interaction of RFamide neuropeptides with the primary transmitter acetylcholine and the neuromodulator serotonin.

  7. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.

    PubMed

    Lavezzo, A; Melillo, G; Clavenna, G; Omini, C

    1992-06-01

    The mechanism of action of levodropropizine has been investigated in different models of experimentally-induced cough in guinea-pigs. In particular it has been demonstrated that the antitussive drug has a peripheral site of action by injecting the drug intracerebroventricularly (i.c.v.). In these experiments levodropropizine (40 micrograms/50 microliters i.c.v.) did not prevent electrically-induced cough. On the other hand, codeine (5 micrograms/50 microliters i.c.v.) markedly prevented coughing. A difference in the potency ratio of levodropropizine and codeine has been demonstrated in capsaicin-induced cough; after oral administration, codeine was about two to three times more potent than levodropropizine. However, after aerosol administration the two compounds were equipotent. These data might suggest a peripheral site of action for levodropropizine which is related to sensory neuropeptides. Further support for the role of sensory neuropeptides in the mechanism of action of levodropropizine comes from the results obtained in capsaicin-desensitized animals. In this experimental model levodropropizine failed to prevent the vagally elicited cough in neuropeptide-depleted animals, whereas codeine did not differentiate between control and capsaicin-treated animals. In conclusion, our results support the suggestion that levodropropizine has a peripheral site of action. In addition, the interference with the sensory neuropeptide system may explain, at least in part, its activity in experimentally-induced cough. PMID:1611233

  8. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    PubMed

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  9. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November...

  10. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans.

    PubMed

    Stawicki, Tamara M; Takayanagi-Kiya, Seika; Zhou, Keming; Jin, Yishi

    2013-05-01

    Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.

  11. Role of neuropeptides in appetite regulation and obesity--a review.

    PubMed

    Arora, Sarika; Anubhuti

    2006-12-01

    Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.

  12. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats.

    PubMed

    de Rijke, C E; Hillebrand, J J G; Verhagen, L A W; Roeling, T A P; Adan, R A H

    2005-10-01

    When rats are given access to a running-wheel in combination with food restriction, they will become hyperactive and decrease their food intake, a paradoxical phenomenon known as activity-based anorexia (ABA). Little is known about the regulation of the hypothalamic neuropeptides that are involved in the regulation of food intake and energy balance during the development of ABA. Therefore, rats were killed during the development of ABA, before they entered a state of severe starvation. Neuropeptide mRNA expression levels were analysed using quantitative real-time PCR on punches of separate hypothalamic nuclei. As is expected in a state of negative energy balance, expression levels of agouti-related protein (AgRP) and neuropeptide Y (NPY) were increased 5-fold in the arcuate nucleus (ARC) of food-restricted running ABA rats vs 2-fold in sedentary food-restricted controls. The co-regulated expression of AgRP and NPY strongly correlated with relative body weight and white adipose tissue mass. Arcuate expression of pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) was reduced 2-fold in the ABA group. In second-order neurons of the lateral hypothalamic area (LHA), melanin-concentrating hormone (MCH) mRNA expression was upregulated 2-fold in food-restricted running rats, but not in food-restricted sedentary controls. Prepro-orexin, CART and corticotropin-releasing hormone expression levels in the LHA and the paraventricular nucleus (PVN) were unchanged in both food-restricted groups. From this study it was concluded that during the development of ABA, neuropeptides in first-order neurons in the ARC and MCH in the LHA are regulated in an adequate response to negative energy balance, whereas expression levels of the other studied neuropeptides in secondary neurons of the LHA and PVN are unchanged and are probably regulated by factors other than energy status alone.

  13. District Leadership Conference Planner.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual provides usable guidelines and planning forms and materials for planning district leadership conferences, which were designed and initiated in Washington State to meet the problems in student enrollment and, consequently, Distributive Education Clubs of America membership. The conferences have become a useful means to increase…

  14. [Conference Time Kit.

    ERIC Educational Resources Information Center

    National School Public Relations Association, Washington, DC.

    This multimedia kit, for use with and by teachers from kindergarten through the upper elementary grades, consists of four components: 1) a filmstrip for teachers; 2) the 1970 edition of a handbook, "Conference Time for Teachers and Parents"; 3) a filmstrip for parents; 4) a supporting parent information leaflet "How To Confer Successfully with…

  15. [Kweichow planned parenthood conference].

    PubMed

    1978-12-15

    On December 5th the Kweichow Provincial Planned Parenthood Leadership Group held its 1st conference to discuss the problems of planned parenthood in the province. Miao Chun-ting, deputy secretary of the provincial CCP committee and head of the provincial planned parenthood leadership group, presided over the conference.

  16. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  17. The Conference in Retrospect.

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1982-01-01

    Presents an overview of the 6th International Conference on Chemical Education held at the University of Maryland (August 9-14, 1981), focusing on such organizational activities as roster building, people activating, innovative publishing, resolution and recommendation drafting, conference infrastructure and managerial mode, hospitality center,…

  18. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes. Design/methodology/approach: A…

  19. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  20. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  1. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  2. Innate immunity against moulds: lessons learned from invertebrate models.

    PubMed

    Ben-Ami, Ronen

    2011-01-01

    The emergence over the past two decades of invasive mycoses as a significant problem in immunocompromised patients underscores the importance of deciphering innate immunity against filamentous fungi. However, the complexity and cost of traditionally used mammalian model hosts presents a bottleneck that has limited the rate of advances in this field. In contrast, invertebrate model hosts have several important advantages, including simple immune systems, genetic tractability, and amenity to high-throughput experiments. The application of these models to studies of host-pathogen interactions is contingent on two tenets: (1) host innate defenses are preserved across widely disparate taxa, and (2) similar fungal virulence factors are operative in insects and in mammals. Validation of these principles paved the way for the use of invertebrates as facile models for studying invasive mould infections. These studies have helped shape our understanding of human pattern recognition receptors, phagocytic cell function and antimicrobial proteins, and their roles in host defense against filamentous fungi.

  3. Elastic arteries in invertebrates: mechanics of the octopus aorta.

    PubMed

    Shadwick, R E; Gosline, J M

    1981-08-14

    The aorta of the octopus, Octopus dofleini, is a highly distensible, elastic tube. The circumferential elastic modulus increases with inflation in the physiological range from abut 10(4) to 10(5) newtons per square meter. Rubber-like fibers have been isolated, apparently for the first time, from the aorta of an invertebrate. These fibers have an elastic modulus, like elastin, of about 4 x 10(5) newtons per square meter and are present in sufficient quantity to account for the elastic properties of the intact vessel under physiological conditions. Thus the circulatory system of an invertebrate animal provides an "elastic reservoir" (much like that of the vertebrate system), which increases the efficiency of the circulation. PMID:7256277

  4. Comparative acute toxicities of surfactants to aquatic invertebrates

    SciTech Connect

    Lewis, M.A.; Suprenant, D.

    1983-06-01

    Investigations of the toxicity of surfactants to aquatic invertebrates have been limited primarily to determining the effects on a few species. In this study, the 48-hr LC50 values for three surfactants are reported for six species of aquatic invertebrates. The acute toxicities (LC50) for each surfactant (mg/liter) varied 159 to 580 X and were as follows: C11.8LAS (anionic), 1.7 (Dero sp.) to 270 (Asellus sp.); C14-15 alkylethoxylate (nonionic), 1.0 (Dugesia sp.) to 6.8 (Rhabditis sp.); CTAC (cationic), 0.1 (Gammarus sp.) to 58 (Asellus sp.). When compared to previously developed data, Daphnia magna was typically found to be the most sensitive of all species tested, including fish, to the surfactants.

  5. Enterococcus infection biology: lessons from invertebrate host models.

    PubMed

    Yuen, Grace J; Ausubel, Frederick M

    2014-03-01

    The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans. PMID:24585051

  6. Street lighting changes the composition of invertebrate communities.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Gaston, Kevin J

    2012-10-23

    Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.

  7. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.

  8. Aquatic invertebrates as unlikely vectors of Buruli ulcer disease.

    PubMed

    Benbow, M Eric; Williamson, Heather; Kimbirauskas, Ryan; McIntosh, Mollie D; Kolar, Rebecca; Quaye, Charles; Akpabey, Felix; Boakye, D; Small, Pam; Merritt, Richard W

    2008-08-01

    Buruli ulcer is a necrotizing skin disease caused by Mycobacterium ulcerans and associated with exposure to aquatic habitats. To assess possible transmission of M. ulcerans by aquatic biting insects, we conducted a field examination of biting water bugs (Hemiptera: Naucoridae, Belostomatidae, Nepidae) in 15 disease-endemic and 12 non-disease-endemic areas of Ghana, Africa. From collections of 22,832 invertebrates, we compared composition, abundance, and associated M. ulcerans positivity among sites. Biting hemipterans were rare and represented a small percentage (usually <2%) of invertebrate communities. No significant differences were found in hemipteran abundance or pathogen positivity between disease-endemic and non-disease-endemic sites, and between abundance of biting hemipterans and M. ulcerans positivity. Therefore, although infection through insect bites is possible, little field evidence supports the assumption that biting hemipterans are primary vectors of M. ulcerans.

  9. Spawning, copulation and inbreeding coefficients in marine invertebrates

    PubMed Central

    Addison, J.A; Hart, M.W

    2005-01-01

    Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers (FST). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy–Weinberg equilibrium (non-zero values of FIS, the inbreeding coefficient). FIS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations. PMID:17148230

  10. Differential niche dynamics among major marine invertebrate clades

    PubMed Central

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-01-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition. PMID:24313951

  11. When growth models are not universal: evidence from marine invertebrates

    PubMed Central

    Hirst, Andrew G.; Forster, Jack

    2013-01-01

    The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates. PMID:23945691

  12. Transmission of solar ultraviolet radiation through invertebrate exteriors

    SciTech Connect

    Karentz, D.; Gast, T. )

    1993-01-01

    The occurrence of springtime ozone depletion over the Antarctic has created concern about the effects of increases ultraviolet-B on marine organisms, particularly in intertidal and subtidal populations. The first line of defense that an animal has to solar radiation exposure is its outer covering. This paper examines four species of antarctic invertebrates to determine the amount of UV protection provided by their external covering (the sea urchin, the sea star; the limpet; and the tunicate). 5 refs., 3 figs.

  13. When growth models are not universal: evidence from marine invertebrates.

    PubMed

    Hirst, Andrew G; Forster, Jack

    2013-10-01

    The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.

  14. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    PubMed

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed.

  15. [Body mass and excretion of phosphorus in aqueous invertebrates].

    PubMed

    Golubkov, S M

    2014-01-01

    Empirical materials on the dependence of the intensity of mineral phosphorus excretion (Ex) on the body mass (W) in invertebrates are summarized. The parameters of the average dependence of Ex on Win animals at 20 degrees C are determined. The main factors that influence the parameters ofthis dependence are discussed. It is shown that the decrease of Ex with an increase of Win animals is, as a rule, more significant compared with the decrease in the intensity of metabolism.

  16. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  17. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    PubMed

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. PMID:26282752

  18. Invertebrate studies and their ongoing contributions to neuroscience.

    PubMed

    Sattelle, David B; Buckingham, Steven D

    2006-03-01

    Invertebrates have been deployed very successfully in experimental studies of the nervous system and neuromuscular junctions. Many important discoveries on axonal conduction, synaptic transmission, integrative neurobiology and behaviour have been made by investigations of these remarkable animals. Their advantages as model organisms for investigations of nervous systems include (a) the large diameter of neurons, glia and muscle cells of some invertebrates, thereby facilitating microelectrode recordings; (b) simple nervous systems with few neurons, enhancing the tractability of neuronal circuitry; and (c) well-defined behaviours, which lend themselves to physiological and genetic dissection. Genetic model organisms such as Drosophila melanogaster and Caenorhabditis elegans have provided powerful genetic approaches to central questions concerning nervous system development, learning and memory and the cellular and molecular basis of behaviour. The process of attributing function to particular gene products has been greatly accelerated in recent years with access to entire genome sequences and the application of reverse genetic (e.g. RNA interference, RNAi) and other post-genome technologies (e.g. microarrays). Studies of many other invertebrates, notably the honeybee (Apis mellifera), a nudibranch mollusc (Aplysia californica), locusts, lobsters, crabs, annelids and jellyfish have all assisted in the development of major concepts in neuroscience. The future is equally bright with ease of access to genome-wide reverse genetic technologies, and the development of optical recordings using voltage and intracellular calcium sensors genetically targeted to selected individual and groups of neurons. PMID:16470388

  19. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  20. Philosophical background of attitudes toward and treatment of invertebrates.

    PubMed

    Mather, Jennifer A

    2011-01-01

    People who interact with or make decisions about invertebrate animals have an attitude toward them, although they may not have consciously worked it out. Three philosophical approaches underlie this attitude. The first is the contractarian, which basically contends that animals are only automata and that we humans need not concern ourselves with their welfare except for our own good, because cruelty and neglect demean us. A second approach is the utilitarian, which focuses on gains versus losses in interactions between animals, including humans. Given the sheer numbers of invertebrates-they constitute 99% of the animals on the planet- this attitude implicitly requires concern for them and consideration in particular of whether they can feel pain. Third is the rights-based approach, which focuses on humans-treatment of animals by calling for an assessment of their quality of life in each human-animal interaction. Here scholars debate to what extent different animals have self-awareness or even consciousness, which may dictate our treatment of them. Regardless of the philosophical approach to invertebrates, information and education about their lives are critical to an understanding of how humans ought to treat them.

  1. Zebra mussel effects on benthic invertebrates: physical or biotic?

    USGS Publications Warehouse

    Botts, P. Silver; Patterson, Benjamin A.; Schloesser, Don W.

    1996-01-01

    In soft sediments, Dreissena spp. create firm substrate in the form of aggregates of living mussels (druses) that roll free on the sediments. Druses provide physical structure which increases habitat heterogeneity, and the mussels increase benthic organic matter through the production of pseudofeces and feces. Descriptive and experimental studies were used to determine: 1) whether the density of benthic invertebrates in soft sediments increased in the presence of druses, and 2) whether the invertebrate assemblage responded to the physical structure provided by a druse or to some biotic effect associated with the presence of living mussels. In core samples collected biweekly during summer in Presque Isle Bay, Erie, Pennsylvania, amphipods, chironomids, oligochaetes, turbellarians, and hydrozoans were significantly more abundant in sand with druses than in bare sand. When mesh bags containing either a living druse, non-living druse, or no druse were incubated in the bay for 33 d, we found that chironomids were significantly more abundant in treatments with living druses than with non-living druses, and in treatments with non-living druses than with no druse; turbellarians, amphipods, and hydrozoans were significantly more abundant in treatments with living or non-living druses than with no druse; oligochaetes showed no significant differences among treatments. This study demonstrates that most taxa of benthic invertebrates in soft substrate respond specifically to the physical structure associated with aggregates of mussel shells, but further study is needed to examine chironomid responses to some biotic effect dependent on the presence of living mussels.

  2. Improved ultrastructure of marine invertebrates using non-toxic buffers.

    PubMed

    Montanaro, Jacqueline; Gruber, Daniela; Leisch, Nikolaus

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates. PMID:27069800

  3. The ecotoxicological significance of genotoxicity in marine invertebrates.

    PubMed

    Depledge, M H

    1998-03-13

    Attention is drawn to the goals of genetic ecotoxicology, in particular, the need to relate genotoxicity in individuals to population and community level consequences. The evidence for pollutant-induced genotoxicity in marine invertebrates is reviewed. Neoplasia is apparently rare in marine invertebrates and only limited evidence is available to suggest that chemical genotoxins act as causative agents. It is unknown why marine invertebrates exhibit low tumour incidences and are much more tolerant of ionising radiation than their vertebrate counterparts. The importance of the genotoxic disease syndrome is highlighted. Disentangling phenotypic manifestations of genotoxic damage and that due to direct metabolic toxicity provides a major challenge for the future. Further work is required to assess the significance of interspecific and interindividual variability in susceptibility to genotoxicity, especially with regard to the evolution of resistant populations and communities of marine organisms at contaminated sites. Only by addressing the issues highlighted above can proper risk assessments of genotoxic agents be performed to minimise threats to human and ecosystem health.

  4. The invertebrate ecology of the Chalk aquifer in England (UK)

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Robertson, A. R.; White, D.; Knight, L.; Johns, T.; Edwards, F.; Arietti, M.; Sorensen, J. P. R.; Weitowitz, D.; Marchant, B. P.; Bloomfield, J. P.

    2016-03-01

    The Chalk is an important water supply aquifer, yet ecosystems within it remain poorly understood. Boreholes (198) in seven areas of England (UK) were sampled to determine the importance of the Chalk aquifer as a habitat, and to improve understanding of how species are distributed. Stygobitic macro-invertebrates were remarkably common, and were recorded in 67 % of boreholes in unconcealed Chalk, although they were not recorded in Chalk that is concealed by low-permeability strata and thus likely to be confined. Most species were found in shallow boreholes (<21 m) and boreholes with deep (>50 m) water tables, indicating that the habitat is vertically extensive. Stygobites were present in more boreholes in southern England than northern England (77 % compared to 38 %). Only two species were found in northern England compared to six in southern England, but overall seven of the eight stygobitic macro-invertebrate species found in England were detected in the Chalk. Two species are common in southern England, but absent from northern England despite the presence of a continuous habitat prior to the Devensian glaciation. This suggests that either they did not survive glaciations in the north where glaciers were more extensive, or dispersal rates are slow and they have never colonised northern England. Subsurface ecosystems comprising aquatic macro-invertebrates and meiofauna, as well as the microbial organisms they interact with, are likely to be widespread in the Chalk aquifer. They represent an important contribution to biodiversity, and may influence biogeochemical cycles and provide other ecosystem services.

  5. Mucin-Type O-Glycosylation in Invertebrates.

    PubMed

    Staudacher, Erika

    2015-06-09

    O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.

  6. RUNX factors in development: lessons from invertebrate model systems.

    PubMed

    Braun, Toby; Woollard, Alison

    2009-01-01

    Runt-related (RUNX) transcription factors are evolutionarily conserved regulators of cell proliferation, differentiation and stem cell maintenance. They are critical for the correct development and function of a variety of human tissues, including during haematopoiesis. RUNX genes regulate various aspects of proliferation control, stem cell maintenance, lineage commitment and regulation of differentiation; disruptions in the correct function of RUNX genes have been associated with human pathologies, most prominently cancer. Because of the high context dependency and partial redundancy of vertebrate RUNX genes, invertebrate model systems have been studied in the hope of finding an ancestral function. Here we review the progress of these studies in three invertebrate systems, the fruit fly Drosophila melanogaster, the sea urchin Strongylocentrotus purpuratus and the nematode Caenorhabditis elegans. All essential aspects of RUNX function in vertebrates have counterparts in invertebrates, confirming the usefulness of these studies in simpler organisms. The fact that not all RUNX functions are conserved in all systems, though, underscores the importance of choosing the right model to ask specific questions. PMID:19447650

  7. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  8. The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates

    NASA Astrophysics Data System (ADS)

    van Alstyne, Kathryn L.; Schupp, Peter; Slattery, Marc

    2006-08-01

    Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g-1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g-1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g-1 DM with a mean of 4 ± 7 μmol g-1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.

  9. Improved ultrastructure of marine invertebrates using non-toxic buffers

    PubMed Central

    Montanaro, Jacqueline; Gruber, Daniela

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates. PMID:27069800

  10. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  11. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    NASA Astrophysics Data System (ADS)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  12. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.

    PubMed

    Werner, Felix-Martin; Coveñas, R

    2013-01-01

    We summarize the alterations of classical neurotransmitters and neuropeptides and the corresponding subreceptors involved in major depression. Neuronal circuits in the brainstem, hippocampus and hypothalamus are developed, since they can be used to derive a multimodal pharmacotherapy. In this sense, serotonin hypoactivity could occur through a strong presynaptic inhibition of glutaminergic neurons via the subtype 5 of metabotropic glutaminergic receptors, and noradrenaline hypoactivity could be due to an enhanced presynaptic inhibition of GABAergic neurons via GABAB receptors. In the hippocampus, dopamine hypoactivity leads to a decreased positive effect. In clinical trials, the antidepressant effect of drugs interfering with the mentioned subreceptors, for example the triple reuptake inhibitor amitifadine, is being investigated. Moreover, the alterations of neuropeptides, such as corticotropin-releasing hormone, neuropeptide Y and galanin are pointed out. The additional antidepressant effect of analogs, agonists and antagonists of the mentioned neuropeptides should be examined.

  13. Neuropeptides in Heteroptera: Identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the peptidomic analysis of neuropeptides from the retrocerebral complex and abdominal perisympathetic organs of polyphagous stinkbugs (Pentatomidae) revealed the group-specific sequences of pyrokinins, CAPA peptides (CAPA-periviscerokinins/PVKs and CAPA-pyrokinin), myosuppressin, corazonin...

  14. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing.

    PubMed

    Pradhan, Leena; Cai, Xuemei; Wu, Szuhuei; Andersen, Nicholas D; Martin, Michelle; Malek, Junaid; Guthrie, Patrick; Veves, Aristidis; Logerfo, Frank W

    2011-05-15

    The interaction between neuropeptides and cytokines and its role in cutaneous wound healing is becoming evident. The goal of the present study is to investigate the impact of diabetes on peripheral cytokine and neuropeptide expression and its role in diabetic wound healing. To achieve this goal, the effect of diabetes on wound healing, along with the role of inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) secreted in the wound microenvironment, and neuropeptides such as substance P (SP) and neuropeptide Y (NPY), secreted from peripheral nerves is monitored in non-diabetic and diabetic rabbits. Rabbits in the diabetic group received alloxan monohydrate (100mg/kg i.v.). Ten days after diabetic induction, four full thickness circular wounds were created in both ears using a 6mm punch biopsy. Wound healing was monitored over 10 d and gene expression of cytokines and neuropeptides was assessed in the wounds. Compared with the non-diabetic rabbits, wounds of diabetic rabbits heal significantly slower. Diabetic rabbits show significantly increased baseline gene expression of IL-6 and IL-8, their receptors, CXCR1, CXCR2, GP-130, and a decrease of prepro tachykinin-A (PP-TA), the precursor of SP, whereas the expression of prepro-NPY (PP-NPY), the precursor of NPY is not different. Similarly, baseline protein expression of CXCR1 is higher in diabetic rabbit skin. Post-injury, the increase over baseline gene expression of IL-6, IL-8, CXCR1, CXCR2, and GP-130 is significantly less in diabetic wounds compared with non-diabetic wounds. Although there is no difference in PP-TA gene expression between non-diabetic and diabetic rabbits post-injury, the gene expression of PP-NPY is reduced in diabetic rabbits. In conclusion, diabetes causes dysregulation in the neuropeptide expression in the skin along with a suppressed focused inflammatory response to injury. This suggests that the chronic inflammation in the skin of diabetic rabbits inhibits the acute

  15. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    PubMed

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  16. Matrotrophy and placentation in invertebrates: a new paradigm.

    PubMed

    Ostrovsky, Andrew N; Lidgard, Scott; Gordon, Dennis P; Schwaha, Thomas; Genikhovich, Grigory; Ereskovsky, Alexander V

    2016-08-01

    Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy-placentotrophy-is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and

  17. Matrotrophy and placentation in invertebrates: a new paradigm.

    PubMed

    Ostrovsky, Andrew N; Lidgard, Scott; Gordon, Dennis P; Schwaha, Thomas; Genikhovich, Grigory; Ereskovsky, Alexander V

    2016-08-01

    Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy-placentotrophy-is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and

  18. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    PubMed

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  19. Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias

    PubMed Central

    Toullec, Jean-Yves; Corre, Erwan; Bernay, Benoît; Thorne, Michael A. S.; Cascella, Kévin; Ollivaux, Céline; Henry, Joël; Clark, Melody S.

    2013-01-01

    Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides

  20. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    PubMed Central

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  1. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1.248 Section 1.248 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a)...

  2. Deficiency of prohormone convertase dPC2 (AMONTILLADO) results in impaired production of bioactive neuropeptide hormones in Drosophila.

    PubMed

    Wegener, Christian; Herbert, Henrik; Kahnt, Jörg; Bender, Michael; Rhea, Jeanne M

    2011-08-01

    Peptide hormones synthesized by secretory neurons in the CNS are important regulators of physiology, behavior, and development. Like other neuropeptides, they are synthesized from larger precursor molecules by a specific set of enzymes. Using a combination of neurogenetics, immunostainings, and direct mass spectrometric profiling, we show that the presence of Drosophila prohormone convertase 2 encoded by the gene amontillado (amon) is a prerequisite for the proper processing of neuropeptide hormones from the major neurohemal organs of the CNS. A loss of amon correlates with a loss of neuropeptide hormone signals from the larval ring gland and perisympathetic organs. Neuropeptide hormone signals were still detectable in the adult corpora cardiaca of older amon-deficient flies which were amon heat-shock-rescued until eclosion. A semiquantification by direct peptide profiling using stable isotopic standards showed, however, that their neuropeptide hormone levels are strongly reduced. Targeted expression of GFP under the control of amon regulatory regions revealed a co-localization with the investigated peptide hormones in secretory neurons of the brain and ventral nerve cord. The lack of AMON activity resulted in a deficiency of L3 larva to enter the wandering phase. In conclusion, our findings provide the first direct evidence that AMON is a key enzyme in the production of neuropeptides in the fruitfly. PMID:21138435

  3. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress.

    PubMed

    Zhang, Yuzhuo; Buchberger, Amanda; Muthuvel, Gajanthan; Li, Lingjun

    2015-12-01

    Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides.

  4. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying.

    PubMed

    Zatylny-Gaudin, Céline; Cornet, Valérie; Leduc, Alexandre; Zanuttini, Bruno; Corre, Erwan; Le Corguillé, Gildas; Bernay, Benoît; Garderes, Johan; Kraut, Alexandra; Couté, Yohan; Henry, Joël

    2016-01-01

    Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.

  5. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress.

    PubMed

    Zhang, Yuzhuo; Buchberger, Amanda; Muthuvel, Gajanthan; Li, Lingjun

    2015-12-01

    Environmental fluctuations, such as salinity, impose serious challenges to marine animal survival. Neuropeptides, signaling molecules involved in the regulation process, and the dynamic changes of their full complement in the stress response have yet to be investigated. Here, a MALDI-MS-based stable isotope labeling quantitation strategy was used to investigate the relationship between neuropeptide expression and adaptability of Carcinus maenas to various salinity levels, including high (60 parts per thousand [p.p.t.]) and low (0 p.p.t.) salinity, in both the crustacean pericardial organ (PO) and brain. Moreover, a high salinity stress time course study was conducted. MS imaging (MSI) of neuropeptide localization in C. maenas PO was also performed. As a result of salinity stress, multiple neuropeptide families exhibited changes in their relative abundances, including RFamides (e.g. APQGNFLRFamide), RYamides (e.g. SSFRVGGSRYamide), B-type allatostatins (AST-B; e.g. VPNDWAHFRGSWamide), and orcokinins (e.g. NFDEIDRSSFGFV). The MSI data revealed distribution differences in several neuropeptides (e.g. SGFYANRYamide) between color morphs, but salinity stress appeared to not have a major effect on the localization of the neuropeptides. PMID:26475201

  6. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  7. Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee.

    PubMed

    Ament, S A; Velarde, R A; Kolodkin, M H; Moyse, D; Robinson, G E

    2011-06-01

    Previous research has led to the idea that derived traits can arise through the evolution of novel roles for conserved genes. We explored whether neuropeptide Y (NPY)-like signalling, a conserved pathway that regulates food-related behaviour, is involved in a derived, nutritionally-related trait, the division of labour in worker honey bees. Transcripts encoding two NPY-like peptides were expressed in separate populations of brain neurosecretory cells, consistent with endocrine functions. NPY-related genes were upregulated in the brains of older foragers compared with younger bees performing brood care ('nurses'). A subset of these changes can be attributed to nutrition, but neuropeptide F peptide treatments did not influence sugar intake. These results contrast with recent reports of more robust associations between division of labour and the related insulin-signalling pathway and suggest that some elements of molecular pathways associated with feeding behaviour may be more evolutionarily labile than others.

  8. Hormones, hormonal agents, and neuropeptides involved in the neuroendocrine regulation of sleep in humans.

    PubMed

    Kotronoulas, Grigorios; Stamatakis, Antonios; Stylianopoulou, Fotini

    2009-01-01

    Sleep is an essential ubiquitous biological process, a periodical state of quiescence in which there is minimal processing of sensory information and no interaction with conspecifics or the environment. Despite relevant research on sleep structure and testing of numerous endogenous sleep-affecting chemicals, questions as to the precise mechanisms and functions of sleep remain without satisfactory responses. The purpose of this review is to report on current evidence as regards the effect of several endogenous and exogenous hormones, hormonal agents, and neuropeptides on sleep onset or wake process, when administered in humans in specific doses and via different routes. The actions of several peptides are presented in detail. Some of them (growth hormone releasing hormone, ghrelin, galanin, neuropeptide Y) seem to promote sleep, whereas others (corticotropin, somatostatin) impair its continuity. PMID:20045796

  9. Relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain: a literature review.

    PubMed

    de Avila, Erica Dorigatti; de Molon, Rafael Scaf; de Godoi Gonçalves, Daniela Aparecida; Camparis, Cinara Maria

    2014-05-01

    The aim of the current review was to investigate the relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain. Substance P is a neuropeptide that is directly related with pain. In periodontal disease, it is expressed during the inflammatory process, and is one of the factors responsible for bone resorption. Studies have shown that Substance P levels are highest in the gingival crevicular fluid from sites with active periodontal disease and bone loss. The persistence of these substances could be sufficient to stimulate neurogenic inflammation in susceptible tissues, and cause pain. The scientific literature shows that Substance P expressed during periodontal disease can be a risk factor for patients with systemic inflammatory pathologies, such as chronic arthritis or rheumatoid arthritis. Additional research is needed to confirm the participation of this substance in the origin of some types of chronic pain. PMID:24574025

  10. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release

    PubMed Central

    Chatzigeorgiou, Marios; Hu, Zhitao; Schafer, William R.; Kaplan, Joshua M.

    2015-01-01

    C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states. PMID:26154367

  11. Lipid-Conjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic Cancer

    PubMed Central

    Gopalakrishnan, Gopakumar; Lepetre, Sinda; Maksimenko, Andrei; Mura, Simona; Desmaële, Didier; Couvreur, Patrick

    2015-01-01

    Neuropeptides are small neuronal signaling molecules that act as neuromodulators for a variety of neural functions including analgesia, reproduction, social behavior, learning, and memory. One of the endogenous neuropeptides—Met-Enkephalin (Met-Enk), has been shown to display an inhibitory effect on cell proliferation and differentiation. Here, a novel lipid-modification approach is shown to create a small library of neuropeptides that will allow increased bioavailability and plasma stability after systemic administration. It is demonstrated, on an experimental model of human pancreatic adenocarcinoma, that lipid conjugation of Met-Enk enhances its tumor suppression efficacy compared to its nonlipidated counterparts, both in vitro and in vivo. More strikingly, the in vivo studies show that a combination therapy with a reduced concentration of Gemcitabine has suppressed the tumor growth considerably even three weeks after the last treatment. PMID:25694262

  12. [Neuropeptides, Cytokines and Thymus Peptides as Effectors of Interactions Between Thymus and Neuroendocrine System].

    PubMed

    Torkhovskaya, T I; Belova, O V; Zimina, I V; Kryuchkova, A V; Moskvina, S N; Bystrova, O V; Arion, V Ya; Sergienko, V I

    2015-01-01

    The review presents data on mutual influence of nervous system and thymus, realized through the neuroendocrine-immune interactions. The pres- ence of adrenergic and peptidergic nerves in thymus creates conditions for implementation of the effect of neuropeptides secreted by them. These neuropeptides induce activation of thymus cells receptors and influence on the main processes in thymus, including T-lymphocyte maturation, cytokine and hormones production. In turn, thymuspeptides and/or cytokines, controlled by them, enter the brain and exert influence on neuro- nalfunction, which creates the basis for changes of behavior and homeostasis maintenance in response to infection. Ageing and some infectious, autoimmune, neurodegenerative and cancer diseases are accompanied by distortion of interactions between thymus and central nervous system. Mechanisms of signaling pathways, which determine these interactions, are not revealed yet, and their understanding will promote the development of effective therapeutic strategies.

  13. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  14. Conference Summary Final Remarks

    NASA Astrophysics Data System (ADS)

    Greiner, Walter

    2007-05-01

    Finally we come to the last talk. The end of the Conference is near! I try to reflect on an interesting Conference, with many different - diverse - topics and 5 parallel afternoon sessions. How to solve this difficulty? I do it my way and present a selection of what I personally found interesting. I illustrate these topics with the help of slides which are borrowed from various speakers at the conference. There are outstanding problems, which will also find attention and interest if explained to non-nuclear physicists, common people. I will address four such topics which were were discussed at this conference: Heavy-Ion Cancer Therapy Extension of the Periodic Table - Superheavy Elements Nuclear Astrophysics Hot compressed elementary matter - Production - Phases

  15. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  16. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  17. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  18. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression.

    PubMed

    Paschos, Konstantinos A; Veletza, Stavroula; Chatzaki, Ekaterini

    2009-09-01

    Among the most prevalent of mental illnesses, depression is increasing in incidence in the Western world. It presents with a wide variety of symptoms that involve both the CNS and the periphery. Multiple pharmacological observations led to the development of the monoamine theory as a biological basis for depression, according to which diminished neurotransmission within the CNS, including that of the dopamine, noradrenaline (norepinephrine) and serotonin systems, is the leading cause of the disorder. Current conventional pharmacological antidepressant therapies, using selective monoamine reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors, aim to enhance monoaminergic neurotransmission. However, the use of these agents presents severe disadvantages, including a delay in the alleviation of depressive symptoms, significant adverse effects and high frequencies of non-responding patients. Neuroendocrinological data of recent decades reveal that depression and anxiety disorders may occur simultaneously due to hypothalamus-pituitary-adrenal (HPA) axis hyperactivity. As a result, the stress-diathesis model was developed, which attempts to associate genetic and environmental influences in the aetiology of depression. The amygdala and the hippocampus control the activity of the HPA axis in a counter-balancing way, and a plethora of regulatory neuropeptide signalling pathways are involved. Intervention at these molecular targets may lead to alternative antidepressant therapeutic solutions that are expected to overcome the limitations of existing antidepressants. This prospect is based on preclinical evidence from pharmacological and genetic modifications of the action of neuropeptides such as corticotropin-releasing factor, substance P, galanin, vasopressin and neuropeptide Y. The recent synthesis of orally potent non-peptide micromolecules that can selectively bind to various neuropeptide receptors permits the onset of clinical trials to evaluate

  19. Glucocorticoids are required for meal-induced changes in the expression of hypothalamic neuropeptides.

    PubMed

    Uchoa, Ernane Torres; Silva, Lilian Eslaine C M; de Castro, Margaret; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2012-06-01

    Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.

  20. Relative Quantitation of Neuropeptides over a Thousand-fold Concentration Range

    NASA Astrophysics Data System (ADS)

    Hou, Xiaowen; Xie, Fang; Sweedler, Jonathan V.

    2012-12-01

    Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and post-translational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography-electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H4/D4-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.

  1. Endotoxemia-induced muscle wasting is associated with the change of hypothalamic neuropeptides in rats.

    PubMed

    Duan, Kaipeng; Yu, Wenkui; Lin, Zhiliang; Tan, Shanjun; Bai, Xiaowu; Gao, Tao; Xi, Fengchan; Li, Ning

    2014-12-01

    In critical patients, sepsis-induced muscle wasting is considered to be an important contributor to complications and mortality. Previous work mainly focuses on the peripheral molecular mechanism of muscle degradation, however little evidence exists for the role of central nervous system in the process. In the present study, we, for the first time, characterized the relationship between muscle wasting and central neuropeptide changes in a septic model. Thirty-six adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) or saline. Twelve, 24 and 48 hrs after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methyl-histidine (3-MH) and tyrosine release. Hypothalamic neuropeptides and inflammatory marker expressions were also measured in three time points. LPS injection caused an increase expression of MuRF-1 and MAFbx, and a significant higher release of 3-MH and tyrosine. Hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP) and neuropeptide Y (NPY) presented a dynamic change after LPS injection. Also, hypothalamic inflammatory markers, interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α) increased substantially after LPS administration. Importantly, the expressions of POMC, AgRP and CART were well correlated with muscle atrophy gene, MuRF-1 expression. These findings suggest hypothalamic peptides and inflammation may participate in the sepsis-induced muscle wasting, but the exact mechanism needs further study.

  2. Identification of the first neuropeptides from the enigmatic hexapod order Protura.

    PubMed

    Christie, Andrew E; Chi, Megan

    2015-12-01

    The Hexapoda consists of two classes, the Entognatha and the Insecta, with the former group considered basal to the latter. The Protura is a basal order within the Entognatha, the members of which are minute soil dwellers first identified in the early 20th century. Recently, a transcriptome shotgun assembly (TSA) was generated for the proturan Acerentomon sp., providing the first significant molecular resource for this enigmatic hexapod order. As part of an ongoing effort to predict peptidomes for little studied members of the Arthropoda, we have mined this TSA dataset for transcripts encoding putative neuropeptide precursors and predicted the structures of mature peptides from the deduced proteins. Forty-seven peptide-encoding transcripts were mined from the Acerentomon TSA dataset, with 202 distinct peptides predicted from them. The peptides identified included isoforms of adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, ecdysis-triggering hormone, eclosion hormone, FMRFamide-like peptide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, proctolin, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide; these are the first neuropeptides described from any proturan. Comparison of the Acerentomon precursors and mature peptides with those from other arthropods revealed features characteristic of both the insects and the crustaceans, which is consistent with the hypothesized phylogenetic position of the Protura within the Pancrustacea, i.e. at or near the point of divergence of the hexapods from the crustaceans.

  3. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission

    PubMed Central

    Mosqueiro, Thiago; de Lecea, Luis; Huerta, Ramon

    2014-01-01

    The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABAA inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABAA inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABAA can in principle work, there is not much plausibility due to the low probability of the presence of slow GABAA and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. PMID:25598695

  4. Molecular characterization of a short neuropeptide F signaling system in the tsetse fly, Glossina morsitans morsitans.

    PubMed

    Caers, Jelle; Peymen, Katleen; Van Hiel, Matthias B; Van Rompay, Liesbeth; Van Den Abbeele, Jan; Schoofs, Liliane; Beets, Isabel

    2016-09-01

    Neuropeptides of the short neuropeptide F (sNPF) family are widespread among arthropods and found in every sequenced insect genome so far. Functional studies have mainly focused on the regulatory role of sNPF in feeding behavior, although this neuropeptide family has pleiotropic effects including in the control of locomotion, osmotic homeostasis, sleep, learning and memory. Here, we set out to characterize and determine possible roles of sNPF signaling in the haematophagous tsetse fly Glossina morsitans morsitans, a vector of African Trypanosoma parasites causing human and animal African trypanosomiasis. We cloned the G. m. morsitans cDNA sequences of an sNPF-like receptor (Glomo-sNPFR) and precursor protein encoding four Glomo-sNPF neuropeptides. All four Glomo-sNPF peptides concentration-dependently activated Glomo-sNPFR in a cell-based calcium mobilization assay, with EC50 values in the nanomolar range. Gene expression profiles in adult female tsetse flies indicate that the Glomo-sNPF system is mainly restricted to the nervous system. Glomo-snpfr transcripts were also detected in the hindgut of adult females. In contrast to the Drosophila sNPF system, tsetse larvae lack expression of Glomo-snpf and Glomo-snpfr genes. While Glomo-snpf transcript levels are upregulated in pupae, the onset of Glomo-snpfr expression is delayed to adulthood. Expression profiles in adult tissues are similar to those in other insects suggesting that the tsetse sNPF system may have similar functions such as a regulatory role in feeding behavior, together with a possible involvement of sNPFR signaling in osmotic homeostasis. Our molecular data will enable further investigations into the functions of sNPF signaling in tsetse flies. PMID:27288635

  5. Conference scene: DGVS spring conference 2009.

    PubMed

    Kolligs, Frank Thomas

    2009-10-01

    The 3rd annual DGVS Spring Conference of the German Society for Gastroenterology (Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten) was held at the Seminaris Campus Hotel in Berlin, Germany, on 8-9 May, 2009. The conference was organized by Roland Schmid and Matthias Ebert from the Technical University of Munich, Germany. The central theme of the meeting was 'translational gastrointestinal oncology: towards personalized medicine and individualized therapy'. The conference covered talks on markers for diagnosis, screening and surveillance of colorectal cancer, targets for molecular therapy, response prediction in clinical oncology, development and integration of molecular imaging in gastrointestinal oncology and translational research in clinical trial design. Owing to the broad array of topics and limitations of space, this article will focus on biomarkers, response prediction and the integration of biomarkers into clinical trials. Presentations mentioned in this summary were given by Matthias Ebert (Technical University of Munich, Germany), Esmeralda Heiden (Epigenomics, Berlin, Germany), Frank Kolligs (University of Munich, Germany), Florian Lordick (University of Heidelberg, Germany), Hans Jorgen Nielsen (University of Copenhagen, Denmark), Anke Reinacher-Schick (University of Bochum, Germany), Christoph Röcken (University of Berlin, Germany), Wolff Schmiegel (University of Bochum, Germany) and Thomas Seufferlein (University of Halle, Germany).

  6. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits

    PubMed Central

    Baribeau, Danielle A.; Anagnostou, Evdokia

    2015-01-01

    Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders. PMID:26441508

  7. Association analysis between feed efficiency studies and expression of hypothalamic neuropeptide genes in laying ducks.

    PubMed

    Zeng, T; Chen, L; Du, X; Lai, S J; Huang, S P; Liu, Y L; Lu, L Z

    2016-10-01

    Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real-time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (P < 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (P < 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (P < 0.05). The mRNA expression of gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML. PMID:27329478

  8. Exogenous prolactin-releasing peptide's orexigenic effect is associated with hypothalamic neuropeptide Y in chicks.

    PubMed

    Wang, Guoqing; Tachibana, Tetsuya; Gilbert, Elizabeth R; Cline, Mark A

    2015-12-01

    Exogenous administration of prolactin-releasing peptide (PrRP) exerts anorexigenic effects in rats while causing orexigenic effects in chicks. While the central mechanism mediating PrRP's effect on food intake in rodents is somewhat understood, in chicks information is lacking. Therefore, this study was designed to elucidate the hypothalamic mechanism of PrRP induction of hunger perception in chicks. Chicks that received intracerebroventricular (ICV) injections of PrRP dose-dependently increased their food intake with no effect on water intake or whole blood glucose concentration. The threshold of food intake stimulation was as low as 3pmol, thus as compared to other neuropeptides PrRP is exceptionally potent. The mRNA abundance of several appetite-associated neuropeptide genes was quantified and hypothalamic neuropeptide Y (NPY) mRNA was increased in PrRP-injected chicks. Therefore, the orexigenic effects of PrRP may be associated with increased NPY-ergic tone. These results provide insight into the evolutionary aspects of appetite regulation during the course of divergent evolution of mammals and birds. PMID:26349952

  9. Effects of starvation on the expression of feeding related neuropeptides in the larval zebrafish hypothalamus.

    PubMed

    Shanshan, Liu; Cuizhen, Zhang; Gang, Peng

    2016-09-01

    Vertebrate feeding behavior is regulated by neuropeptide Y (NPY), GALANIN and GMAP prepropeptide (GAL), agouti related neuropeptide (AGRP) and proopiomelanocortin (POMC) in the hypothalamus. However, there are few studies on the relationship between these neuropeptides and feeding in zebrafish larvae. In the present study, real-time quantitative PCR and in situ hybridization were applied to examine the expression levels of npy, galanin, agrp and pomca in the hypothalamus of zebrafish larvae after starvation and re-feeding. The results showed the expression of agrp and galanin increased significantly after starvation compared to the control group, whilst the expression of pomca decreased significantly compared to control. If the animals were re-fed for two days after starvation, the expression of pomca, agrp and galanin showed no significant difference from the control. Expression of npy did not alter in either condition. These results indicate that starvation increases expression levels of agrp and galanin, and reduces the pomca expression. In addition, these starvation-induced changes can be reversed by re-feeding. PMID:27644743

  10. Effects of starvation on the expression of feeding related neuropeptides in the larval zebrafish hypothalamus.

    PubMed

    Shanshan, Liu; Cuizhen, Zhang; Gang, Peng

    2016-09-01

    Vertebrate feeding behavior is regulated by neuropeptide Y (NPY), GALANIN and GMAP prepropeptide (GAL), agouti related neuropeptide (AGRP) and proopiomelanocortin (POMC) in the hypothalamus. However, there are few studies on the relationship between these neuropeptides and feeding in zebrafish larvae. In the present study, real-time quantitative PCR and in situ hybridization were applied to examine the expression levels of npy, galanin, agrp and pomca in the hypothalamus of zebrafish larvae after starvation and re-feeding. The results showed the expression of agrp and galanin increased significantly after starvation compared to the control group, whilst the expression of pomca decreased significantly compared to control. If the animals were re-fed for two days after starvation, the expression of pomca, agrp and galanin showed no significant difference from the control. Expression of npy did not alter in either condition. These results indicate that starvation increases expression levels of agrp and galanin, and reduces the pomca expression. In addition, these starvation-induced changes can be reversed by re-feeding.

  11. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus.

    PubMed

    Howell, Owain W; Silva, Sharmalene; Scharfman, Helen E; Sosunov, Alexander A; Zaben, Malik; Shtaya, Anan; Shatya, Anan; McKhann, Guy; Herzog, Herbert; Laskowski, Alexandra; Gray, William P

    2007-04-01

    We have shown that neuropeptide Y (NPY) regulates neurogenesis in the normal dentate gyrus (DG) via Y(1) receptors (Howell, O.W., Scharfman, H.E., Herzog, H., Sundstrom, L.E., Beck-Sickinger, A. and Gray, W.P. (2003) Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86, 646-659; Howell, O.W., Doyle, K., Goodman, J.H., Scharfman, H.E., Herzog, H., Pringle, A., Beck-Sickinger, A.G. and Gray, W.P. (2005) Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 93, 560-570). This regulation may be relevant to epilepsy, because seizures increase both NPY expression and precursor cell proliferation in the DG. Therefore, the effects of NPY on DG precursors were evaluated in normal conditions and after status epilepticus. In addition, potentially distinct NPY-responsive precursors were identified, and an analysis performed not only of the DG, but also the caudal subventricular zone (cSVZ) and subcallosal zone (SCZ) where seizures modulate glial precursors. We show a proliferative effect of NPY on multipotent nestin cells expressing the stem cell marker Lewis-X from both the DG and the cSVZ/SCZ in vitro. We confirm an effect on proliferation in the cSVZ/SCZ of Y(1) receptor(-/-) mice and demonstrate a significant reduction in basal and seizure-induced proliferation in the DG of NPY(-/-) mice.

  12. Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer's disease.

    PubMed

    Rose, John B; Crews, Leslie; Rockenstein, Edward; Adame, Anthony; Mante, Michael; Hersh, Louis B; Gage, Fred H; Spencer, Brian; Potkar, Rewati; Marr, Robert A; Masliah, Eliezer

    2009-01-28

    The endopeptidase neprilysin (NEP) is a major amyloid-beta (Abeta) degrading enzyme and has been implicated in the pathogenesis of Alzheimer's disease. Because NEP cleaves substrates other than Abeta, we investigated the potential role of NEP-mediated processing of neuropeptides in the mechanisms of neuroprotection in vivo. Overexpression of NEP at low levels in transgenic (tg) mice affected primarily the levels of neuropeptide Y (NPY) compared with other neuropeptides. Ex vivo and in vivo studies in tg mice and in mice that received lentiviral vector injections showed that NEP cleaved NPY into C-terminal fragments (CTFs), whereas silencing NEP reduced NPY processing. Immunoblot and mass spectrometry analysis showed that NPY 21-36 and 31-36 were the most abundant fragments generated by NEP activity in vivo. Infusion of these NPY CTFs into the brains of APP (amyloid precursor protein) tg mice ameliorated the neurodegenerative pathology in this model. Moreover, the amidated NPY CTFs protected human neuronal cultures from the neurotoxic effects of Abeta. This study supports the possibility that the NPY CTFs generated during NEP-mediated proteolysis might exert neuroprotective effects in vivo. This function of NEP represents a unique example of a proteolytic enzyme with dual action, namely, degradation of Abeta as well as processing of NPY.

  13. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    PubMed

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  14. Les neuropeptides gastro-intestinaux cibles des effets des rayonnements ionisants : altérations fonctionnelles

    NASA Astrophysics Data System (ADS)

    Linard, C.; Esposito, V.; Wysocki, J.; Griffiths, N. M.

    1998-04-01

    The symptoms associated with exposure to ionizing radiation are nausea, vomiting, diarrhoea. The response of the gut is complex involving modifications of motility and fluid and electrolyte transport. Gastrointestinal regulatory peptides have an important role in these functions. This study showed that radiation-induced tissue variations of neuropeptides have some repercussions on intestinal biological activity of these peptides soon after irradiation. In addition such modifications are also seen a few years after irradiation. Les symptômes associés à l'exposition aux rayonnements ionisants sont des nausées, vomissements et diarrhées. La réponse du système digestif est complexe, impliquant des modifications de la motilité et du transport d'eau et d'électrolytes. les neuropeptides gastro-intestinaux ont un rôle important dans ces fonctions. Cette étude montre que les variations tissulaires de ces neuropeptides induites par l'irradiation ont des répercussions sur l'activité biologique intestinale pour des temps précoces mais que ces perturbations sont encore visibles quelques années après l'irradiation.

  15. Expression profile of hypothalamic neuropeptides in chicken lines selected for high or low residual feed intake.

    PubMed

    Sintubin, P; Greene, E; Collin, A; Bordas, A; Zerjal, T; Tesseraud, S; Buyse, J; Dridi, S

    2014-08-01

    The R(+) and R(-) chicken lines have been divergently selected for high (R(+)) or low (R(-)) residual feed intake. For the same body weight and egg production, the R(+) chickens consume 40% more food than their counterparts R(-) lines. In the present study we sought to determine the hypothalamic expression profile of feeding-related neuropeptides in these lines maintained under fed or food-deprived conditions. In the fed condition, the suppressor of cytokine signaling 3 (SOCS3) was 17-fold lower (P<0.05) and the ghrelin receptor was 7-fold higher (P<0.05) in R(+) compared to R(-) chicken lines. The hypothalamic expression of the other studied genes remained unchanged between the two lines. In the fasted state, orexigenic neuropeptide Y and agouti-related peptide were more responsive, with higher significant levels in the R(+) compared to R(-) chickens, while no significant differences were seen for the anorexigenic neuropeptides pro-opiomelanocortin and corticotropin releasing hormone. Interestingly, C-reactive protein, adiponectin receptor 1 and ghrelin receptor gene expression were significantly higher (12-, 2- and 3-folds, respectively), however ghrelin and melanocortin 5 receptor mRNA levels were lower (4- and 2-folds, P=0.05 and P=0.03, respectively) in R(+) compared to R(-) animals. We identified several key feeding-related genes that are differently expressed in the hypothalamus of R(+) and R(-) chickens and that might explain the difference in feed intake observed between the two lines.

  16. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity.

  17. Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways

    PubMed Central

    Tian, Shi; Zandawala, Meet; Beets, Isabel; Baytemur, Esra; Slade, Susan E.; Scrivens, James H.; Elphick, Maurice R.

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) is a key regulator of reproductive maturation in humans and other vertebrates. Homologs of GnRH and its cognate receptor have been identified in invertebrates–for example, the adipokinetic hormone (AKH) and corazonin (CRZ) neuropeptide pathways in arthropods. However, the precise evolutionary relationships and origins of these signalling systems remain unknown. Here we have addressed this issue with the first identification of both GnRH-type and CRZ-type signalling systems in a deuterostome–the echinoderm (starfish) Asterias rubens. We have identified a GnRH-like neuropeptide (pQIHYKNPGWGPG-NH2) that specifically activates an A. rubens GnRH-type receptor and a novel neuropeptide (HNTFTMGGQNRWKAG-NH2) that specifically activates an A. rubens CRZ-type receptor. With the discovery of these ligand-receptor pairs, we demonstrate that the vertebrate/deuterostomian GnRH-type and the protostomian AKH systems are orthologous and the origin of a paralogous CRZ-type signalling system can be traced to the common ancestor of the Bilateria (Urbilateria). PMID:27350121

  18. Neuropeptide Y effects on murine natural killer activity: changes with ageing and cAMP involvement.

    PubMed

    De la Fuente, M; Del Río, M; Víctor, V M; Medina, S

    2001-09-15

    Changes in the bidirectional interaction between the nervous and the immune systems have been proposed as a cause of ageing. Neuropeptides, such as neuropeptide Y (NPY), could show different effects on immune function with age. In the present work, we have studied the in vitro action of a wide range of NPY concentrations, i.e. from 10(-13) to 10(-7) M, on natural killer (NK) activity, a function which decreases with age. Spleen, axillary nodes, thymus and peritoneum leukocytes from mice of different ages: young (12+/-2 weeks), adult (24+/-2 weeks), mature (50+/-2 weeks) and old (72+/-2 weeks) were used. Stimulation by NPY of NK activity was observed in adult and mature animals in axillary nodes and thymus, and an inhibition in the spleen from young mice. The specificity of the NPY effect on cytotoxic activity was confirmed using a C-terminal fragment of NPY. Furthermore, cAMP levels in leukocytes were found to be decreased by NPY in adult mice, suggesting an involvement of this messenger system in the NK modulation by this neuropeptide.

  19. NPY/neuropeptide Y enhances autophagy in the hypothalamus: a mechanism to delay aging?

    PubMed

    Aveleira, Célia A; Botelho, Mariana; Cavadas, Cláudia

    2015-01-01

    Aging was recently described as a life event programmed by the hypothalamus, a key brain region that is crucial for the neuroendocrine interaction between the central nervous system and the periphery. Autophagy impairment is a hallmark of aging, contributing to the aging phenotype and to the aggravation of age-related diseases. Since hypothalamic autophagy decreases with age, strategies to promote autophagy in the hypothalamus may be relevant for control of the aging process. NPY (neuropeptide Y) is an endogenous neuropeptide mainly produced by the hypothalamus. We recently reported, for the first time, that NPY stimulates autophagy in rodent hypothalamus and mediates caloric restriction-induced autophagy in hypothalamic neurons. Moreover, we observed that NPY acts through NPY1R (neuropeptide Y receptor Y1) or NPY5R activation involving a concerted action of different signaling pathways. Since both hypothalamic autophagy and NPY levels decrease with age, modulation of NPY levels could provide new putative therapeutic tools to ameliorate age-related deteriorations and extend longevity. PMID:26086271

  20. Association analysis between feed efficiency studies and expression of hypothalamic neuropeptide genes in laying ducks.

    PubMed

    Zeng, T; Chen, L; Du, X; Lai, S J; Huang, S P; Liu, Y L; Lu, L Z

    2016-10-01

    Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real-time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (P < 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (P < 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (P < 0.05). The mRNA expression of gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML.