Science.gov

Sample records for invertebrate vector genomics

  1. VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics.

    PubMed

    Megy, Karine; Emrich, Scott J; Lawson, Daniel; Campbell, David; Dialynas, Emmanuel; Hughes, Daniel S T; Koscielny, Gautier; Louis, Christos; Maccallum, Robert M; Redmond, Seth N; Sheehan, Andrew; Topalis, Pantelis; Wilson, Derek

    2012-01-01

    VectorBase (http://www.vectorbase.org) is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community.

  2. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.

  3. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  4. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases

    PubMed Central

    Giraldo-Calderón, Gloria I.; Emrich, Scott J.; MacCallum, Robert M.; Maslen, Gareth; Dialynas, Emmanuel; Topalis, Pantelis; Ho, Nicholas; Gesing, Sandra; Madey, Gregory; Collins, Frank H.; Lawson, Daniel

    2015-01-01

    VectorBase is a National Institute of Allergy and Infectious Diseases supported Bioinformatics Resource Center (BRC) for invertebrate vectors of human pathogens. Now in its 11th year, VectorBase currently hosts the genomes of 35 organisms including a number of non-vectors for comparative analysis. Hosted data range from genome assemblies with annotated gene features, transcript and protein expression data to population genetics including variation and insecticide-resistance phenotypes. Here we describe improvements to our resource and the set of tools available for interrogating and accessing BRC data including the integration of Web Apollo to facilitate community annotation and providing Galaxy to support user-based workflows. VectorBase also actively supports our community through hands-on workshops and online tutorials. All information and data are freely available from our website at https://www.vectorbase.org/. PMID:25510499

  5. Marine invertebrate lipases: Comparative and functional genomic analysis.

    PubMed

    Rivera-Perez, Crisalejandra

    2015-09-01

    Lipases are key enzymes involved in lipid digestion, storage and mobilization of reserves during fasting or heightened metabolic demand. This is a highly conserved process, essential for survival. The genomes of five marine invertebrate species with distinctive digestive system were screened for the six major lipase families. The two most common families in marine invertebrates, the neutral an acid lipases, are also the main families in mammals and insects. The number of lipases varies two-fold across analyzed genomes. A high degree of orthology with mammalian lipases was observed. Interestingly, 19% of the marine invertebrate lipases have lost motifs required for catalysis. Analysis of the lid and loop regions of the neutral lipases suggests that many marine invertebrates have a functional triacylglycerol hydrolytic activity as well as some acid lipases. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these families of enzymes in marine invertebrates.

  6. Aquatic invertebrates as unlikely vectors of Buruli ulcer disease.

    PubMed

    Benbow, M Eric; Williamson, Heather; Kimbirauskas, Ryan; McIntosh, Mollie D; Kolar, Rebecca; Quaye, Charles; Akpabey, Felix; Boakye, D; Small, Pam; Merritt, Richard W

    2008-08-01

    Buruli ulcer is a necrotizing skin disease caused by Mycobacterium ulcerans and associated with exposure to aquatic habitats. To assess possible transmission of M. ulcerans by aquatic biting insects, we conducted a field examination of biting water bugs (Hemiptera: Naucoridae, Belostomatidae, Nepidae) in 15 disease-endemic and 12 non-disease-endemic areas of Ghana, Africa. From collections of 22,832 invertebrates, we compared composition, abundance, and associated M. ulcerans positivity among sites. Biting hemipterans were rare and represented a small percentage (usually <2%) of invertebrate communities. No significant differences were found in hemipteran abundance or pathogen positivity between disease-endemic and non-disease-endemic sites, and between abundance of biting hemipterans and M. ulcerans positivity. Therefore, although infection through insect bites is possible, little field evidence supports the assumption that biting hemipterans are primary vectors of M. ulcerans.

  7. Vectors of invasions in freshwater invertebrates and fishes

    USGS Publications Warehouse

    Fuller, Pam L.; Canning-Clode, João

    2015-01-01

    Without human assistance, the terrestrial environment and oceans represent barriers to the dispersal of freshwater aquatic organisms. The ability to overcome such barriers depends on the existence of anthropogenic vectors that can transport live organisms to new areas, and the species’ biology to survive the transportation and transplantation into the new environment (Johnson et al., 2006).

  8. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed

    Labhart, Thomas

    2016-12-15

    The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.

  9. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed Central

    2016-01-01

    ABSTRACT The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, ‘color-blind’ humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert ‘water below!’ to water-seeking bugs. PMID:27974532

  10. Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates.

    PubMed

    Djukic, Marvin; Poehlein, Anja; Thürmer, Andrea; Daniel, Rolf

    2011-10-01

    Here we announce the genome sequence of the bacterium Brevibacillus laterosporus LMG 15441, which is a pathogen of invertebrates. The genome consists of one chromosome and two circular plasmids. Sequence analysis revealed a large potential to produce polyketides, nonribosomal peptides, and toxins.

  11. Manipulating yeast genome using plasmid vectors.

    PubMed

    Stearns, T; Ma, H; Botstein, D

    1990-01-01

    The vectors and techniques described here enable one to manipulate the yeast genome to meet specific needs. Genes can be cloned, and the clone used to delete the wild-type gene from the chromosome, or replace it with mutant versions. Mutants derived by classical methods, such as mutagenesis of whole cells, or by reversion of a phenotype, can be cloned and analyzed in vitro. Yeast genes and foreign genes can either be inserted into autonomously replicating plasmid vectors that are reasonably stable or integrated into a yeast chromosome where they are maintained at one copy per genome. The combination of these techniques with the characterized promoter systems available in yeast make it possible to express almost any gene in yeast. Once this is achieved, the entire repertoire of yeast genetics is available to probe the function of the gene, or to engineer the expression in useful ways.

  12. Zoology: Invertebrates that Parasitize Invertebrates.

    PubMed

    Giribet, Gonzalo

    2016-07-11

    The genome of an orthonectid, a group of highly modified parasitic invertebrates, is drastically reduced and compact, yet it shows the bilaterian gene toolkit. Phylogenetic analyses place the enigmatic orthonectids within Spiralia, although their exact placement remains uncertain.

  13. Current status of genome editing in vector mosquitoes: A review.

    PubMed

    Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah

    2017-01-16

    Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.

  14. Invertebrate lamins

    SciTech Connect

    Melcer, Shai; Gruenbaum, Yosef . E-mail: gru@vms.huji.ac.il; Krohne, Georg . E-mail: krohne@biozentrum.uni-wuerzburg.de

    2007-06-10

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions.

  15. CpG methylation is targeted to transcription units in an invertebrate genome

    PubMed Central

    Suzuki, Miho M.; Kerr, Alastair R.W.; De Sousa, Dina; Bird, Adrian

    2007-01-01

    DNA is methylated at the dinucleotide CpG in genomes of a wide range of plants and animals. Among animals, variable patterns of genomic CpG methylation have been described, ranging from undetectable levels (e.g., in Caenorhabditis elegans) to high levels of global methylation in the vertebrates. The most frequent pattern in invertebrate animals, however, is mosaic methylation, comprising domains of methylated DNA interspersed with unmethylated domains. To understand the origin of mosaic DNA methylation patterns, we examined the distribution of DNA methylation in the Ciona intestinalis genome. Bisulfite sequencing and computational analysis revealed methylated domains with sharp boundaries that strongly colocalize with ∼60% of transcription units. By contrast, promoters, intergenic DNA, and transposons are not preferentially targeted by DNA methylation. Methylated transcription units include evolutionarily conserved genes, whereas the most highly expressed genes preferentially belong to the unmethylated fraction. The results lend support to the hypothesis that CpG methylation functions to suppress spurious transcriptional initiation within infrequently transcribed genes. PMID:17420183

  16. The genome of Anopheles darlingi, the main neotropical malaria vector.

    PubMed

    Marinotti, Osvaldo; Cerqueira, Gustavo C; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M R; Wespiser, Adam R; Almeida E Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; Silva, Artur Luiz da Costa da; Graveley, Brenton R; Walenz, Brian P; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; Azevedo Junior, Gilson Martins de; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q M; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M C; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Urményi, Turán P; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-08-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.

  17. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

  18. Construction and manipulation of giant DNA by a genome vector.

    PubMed

    Itaya, Mitsuhiro; Tsuge, Kenji

    2011-01-01

    Since the entire sequence of a number of genome came into determination, current studies are gradually focusing on unveiling global networks of gene products, RNA, protein, and metabolites that support real-life activities. Our understanding of whole gene networks will be brought about by use of not only a few recombinant genes but also more number of genes at a time, or the genome. Genomes should be likely handled freely; however, there exist certain barriers in handling between genes and genomes. They are intrinsic fragility of giant DNA in test tube and the size limit of conventional cloning vector systems relying on prevailing cloning host Escherichia coli. A eubacterium, Bacillus subtilis has been offered as a replacement for particular large DNA or genomes, relying on inherent ability to take up DNA given outside and integrate it into its own genome via homologous recombination. The Bacillus GenoMe (BGM) vector derived from the 4,200-kbp genome of B. subtilis 168 has been demonstrated to accommodate fairly large DNAs and is highlighted by the successful stable cloning of a whole 3,500-kbp genome of the nonpathogenic, unicellular photosynthetic bacterium Synechocystis and any sequence-known DNAs. In the chapter, highlighted are clear differences in cloning concept and actual manipulation from other conventional ones, focusing methodological aspects as plainly as possible. We may also indicate that B. subtilis provides other opportunities for assembly of a large number of DNA fragments, in unbelievably high efficiency. The new workhorse described here exhibits technical breakthroughs leading to the new concept for designing the desired genomes even from scratch. The novel system not only offers unprecedented opportunities for addressing important contemporary issues in biotechnology, but also gives rise to new ideas of thinking among versatile field of biology.

  19. New Invertebrate Vectors for PST, Spirolides and Okadaic Acid in the North Atlantic

    PubMed Central

    Silva, Marisa; Barreiro, Aldo; Rodriguez, Paula; Otero, Paz; Azevedo, Joana; Alfonso, Amparo; Botana, Luis M.; Vasconcelos, Vitor

    2013-01-01

    The prevalence of poisoning events due to harmful algal blooms (HABs) has declined during the last two decades through monitoring programs and legislation, implemented mainly for bivalves. However, new toxin vectors and emergent toxins pose a challenge to public health. Several locations on the Portuguese coast were surveyed between 2009 and 2010 for three distinct biotoxin groups [saxitoxin (PST), spirolide (SPX) and okadaic acid (OA)], in 14 benthic species of mollusks and echinoderms. Our main goals were to detect new vectors and unravel the seasonal and geographical patterns of these toxins. PSTs were analyzed by the Lawrence method, SPXs by LC-MS/MS, and OA by LC-MS/MS and UPLC-MS/MS. We report 16 new vectors for these toxins in the North Atlantic. There were differences in toxin contents among species, but no significant geographical or seasonal patterns were found. Our results suggest that legislation should be adjusted to extend the monitoring of marine toxins to a wider range of species besides edible bivalves. PMID:23739043

  20. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  1. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    PubMed

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  2. Standardized metadata for human pathogen/vector genomic sequences.

    PubMed

    Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H

    2014-01-01

    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a

  3. Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts.

    PubMed

    Waterfield, Nicholas R; Sanchez-Contreras, Maria; Eleftherianos, Ioannis; Dowling, Andrea; Yang, Guowei; Wilkinson, Paul; Parkhill, Julian; Thomson, Nicholas; Reynolds, Stuart E; Bode, Helge B; Dorus, Steven; Ffrench-Constant, Richard H

    2008-10-14

    Current sequence databases now contain numerous whole genome sequences of pathogenic bacteria. However, many of the predicted genes lack any functional annotation. We describe an assumption-free approach, Rapid Virulence Annotation (RVA), for the high-throughput parallel screening of genomic libraries against four different taxa: insects, nematodes, amoeba, and mammalian macrophages. These hosts represent different aspects of both the vertebrate and invertebrate immune system. Here, we apply RVA to the emerging human pathogen Photorhabdus asymbiotica using "gain of toxicity" assays of recombinant Escherichia coli clones. We describe a wealth of potential virulence loci and attribute biological function to several putative genomic islands, which may then be further characterized using conventional molecular techniques. The application of RVA to other pathogen genomes promises to ascribe biological function to otherwise uncharacterized virulence genes.

  4. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates.

    PubMed

    Hodson, Mark E; Duffus-Hodson, Calum A; Clark, Andy; Prendergast-Miller, Miranda T; Thorpe, Karen L

    2017-04-05

    Microplastics are widespread contaminants in terrestrial environments but comparatively little is known about interactions between microplastics and common terrestrial contaminants such as zinc (Zn). In adsorption experiments fragmented HDPE bags c. one mm(2) in size showed similar sorption characteristics to soil. However, when present in combination with soil, concentrations of adsorbed Zn on a per mass basis were over an order of magnitude lower on microplastics. Desorption of the Zn was minimal from both microplastics and soil in synthetic soil solution (0.01 M CaCl2), but in synthetic earthworm guts desorption was higher from microplastics (40-60%) than soil (2-15%), suggesting microplastics could increase Zn bioavailability. Individual Lumbricus terrestris earthworms exposed for 28 days in mesocosms of 260 g moist soil containing 0.35 wt % of Zn-bearing microplastic (236-4505 mg kg(-1)) ingested the microplastics, but there was no evidence of Zn accumulation, mortality, or weight change. Digestion of the earthworms showed that they did not retain microplastics in their gut. These findings indicate that microplastics could act as vectors to increase metal exposure in earthworms, but that the associated risk is unlikely to be significant for essential metals such as Zn that are well regulated by metabolic processes.

  5. Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus

    PubMed Central

    2010-01-01

    Background Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). Results RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGPmob), or with no remarkable feature (RGPnone). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGPmob and RGPnone, have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. Conclusions This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution. PMID:20950463

  6. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-02

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.

  7. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  8. Genomic Changes of Chagas Disease Vector, South America

    PubMed Central

    Dujardin, Jean Pierre; Nicolini, Paula; Caraccio, María Noel; Rose, Virginia; Tellez, Tatiana; Bermúdez, Hernán; Bargues, María Dolores; Mas-Coma, Santiago; O’Connor, José Enrique; Pérez, Ruben

    2004-01-01

    We analyzed the main karyologic changes that have occurred during the dispersion of Triatoma infestans, the main vector of Chagas disease. We identified two allopatric groups, named Andean and non-Andean. The Andean specimens present C-heterochromatic blocks in most of their 22 chromosomes, whereas non-Andean specimens have only 4–7 autosomes with C-banding. These heterochromatin differences are the likely cause of a striking DNA content variation (approximately 30%) between Andean and non-Andean insects. Our study, together with previous historical and genetic data, suggests that T. infestans was originally a sylvatic species, with large quantities of DNA and heterochromatin, inhabiting the Andean region of Bolivia. However, the spread of domestic T. infestans throughout the non-Andean regions only involved insects with an important reduction of heterochromatin and DNA amounts. We propose that heterochromatin and DNA variation mainly reflected adaptive genomic changes that contribute to the ability of T. infestans to survive, reproduce, and disperse in different environments. PMID:15109410

  9. A new vector for identification of prokaryotes and their variable-size genomes.

    PubMed

    Hou, Tao; Liu, Fu; Lin, Caixia X; Li, Dingyuan Y

    2013-01-01

    A large number of prokaryotes have been produced, so how to provide a means to describe and distinguish them accurately is becoming a key issue of prokaryotic taxonomy. We proposed an efficient algorithm to filter out most genome fragments that are horizontally transferred, and extracted a new genome vector (GV). To highlight the power of GV, we applied it to identify prokaryotes and their variable-size genome fragments. The result indicated that the new vector as species tags can accurately identify genome fragments as short as 3,000 bp at species level.

  10. Diagnosis of vibriosis in the era of genomics: lessons from invertebrates.

    PubMed

    Le Roux, F

    2016-04-01

    Global changes linked to increases in temperature and ocean acidification, but also to more direct anthropogenic influences such as aquaculture, have caused a worldwide increase in the reports of Vibrio-associated illnesses affecting humans and also animals such as shrimp and molluscs. Investigation of the emergence of Vibrio pathogenesis events requires the analysis of microbial evolution at the gene, genome and population levels, in order to identify genomic modifications linked to increased virulence, resistance and/or prevalence, or to recent host shift. From a more applied point of view, the elucidation of virulence mechanisms is a prerequisite to devising prophylactic methods to fight infectious agents. In comparison with human pathogens, fairly little is known about the requirements for virulence in vibrios pathogenic to animals. However, the advent of genome sequencing, especially next-generation technologies, the possibility of genetically manipulating most of the Vibrio strains, and the recent availability of standardised animals for experimental infections have now compensated for the considerable delay in advancement of the knowledge of non-model pathogens such as Vibrio and have led to new scientific questions.

  11. Prolonged Integration Site Selection of a Lentiviral Vector in the Genome of Human Keratinocytes

    PubMed Central

    Qian, Wei; Wang, Yong; Li, Rui-fu; Zhou, Xin; Liu, Jing; Peng, Dai-zhi

    2017-01-01

    Background Lentiviral vectors have been successfully used for human skin cell gene transfer studies. Defining the selection of integration sites for retroviral vectors in the host genome is crucial in risk assessment analysis of gene therapy. However, genome-wide analyses of lentiviral integration sites in human keratinocytes, especially after prolonged growth, are poorly understood. Material/Methods In this study, 874 unique lentiviral vector integration sites in human HaCaT keratinocytes after long-term culture were identified and analyzed with the online tool GTSG-QuickMap and SPSS software. Results The data indicated that lentiviral vectors showed integration site preferences for genes and gene-rich regions. Conclusions This study will likely assist in determining the relative risks of the lentiviral vector system and in the design of a safe lentiviral vector system in the gene therapy of skin diseases. PMID:28255155

  12. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches.

    PubMed

    Severson, David W; Behura, Susanta K

    2016-10-30

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The "vectorial capacity" of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as "vector competence". Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  13. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    PubMed Central

    Severson, David W.; Behura, Susanta K.

    2016-01-01

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220

  14. A series of conditional shuttle vectors for targeted genomic integration in budding yeast

    PubMed Central

    Chou, Chia-Ching; Patel, Michael T.; Gartenberg, Marc R.

    2015-01-01

    The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications. PMID:25736914

  15. A series of conditional shuttle vectors for targeted genomic integration in budding yeast.

    PubMed

    Chou, Chia-Ching; Patel, Michael T; Gartenberg, Marc R

    2015-05-01

    The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications.

  16. New Invertebrate Vectors of Okadaic Acid from the North Atlantic Waters--Portugal (Azores and Madeira) and Morocco.

    PubMed

    Silva, Marisa; Rodriguez, Inés; Barreiro, Aldo; Kaufmann, Manfred; Isabel Neto, Ana; Hassouani, Meryem; Sabour, Brahim; Alfonso, Amparo; Botana, Luis M; Vasconcelos, Vitor

    2015-12-08

    Okadaic acid and its analogues are potent phosphatase inhibitors that cause Diarrheic Shellfish Poisoning (DSP) through the ingestion of contaminated shellfish by humans. This group of toxins is transmitted worldwide but the number of poisoning incidents has declined over the last 20 years due to legislation and monitoring programs that were implemented for bivalves. In the summer of 2012 and 2013, we collected a total of 101 samples of 22 different species that were made up of benthic and subtidal organisms such echinoderms, crustaceans, bivalves and gastropods from Madeira, São Miguel Island (Azores archipelago) and the northwestern coast of Morocco. The samples were analyzed by UPLC-MS/MS. Our main objective was to detect new vectors for these biotoxins. We can report nine new vectors for these toxins in the North Atlantic: Astropecten aranciacus, Arbacia lixula, Echinaster sepositus, Holothuria sanctori, Ophidiaster ophidianus, Onchidella celtica, Aplysia depilans, Patella spp., and Stramonita haemostoma. Differences in toxin contents among the species were found. Even though low concentrations were detected, the levels of toxins that were present, especially in edible species, indicate the importance of these types of studies. Routine monitoring should be extended to comprise a wider number of vectors other than for bivalves of okadaic acid and its analogues.

  17. New Invertebrate Vectors of Okadaic Acid from the North Atlantic Waters—Portugal (Azores and Madeira) and Morocco

    PubMed Central

    Silva, Marisa; Rodriguez, Inés; Barreiro, Aldo; Kaufmann, Manfred; Neto, Ana Isabel; Hassouani, Meryem; Sabour, Brahim; Alfonso, Amparo; Botana, Luis M.; Vasconcelos, Vitor

    2015-01-01

    Okadaic acid and its analogues are potent phosphatase inhibitors that cause Diarrheic Shellfish Poisoning (DSP) through the ingestion of contaminated shellfish by humans. This group of toxins is transmitted worldwide but the number of poisoning incidents has declined over the last 20 years due to legislation and monitoring programs that were implemented for bivalves. In the summer of 2012 and 2013, we collected a total of 101 samples of 22 different species that were made up of benthic and subtidal organisms such echinoderms, crustaceans, bivalves and gastropods from Madeira, São Miguel Island (Azores archipelago) and the northwestern coast of Morocco. The samples were analyzed by UPLC-MS/MS. Our main objective was to detect new vectors for these biotoxins. We can report nine new vectors for these toxins in the North Atlantic: Astropecten aranciacus, Arbacia lixula, Echinaster sepositus, Holothuria sanctori, Ophidiaster ophidianus, Onchidella celtica, Aplysia depilans, Patella spp., and Stramonita haemostoma. Differences in toxin contents among the species were found. Even though low concentrations were detected, the levels of toxins that were present, especially in edible species, indicate the importance of these types of studies. Routine monitoring should be extended to comprise a wider number of vectors other than for bivalves of okadaic acid and its analogues. PMID:26670254

  18. Adeno-Associated Virus Vector Genomes Persist as Episomal Chromatin in Primate Muscle▿

    PubMed Central

    Penaud-Budloo, Magalie; Le Guiner, Caroline; Nowrouzi, Ali; Toromanoff, Alice; Chérel, Yan; Chenuaud, Pierre; Schmidt, Manfred; von Kalle, Christof; Rolling, Fabienne; Moullier, Philippe; Snyder, Richard O.

    2008-01-01

    Recombinant adeno-associated virus (rAAV) vectors are capable of mediating long-term gene expression following administration to skeletal muscle. In rodent muscle, the vector genomes persist in the nucleus in concatemeric episomal forms. Here, we demonstrate with nonhuman primates that rAAV vectors integrate inefficiently into the chromosomes of myocytes and reside predominantly as episomal monomeric and concatemeric circles. The episomal rAAV genomes assimilate into chromatin with a typical nucleosomal pattern. The persistence of the vector genomes and gene expression for years in quiescent tissues suggests that a bona fide chromatin structure is important for episomal maintenance and transgene expression. These findings were obtained from primate muscles transduced with rAAV1 and rAAV8 vectors for up to 22 months after intramuscular delivery of 5 × 1012 viral genomes/kg. Because of this unique context, our data, which provide important insight into in situ vector biology, are highly relevant from a clinical standpoint. PMID:18524821

  19. Differences in Vector Genome Processing and Illegitimate Integration of Non-Integrating Lentiviral Vectors

    PubMed Central

    Shaw, Aaron M.; Joseph, Guiandre L.; Jasti, Aparna C.; Sastry-Dent, Lakshmi; Witting, Scott; Cornetta, Kenneth

    2016-01-01

    A variety of mutations in lentiviral vector expression systems have been shown to generate a non-integrating phenotype. We studied a novel 12 base-pair U3-LTR integrase attachment site deletion (U3-LTR att site) mutant and found similar physical titers to the previously reported integrase catalytic core mutant IN/D116N. Both mutations led to a greater than two log reduction in vector integration; with IN/D116N providing lower illegitimate integration frequency, while the U3-LTR att site mutant provided a higher level of transgene expression. The improved expression of the U3-LTR att site mutant could not be explained solely based on an observed modest increase in integration frequency. In evaluating processing, we noted significant differences in unintegrated vector forms, with the U3-LTR att site mutant leading to a predominance of 1-LTR circles. The mutations also differed in the manner of illegitimate integration. The U3-LTR att site mutant vector demonstrated integrase-mediated integration at the intact U5-LTR att site and non-integrase mediated integration at the mutated U3-LTR att site. Finally, we combined a variety of mutations and modifications and assessed transgene expression and integration frequency to show that combining modifications can improve the potential clinical utility of non-integrating lentiviral vectors. PMID:27682478

  20. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis

    PubMed Central

    2014-01-01

    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein–encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology. PMID:24763584

  1. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis.

    PubMed

    2014-04-25

    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

  2. Complete genome sequence of a Klebsiella pneumoniae strain isolated from a known cotton insect boll vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Klebsiella pneumoniae (associated with bacterial pneumonia) was previously isolated from Nezara viridula, a significant vector of cotton boll-rot pathogens. We provide the first annotated genome sequence of the cotton opportunistic strain K. pneumoniae 5-1. This data provides guidance to study the...

  3. VGSC: A Web-Based Vector Graph Toolkit of Genome Synteny and Collinearity

    PubMed Central

    Bi, Changwei; Wu, Guoxin; Wei, Suyun; Dai, Xiaogang; Yin, Tongming

    2016-01-01

    Background. In order to understand the colocalization of genetic loci amongst species, synteny and collinearity analysis is a frequent task in comparative genomics research. However many analysis software packages are not effective in visualizing results. Problems include lack of graphic visualization, simple representation, or inextensible format of outputs. Moreover, higher throughput sequencing technology requires higher resolution image output. Implementation. To fill this gap, this paper publishes VGSC, the Vector Graph toolkit of genome Synteny and Collinearity, and its online service, to visualize the synteny and collinearity in the common graphical format, including both raster (JPEG, Bitmap, and PNG) and vector graphic (SVG, EPS, and PDF). Result. Users can upload sequence alignments from blast and collinearity relationship from the synteny analysis tools. The website can generate the vector or raster graphical results automatically. We also provide a java-based bytecode binary to enable the command-line execution. PMID:27006949

  4. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics.

    PubMed

    Reitzel, A M; Herrera, S; Layden, M J; Martindale, M Q; Shank, T M

    2013-06-01

    Characterization of large numbers of single-nucleotide polymorphisms (SNPs) throughout a genome has the power to refine the understanding of population demographic history and to identify genomic regions under selection in natural populations. To this end, population genomic approaches that harness the power of next-generation sequencing to understand the ecology and evolution of marine invertebrates represent a boon to test long-standing questions in marine biology and conservation. We employed restriction-site-associated DNA sequencing (RAD-seq) to identify SNPs in natural populations of the sea anemone Nematostella vectensis, an emerging cnidarian model with a broad geographic range in estuarine habitats in North and South America, and portions of England. We identified hundreds of SNP-containing tags in thousands of RAD loci from 30 barcoded individuals inhabiting four locations from Nova Scotia to South Carolina. Population genomic analyses using high-confidence SNPs resulted in a highly-resolved phylogeography, a result not achieved in previous studies using traditional markers. Plots of locus-specific FST against heterozygosity suggest that a majority of polymorphic sites are neutral, with a smaller proportion suggesting evidence for balancing selection. Loci inferred to be under balancing selection were mapped to the genome, where 90% were located in gene bodies, indicating potential targets of selection. The results from analyses with and without a reference genome supported similar conclusions, further highlighting RAD-seq as a method that can be efficiently applied to species lacking existing genomic resources. We discuss the utility of RAD-seq approaches in burgeoning Nematostella research as well as in other cnidarian species, particularly corals and jellyfishes, to determine phylogeographic relationships of populations and identify regions of the genome undergoing selection.

  5. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.

    PubMed

    Laughery, Marian F; Hunter, Tierra; Brown, Alexander; Hoopes, James; Ostbye, Travis; Shumaker, Taven; Wyrick, John J

    2015-12-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is an important tool for genome editing because the Cas9 endonuclease can induce targeted DNA double-strand breaks. Targeting of the DNA break is typically controlled by a single-guide RNA (sgRNA), a chimeric RNA containing a structural segment important for Cas9 binding and a 20mer guide sequence that hybridizes to the genomic DNA target. Previous studies have demonstrated that CRISPR-Cas9 technology can be used for efficient, marker-free genome editing in Saccharomyces cerevisiae. However, introducing the 20mer guide sequence into yeast sgRNA expression vectors often requires cloning procedures that are complex, time-consuming and/or expensive. To simplify this process, we have developed a new sgRNA expression cassette with internal restriction enzyme sites that permit rapid, directional cloning of 20mer guide sequences. Here we describe a flexible set of vectors based on this design for cloning and expressing sgRNAs (and Cas9) in yeast using different selectable markers. We anticipate that the Cas9-sgRNA expression vector with the URA3 selectable marker (pML104) will be particularly useful for genome editing in yeast, since the Cas9 machinery can be easily removed by counter-selection using 5-fluoro-orotic acid (5-FOA) following successful genome editing. The availability of new vectors that simplify and streamline the technical steps required for guide sequence cloning should help accelerate the use of CRISPR-Cas9 technology in yeast genome editing.

  6. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    PubMed

    Behura, Susanta K; Haugen, Morgan; Flannery, Ellen; Sarro, Joseph; Tessier, Charles R; Severson, David W; Duman-Scheel, Molly

    2011-01-01

    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  7. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    PubMed

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data.

  8. Whole genome molecular phylogeny of large dsDNA viruses using composition vector method

    PubMed Central

    Gao, Lei; Qi, Ji

    2007-01-01

    Background One important mechanism by which large DNA viruses increase their genome size is the addition of modules acquired from other viruses, host genomes or gene duplications. Phylogenetic analysis of large DNA viruses, especially using methods based on alignment, is often difficult due to the presence of horizontal gene transfer events. The recent composition vector approach, not sensitive to such events, is applied here to reconstruct the phylogeny of 124 large DNA viruses. Results The results are mostly consistent with the biologist's systematics with only a few outliers and can also provide some information for those unclassified viruses and cladistic relationships of several families. Conclusion With composition vector approach we obtained the phylogenetic tree of large DNA viruses, which not only give results comparable to biologist's systematics but also provide a new way for recovering the phylogeny of viruses. PMID:17359548

  9. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics.

    PubMed

    Fontaine, Michael C; Pease, James B; Steele, Aaron; Waterhouse, Robert M; Neafsey, Daniel E; Sharakhov, Igor V; Jiang, Xiaofang; Hall, Andrew B; Catteruccia, Flaminia; Kakani, Evdoxia; Mitchell, Sara N; Wu, Yi-Chieh; Smith, Hilary A; Love, R Rebecca; Lawniczak, Mara K; Slotman, Michel A; Emrich, Scott J; Hahn, Matthew W; Besansky, Nora J

    2015-01-02

    Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species.

  10. Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis

    PubMed Central

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T.P.; Yang, Liang

    2014-01-01

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments. PMID:24803570

  11. Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis.

    PubMed

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T P; Yang, Liang

    2014-05-06

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments.

  12. Invertebrate Paleontology.

    ERIC Educational Resources Information Center

    Feldmann, Rodney M.

    1983-01-01

    Indicating that, although no broad conceptual notions in invertebrate paleontology were proposed during 1982, a large number of excellent papers focusing on testing, modifying, and documenting earlier speculations were published or presented at professional meetings. Highlights of papers, conferences, and research studies are provided (including…

  13. Invertebrate Models of Dystonia

    PubMed Central

    Caldwell, Kim A; Shu, Yilong; Roberts, Nathan B; Caldwell, Guy A; O’Donnell, Janis M

    2013-01-01

    The neurological movement disorder dystonia is an umbrella term for a heterogeneous group of related conditions where at least 20 monogenic forms have been identified. Despite the substantial advances resulting from the identification of these loci, the function of many DYT gene products remains unclear. Comparative genomics using simple animal models to examine the evolutionarily conserved functional relationships with monogenic dystonias represents a rapid route toward a comprehensive understanding of these movement disorders. Current studies using the invertebrate animal models Caenorhabditis elegans and Drosophila melanogaster are uncovering cellular functions and mechanisms associated with mutant forms of the well-conserved gene products corresponding to DYT1, DYT5a, DYT5b, and DYT12 dystonias. Here we review recent findings from the invertebrate literature pertaining to molecular mechanisms of these gene products, torsinA, GTP cyclohydrolase I, tyrosine hydroxylase, and the alpha subunit of Na+/K ATPase, respectively. In each study, the application of powerful genetic tools developed over decades of intensive work with both of these invertebrate systems has led to mechanistic insights into these human disorders. These models are particularly amenable to large-scale genetic screens for modifiers or additional alleles, which are bolstering our understanding of the molecular functions associated with these gene products. Moreover, the use of invertebrate models for the evaluation of DYT genetic loci and their genetic interaction networks has predictive value and can provide a path forward for therapeutic intervention. PMID:23814534

  14. A versatile zero background T-vector system for gene cloning and functional genomics.

    PubMed

    Chen, Songbiao; Songkumarn, Pattavipha; Liu, Jianli; Wang, Guo-Liang

    2009-07-01

    With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.

  15. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  16. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

    PubMed

    Kabadi, Ami M; Ousterout, David G; Hilton, Isaac B; Gersbach, Charles A

    2014-10-29

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types.

  17. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones.

    PubMed

    Wild, Jadwiga; Hradecna, Zdenka; Szybalski, Waclaw

    2002-09-01

    The widely used, very-low-copy BAC (bacterial artificial chromosome) vectors are the mainstay of present genomic research. The principal advantage of BACs is the high stability of inserted clones, but an important disadvantage is the low yield of DNA, both for vectors alone and when carrying genomic inserts. We describe here a novel class of single-copy/high-copy (SC/HC) pBAC/oriV vectors that retain all the advantages of low-copy BAC vectors, but are endowed with a conditional and tightly controlled oriV/TrfA amplification system that allows: (1) a yield of ~100 copies of the vector per host cell when conditionally induced with L-arabinose, and (2) analogous DNA amplification (only upon induction and with copy number depending on the insert size) of pBAC/oriV clones carrying >100-kb inserts. Amplifiable clones and libraries facilitate high-throughput DNA sequencing and other applications requiring HC plasmid DNA. To turn on DNA amplification, which is driven by the oriV origin of replication, we used copy-up mutations in the gene trfA whose expression was very tightly controlled by the araC-P(araBAD) promoter/regulator system. This system is inducible by L-arabinose, and could be further regulated by glucose and fucose. Amplification of DNA upon induction with L-arabinose and its modulation by glucose are robust and reliable. Furthermore, we discovered that addition of 0.2% D-glucose to the growth medium helped toward the objective of obtaining a real SC state for all BAC systems, thus enhancing the stability of their maintenance, which became equivalent to cloning into the host chromosome

  18. Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated Leishmania Population

    PubMed Central

    Smith, Barbara A.; Imamura, Hideo; Sanders, Mandy; Svobodova, Milena; Volf, Petr; Berriman, Matthew; Cotton, James A.; Smith, Deborah F.

    2014-01-01

    Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle. PMID:24453988

  19. CD8+ T cell recognition of epitopes within the capsid of adeno-associated virus 8-based gene transfer vectors depends on vectors' genome.

    PubMed

    Wu, Te-Lang; Li, Hua; Faust, Susan M; Chi, Emily; Zhou, Shangzhen; Wright, Fraser; High, Katherine A; Ertl, Hildegund C J

    2014-01-01

    Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8+ T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8+ T cells. Our results clearly show that depending on the vectors' genome, CD8+ T cells can detect such epitopes on AAV8's capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.

  20. Insights from the Genome Annotation of Elizabethkingia anophelis from the Malaria Vector Anopheles gambiae

    PubMed Central

    Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host. PMID:24842809

  1. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae.

    PubMed

    Kukutla, Phanidhar; Lindberg, Bo G; Pei, Dong; Rayl, Melanie; Yu, Wanqin; Steritz, Matthew; Faye, Ingrid; Xu, Jiannong

    2014-01-01

    Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host.

  2. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-09-08

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  3. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  4. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    PubMed

    Mai, Yun; Gao, Guangxia

    2010-12-29

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  5. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia.

    PubMed

    Lau, Yee-Ling; Lee, Wenn-Chyau; Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.

  6. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  7. Genomic insights into the Ixodes scapularis tick vector of Lyme disease.

    PubMed

    Gulia-Nuss, Monika; Nuss, Andrew B; Meyer, Jason M; Sonenshine, Daniel E; Roe, R Michael; Waterhouse, Robert M; Sattelle, David B; de la Fuente, José; Ribeiro, Jose M; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R; Walenz, Brian P; Koren, Sergey; Hostetler, Jessica B; Thiagarajan, Mathangi; Joardar, Vinita S; Hannick, Linda I; Bidwell, Shelby; Hammond, Martin P; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L; Almeida, Francisca C; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W; Bonzon-Kulichenko, Elena; Buckingham, Steven D; Caffrey, Daniel R; Caimano, Melissa J; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J; Giraldo-Calderón, Gloria I; Grabowski, Jeffrey M; Jiang, David; Khalil, Sayed M S; Kim, Donghun; Kocan, Katherine M; Koči, Juraj; Kuhn, Richard J; Kurtti, Timothy J; Lees, Kristin; Lang, Emma G; Kennedy, Ryan C; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D; Sakamoto, Joyce M; Sánchez-Gracia, Alejandro; Severo, Maiara S; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P; Vázquez, Jesús; Vieira, Filipe G; Villar, Margarita; Wespiser, Adam R; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V; Barker, Stephen C; Shao, Renfu; Zdobnov, Evgeny M; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H F; Nelson, David R; Unger, Maria F; Tubio, Jose M C; Tu, Zhijian; Robertson, Hugh M; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R; Lawson, Daniel; Wikel, Stephen K; Nene, Vishvanath M; Fraser, Claire M; Collins, Frank H; Birren, Bruce; Nelson, Karen E; Caler, Elisabet; Hill, Catherine A

    2016-02-09

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.

  8. Genomic insights into the Ixodes scapularis tick vector of Lyme disease

    PubMed Central

    Gulia-Nuss, Monika; Nuss, Andrew B.; Meyer, Jason M.; Sonenshine, Daniel E.; Roe, R. Michael; Waterhouse, Robert M.; Sattelle, David B.; de la Fuente, José; Ribeiro, Jose M.; Megy, Karine; Thimmapuram, Jyothi; Miller, Jason R.; Walenz, Brian P.; Koren, Sergey; Hostetler, Jessica B.; Thiagarajan, Mathangi; Joardar, Vinita S.; Hannick, Linda I.; Bidwell, Shelby; Hammond, Martin P.; Young, Sarah; Zeng, Qiandong; Abrudan, Jenica L.; Almeida, Francisca C.; Ayllón, Nieves; Bhide, Ketaki; Bissinger, Brooke W.; Bonzon-Kulichenko, Elena; Buckingham, Steven D.; Caffrey, Daniel R.; Caimano, Melissa J.; Croset, Vincent; Driscoll, Timothy; Gilbert, Don; Gillespie, Joseph J.; Giraldo-Calderón, Gloria I.; Grabowski, Jeffrey M.; Jiang, David; Khalil, Sayed M. S.; Kim, Donghun; Kocan, Katherine M.; Koči, Juraj; Kuhn, Richard J.; Kurtti, Timothy J.; Lees, Kristin; Lang, Emma G.; Kennedy, Ryan C.; Kwon, Hyeogsun; Perera, Rushika; Qi, Yumin; Radolf, Justin D.; Sakamoto, Joyce M.; Sánchez-Gracia, Alejandro; Severo, Maiara S.; Silverman, Neal; Šimo, Ladislav; Tojo, Marta; Tornador, Cristian; Van Zee, Janice P.; Vázquez, Jesús; Vieira, Filipe G.; Villar, Margarita; Wespiser, Adam R.; Yang, Yunlong; Zhu, Jiwei; Arensburger, Peter; Pietrantonio, Patricia V.; Barker, Stephen C.; Shao, Renfu; Zdobnov, Evgeny M.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Park, Yoonseong; Rozas, Julio; Benton, Richard; Pedra, Joao H. F.; Nelson, David R.; Unger, Maria F.; Tubio, Jose M. C.; Tu, Zhijian; Robertson, Hugh M.; Shumway, Martin; Sutton, Granger; Wortman, Jennifer R.; Lawson, Daniel; Wikel, Stephen K.; Nene, Vishvanath M.; Fraser, Claire M.; Collins, Frank H.; Birren, Bruce; Nelson, Karen E.; Caler, Elisabet; Hill, Catherine A.

    2016-01-01

    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent. PMID:26856261

  9. Invertebrates in the Classroom.

    ERIC Educational Resources Information Center

    Abramson, Charles I.

    1986-01-01

    Describes an inexpensive program using invertebrates as subjects in conditioning demonstrations and experiments. Provides a bibliography of reviews about invertebrate learning in addition to information on obtaining required apparatus and invertebrates.

  10. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  11. Introduction: Invertebrate Neuropeptides XV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  12. Introduction: Invertebrate Neuropeptides XIV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  13. Introduction: Invertebrate Neuropeptides XVI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  14. Preclinical Evaluation of a Clinical Candidate AAV8 Vector for Ornithine Transcarbamylase (OTC) Deficiency Reveals Functional Enzyme from Each Persisting Vector Genome

    PubMed Central

    Wang, Lili; Morizono, Hiroki; Lin, Jianping; Bell, Peter; Jones, David; McMenamin, Deirdre; Yu, Hongwei; Batshaw, Mark L.; Wilson, James M.

    2012-01-01

    Ornithine transcarbamylase deficiency (OTCD), the most common and severe urea cycle disorder, is an excellent model for developing liver-directed gene therapy. No curative therapy exists except for liver transplantation which is limited by available donors and carries significant risk of mortality and morbidity. Adeno-associated virus 8 (AAV8) has been shown to be the most efficient vector for liver-directed gene transfer and is currently being evaluated in a clinical trial for treating hemophilia B. In this study, we generated a clinical candidate vector for a proposed OTC gene therapy trial in humans based on a self-complementary AAV8 vector expressing codon-optimized human OTC (hOTCco) under the control of a liver-specific promoter. Codon-optimization dramatically improved the efficacy of OTC gene therapy. Supraphysiological expression levels and activity of hOTC were achieved in adult spfash mice following a single intravenous injection of hOTCco vector. Vector doses as low as 1×1010 genome copies (GC) achieved robust and sustained correction of the OTCD biomarker orotic aciduria and clinical protection against an ammonia challenge. Functional expression of hOTC in 40% of liver areas was found in mice treated with a low vector dose of 1×109 GC. We suggest that the clinical candidate vector we have developed has the potential to achieve therapeutic effects in OTCD patients. PMID:22133298

  15. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome.

    PubMed

    Wang, Lili; Morizono, Hiroki; Lin, Jianping; Bell, Peter; Jones, David; McMenamin, Deirdre; Yu, Hongwei; Batshaw, Mark L; Wilson, James M

    2012-02-01

    Ornithine transcarbamylase deficiency (OTCD), the most common and severe urea cycle disorder, is an excellent model for developing liver-directed gene therapy. No curative therapy exists except for liver transplantation which is limited by available donors and carries significant risk of mortality and morbidity. Adeno-associated virus 8 (AAV8) has been shown to be the most efficient vector for liver-directed gene transfer and is currently being evaluated in a clinical trial for treating hemophilia B. In this study, we generated a clinical candidate vector for a proposed OTC gene therapy trial in humans based on a self-complementary AAV8 vector expressing codon-optimized human OTC (hOTCco) under the control of a liver-specific promoter. Codon-optimization dramatically improved the efficacy of OTC gene therapy. Supraphysiological expression levels and activity of hOTC were achieved in adult spf(ash) mice following a single intravenous injection of hOTCco vector. Vector doses as low as 1×10(10) genome copies (GC) achieved robust and sustained correction of the OTCD biomarker orotic aciduria and clinical protection against an ammonia challenge. Functional expression of hOTC in 40% of liver areas was found in mice treated with a low vector dose of 1×10(9) GC. We suggest that the clinical candidate vector we have developed has the potential to achieve therapeutic effects in OTCD patients.

  16. Evolution of codon usage in Zika virus genomes is host and vector specific.

    PubMed

    Butt, Azeem Mehmood; Nasrullah, Izza; Qamar, Raheel; Tong, Yigang

    2016-10-12

    The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors.

  17. Evolution of codon usage in Zika virus genomes is host and vector specific

    PubMed Central

    Butt, Azeem Mehmood; Nasrullah, Izza; Qamar, Raheel; Tong, Yigang

    2016-01-01

    The codon usage patterns of viruses reflect the evolutionary changes that allow them to optimize their survival and adapt their fitness to the external environment and, most importantly, their hosts. Here we report the genotype-specific codon usage patterns of Zika virus (ZIKV) strains from the current and previous outbreaks. Several genotype-specific and common codon usage traits were noted in the ZIKV coding sequences, indicating their independent evolutionary origins from a common ancestor. The overall influence of natural selection was more profound than that of mutation pressure, acting on a specific set of viral genes in the Asian-genotype ZIKV strains from the recent outbreak. An interplay between codon adaptation and deoptimization may have allowed the virus to adapt to multiple host and vectors and is reported for the first time in ZIKV genomes. Combining our codon analysis with geographical data on Aedes populations in the Americas suggested that ZIKV has evolved host- and vector-specific codon usage patterns to maintain successful replication and transmission chains within multiple hosts and vectors. PMID:27729643

  18. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa

    PubMed Central

    2012-01-01

    Introduction Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. Results cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. Conclusions We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable

  19. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti

    PubMed Central

    Häcker, Irina; Harrell II, Robert A.; Eichner, Gerrit; Pilitt, Kristina L.; O’Brochta, David A.; Handler, Alfred M.; Schetelig, Marc F.

    2017-01-01

    Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting. PMID:28266580

  20. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti.

    PubMed

    Häcker, Irina; Harrell Ii, Robert A; Eichner, Gerrit; Pilitt, Kristina L; O'Brochta, David A; Handler, Alfred M; Schetelig, Marc F

    2017-03-07

    Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.

  1. Functional neuropeptidomics in invertebrates.

    PubMed

    De Haes, Wouter; Van Sinay, Elien; Detienne, Giel; Temmerman, Liesbet; Schoofs, Liliane; Boonen, Kurt

    2015-07-01

    Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  2. Discovering cis-Regulatory RNAs in Shewanella Genomes by Support Vector Machines

    PubMed Central

    Xu, Xing; Ji, Yongmei; Stormo, Gary D.

    2009-01-01

    An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs in the 5′ untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 5′-UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted transcription terminators or attenuators, and other candidate regulatory RNA

  3. Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites.

    PubMed

    Flotte, Terence R; Conlon, Thomas J; Poirier, Amy; Campbell-Thompson, Martha; Byrne, Barry J

    2007-03-01

    To translate the potential advantages of recombinant adeno-associated virus type 1 (rAAV1) vectors into a clinical application for muscle-directed gene therapy for alpha1 -antitrypsin (AAT) deficiency, we performed safety studies in 170 C57BL/6 mice and 26 New Zealand White rabbits. A mouse toxicology study included 8 cohorts of 10 mice each (5 per sex). Mice were killed either 21 or 90 days after intramuscular injection of doses ranging up to 1x10(13)vector genomes (VG), equivalent to 4 x 10(14)VG/kg. A mouse biodistribution study was performed in 5 cohorts of 10 mice, receiving intramuscular injections at the same doses; as well as in a lower dose cohort (3 x 10(8) VG; equivalent to 1.2 x 10(10)VG/kg); and in 4 other cohorts (excluding the vehicle control) injected with identical doses intravenously. Finally, biodistribution was examined in rabbits, with serial collection of blood and semen, as well as terminal tissue collection. Two significant findings were present, both of which were dose dependent. First, inflammatory cell infiltrates were detected at the site of injection 21, 60, or 90 days after intramuscular injection of 1 x 10(13)VG. This was not associated with loss of transgene expression. Second, vector DNA sequences were detected in most animals, levels being highest with the highest doses and earliest time points. Vector DNA was also present in liver, spleen, kidneys, and a number of other organs, including the gonads of animals receiving the highest dose. Likewise, vector DNA was present in the semen of male rabbits at higher doses. The copy number of vector DNA in the blood and semen declined over time throughout the study. These two dose-dependent findings have served to guide to the design of a phase 1 human trial of rAAV1-AAT.

  4. Population and Evolutionary Genomics of Amblyomma americanum, an Expanding Arthropod Disease Vector.

    PubMed

    Monzón, Javier D; Atkinson, Elizabeth G; Henn, Brenna M; Benach, Jorge L

    2016-05-12

    The lone star tick, Amblyomma americanum, is an important disease vector and the most frequent tick found attached to humans in the eastern United States. The lone star tick has recently experienced a rapid range expansion into the Northeast and Midwest, but despite this emerging infectious threat to wildlife, livestock, and human health, little is known about the genetic causes and consequences of the geographic expansion. In the first population genomic analysis of any tick species, we characterize the genetic diversity and population structure of A. americanum across its current geographic range, which has recently expanded. Using a high-throughput genotyping-by-sequencing approach, we discovered more than 8,000 single nucleotide polymorphisms in 90 ticks from five locations. Surprisingly, newly established populations in New York (NY) and Oklahoma (OK) are as diverse as historic range populations in North and South Carolina. However, substantial population structure occurs among regions, such that new populations in NY and OK are genetically distinct from historic range populations and from one another. Ticks from a laboratory colony are genetically distinct from wild populations, underscoring the need to account for natural variation when conducting transmission or immunological studies, many of which utilize laboratory-reared ticks. An FST-outlier analysis comparing a recently established population to a long-standing population detected numerous outlier sites, compatible with positive and balancing selection, highlighting the potential for adaptation during the range expansion. This study provides a framework for applying high-throughput DNA sequencing technologies for future investigations of ticks, which are common vectors of diseases.

  5. Population and Evolutionary Genomics of Amblyomma americanum, an Expanding Arthropod Disease Vector

    PubMed Central

    Monzón, Javier D.; Atkinson, Elizabeth G.; Henn, Brenna M.; Benach, Jorge L.

    2016-01-01

    The lone star tick, Amblyomma americanum, is an important disease vector and the most frequent tick found attached to humans in the eastern United States. The lone star tick has recently experienced a rapid range expansion into the Northeast and Midwest, but despite this emerging infectious threat to wildlife, livestock, and human health, little is known about the genetic causes and consequences of the geographic expansion. In the first population genomic analysis of any tick species, we characterize the genetic diversity and population structure of A. americanum across its current geographic range, which has recently expanded. Using a high-throughput genotyping-by-sequencing approach, we discovered more than 8,000 single nucleotide polymorphisms in 90 ticks from five locations. Surprisingly, newly established populations in New York (NY) and Oklahoma (OK) are as diverse as historic range populations in North and South Carolina. However, substantial population structure occurs among regions, such that new populations in NY and OK are genetically distinct from historic range populations and from one another. Ticks from a laboratory colony are genetically distinct from wild populations, underscoring the need to account for natural variation when conducting transmission or immunological studies, many of which utilize laboratory-reared ticks. An FST-outlier analysis comparing a recently established population to a long-standing population detected numerous outlier sites, compatible with positive and balancing selection, highlighting the potential for adaptation during the range expansion. This study provides a framework for applying high-throughput DNA sequencing technologies for future investigations of ticks, which are common vectors of diseases. PMID:27190204

  6. High-throughput genomic mapping of vector integration sites in gene therapy studies.

    PubMed

    Beard, Brian C; Adair, Jennifer E; Trobridge, Grant D; Kiem, Hans-Peter

    2014-01-01

    Gene therapy has enormous potential to treat a variety of infectious and genetic diseases. To date hundreds of patients worldwide have received hematopoietic cell products that have been gene-modified with retrovirus vectors carrying therapeutic transgenes, and many patients have been cured or demonstrated disease stabilization as a result (Adair et al., Sci Transl Med 4:133ra57, 2012; Biffi et al., Science 341:1233158, 2013; Aiuti et al., Science 341:1233151, 2013; Fischer et al., Gene 525:170-173, 2013). Unfortunately, for some patients the provirus integration dysregulated the expression of nearby genes leading to clonal outgrowth and, in some cases, cancer. Thus, the unwanted side effect of insertional mutagenesis has become a major concern for retrovirus gene therapy. The careful study of retrovirus integration sites (RIS) and the contribution of individual gene-modified clones to hematopoietic repopulating cells is of crucial importance for all gene therapy studies. Supporting this, the US Food and Drug Administration (FDA) has mandated the careful monitoring of RIS in all clinical trials of gene therapy. An invaluable method was developed: linear amplification mediated-polymerase chain reaction (LAM-PCR) capable of analyzing in vitro and complex in vivo samples, capturing valuable genomic information directly flanking the site of provirus integration. Linking this method and similar methods to high-throughput sequencing has now made possible an unprecedented understanding of the integration profile of various retrovirus vectors, and allows for sensitive monitoring of their safety. It also allows for a detailed comparison of improved safety-enhanced gene therapy vectors. An important readout of safety is the relative contribution of individual gene-modified repopulating clones. One limitation of LAM-PCR is that the ability to capture the relative contribution of individual clones is compromised because of the initial linear PCR common to all current methods

  7. Genomic Analyses of Three Malaria Vectors Reveals Extensive Shared Polymorphism but Contrasting Population Histories

    PubMed Central

    O’Loughlin, Samantha M.; Magesa, Stephen; Mbogo, Charles; Mosha, Franklin; Midega, Janet; Lomas, Susan; Burt, Austin

    2014-01-01

    Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evidence of cryptic breeding units. Anopheles merus is the most divergent of the three species, supporting a recent new phylogeny based on chromosomal inversions. Even though the species clusters are well separated, there is extensive shared polymorphism, particularly between A. gambiae and A. arabiensis. Divergence between A. gambiae and A. arabiensis does not vary across the autosomes but is higher in X-linked inversions than elsewhere on X or on the autosomes, consistent with the suggestion that this inversion (or a gene within it) is important in reproductive isolation between the species. The 2La/2L+a inversion shows no more evidence of introgression between A. gambiae and A. arabiensis than the rest of the autosomes. Population differentiation within A. gambiae and A. arabiensis is weak over approximately 190–270 km, implying no strong barriers to dispersal. Analysis of Tajima’s D and the allele frequency spectrum is consistent with modest population increases in A. arabiensis and A. merus, but a more complex demographic history of expansion followed by contraction in A. gambiae. Although they are less than 200 km apart, the two A. gambiae populations show evidence of different demographic histories. PMID:24408911

  8. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    PubMed Central

    Ndula, Miranda; Irving, Helen; Mzihalowa, Themba

    2017-01-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised. PMID:28151952

  9. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    PubMed

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  10. A bifunctional invertebrate-type lysozyme from the disk abalone, Haliotis discus discus: genome organization, transcriptional profiling and biological activities of recombinant protein.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Kasthuri, Saranya Revathy; Whang, Ilson; Lim, Bong-Soo; Nam, Bo-Hye; Lee, Jehee

    2013-10-01

    Lysozyme is an important enzyme in the innate immune system that plays a vital role in fighting microbial infections. In the current study, we identified, cloned, and characterized a gene that encodes an invertebrate-type lysozyme from the disk abalone, Haliotis discus discus (abLysI). The full-length cDNA of abLysI consisted of 545 bp with an open reading frame of 393 bp that encodes 131 amino acids. The theoretical molecular mass of mature abLysI was 12.3 kDa with an isoelectric point of 8.03. Conserved features in other homologs, such as catalytic sites for lytic activity (Glu(30) and Asp(41)), isopeptidase activity (His(107)), and ten cysteine residues were identified in abLysI. Genomic sequence analysis with respect to its cDNA showed that abLysI was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative promoter region. Homology and phylogeny analysis of abLysI depicted high identity and closer proximity, respectively, with an annelid i-type lysozyme from Hirudo medicinalis, and indicated that abLysI is a novel molluscan i-type lysozyme. Tissue-specific expressional studies revealed that abLysI is mainly transcribed in hepatopancreas followed by mantle. In addition, abLysI mRNA expression was induced following bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus) challenges. Recombinantly expressed abLysI [(r)abLysI] demonstrated strong lytic activity against Micrococcus lysodeikticus, isopeptidase activity, and antibacterial activity against several Gram-positive and Gram-negative bacteria. Moreover, (r)abLysI showed optimum lytic activity at pH 4.0 and 60 °C, while exhibiting optimum isopeptidase activity at pH 7.0. Taken together, these results indicate that abLysI is potentially involved in immune responses of the disk abalone to protect it from invaders.

  11. SNP Selection in Genome-Wide Association Studies via Penalized Support Vector Machine with MAX Test

    PubMed Central

    Kim, Jinseog; Kim, Dennis (Dong Hwan); Jung, Sin-Ho

    2013-01-01

    One of main objectives of a genome-wide association study (GWAS) is to develop a prediction model for a binary clinical outcome using single-nucleotide polymorphisms (SNPs) which can be used for diagnostic and prognostic purposes and for better understanding of the relationship between the disease and SNPs. Penalized support vector machine (SVM) methods have been widely used toward this end. However, since investigators often ignore the genetic models of SNPs, a final model results in a loss of efficiency in prediction of the clinical outcome. In order to overcome this problem, we propose a two-stage method such that the the genetic models of each SNP are identified using the MAX test and then a prediction model is fitted using a penalized SVM method. We apply the proposed method to various penalized SVMs and compare the performance of SVMs using various penalty functions. The results from simulations and real GWAS data analysis show that the proposed method performs better than the prediction methods ignoring the genetic models in terms of prediction power and selectivity. PMID:24174989

  12. Comparative Genomics- Identifying similarities and differences across three leafhopper vectors of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafhoppers are the second most important vectors of agricultural diseases, thus we examined the gene expression across three leafhopper leafhoppers, Homalodisca vitripennis, Graphocephala atropunctata, and Oncometopia nigricans, which are vectors of the plant-infecting bacterium, Xylella fastidiosa...

  13. Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair.

    PubMed Central

    Risseeuw, E; Franke-van Dijk, M E; Hooykaas, P J

    1996-01-01

    Recently, it was shown that Agrobacterium tumefaciens can transfer transferred DNA (T-DNA) to Saccharomyces cerevisiae and that this T-DNA, when used as a replacement vector, is integrated via homologous recombination into the yeast genome. To test whether T-DNA can be a suitable substrate for integration via the gap repair mechanism as well, a model system developed for detection of homologous recombination events in plants was transferred to S. cerevisiae. Analysis of the yeast transformants revealed that an insertion type T-DNA vector can indeed be integrated via gap repair. Interestingly, the transformation frequency and the type of recombination events turned out to depend strongly on the orientation of the insert between the borders in such an insertion type T-DNA vector. PMID:8816506

  14. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae.

    PubMed

    Maury, Jérôme; Germann, Susanne M; Baallal Jacobsen, Simo Abdessamad; Jensen, Niels B; Kildegaard, Kanchana R; Herrgård, Markus J; Schneider, Konstantin; Koza, Anna; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L(-1) of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.

  15. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    PubMed Central

    Baallal Jacobsen, Simo Abdessamad; Jensen, Niels B.; Kildegaard, Kanchana R.; Herrgård, Markus J.; Schneider, Konstantin; Koza, Anna; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity. PMID:26934490

  16. A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana.

    PubMed

    Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash

    2017-03-02

    A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits.

  17. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  18. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections.

    PubMed

    Tamura, Akihiro; Kato, Takahiro; Taki, Ayano; Sone, Mikako; Satoh, Nozomi; Yamagishi, Noriko; Takahashi, Tsubasa; Ryo, Bo-Song; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2013-11-01

    Apple latent spherical virus (ALSV)-based vectors experimentally infect a broad range of plant species without causing symptoms and can effectively induce stable virus-induced gene silencing in plants. Here, we show that pre-infection of ALSV vectors harboring part of a target viral genome (we called ALSV vector vaccines here) inhibits the multiplication and spread of the corresponding challenge viruses [Bean yellow mosaic virus, Zucchini yellow mosaic virus (ZYMV), and Cucumber mosaic virus (CMV)] by a homology-dependent resistance. Further, the plants pre-infected with an ALSV vector having genome sequences of both ZYMV and CMV were protected against double inoculation of ZYMV and CMV. More interestingly, a curative effect of an ALSV vector vaccine could also be expected in ZYMV-infected cucumber plants, because the symptoms subsided on subsequent inoculation with an ALSV vector vaccine. This may be due to the invasion of ALSV, but not ZYMV, in the shoot apical meristem of cucumber.

  19. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    PubMed

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  20. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    PubMed Central

    Mesquita, Rafael D.; Vionette-Amaral, Raquel J.; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A.; Minx, Patrick; Spieth, John; Carvalho, A. Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q.; Ribeiro, Jose M. C.; Sorgine, Marcos H. F.; Waterhouse, Robert M.; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R.; Araujo, Helena M.; Aravind, L.; Atella, Georgia C.; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R.; Braz, Gloria R. C.; Calderón-Fernández, Gustavo; Carareto, Claudia M. A.; Christensen, Mikkel B.; Costa, Igor R.; Costa, Samara G.; Dansa, Marilvia; Daumas-Filho, Carlos R. O.; De-Paula, Iron F.; Dias, Felipe A.; Dimopoulos, George; Emrich, Scott J.; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D.; da Fonseca, Rodrigo N.; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A.; Gandara, Ana Caroline; Garcia, Eloi S.; Genta, Fernando A.; Giraldo-Calderón, Gloria I.; Gomes, Bruno; Gondim, Katia C.; Granzotto, Adriana; Guarneri, Alessandra A.; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S. T.; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M. Patricia; Koerich, Leonardo B.; Lange, Angela B.; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G.; Lazoski, Cristiano; Lazzari, Claudio R.; Lopes, Raphael R.; Lorenzo, Marcelo G.; Lugon, Magda D.; Marcet, Paula L.; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G.; Nouzova, Marcela; Nunes, Rodrigo D.; Oliveira, Raquel L. L.; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O.; Pascual, Agustina; Pavan, Marcio G.; Pedrini, Nicolás; Peixoto, Alexandre A.; Pereira, Marcos H.; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M.; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S.; Silva-Cardoso, Livia; Silva-Neto, Mario A. C.; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L.; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M. C.; Ursic-Bedoya, Raul; Venancio, Thiago M.; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C.; Wilson, Richard K.; Huebner, Erwin; Dotson, Ellen M.; Oliveira, Pedro L.

    2015-01-01

    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods. PMID:26627243

  1. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection.

    PubMed

    Mesquita, Rafael D; Vionette-Amaral, Raquel J; Lowenberger, Carl; Rivera-Pomar, Rolando; Monteiro, Fernando A; Minx, Patrick; Spieth, John; Carvalho, A Bernardo; Panzera, Francisco; Lawson, Daniel; Torres, André Q; Ribeiro, Jose M C; Sorgine, Marcos H F; Waterhouse, Robert M; Montague, Michael J; Abad-Franch, Fernando; Alves-Bezerra, Michele; Amaral, Laurence R; Araujo, Helena M; Araujo, Ricardo N; Aravind, L; Atella, Georgia C; Azambuja, Patricia; Berni, Mateus; Bittencourt-Cunha, Paula R; Braz, Gloria R C; Calderón-Fernández, Gustavo; Carareto, Claudia M A; Christensen, Mikkel B; Costa, Igor R; Costa, Samara G; Dansa, Marilvia; Daumas-Filho, Carlos R O; De-Paula, Iron F; Dias, Felipe A; Dimopoulos, George; Emrich, Scott J; Esponda-Behrens, Natalia; Fampa, Patricia; Fernandez-Medina, Rita D; da Fonseca, Rodrigo N; Fontenele, Marcio; Fronick, Catrina; Fulton, Lucinda A; Gandara, Ana Caroline; Garcia, Eloi S; Genta, Fernando A; Giraldo-Calderón, Gloria I; Gomes, Bruno; Gondim, Katia C; Granzotto, Adriana; Guarneri, Alessandra A; Guigó, Roderic; Harry, Myriam; Hughes, Daniel S T; Jablonka, Willy; Jacquin-Joly, Emmanuelle; Juárez, M Patricia; Koerich, Leonardo B; Lange, Angela B; Latorre-Estivalis, José Manuel; Lavore, Andrés; Lawrence, Gena G; Lazoski, Cristiano; Lazzari, Claudio R; Lopes, Raphael R; Lorenzo, Marcelo G; Lugon, Magda D; Majerowicz, David; Marcet, Paula L; Mariotti, Marco; Masuda, Hatisaburo; Megy, Karine; Melo, Ana C A; Missirlis, Fanis; Mota, Theo; Noriega, Fernando G; Nouzova, Marcela; Nunes, Rodrigo D; Oliveira, Raquel L L; Oliveira-Silveira, Gilbert; Ons, Sheila; Orchard, Ian; Pagola, Lucia; Paiva-Silva, Gabriela O; Pascual, Agustina; Pavan, Marcio G; Pedrini, Nicolás; Peixoto, Alexandre A; Pereira, Marcos H; Pike, Andrew; Polycarpo, Carla; Prosdocimi, Francisco; Ribeiro-Rodrigues, Rodrigo; Robertson, Hugh M; Salerno, Ana Paula; Salmon, Didier; Santesmasses, Didac; Schama, Renata; Seabra-Junior, Eloy S; Silva-Cardoso, Livia; Silva-Neto, Mario A C; Souza-Gomes, Matheus; Sterkel, Marcos; Taracena, Mabel L; Tojo, Marta; Tu, Zhijian Jake; Tubio, Jose M C; Ursic-Bedoya, Raul; Venancio, Thiago M; Walter-Nuno, Ana Beatriz; Wilson, Derek; Warren, Wesley C; Wilson, Richard K; Huebner, Erwin; Dotson, Ellen M; Oliveira, Pedro L

    2015-12-01

    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.

  2. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  3. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  4. Highly fluorescent GFPm 2+ -based genome integration-proficient promoter probe vector to study Mycobacterium tuberculosis promoters in infected macrophages.

    PubMed

    Roy, Sougata; Narayana, Yeddula; Balaji, Kithiganahalli Narayanaswamy; Ajitkumar, Parthasarathi

    2012-01-01

    Study of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon-optimized gfp(m) (2+) gene, coding for GFP(m) (2+) of highest fluorescence reported till date, mycobacteriophage L5 attP-int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFP(m) (2+) from M. tuberculosis and M. smegmatis genome. Expression of GFP(m) (2+), driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2-promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome-integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long-term in vitro growth or stress conditions, or inside macrophages.

  5. DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool.

    PubMed

    Motion, Graham B; Howden, Andrew J M; Huitema, Edgar; Jones, Susan

    2015-12-15

    There are currently 151 plants with draft genomes available but levels of functional annotation for putative protein products are low. Therefore, accurate computational predictions are essential to annotate genomes in the first instance, and to provide focus for the more costly and time consuming functional assays that follow. DNA-binding proteins are an important class of proteins that require annotation, but current computational methods are not applicable for genome wide predictions in plant species. Here, we explore the use of species and lineage specific models for the prediction of DNA-binding proteins in plants. We show that a species specific support vector machine model based on Arabidopsis sequence data is more accurate (accuracy 81%) than a generic model (74%), and based on this we develop a plant specific model for predicting DNA-binding proteins. We apply this model to the tomato proteome and demonstrate its ability to perform accurate high-throughput prediction of DNA-binding proteins. In doing so, we have annotated 36 currently uncharacterised proteins by assigning a putative DNA-binding function. Our model is publically available and we propose it be used in combination with existing tools to help increase annotation levels of DNA-binding proteins encoded in plant genomes.

  6. Efficient genome replication of hepatitis B virus using adenovirus vector: a compact pregenomic RNA-expression unit

    PubMed Central

    Suzuki, Mariko; Kondo, Saki; Yamasaki, Manabu; Matsuda, Norie; Nomoto, Akio; Suzuki, Tetsuro; Saito, Izumu; Kanegae, Yumi

    2017-01-01

    The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely. PMID:28157182

  7. A Guide to Choosing Vectors for Transformation of the Plastid Genome of Higher Plants1[C][W][OA

    PubMed Central

    Lutz, Kerry Ann; Azhagiri, Arun Kumar; Tungsuchat-Huang, Tarinee; Maliga, Pal

    2007-01-01

    Plastid transformation, originally developed in tobacco (Nicotiana tabacum), has recently been extended to a number of crop species enabling in vivo probing of plastid function and biotechnological applications. In this article we report new plastid vectors that enable insertion of transgenes in the inverted repeat region of the plastome between the trnV and 3′rps12 or trnI and trnA genes. Efficient recovery of transplastomic clones is ensured by selection for spectinomycin (aadA) or kanamycin (neo) resistance genes. Expression of marker genes can be verified using commercial antibodies that detect the accumulation of neomycin phosphotranseferase II, the neo gene product, or the C-terminal c-myc tag of aminoglycoside-3″-adenylytransferase, encoded by the aadA gene. Aminoglycoside-3″-adenylytransferase, the spectinomycin inactivating enzyme, is translationally fused with green fluorescent protein in two vectors so that transplastomic clones can be selected by spectinomycin resistance and visually identified by fluorescence in ultraviolet light. The marker genes in the new vectors are flanked by target sites for Cre or Int, the P1 and phiC31 phage site-specific recombinases. When uniform transformation of all plastid genomes is obtained, the marker genes can be excised by Cre or Int expressed from a nuclear gene. Choice of expression signals for the gene of interest, complications caused by the presence of plastid DNA sequences recognized by Cre, and loss of transgenes by homologous recombination via duplicated sequences are also discussed to facilitate a rational choice from among the existing vectors and to aid with new target-specific vector designs. PMID:17965179

  8. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  9. Introduction of a CD40L genomic fragment via a human artificial chromosome vector permits cell-type-specific gene expression and induces immunoglobulin secretion.

    PubMed

    Yamada, Hidetoshi; Li, Yanze C; Nishikawa, Mitsuo; Oshimura, Mitsuo; Inoue, Toshiaki

    2008-01-01

    Gene therapy using cDNA driven by an exogenous promoter is not suited for genetic disorders that require intrinsic expression of a transgene, such as hyperimmunoglobulin (Ig)M syndrome (HIGM), which is caused by mutations in the CD40L gene. The human artificial chromosome (HAC) vector has the potential to solve this problem, because it can be used to transfer large genomic fragments containing their own regulatory elements. In this study, we examined whether introduction of a genomic fragment of CD40L via the HAC vector permits intrinsic expression of the transgene and has an effect on immunoglobulin secretion. We constructed an HAC vector carrying the mouse CD40L genomic fragment (mCD40L-HAC) in Chinese hamster ovary (CHO) cells and transferred the mCD40L-HAC vector into a human CD4-positive active T-cell line (Jurkat) and a human myeloid cell line (U937) via microcell-mediated chromosome transfer (MMCT). The mCD40L-HAC vector permits mCD40L expression in human active T cells but not in human myeloid cells. The mCD40L-HAC also functions to stimulate mouse B cells derived from CD40L(-/-) mice, inducing secretion of IgG. This study may be an initial step toward the therapeutic application of HAC vectors for intrinsic expression of genes, a potential new direction for genome-based gene therapy.

  10. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing

    PubMed Central

    Chiou, Shin-Heng; Winters, Ian P.; Wang, Jing; Naranjo, Santiago; Dudgeon, Crissy; Tamburini, Fiona B.; Brady, Jennifer J.; Yang, Dian; Grüner, Barbara M.; Chuang, Chen-Hua; Caswell, Deborah R.; Zeng, Hong; Chu, Pauline; Kim, Grace E.; Carpizo, Darren R.; Kim, Seung K.; Winslow, Monte M.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer. PMID:26178787

  11. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing.

    PubMed

    Chiou, Shin-Heng; Winters, Ian P; Wang, Jing; Naranjo, Santiago; Dudgeon, Crissy; Tamburini, Fiona B; Brady, Jennifer J; Yang, Dian; Grüner, Barbara M; Chuang, Chen-Hua; Caswell, Deborah R; Zeng, Hong; Chu, Pauline; Kim, Grace E; Carpizo, Darren R; Kim, Seung K; Winslow, Monte M

    2015-07-15

    Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer.

  12. Leafhopper comparative genomics - Identifying similarities and differences across Leafhopper vectors of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafhoppers, (Hemiptera) are considered the second most important group of plant pathogen vectors. Three leafhopper species which transmit Xylella fastidiosa, a plant pathogen of fruit crops, were examined by comparison of the available expressed sequence tags, ~43,400 ESTs (Hunter datasets, Nationa...

  13. Absolute Determination of Single-Stranded and Self-Complementary Adeno-Associated Viral Vector Genome Titers by Droplet Digital PCR

    PubMed Central

    Lock, Martin; Alvira, Mauricio R.; Chen, Shu-Jen

    2014-01-01

    Abstract Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer–probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome

  14. Dispersal of marine benthic invertebrates through ice rafting.

    PubMed

    Macfarlane, Colin B A; Drolet, David; Barbeau, Myriam A; Hamilton, Diana J; Ollerhead, Jeff

    2013-01-01

    Knowledge of dispersal vectors used by organisms is essential to the understanding of population and community dynamics. We report on ice rafting, a vector by which intertidal benthic invertebrates can be transported well outside their normal dispersal range during winter in temperate climates. We found multiple invertebrate taxa in sediment-laden ice blocks sampled in the intertidal zone. A large proportion of individuals were alive and active when freed from the ice. Using radio tracking, we found that ice blocks can travel over 20 km within a few days. Given the abundance of highly mobile ice blocks carrying viable invertebrates, we conclude that ice-rafting is likely an important dispersal vector, contributing to spatial community dynamics in intertidal systems. This mechanism helps explain observed genetic structure of populations, but it also raises concerns about potential negative impacts of climate change on connectivity between populations.

  15. Phylogenetic analysis of basic helix-loop-helix transcription factors in the genome of a typical human-disease vector

    PubMed Central

    Chen, Meng-Yun; Dong, Ying; Chang, Rui-Xue; Ang, Qian-Qian; Zhang, Ran; Wu, Yan-Yan; Xu, Yi-Hui; Lu, Wen-Sheng; Zheng, Xiao-Dong

    2016-01-01

    Ixodes scapularis, the black-legged tick, is one of the most common human-disease vectors and transmits Borrelia species, such as B. burgdorferi, as well as Theileria microti, Anaplasma phagocytophilum, etc. As basic helix-loop-helix (bHLH) transcription factors have been recognized for many years as important regulators of various developmental processes, we performed phylogenetic analysis of the black-legged tick genome in order to identify the number and family of bHLH transcription factors. Because bHLH family members have been identified in many organisms, including silkworm and fruit fly, we were able to conduct this survey and identify 58 putative bHLH transcription factors. Phylogenetic analysis revealed that the black-legged tick has 26, 10, 9, 1, 9, and 1 member in groups A, B, C, D, E, and F, respectively, whereas two were orphan genes. This analysis also revealed that unlike silkworm and fruit fly, the black-legged tick has no Mesp, Mlx, or TF4 family members, but has one more MyoRb family member. The present study provides useful background information for future studies of the black-legged tick as a disease vector with the goal of prevention and treatment. PMID:27904685

  16. A Global Genomic Characterization of Nairoviruses Identifies Nine Discrete Genogroups with Distinctive Structural Characteristics and Host-Vector Associations

    PubMed Central

    Walker, Peter J.; Widen, Steven G.; Wood, Thomas G.; Guzman, Hilda; Tesh, Robert B.; Vasilakis, Nikolaos

    2016-01-01

    Nairoviruses are primarily tick-borne bunyaviruses, some of which are known to cause mild-to-severe febrile illness in humans or livestock. We describe the genome sequences of 11 poorly characterized nairoviruses that have ecological associations with either birds (Farallon, Punta Salinas, Sapphire II, Zirqa, Avalon, Clo Mor, Taggert, and Abu Hammad viruses), rodents (Qalyub and Bandia viruses), or camels (Dera Ghazi Khan virus). Global phylogenetic analyses of proteins encoded in the L, M, and S RNA segments of these and 20 other available nairovirus genomes identified nine well-supported genogroups (Nairobi sheep disease, Thiafora, Sakhalin, Keterah, Qalyub, Kasokero, Dera Ghazi Khan, Hughes, and Tamdy). Genogroup-specific structural variations were evident, particularly in the M segment encoding a polyprotein from which virion envelope glycoproteins (Gn and Gc) are generated by proteolytic processing. Structural variations include the extension, abbreviation, or absence sequences encoding an O-glycosylated mucin-like protein in the N-terminal domain, distinctive patterns of conserved cysteine residues in the GP38-like domain, insertion of sequences encoding a double-membrane-spanning protein (NSm) between the Gn and Gc domains, and the presence of an alternative long open reading frame encoding a viroporin-like transmembrane protein (Gx). We also observed strong genogroup-specific associations with categories of hosts and tick vectors. PMID:26903607

  17. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    PubMed Central

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  18. Do invertebrates have culture?

    PubMed

    Danchin, Etienne; Blanchet, Simon; Mery, Frédérick; Wagner, Richard H

    2010-07-01

    A recent paper in Current Biology1 showed for the first time that female invertebrates (Drosophila melanogaster) can perform mate choice copying. Here, we discuss how female mating preferences in this species may be transmitted culturally. If culture occurs in invertebrates, it may be a relatively ancient evolutionary process that may have contributed to the evolution of many different taxa. This would considerably broaden the taxonomic range of cultural processes and suggest the need to include cultural inheritance in all animals into the general theory of evolution.2-4.

  19. Genome sequence, prevalence and quantification of the first iflavirus identified in a phytoplasma insect vector.

    PubMed

    Abbà, Simona; Galetto, Luciana; Vallino, Marta; Rossi, Marika; Turina, Massimo; Sicard, Anne; Marzachì, Cristina

    2017-03-01

    The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CY) and an efficient vector of flavescence dorée phytoplasma (FD) under laboratory conditions. During a transcriptome sequencing (RNA-seq) project aimed at investigating the interactions between the insect and the two phytoplasmas, a 10,616-nucleotide-long contig with high sequence similarity to known picorna-like viruses was identified among the assembled insect transcripts. The discovery came totally unexpected, because insects from the laboratory colony did not show any evident symptom that could be related to the presence of a virus. The amino acid sequence, the shape and size of viral particles, and the results of phylogenetic analysis suggest that this virus, named Euscelidius variegatus virus 1 (EVV-1), can be considered a new member of a new species in the genus Iflavirus. EVV-1 was detected in all of the tested insects from the laboratory colony used for RNA-seq, both in phytoplasma-exposed and in non-exposed insects, but the viral load measured in FD-exposed samples was significantly lower than that in non-exposed insects. This result suggests the possible existence of an intriguing cross-talk among insects, endogenous bacteria, and viruses. The identification of two other E. variegatus laboratory colonies that were free of EVV-1 could represent the key to addressing some basic virological issues, e.g., viral replication and transmission mechanisms, and offer the opportunity to use infectious clones to express heterologous genes in the leafhopper and manipulate the expression of endogenous genes by promoting virus-induced gene silencing.

  20. Aquarium Culture of Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Wood, Timothy S.

    1996-01-01

    Describes two methods for rearing small aquatic invertebrates using submerged surfaces in an unfiltered current of water where fish are present. Presents suggestions on how to use the invertebrate communities in the classroom. (JRH)

  1. Stalking the Neighborhood Invertebrate.

    ERIC Educational Resources Information Center

    Manley, James W.

    1982-01-01

    Describes a six-week simulation of basic research in which high school students acquire, observe, describe, illustrate, and report on an invertebrate of their choice. Includes chart used to evaluate student monographs, and comments relating to student experiences while engaged in their projects. (Author/JN)

  2. A Parallel Population Genomic and Hydrodynamic Approach to Fishery Management of Highly-Dispersive Marine Invertebrates: The Case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera

    PubMed Central

    Southgate, Paul C.; Jerry, Dean R.; Bosserelle, Cyprien; Zenger, Kyall R.

    2016-01-01

    Fishery management and conservation of marine species increasingly relies on genetic data to delineate biologically relevant stock boundaries. Unfortunately for high gene flow species which may display low, but statistically significant population structure, there is no clear consensus on the level of differentiation required to resolve distinct stocks. The use of fine-scale neutral and adaptive variation, considered together with environmental data can offer additional insights to this problem. Genome-wide genetic data (4,123 SNPs), together with an independent hydrodynamic particle dispersal model were used to inform farm and fishery management in the Fijian black-lip pearl oyster Pinctada margaritifera, where comprehensive fishery management is lacking, and the sustainability of exploitation uncertain. Weak fine-scale patterns of population structure were detected, indicative of broad-scale panmixia among wild oysters, while a hatchery-sourced farmed population exhibited a higher degree of genetic divergence (Fst = 0.0850–0.102). This hatchery-produced population had also experienced a bottleneck (NeLD = 5.1; 95% C.I. = [5.1–5.3]); compared to infinite NeLD estimates for all wild oysters. Simulation of larval transport pathways confirmed the existence of broad-scale mixture by surface ocean currents, correlating well with fine-scale patterns of population structuring. Fst outlier tests failed to detect large numbers of loci supportive of selection, with 2–5 directional outlier SNPs identified (average Fst = 0.116). The lack of biologically significant population genetic structure, absence of evidence for local adaptation and larval dispersal simulation, all indicate the existence of a single genetic stock of P. margaritifera in the Fiji Islands. This approach using independent genomic and oceanographic tools has allowed fundamental insights into stock structure in this species, with transferability to other highly-dispersive marine taxa for their

  3. Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens.

    PubMed

    Chan, Chi Ho; Levar, Caleb E; Zacharoff, Lori; Badalamenti, Jonathan P; Bond, Daniel R

    2015-10-01

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.

  4. Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens

    DOE PAGES

    Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; ...

    2015-08-07

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less

  5. Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens

    SciTech Connect

    Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; Badalamenti, Jonathan P.; Bond, Daniel R.; Loffler, F. E.

    2015-08-07

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.

  6. Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens

    PubMed Central

    Levar, Caleb E.; Zacharoff, Lori; Badalamenti, Jonathan P.

    2015-01-01

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics. PMID:26253675

  7. Invertebrates in managed waterfowl marshes

    USGS Publications Warehouse

    Stafford, Joshua D.; Janke, Adam K.; Webb, Elisabeth B.; Chipps, Steven R.

    2016-01-01

    Invertebrates are an important food for breeding, migrating, and wintering waterfowl. Sparse study has been devoted to understanding the influence of waterfowl and wetland management on production of invertebrates for waterfowl foods; however, manipulation of hydrology and soils may change or enhance production. Fish can compete with waterfowl for invertebrate forage in wetlands and harm aquatic macrophytes; biomanipulation (e.g., stocking piscivores) may improve waterfowl habitat quality. Similarly, some terrestrial vertebrates (e.g., beaver (Castor canadensis)) may positively or negatively impact invertebrate communities in waterfowl habitats. Various challenges exist to wetland management for invertebrates for waterfowl, but the lack of data on factors influencing production may be the most limiting.

  8. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    PubMed

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.

  9. Invertebrates in neurotoxicology.

    PubMed

    Salánki, J

    2000-01-01

    Due to the relative simplicity of their nervous system, invertebrate animals were widely used in the past decades for studying the processes of excitability at membrane level, as well as the mechanisms of neuronal events and interneuronal communication. Parallel with investigating basic questions of neurobiology, lower animals have also been the object of toxicological studies, because simple invertebrate preparations with well-known physiological, biochemical and pharmacological characteristics proved to be excellent models for testing the action of natural and synthetic compounds important to human pharmaceutical research as well as in searching suitable chemicals for pest control. In the last ten-fifteen years with the growing interest towards environmental protection, a new field was opened for the application of invertebrates, namely, testing and monitoring the presence and harmful effects of anthropogenic toxic substances. Invertebrates are used today both as passive and as active biomonitors to detect and evaluate the level of pollution in a given ecosystem, and to study the effects and mechanisms of action of pollutants. Invertebrate nervous systems are suitable objects in clarifying the mechanisms of action of toxic chemicals at various levels of the neural regulation. Toxic influences can be reflected in behavioural alterations, by the modification of the function of different organs as well as the neural regulation, presented by examples on mussels and snails. In case of neurotoxicity, the targets of action are the elements of the nervous system. Alterations can occur in the permeability (ion channels) of the neuronal membrane influencing excitability, potential generation and propagation of nerve impulse, in the transmitter system (synthesis, release, elimination and binding to the receptors), in the interneuronal and neuroeffector connections responsible for co-ordinated and adequate responses to the internal and external challenges. For the future, it

  10. Invertebrate models of alcoholism.

    PubMed

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  11. Conservation of progesterone hormone function in invertebrate reproduction

    PubMed Central

    Stout, E. Paige; La Clair, James J.; Snell, Terry W.; Shearer, Tonya L.; Kubanek, Julia

    2010-01-01

    Steroids play fundamental roles regulating mammalian reproduction and development. Although sex steroids and their receptors are well characterized in vertebrates and several arthropod invertebrates, little is known about the hormones and receptors regulating reproduction in other invertebrate species. Evolutionary insights into ancient endocrine pathways can be gained by elucidating the hormones and receptors functioning in invertebrate reproduction. Using a combination of genomic analyses, receptor imaging, ligand identification, target elucidation, and exploration of function through receptor knockdown, we now show that comparable progesterone chemoreception exists in the invertebrate monogonont rotifer Brachionus manjavacas, suggesting an ancient origin of the signal transduction systems commonly associated with the development and integration of sexual behavior in mammals. PMID:20547846

  12. High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing

    PubMed Central

    Ling, Chen; Bhukhai, Kanit; Yin, Zifei; Tan, Mengqun; Yoder, Mervin C.; Leboulch, Philippe; Payen, Emmanuel; Srivastava, Arun

    2016-01-01

    We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs. PMID:27759036

  13. Invertebrate welfare: an overlooked issue.

    PubMed

    Horvath, Kelsey; Angeletti, Dario; Nascetti, Giuseppe; Carere, Claudio

    2013-01-01

    While invertebrates make up the majority of animal species, their welfare is overlooked compared to the concern shown to vertebrates. This fact is highlighted by the near absence of regulations in animal research, with the exception of cephalopods in the European Union. This is often justified by assumptions that invertebrates do not experience pain and stress while lacking the capacity for higher order cognitive functions. Recent research suggests that invertebrates may be just as capable as vertebrates in experiencing pain and stress, and some species display comparable cognitive capacities. Another obstacle is the negative view of invertebrates by the public, which often regards them as pests with no individual personalities, gastronomic entities, or individuals for scientific experimentation without rules. Increasingly, studies have revealed that invertebrates possess individual profiles comparable to the personalities found in vertebrates. Given the large economic impact of invertebrates, developing certain attitude changes in invertebrate welfare may be beneficial for producers while providing higher welfare conditions for the animals. While the immense number and type of species makes it difficult to suggest that all invertebrates will benefit from increased welfare, in this review we provide evidence that the topic of invertebrate welfare should be revisited, more thoroughly investigated, and in cases where appropriate, formally instituted.

  14. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression.

  15. Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer

    PubMed Central

    Škalamera, Dubravka; Dahmer, Mareike; Purdon, Amy S.; Wilson, Benjamin M.; Ranall, Max V.; Blumenthal, Antje; Gabrielli, Brian; Gonda, Thomas J.

    2012-01-01

    The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors. PMID:23251614

  16. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  17. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  18. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard.

    PubMed

    Wagner, Anke; Röhrs, Viola; Kedzierski, Radoslaw; Fechner, Henry; Kurreck, Jens

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.

  19. Cre/lox-recombinase-mediated cassette exchange for reversible site-specific genomic targeting of the disease vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific genome modification is an important tool for mosquito functional genomics studies that help to uncover gene functions, identify gene regulatory elements, and perform comparative gene expression studies, all of which contribute to a better understanding of mosquito biology and are thus ...

  20. Invertebrate models in addiction research.

    PubMed

    Søvik, Eirik; Barron, Andrew B

    2013-01-01

    While drug addiction is a uniquely human problem, most research examining the biological mechanisms of the transition from substance use to addiction is conducted with vertebrate animal models. Many other fields of neuroscience have greatly benefitted from contributions from simple and manipulable invertebrate model systems. However, the potential of invertebrate research has yet to be fully capitalised on in the field of addiction neuroscience. This may be because of the complexity of addiction and the clinical imperative of addiction research. We argue that the homocentric diagnostic criteria of addiction are no more a hindrance to the use of invertebrate models than they are to vertebrate models. We highlight the strengths of the diversity of different invertebrate model systems in terms of neuroanatomy and molecular machinery, and stress that working with a range of different models will aid in understanding addiction and not be a disadvantage. Finally, we discuss the specific advantages of utilising invertebrate animals for addiction research and highlight key areas in which invertebrates are suited for making unique and meaningful contributions to this field.

  1. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption.

    PubMed

    André, A; Ruivo, R; Gesto, M; Castro, L Filipe C; Santos, M M

    2014-11-01

    Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.

  2. Full-Genome Characterisation of Orungo, Lebombo and Changuinola Viruses Provides Evidence for Co-Evolution of Orbiviruses with Their Arthropod Vectors

    PubMed Central

    Mohd Jaafar, Fauziah; Belhouchet, Mourad; Belaganahalli, Manjunatha; Tesh, Robert B.; Mertens, Peter P. C.; Attoui, Houssam

    2014-01-01

    The complete genomes of Orungo virus (ORUV), Lebombo virus (LEBV) and Changuinola virus (CGLV) were sequenced, confirming that they each encode 11 distinct proteins (VP1-VP7 and NS1-NS4). Phylogenetic analyses of cell-attachment protein ‘outer-capsid protein 1′ (OC1), show that orbiviruses fall into three large groups, identified as: VP2(OC1), in which OC1 is the 2nd largest protein, including the Culicoides transmitted orbiviruses; VP3(OC1), which includes the mosquito transmitted orbiviruses; and VP4(OC1) which includes the tick transmitted viruses. Differences in the size of OC1 between these groups, places the T2 ‘subcore-shell protein’ as the third largest protein ‘VP3(T2)’ in the first of these groups, but the second largest protein ‘VP3(T2)’ in the other two groups. ORUV, LEBV and CGLV all group with the Culicoides-borne VP2(OC1)/VP3(T2) viruses. The G+C content of the ORUV, LEBV and CGLV genomes is also similar to that of the Culicoides-borne, rather than the mosquito-borne, or tick borne orbiviruses. These data suggest that ORUV and LEBV are Culicoides- rather than mosquito-borne. Multiple isolations of CGLV from sand flies suggest that they are its primary vector. OC1 of the insect-borne orbiviruses is approximately twice the size of the equivalent protein of the tick borne viruses. Together with internal sequence similarities, this suggests its origin by duplication (concatermerisation) of a smaller OC1 from an ancestral tick-borne orbivirus. Phylogenetic comparisons showing linear relationships between the dates of evolutionary-separation of their vector species, and genetic-distances between tick-, mosquito- or Culicoides-borne virus-groups, provide evidence for co-evolution of the orbiviruses with their arthropod vectors. PMID:24475112

  3. Studying Culicoides vectors of BTV in the post-genomic era: resources, bottlenecks to progress and future directions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culicoides biting midges (Diptera: Ceratopogonidae) are a major vector group responsible for the biological transmission of a wide variety of globally significant arboviruses, including bluetongue virus (BTV). In this review we examine current biological resources for the study of this genus, with a...

  4. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  5. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  6. Aquatic Invertebrate Development Working Group

    NASA Technical Reports Server (NTRS)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  7. Introduction of a point mutation into the mouse genome by homologous recombination in embryonic stem cells using a replacement type vector with a selectable marker.

    PubMed

    Rubinstein, M; Japón, M A; Low, M J

    1993-06-11

    The introduction of small mutations instead of null alleles into the mouse genome has broad applications to the study of protein structure-function relationships and the creation of animal models of human genetic diseases. To test a simple mutational strategy we designed a targeting vector for the mouse proopiomelanocortin (POMC) gene containing a single nucleotide insertion that converts the initial tyrosine codon of beta-endorphin 1-31 to a premature translational termination codon and introduces a unique Hpal endonuclease restriction site. The targeting vector also contains a neo cassette immediately 3' to the last POMC exon and a herpes simplex virus thymidine kinase cassette to allow positive and negative selection. Homologous recombination occurred at a frequency of 1/30 clones of electroporated embryonic stem cells selected in G418 and gancyclovir. 10/11 clones identified initially by a polymerase chain reaction (PCR) strategy had the predicted structure without evidence of concatemer formation by Southern blot analysis. We used a combination of Hpa I digestion of PCR amplified fragments and direct nucleotide sequencing to further confirm that the point mutation was retained in 9/10 clones. The POMC gene was transcriptionally silent in embryonic stem cells and the targeted allele was not activated by the downstream phosphoglycerate kinase-1 promoter that transcribed the neo gene. Under the electroporation conditions used, we have demonstrated that a point mutation can be introduced with high efficiency and precision into the POMC gene using a replacement type vector containing a retained selectable marker without affecting expression of the allele in the embryonic stem cells. A similar strategy may be useful for a wide range of genes.

  8. [Construction of genomic library of L. interrogans serovar lai using lambda gt11 as the vector and a study of recombiant plasmid pDL121].

    PubMed

    Liu, H; Dai, B; Jing, B; Wu, W; Li, S; Fang, Z; Zhao, H; Ye, D; Yan, R; Liu, J; Song, S; Yang, Y; Zhang, Y; Liu, F; Tu, Y; Yang, H; Huang, Z; Liang, L; Hu, L; Zhao, M

    1997-03-01

    A genomic library of L. interrogans serovar lai strain 017 has been constructed using lambda gt11 as the vector. DNA was partially digested by two blunt-end restriction enzymes, then methylated with EcoR I methylase; after EcoR I linker was added to the DNA, the linker-ended DNA was ligated to the dephosphorylated EcoR I digested lambda gt11 arms. The recombined DNA was packaged in vitro, and used to transduct E. coli Y1090 for amplification. There were 2.1 x 10(6) recombinant bacteriophages as recognized by their ability to form white plaques plated on Lac host in the presence of both IPTG and X-Ga1. A positive clone, designated lambda DL12, was screened with a rabbit anti-serum against L. interrogans serovar lai from the genomic library. The DNA from lambda DL12 was subcloned into plasmid pUC18. A recombinant (designated as pDL121) was obtained. SDS-PAGE analysis indicated that a 23 kd was expressed in E. coli JM 103 harboring pDL121. Western blotting analysis showed that a specific protein band molecular weight of 23 kd could be recognized by the rabbit antiserum against L. interrogans serovar lai strain 017.

  9. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti

    PubMed Central

    2014-01-01

    Background Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti. Results We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs. Conclusions Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes

  10. Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system.

    PubMed

    Desomer, J; Crespi, M; Van Montagu, M

    1991-09-01

    Electrotransformation of Rhodococcus fascians by non-replicating plasmids containing a suitable resistance marker resulted in stable transformants by integration of these constructs at various sites in the genome, thereby generating different mutations. Tagged genes could be isolated in Escherichia coli owing to the presence of a CoIE1 replicon and an ampicillin resistance gene in the inserted sequences. Southern analysis and nucleotide sequencing revealed that recombination can occur at defined locations in the plasmid, while no site preference for target sequences could be detected. Low homology between the recombining sequences indicates illegitimate recombination. The specificity of the plasmid sites could be explained by assuming a linear recombination intermediate, generated by cleavage of the transformed plasmid.

  11. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  12. GPCRs in invertebrate innate immunity.

    PubMed

    Reboul, Jerome; Ewbank, Jonathan J

    2016-08-15

    G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom.

  13. Invertebrate models of fungal infection.

    PubMed

    Arvanitis, Marios; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2013-09-01

    The morbidity, mortality and economic burden associated with fungal infections, together with the emergence of fungal strains resistant to current antimicrobial agents, necessitate broadening our understanding of fungal pathogenesis and discovering new agents to treat these infections. Using invertebrate hosts, especially the nematode Caenorhabditis elegans and the model insects Drosophila melanogaster and Galleria mellonella, could help achieve these goals. The evolutionary conservation of several aspects of the innate immune response between invertebrates and mammals makes the use of these simple hosts an effective and fast screening method for identifying fungal virulence factors and testing potential antifungal compounds. The purpose of this review is to compare several model hosts that have been used in experimental mycology to-date and to describe their different characteristics and contribution to the study of fungal virulence and the detection of compounds with antifungal properties. This article is part of a Special Issue entitled: Animal Models of Disease.

  14. Opine dehydrogenases in marine invertebrates.

    PubMed

    Harcet, Matija; Perina, Drago; Pleše, Bruna

    2013-10-01

    It is well known today that opine production anaerobic pathways are analogs to the classical glycolytic pathway (lactate production pathway). These pathways, catalyzed by a group of enzymes called opine dehydrogenases (OpDHs), ensure continuous flux of glycolysis and a constant supply of ATP by maintaining the NADH/NAD(+) ratio during exercise and hypoxia, thus regulating the cytosolic redox balance in glycolysis under anoxia. OpDHs are distributed in a wide range of marine invertebrate phyla, including sponges (Porifera). Phylogenetic analyses supported with enzymatic assays strongly indicate that sponge OpDHs constitute an enzyme class unrelated to other OpDHs. Therefore, OpDHs in marine invertebrates are divided into two groups, a mollusk/annelid type and a sponge type, which belongs to the OCD/mu-crystallin family.

  15. Marine invertebrates: communities at risk.

    PubMed

    Mather, Jennifer

    2013-06-10

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  16. Marine Invertebrates: Communities at Risk

    PubMed Central

    Mather, Jennifer

    2013-01-01

    Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them. PMID:24832811

  17. Responses of invertebrates to temperature and water stress: A polar perspective.

    PubMed

    Everatt, Matthew J; Convey, Pete; Bale, Jeffrey S; Worland, M Roger; Hayward, Scott A L

    2015-12-01

    As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.

  18. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1980-08-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected over a 12 month interval. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented.

  19. Arthropod use of invertebrate carrion

    SciTech Connect

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    1981-01-01

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected for 12 months. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae, dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented. 15 references, 2 tables.

  20. No backbone but lots of Sox: Invertebrate Sox genes.

    PubMed

    Phochanukul, Nichanun; Russell, Steven

    2010-03-01

    Sox transcription factors are intimately involved in the development of multicellular organisms and accordingly understanding the role Sox genes play in diverse species of metazoans will hopefully shed light on the evolution of multicellularity. Here we review our current knowledge of the Sox genes isolated and characterised in invertebrates, ranging from the very simplest organisms through to complex chordates. While Sox genes have been identified in many invertebrate species, comparatively little is known about their functions outside the well-studied models, Drosophila, sea urchin and nematode. Consequently, we centre this review around the Sox family in Drosophila, comparing this with what is known about orthologous genes in other invertebrate species. We highlight several conserved themes that emerge when looking at the roles Sox proteins appear to play during embryogenesis, including early functions in CNS development and widespread interactions with the Wnt signalling pathway. Comparing the expression of Sox genes in insect species, where genome organisation is conserved but expression is apparently not, highlights the need for more functional data on the roles that related Sox proteins play in organisms outside the well-characterised models.

  1. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.

  2. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.

  3. Effects of Pollution on Freshwater Invertebrates.

    ERIC Educational Resources Information Center

    Buikema, A. L., Jr.; Herricks, E. E.

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater invertebrates, covering publications of 1976-77. Some of the areas covered are: (1) toxicant effects on invertebrates; (2) microcosm and community effects, and (3) biological control of aquatic life. A list of 123 references is also presented. (HM)

  4. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X

    PubMed Central

    Mardanova, Eugenia S.; Blokhina, Elena A.; Tsybalova, Liudmila M.; Peyret, Hadrien; Lomonossoff, George P.; Ravin, Nikolai V.

    2017-01-01

    Agroinfiltration of plant leaves with binary vectors carrying a gene of interest within a plant viral vector is a rapid and efficient method for protein production in plants. Previously, we constructed a self-replicating vector, pA7248AMV, based on the genetic elements of potato virus X (PVX), and have shown that this vector can be used for the expression of recombinant proteins in Nicotiana benthamiana. However, this vector is almost 18 kb long and therefore not convenient for genetic manipulation. Furthermore, for efficient expression of the target protein it should be co-agroinfiltrated with an additional binary vector expressing a suppressor of post-transcriptional gene silencing. Here, we improved this expression system by creating the novel pEff vector. Its backbone is about 5 kb shorter than the original vector and it contains an expression cassette for the silencing suppressor, P24, from grapevine leafroll-associated virus-2 alongside PVX genetic elements, thus eliminating the need of co-agroinfiltration. The pEff vector provides green fluorescent protein expression levels of up to 30% of total soluble protein. The novel vector was used for expression of the influenza vaccine candidate, M2eHBc, consisting of an extracellular domain of influenza virus M2 protein (M2e) fused to hepatitis B core antigen. Using the pEff system, M2eHBc was expressed to 5–10% of total soluble protein, several times higher than with original pA7248AMV vector. Plant-produced M2eHBc formed virus-like particles in vivo, as required for its use as a vaccine. The new self-replicating pEff vector could be used for fast and efficient production of various recombinant proteins in plants. PMID:28293244

  5. The structure and host entry of an invertebrate parvovirus.

    PubMed

    Meng, Geng; Zhang, Xinzheng; Plevka, Pavel; Yu, Qian; Tijssen, Peter; Rossmann, Michael G

    2013-12-01

    The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.

  6. Endozoochory of seeds and invertebrates by migratory waterbirds in Oklahoma, USA

    USGS Publications Warehouse

    Green, Andy J.; Frisch, Dagmar; Michot, Thomas C.; Allain, Larry K.; Barrow, Wylie C.

    2013-01-01

    Given their abundance and migratory behavior, waterbirds have major potential for dispersing plants and invertebrates within North America, yet their role as vectors remains poorly understood. We investigated the numbers and types of invertebrates and seeds within freshly collected faecal samples (n = 22) of migratory dabbling ducks and shorebirds in November 2008 in two parts of Lake Texoma in southern Oklahoma. Killdeer Charadrius vociferus were transporting a higher number and diversity of both plants and invertebrates than the green-winged teal Anas carolinensis. Ten plant taxa and six invertebrate taxa were identified to at least genus level, although viability was not confirmed for most of these taxa. Bryozoan statoblasts (from four species not previously recorded from Oklahoma) were especially abundant in killdeer faeces, while the ostracod Candona simpsoni was detected as a live adult in torpor in the teal faeces. Cyperaceae and Juncaceae were the most abundant plant families represented and Cyperus strigosus seeds germinated after extraction from killdeer faeces. This snapshot study underlines the importance of waterbirds as vectors of passive dispersal of many organisms and the need for more research in this discipline.

  7. Viral diseases of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  8. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  9. Baculovirus Transfer Vectors.

    PubMed

    Possee, Robert D; King, Linda A

    2016-01-01

    The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.

  10. Anesthesia, analgesia, and euthanasia of invertebrates.

    PubMed

    Cooper, John E

    2011-01-01

    Invertebrate animals have long played an important role in biomedical research in such fields as genetics, physiology, and development. However, with few exceptions, scientists, veterinarians, and technicians have paid little attention to the anesthesia, analgesia, and euthanasia of these diverse creatures. Indeed, some standard research procedures are routinely performed without anesthesia. Yet various chemical agents are available for the immobilization or anesthesia of invertebrates, ranging from gases or volatile liquids that can be pumped into either an anesthetic chamber (for terrestrial species) or a container of water (aquatic species), to benzocaine and other substances for fish. Many invertebrates are not difficult to immobilize or anesthetize and the procedures recommended in this article appear to be safe; however, none should be considered totally risk-free. Analgesia of invertebrates is as yet a largely unexplored field; until scientific data are available, other measures can promote the well-being of these animals in the laboratory. For euthanasia, various methods (physical or chemical or a combination of both) have been recommended for different taxa of invertebrates, but most have not been properly studied under laboratory conditions and some can be problematic in the context of research procedures and tissue harvesting. Furthermore, relevant data are scattered, sometimes available only in languages other than English, and there is no international approach for seeking and collating such information. In this article I review various methods of anesthesia, analgesia, and euthanasia for terrestrial and aquatic invertebrates, as well as areas requiring further research.

  11. Culex genome is not just another genome for comparative genomics.

    PubMed

    Reddy, B P Niranjan; Labbé, Pierrick; Corbel, Vincent

    2012-03-30

    Formal publication of the Culex genome sequence has closed the human disease vector triangle by meeting the Anopheles gambiae and Aedes aegypti genome sequences. Compared to these other mosquitoes, Culex quinquefasciatus possesses many specific hallmark characteristics, and may thus provide different angles for research which ultimately leads to a practical solution for controlling the ever increasing burden of insect-vector-borne diseases around the globe. We argue the special importance of the cosmopolitan species- Culex genome sequence by invoking many interesting questions and the possible of potential of the Culex genome to answer those.

  12. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  13. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.

  14. Molecular characterization of DSC1 orthologs in invertebrate species.

    PubMed

    Cui, Ying-Jun; Yu, Lin-Lin; Xu, Hai-Jun; Dong, Ke; Zhang, Chuan-Xi

    2012-05-01

    DSC1 and BSC1 are two founding members of a novel family of invertebrate voltage-gated cation channels with close structural and evolutionary relationships to voltage-gated sodium and calcium channels. In this study, we searched the published genome sequences for DSC1 orthologs. DSC1 orthologs were found in all 48 insect species, and in other invertebrate species belonging to phyla Mollusca, Cnidaria, Hemichordata and Echinodermata. However, DSC1 orthologs were not found in four arachnid species, Ixodes scapularis, Rhipicephalus microplus, Tetranychus urticae and Varroa destructor, two species in Annelida or any vertebrate species. We then cloned and sequenced NlSC1 and BmSC1 full-length cDNAs from the brown planthopper (Nilaparvata lugens) and the silkworm (Bombyx mori), respectively. NlSC1 and BmSC1 share about 50% identity with DSC1, and the expression of NlSC1 and BmSC1 transcripts was most abundant in the head and antenna in adults. All DSC1 orthologs contain a unique and conserved DEEA motif, instead of the EEEE or EEDD motif in classical calcium channels or the DEKA motif in sodium channels. Phylogenetic analyses revealed that DSC1 and its orthologs form a separate group distinct from the classical voltage-gated sodium and calcium channels and constitute a unique family of cation channels. The DSC1/BSC1-family channels could be potential targets of new and safe insecticides for pest control.

  15. Evolution of invertebrate deuterostomes and Hox/ParaHox genes.

    PubMed

    Ikuta, Tetsuro

    2011-06-01

    Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.

  16. Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics

    PubMed Central

    Gordon, Benjamin R.; Leggat, William

    2010-01-01

    Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses. PMID:21116405

  17. Wood decomposition as influenced by invertebrates.

    PubMed

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically.

  18. Infertility in male aquatic invertebrates: a review.

    PubMed

    Lewis, Ceri; Ford, Alex T

    2012-09-15

    As a result of endocrine disruptor studies, there are numerous examples of male related reproductive abnormalities observed in vertebrates. Contrastingly, within the invertebrates there have been considerably less examples both from laboratory and field investigations. This has in part been due to a focus of female related endpoints, inadequate biomarkers and the low number of studies. Whether contaminant induced male infertility is an issue within aquatic invertebrates and their wider communities therefore remains largely unknown and represents a key knowledge gap in our understanding of pollutant impacts in aquatic wildlife. This paper reviews the current knowledge regarding pollutants impacting male infertility across several aquatic invertebrate phyla; which biomarkers are currently being used and where the science needs to be expanded. The limited studies conducted so far have revealed reductions in sperm numbers, examples of poor fertilisation success, DNA damage to spermatozoa and inhibition of sperm motility that can be induced by a range of environmental contaminants. This limited data is mainly comprised from laboratory studies with only a few studies of sperm toxicity in natural populations. Clearly, there is a need for further studies in this area, to include both laboratory and field studies from clean and reference sites, with a focus on broadcast spawners and those with direct fertilisation. Biomarkers developed for measuring sperm quantity and quality in vertebrates are easily transferable to invertebrates but require optimisation for particular species. We discuss how sperm tracking and techniques for measuring DNA strand breaks and sperm viability have been successfully transferred from human infertility clinics to aquatic invertebrate ecotoxicology. Linking sperm toxicity and male infertility effects to higher level impacts on the reproductive biology and dynamics of populations requires a much greater understanding of fertilisation dynamics and

  19. The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca

    PubMed Central

    Fletcher, Stephen J.; Shrestha, Anita; Peters, Jonathan R.; Carroll, Bernard J.; Srinivasan, Rajagopalbabu; Pappu, Hanu R.; Mitter, Neena

    2016-01-01

    Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus (TSWV) is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNAi pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs between the plant host and insect vector in the presence or absence of TSWV. Unique viral small interfering RNA (vsiRNA) profiles are evident for Arachis hypogaea (peanut) and Frankliniella fusca (thrips vector) following infection with TSWV. Differences between vsiRNA profiles for these plant and insect species, such as the relative abundance of 21 and 22 nt vsiRNAs and locations of alignment hotspots, reflect the diverse siRNA biosynthesis pathways of their respective kingdoms. The presence of unique vsiRNAs in F. fusca samples indicates that vsiRNA generation takes place within the thrips, and not solely through uptake via feeding on vsiRNAs produced in infected A. hypogaea. The study also shows key vsiRNA profile differences for TSWV among plant families, which are evident in the case of A. hypogaea, a legume, and members of Solanaceae (S. lycopersicum and Nicotiana benthamiana). Distinctively, overall small RNA (sRNA) biogenesis in A. hypogaea is markedly affected with an absence of the 24 nt sRNAs in TSWV-infected plants, possibly leading to wide-spread molecular and phenotypic perturbations specific to this species. These findings add significant information on the host–virus–vector interaction in terms of RNAi pathways and may lead to better crop and vector specific control strategies. PMID:27656190

  20. HISTOLOGICAL PREPARATION OF INVERTEBRATES FOR EVALUATING CONTAMINANT EFFECTS

    EPA Science Inventory

    Although many studies in toxicologic pathology evaluate the effects of toxicants on fishes because of their similarities with other vertebrates, invertebrates can also provide insights into toxicant impacts on ecosystems. Invertebrates not only serve as food resources (e.g., ...

  1. Conservation status of Chinese species: (2) Invertebrates.

    PubMed

    Xie, Yan; Wang, Sung

    2007-06-01

    A total of 2441 invertebrate species were evaluated using the IUCN Red List Criteria and Regional Guidelines. Approximately 30 experts were involved in this project, which covered a wide range of species, including jellyfish, corals, planarians, snails, mollusks, bivalves, decapods, benthic crustaceans, arachnids (spiders, scorpions), butterflies, moths, beetles, sea cucumbers, sea urchins, sea stars, acorn worms and lancelets. In general, invertebrate species in China were found to be severely threatened, with 0.9% being critically endangered, 13.44% endangered and 20.63% vulnerable. All species of hermatypic corals and planarians are threatened. More than 80% of evaluated species face serious threat due to habitat destruction by coral collection, logging, non-woody vegetation collection, timber plantations, non-timber plantations, extraction and/or livestock. Other threats are intrinsic factors, harvesting by humans, alien invasive species and pollution. The main intrinsic factors contributing to the high levels of threat are limited dispersal and restricted range. No conservation measures have been taken for 70% of the threatened invertebrates evaluated. Existing conservation measures include: strengthening of national and international legislation (Convention on International Trade in Endangered Species of Wild Fauna and Flora), increasing public awareness, studying population trends/monitoring, and establishment of protected areas. The major conservation measure employed is strengthening of policies. Relative to the situation worldwide (2006 IUCN Red List), there is little information available about invertebrate extinctions in China.

  2. Neuroexcitatory Drug Receptors in Mammals and Invertebrates

    DTIC Science & Technology

    1990-03-16

    T.A. Miller and R.W. Olsen (1988) Quantitative autoradiography of GABA receptors in locust (Schistocerca americana). Brain Pestic . Sci. 24, 299-309. 6... Pestic . Scl. 24, 299-309 (1988). Olsen, R.W., Szamraj, 0. and Miller, T. [35S]t-Butyl Bicyclophosphorothionate (TBPS) Binding Sites in Invertebrate

  3. History of the Society for Invertebrate Pathology.

    PubMed

    Davidson, Elizabeth W; Burges, H Denis

    2005-05-01

    Scientists studying diseases of invertebrates in the USA, Europe, and Asia began to meet at international congresses in the 1950s and early 1960s, and soon recognized that they needed both a society and a journal where their common interests could be discussed and their findings presented. Edward A. Steinhaus played a major role in bringing together scientists from across the globe with common interests in these diseases. As a consequence, the Journal of Invertebrate Pathology (then Journal of Insect Pathology) was initiated in 1959 and Steinhaus became its first editor. Along with Albert Sparks he organized a meeting at Seattle, Washington in 1967 that led to the founding of the Society for Invertebrate Pathology with Steinhaus as its first President. The Society held its first meeting at Ohio State University in 1968, and has continued to meet annually. The Society has instituted a Founder's Lecture series, graduate student awards, and Divisions of Microbial Control, Microsporidia, Bacteriology, Fungi, Viruses, and Nematodes. Members enjoy several social functions at meetings as well as symposia, submitted papers, and poster sessions. The Society for Invertebrate Pathology is a truly international organization which to date has held meetings in 13 countries and 14 US states, usually attended by members from at least 20 countries.

  4. Libbie Henrietta Hyman: Eminent Invertebrate Zoologist.

    ERIC Educational Resources Information Center

    Morgan, Rose M.

    1998-01-01

    Reviews the life and work of the famous invertebrate zoologist Libbie Henrietta Hyman. Focuses on her work at the American Museum of History and her role as informal mentor and valued colleague and collaborator to zoologists all over the world. Contains 17 references. (DDR)

  5. The Early Years: An Invertebrate Garden

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    For farmers and gardeners, slugs and snails may be serious pests that will limit the amount of harvest, but for a child, they represent a world to be explored. To teachers, however, invertebrates are tools for broadening students' understanding about animals, the connections between animals and habitats or plants, and an engaging subject to write…

  6. Genome Sequence of Pantoea annatis strain CFH 7-1, which is associated with a vector-borne cotton fruit disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pantoea ananatis is a bacterium with versatile niches that vary from pathogenic to beneficial. We present the genome of strain CFH 7-1, which was recovered from a diseased greenhouse cotton boll previously caged with a field-collected cotton fleahopper (Pseudatomoscelis seriatus). These data will ...

  7. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  8. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  9. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  10. Bacterial and parasitic diseases of selected invertebrates.

    PubMed

    Klaphake, Eric

    2009-09-01

    Invertebrate medicine is a rapidly advancing aspect of veterinary medicine, although frustrating in its lack of answers and its limitations compared with vertebrate medicine. Because invertebrates make up 98% of animal life, it should be impossible to contain information on their known bacterial and parasitic diseases within a single article. When the focus is placed on those species commonly kept and treated by non-marine veterinarians, the amount of information becomes manageable. Many exotic species had their known diseases and treatments start this way and then advanced to a higher level of understanding. This article stands as an introduction to the parasitic and bacterial diseases of these fascinating creatures for the veterinary practitioner.

  11. Effects of nanomaterials on marine invertebrates.

    PubMed

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on

  12. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    PubMed Central

    Roger, Emmanuel; Grunau, Christoph; Pierce, Raymond J.; Hirai, Hirohisa; Gourbal, Benjamin; Galinier, Richard; Emans, Rémi; Cesari, Italo M.; Cosseau, Céline; Mitta, Guillaume

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on

  13. Relationship between invertebrate fauna and bromeliad size.

    PubMed

    Araújo, V A; Melo, S K; Araújo, A P A; Gomes, M L M; Carneiro, M A A

    2007-11-01

    Several bromeliads species store water and organic substrates, allowing the establishment of phytotelmata and associated fauna on their leaves. In this study, we sampled 70 individuals of Vriesea sp. (Carrière) (Bromeliaceae), in rupestrian fields in the Serra de Ouro Branco-MG, Brazil. The relationships between invertebrate species richness and abundance and size of bromeliads were tested using multiple regression. We found 19 species associated with bromeliads, mainly Diptera larvae. The abundance of the phytotelmate fauna increased principally in relation to the volume of water in the bromeliad reservoir. Phytotelmata richness was affected principally by diameter of the reservoir. There was a significant relationship between the abundance and richness of invertebrates associated with leaves with diameter and height of the plant. Invertebrate richness was better explained by abundance of individuals. These results suggest that the increase of richness was attended by higher numbers of microhabitats and more space for colonization of bigger bromeliads. Additionally, there was more chance of sampling different species in locales with greater abundance of individuals.

  14. Priority wetland invertebrates as conservation surrogates.

    PubMed

    Ormerod, S J; Durance, Isabelle; Terrier, Aurelie; Swanson, Alisa M

    2010-04-01

    Invertebrates are important functionally in most ecosystems, but seldom appraised as surrogate indicators of biological diversity. Priority species might be good candidates; thus, here we evaluated whether three freshwater invertebrates listed in the U.K. Biodiversity Action Plan indicated the richness, composition, and conservation importance of associated wetland organisms as defined respectively by their alpha diversity, beta diversity, and threat status. Sites occupied by each of the gastropods Segmentina nitida, Anisus vorticulus, and Valvata macrostoma had greater species richness of gastropods and greater conservation importance than other sites. Each also characterized species assemblages associated with significant variations between locations in alpha or beta diversity among other mollusks and aquatic macrophytes. Because of their distinct resource requirements, conserving the three priority species extended the range of wetland types under management for nature conservation by 18% and the associated gastropod niche-space by around 33%. Although nonpriority species indicated variations in richness, composition, and conservation importance among other organisms as effectively as priority species, none characterized such a wide range of high-quality wetland types. We conclude that priority invertebrates are no more effective than nonpriority species as indicators of alpha and beta diversity or conservation importance among associated organisms. Nevertheless, conserving priority species can extend the array of distinct environments that are protected for their specialized biodiversity and environmental quality. We suggest that this is a key role for priority species and conservation surrogates more generally, and, on our evidence, can best be delivered through multiple species with contrasting habitat requirements.

  15. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  16. Safety considerations in vector development.

    PubMed

    Kappes, J C; Wu, X

    2001-11-01

    The inadvertent production of replication competent retrovirus (RCR) constitutes the principal safety concern for the use of lentiviral vectors in human clinical protocols. Because of limitations in animal models to evaluate lentiviral vectors for their potential to recombine and induce disease, the vector design itself should ensure against the emergence of RCR in vivo. Issues related to RCR generation and one approach to dealing with this problem are discussed in this chapter. To assess the risk of generating RCR, a highly sensitive biological assay was developed to specifically detect vector recombination in transduced cells. Analysis of lentiviral vector stocks has shown that recombination occurs during reverse transcription in primary target cells. Rejoining of viral protein-coding sequences of the packaging construct and cis-acting sequences of the vector was demonstrated to generate env-minus recombinants (LTR-gag-pol-LTR). Mobilization of recombinant lentiviral genomes was also demonstrated but was dependent on pseudotyping of the vector core with an exogenous envelope protein. 5' sequence analysis has demonstrated that recombinants consist of U3, R, U5, and the psi packaging signal joined with an open gag coding region. Analysis of the 3' end has mapped the point of vector recombination to the poly(A) tract of the packaging construct's mRNA. The state-of-the-art third generation packaging construct and SIN vector also have been shown to generate env-minus proviral recombinants capable of mobilizing retroviral DNA when pseudotyped with an exogenous envelope protein. A new class of HIV-based vector (trans-vector) was recently developed that splits the gag-pol component of the packaging construct into two parts: one that expresses Gag/Gag-Pro and another that expresses Pol (RT and IN) fused with Vpr. Unlike other lentiviral vectors, the trans-vector has not been shown to form recombinants capable of DNA mobilization. These results indicate the trans-vector

  17. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins.

    PubMed

    Rosario, Karyna; Schenck, Ryan O; Harbeitner, Rachel C; Lawler, Stephanie N; Breitbart, Mya

    2015-01-01

    Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.

  18. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    PubMed Central

    Rosario, Karyna; Schenck, Ryan O.; Harbeitner, Rachel C.; Lawler, Stephanie N.; Breitbart, Mya

    2015-01-01

    Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses. PMID:26217327

  19. Rickettsial pathogens and their arthropod vectors.

    PubMed Central

    Azad, A. F.; Beard, C. B.

    1998-01-01

    Rickettsial diseases, important causes of illness and death worldwide, exist primarily in endemic and enzootic foci that occasionally give rise to sporadic or seasonal outbreaks. Rickettsial pathogens are highly specialized for obligate intracellular survival in both the vertebrate host and the invertebrate vector. While studies often focus primarily on the vertebrate host, the arthropod vector is often more important in the natural maintenance of the pathogen. Consequently, coevolution of rickettsiae with arthropods is responsible for many features of the host-pathogen relationship that are unique among arthropod-borne diseases, including efficient pathogen replication, long-term maintenance of infection, and transstadial and transovarial transmission. This article examines the common features of the host-pathogen relationship and of the arthropod vectors of the typhus and spotted fever group rickettsiae. PMID:9621188

  20. Differential endozoochory of aquatic invertebrates by two duck species in shallow lakes

    NASA Astrophysics Data System (ADS)

    Valls, Luis; Castillo-Escrivà, Andreu; Barrera, Luis; Gómez, Eulalia; Gil-Delgado, José Antonio; Mesquita-Joanes, Francesc; Armengol, Xavier

    2017-04-01

    Animal vectors are essential for the movement of invertebrate resting eggs between water bodies. However, differences in habitat preferences and feeding behaviour between bird species may result in variations in the dispersal of invertebrates via these birds, even if the different bird species live in the same lake. To test such effects, faecal samples from Anas platyrhynchos (collected in autumn and spring) and Tadorna tadorna (collected in spring) were cultured in water at 20° C and 12 L: 12 D conditions in order to quantify the resting eggs which could be internally transported by these birds. One half of each faecal sample was initially cultured at a conductivity of 0.6 mS cm-1 and the other half at 6 mS cm-1. 1054 invertebrates hatched from a total of 60 faecal samples, including cladocerans, copepods, ostracods, rotifers and ciliates, with a wide variability among faeces. Autumn yielded a low proportion of samples with hatchlings (12.5%) compared to spring (90%). Significant differences were observed between birds, but not between conductivity treatments. Thus, our results imply different hatching dynamics affected by disperser and season, but most species transported as resting eggs by birds seem to have a wide tolerance to hatch under variable salinity conditions. These differences may largery influence the metacommunity dynamics of lake networks, and could be a key factor to consider in wetland conservation planning.

  1. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  2. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  3. TEMPERATURE RELATIONS OF CENTRAL OREGON MARINE INTERTIDAL INVERTEBRATES.

    DTIC Science & Technology

    MARINE BIOLOGY, OREGON), (*INVERTEBRATES, ECOLOGY), SEA WATER, TIDES, SURFACE TEMPERATURE, DIURNAL VARIATIONS, TEMPERATURE, ECHINODERMATA , GASTROPODA, PELECYPODA, BARNACLES, SALINITY, REPRODUCTION(PHYSIOLOGY)

  4. Invertebrates in testing of environmental chemicals: are they alternatives?

    PubMed Central

    Lagadic, L; Caquet, T

    1998-01-01

    An enlarged interpretation of alternatives in toxicology testing includes the replacement of one animal species with another, preferably a nonmammalian species. This paper reviews the potential of invertebrates in testing environmental chemicals and provides evidence of their usefulness in alternative testing methodologies. The first part of this review addresses the use of invertebrates in laboratory toxicology testing. Problems in extrapolating results obtained in invertebrates to those obtained from vertebrates are noted, suggesting that invertebrates can essentially be used in addition to rather than as replacements for vertebrates in laboratory toxicity tests. However, evaluation of the ecologic impact of environmental chemicals must include defining end points that may frequently differ from those classically used in biomedical research. In this context, alternative approaches using invertebrates may be more pertinent. The second part of the review therefore focuses on the use of invertebrates in situ to assess the environmental impact of pollutants. Advantages of invertebrates in ecotoxicologic investigation are presented for their usefulness for seeking mechanistic links between effects occurring at the individual level and consequences for higher levels of biologic organization (e.g., population and community). In the end, it is considered that replacement of vertebrates by invertebrates in ecotoxicity testing is likely to become a reality when basic knowledge of metabolic, physiologic, and developmental patterns in the latter will be sufficient to assess the effect of a given chemical through end points that could be different between invertebrates and vertebrates. PMID:9599707

  5. Physiology of invertebrate oxytocin and vasopressin neuropeptides.

    PubMed

    Gruber, Christian W

    2014-01-01

    Neuropeptides and regulatory peptide hormones control many developmental, physiological and behavioural processes in animals, including humans. The nonapeptides oxytocin and arginine vasopressin are produced and released by the pituitary gland and have actions on many organs and tissues. Receptive cells possess particular receptors to which the peptides bind as ligands, leading to activation of G-protein-coupled receptors, hence cellular responses. In humans and other mammalian species, oxytocin and vasopressin mediate a range of peripheral and central physiological functions that are important for osmoregulation, reproduction, complex social behaviours, memory and learning. The origin of the oxytocin/vasopressin signalling system is thought to date back more than 600 million years. All vertebrate oxytocin- and vasopressin-like peptides have presumably evolved from the ancestral nonapeptide vasotocin by gene duplication and today are present in vertebrates, including mammals, birds, reptiles, amphibians and fish. Oxytocin- and vasopressin-like peptides have been identified in several invertebrate species, including molluscs, annelids, nematodes and arthropods. Members of this peptide family share high sequence similarity, and it is possible that they are functionally related across the entire animal kingdom. However, it is evident that not all animals express oxytocin/vasopressin neuropeptides and that there is little information available about the biology and physiology of this signalling system of invertebrates and, in particular, of insects, which represent more than half of all known living organisms. This report describes the discovery of novel oxytocin- and vasopressin-like peptides in arthropods and summarizes the status quo of the functional relevance of this neuropeptide signalling system in invertebrates, which will have beneficial implications for the design of selective and potent ligands to human oxytocin and vasopressin receptors.

  6. Brain and behavioral lateralization in invertebrates

    PubMed Central

    Frasnelli, Elisa

    2013-01-01

    Traditionally, only humans were thought to exhibit brain and behavioral asymmetries, but several studies have revealed that most vertebrates are also lateralized. Recently, evidence of left–right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. Here I present some examples in invertebrates of sensory and motor asymmetries, as well as asymmetries in the nervous system. I illustrate two cases where an asymmetric brain is crucial for the development of some cognitive abilities. The first case is the nematode Caenorhabditis elegans, which has asymmetric odor sensory neurons and taste perception neurons. In this worm left/right asymmetries are responsible for the sensing of a substantial number of salt ions, and lateralized responses to salt allow the worm to discriminate between distinct salt ions. The second case is the fruit fly Drosophila melanogaster, where the presence of asymmetry in a particular structure of the brain is important in the formation or retrieval of long-term memory. Moreover, I distinguish two distinct patterns of lateralization that occur in both vertebrates and invertebrates: individual-level and population-level lateralization. Theoretical models on the evolution of lateralization suggest that the alignment of lateralization at the population level may have evolved as an evolutionary stable strategy in which individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. This implies that lateralization at the population-level is more likely to have evolved in social rather than in solitary species. I evaluate this new hypothesis with a specific focus on insects showing different level of sociality. In particular, I present a series of studies on antennal asymmetries in honeybees and other related species of bees, showing how insects may be extremely useful to test the

  7. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  8. Physiology of invertebrate oxytocin and vasopressin neuropeptides

    PubMed Central

    Gruber, Christian W

    2014-01-01

    New findings • What is the topic of this review? This article describes the discovery and function of invertebrate oxytocin and vasopressin neuropeptides. • What advances does it highlight? The novel discovery of oxytocin-like peptides in arthropods is described. An up-to date overview is gven of the functional role (physiology and behaviour) of oxytocin and vasopressin signalling. The application of natural peptides for drug development is discussed. Neuropeptides and regulatory peptide hormones control many developmental, physiological and behavioural processes in animals, including humans. The nonapeptides oxytocin and arginine vasopressin are produced and released by the pituitary gland and have actions on many organs and tissues. Receptive cells possess particular receptors to which the peptides bind as ligands, leading to activation of G-protein-coupled receptors, hence cellular responses. In humans and other mammalian species, oxytocin and vasopressin mediate a range of peripheral and central physiological functions that are important for osmoregulation, reproduction, complex social behaviours, memory and learning. The origin of the oxytocin/vasopressin signalling system is thought to date back more than 600 million years. All vertebrate oxytocin- and vasopressin-like peptides have presumably evolved from the ancestral nonapeptide vasotocin by gene duplication and today are present in vertebrates, including mammals, birds, reptiles, amphibians and fish. Oxytocin- and vasopressin-like peptides have been identified in several invertebrate species, including molluscs, annelids, nematodes and arthropods. Members of this peptide family share high sequence similarity, and it is possible that they are functionally related across the entire animal kingdom. However, it is evident that not all animals express oxytocin/vasopressin neuropeptides and that there is little information available about the biology and physiology of this signalling system of invertebrates

  9. Venus kinase receptors: prospects in signaling and biological functions of these invertebrate kinases.

    PubMed

    Dissous, Colette; Morel, Marion; Vanderstraete, Mathieu

    2014-01-01

    Venus kinase receptors (VKRs) form a family of invertebrate receptor tyrosine kinases (RTKs) initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors that contain an extracellular venus fly trap structure similar to the ligand-binding domain of G protein-coupled receptors of class C, and an intracellular tyrosine kinase domain close to that of insulin receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. VKR gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in S. mansoni. VKRs are activated by amino acids and are highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates or in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens, and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  10. Venus Kinase Receptors: Prospects in Signaling and Biological Functions of These Invertebrate Kinases

    PubMed Central

    Dissous, Colette; Morel, Marion; Vanderstraete, Mathieu

    2014-01-01

    Venus kinase receptors (VKRs) form a family of invertebrate receptor tyrosine kinases (RTKs) initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors that contain an extracellular venus fly trap structure similar to the ligand-binding domain of G protein-coupled receptors of class C, and an intracellular tyrosine kinase domain close to that of insulin receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. VKR gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in S. mansoni. VKRs are activated by amino acids and are highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates or in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens, and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel. PMID:24860549

  11. Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms?

    PubMed Central

    Freckelton, Marnie L.; Nedved, Brian T.; Hadfield, Michael G.

    2017-01-01

    Recruitment via settlement of pelagic larvae is critical for the persistence of benthic marine populations. For many benthic invertebrates, larval settlement occurs in response to surface microbial films. Larvae of the serpulid polychaete Hydroides elegans can be induced to settle by single bacterial species. Until now, only Pseudoalteromonas luteoviolacea had been subjected to detailed genetic and mechanistic studies. To determine if the complex structures, termed tailocins, derived from phage-tail gene assemblies and hypothesized to be the settlement cue in P. luteoviolacea were present in all inductive bacteria, genomic comparisons with inductive strains of Cellulophaga lytica, Bacillus aquimaris and Staphylococcus warneri were undertaken. They revealed that the gene assemblies for tailocins are lacking in these other bacteria. Negatively stained TEM images confirmed the absence of tailocins and revealed instead large numbers of extracellular vesicles in settlement-inductive fractions from all three bacteria. TEM imaging confirmed for C. lytica that the vesicles are budded from cell surfaces in a manner consistent with the production of outer membrane vesicles. Finding multiple bacteria settlement cues highlights the importance of further studies into the role of bacterial extracellular vesicles in eliciting settlement and metamorphosis of benthic marine larvae. PMID:28195220

  12. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  13. Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology.

    PubMed

    Brown, Euan R; Piscopo, Stefania

    2011-01-01

    Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold.

  14. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms.

    PubMed

    Monroig, Óscar; Tocher, Douglas R; Navarro, Juan C

    2013-10-21

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs.

  15. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    PubMed

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  16. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.

    PubMed

    Patananan, Alexander N; Budenholzer, Lauren M; Pedraza, Maria E; Torres, Eric R; Adler, Lital N; Clarke, Steven G

    2015-03-01

    l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.

  17. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    PubMed

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements.

  18. Invertebrate communities of small streams in northeastern Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1990-01-01

    Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)

  19. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  20. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  1. Attitudes toward Invertebrates: Are Educational "Bug Banquets" Effective?

    ERIC Educational Resources Information Center

    Looy, Heather; Wood, John R.

    2006-01-01

    Scientists have used educational presentations and "bug banquets" to alter widespread negative attitudes toward invertebrates. In this article, the authors explore whether such presentations have a measurable affect on attitudes. Junior high, high school, and university students completed an attitude survey focusing on invertebrates in…

  2. 50 CFR 17.85 - Special rules-invertebrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Special rules-invertebrates. 17.85 Section 17.85 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....85 Special rules—invertebrates. (a) Seventeen mollusks in the Tennessee River. The species in...

  3. 76 FR 61379 - Final Recovery Plan, Bexar County Karst Invertebrates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Fish and Wildlife Service Final Recovery Plan, Bexar County Karst Invertebrates AGENCY: Fish and... Service, announce the availability of our final recovery plan, for the nine Bexar County Karst... Bexar County karst invertebrates were listed as endangered species on December 26, 2000 (65 FR...

  4. Pesticides reduce regional biodiversity of stream invertebrates.

    PubMed

    Beketov, Mikhail A; Kefford, Ben J; Schäfer, Ralf B; Liess, Matthias

    2013-07-02

    The biodiversity crisis is one of the greatest challenges facing humanity, but our understanding of the drivers remains limited. Thus, after decades of studies and regulation efforts, it remains unknown whether to what degree and at what concentrations modern agricultural pesticides cause regional-scale species losses. We analyzed the effects of pesticides on the regional taxa richness of stream invertebrates in Europe (Germany and France) and Australia (southern Victoria). Pesticides caused statistically significant effects on both the species and family richness in both regions, with losses in taxa up to 42% of the recorded taxonomic pools. Furthermore, the effects in Europe were detected at concentrations that current legislation considers environmentally protective. Thus, the current ecological risk assessment of pesticides falls short of protecting biodiversity, and new approaches linking ecology and ecotoxicology are needed.

  5. [Starvation and chemoreception in Antarctic benthic invertebrates].

    PubMed

    Rakusa-Suszczewski, S; Janecki, T; Domanov, M M

    2010-01-01

    Sensitivity (chemoreception) to different amino acids was studied in six invertebrate species: Serolis polita, Glyptonotus antarcticus, Abyssochromene plebs, Waldeckia obesa, Odontaster validus, and Sterechinus neumayeri. The sensitivity was estimated by the changes in basic metabolism (respiration rate). Starvation increased the sensitivity in all the species. The metabolism rates increased in the presence of L-glutamic acid in G. antarcticus, A. plebs, O. validus, and S. neumayeri. The serine and arginine amino acids had a significant impact on the metabolism of the necrophagous species S. polita and W. obesa. The chemical information may be mediated by means of L-glutamic acid via glutamate receptors, which can be blocked by kynurenic acid, as occurs in the experiments with G. antarcticus and A. plebs.

  6. Peptide neuromodulation in invertebrate model systems

    PubMed Central

    Taghert, Paul H.; Nitabach, Michael N.

    2012-01-01

    Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms. PMID:23040808

  7. The Calyptogena magnifica chemoautotrophic symbiont genome

    SciTech Connect

    Newton, I.L.; Woyke, T.; Auchtung, T.A.; Dilly, G.F.; Dutton,R.J.; Fisher, M.C.; Fontanez, K.M.; Lau, E.; Stewart, F.J.; Richardson,P.M.; Barry, K.W.; Saunders, E.; Detter, J.C.; Wu, D.; Eisen, J.A.; Cavanaugh, C.M.

    2007-03-01

    Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.

  8. Therapeutic and prophylactic applications of alphavirus vectors.

    PubMed

    Atkins, Gregory J; Fleeton, Marina N; Sheahan, Brian J

    2008-11-11

    Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.

  9. The effects of PAH contamination on soil invertebrate communities

    SciTech Connect

    Snow-Ashbrook, J.L.; Erstfeld, K.M.

    1995-12-31

    Soils were collected from an abandoned industrial site to study the effects of historic polycyclic aromatic hydrocarbons (PAHs) on soil invertebrate communities. Nematode abundance and diversity, microarthropod abundance (orders Collembola and Acarina) and earthworm growth were evaluated. Physical and chemical characteristics of soils may affect both invertebrate community structure and the mobility/bioavailability of pollutants in soils. Soil characteristics were measured and included with PAH data in multiple regression analyses to identify factors which influences the responses observed in the soil invertebrate community. Positive associations were observed between eight invertebrate community endpoints and soil PAH content. For all of these endpoints but one, a higher degree of variability was explained when both PAH content and soil characteristics were considered. It is theorized that the positive response to soil PAH content may be the result of an increased abundance of PAH-degrading soil microbes. Increased microbial abundance could stimulate invertebrate communities by providing a direct food source or increasing the abundance of microbially-produced nutrients. These results suggest that both PAH content and soil characteristics significantly influenced the soil invertebrate community. It is not clear whether these factors influenced the invertebrate community independently, or whether differences in soil characteristics affected the community response by influencing the mobility or bioavailability of PAHs.

  10. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts.

    PubMed

    Bourne, David G; Dennis, Paul G; Uthicke, Sven; Soo, Rochelle M; Tyson, Gene W; Webster, Nicole

    2013-07-01

    Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities.

  11. Coral reef invertebrate microbiomes correlate with the presence of photosymbionts

    PubMed Central

    Bourne, David G; Dennis, Paul G; Uthicke, Sven; Soo, Rochelle M; Tyson, Gene W; Webster, Nicole

    2013-01-01

    Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities. PMID:23303372

  12. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    PubMed

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates.

  13. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  14. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  15. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  16. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  17. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  18. Oxytocin mediated behavior in invertebrates: An evolutionary perspective.

    PubMed

    Lockard, Meghan A; Ebert, Margaret S; Bargmann, Cornelia I

    2017-02-01

    The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017.

  19. Biogeography of Nearshore Subtidal Invertebrates in the Gulf of Maine

    EPA Science Inventory

    The biogeography of nearshore benthic invertebrates in the Gulf of Maine was studied to compare recent data with historical biogeographic studies, define physical-chemical factors affecting species distributions, and provide information needed to calibrate benthic indices of envi...

  20. Biomonitors of stream quality on agricultural areas: fish versus invertebrates

    USGS Publications Warehouse

    Berkman, Hilary E.; Rabeni, Charles F.; Boyle, Terence P.

    1986-01-01

    Although the utility of using either fish or benthic invertebrates as biomonitors of stream quality has been clearly shown, there is little comparative information on the usefulness of the groups in any particular situation. We compared fish to invertebrate assemblages in their ability to reflect habitat quality of sediment-impacted streams in agricultural regions of northeast Missouri, USA. Habitat quality was measured by a combination of substrate composition, riparian type, buffer strip width, and land use. Invertebrates were more sensitive to habitat differences when structural measurements, species diversity and ordination, were used. Incorporating ecological measurements, by using the Index of Biological Integrity, increased the information obtained from the fish assemblage. The differential response of the two groups was attributed to the more direct impact of sediments on invertebrate life requisites; the impact of sedimentation on fish is considered more indirect and complex, affecting feeding and reproductive mechanisms.

  1. Logging cuts the functional importance of invertebrates in tropical rainforest

    PubMed Central

    Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.

    2015-01-01

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801

  2. Soil invertebrates as bioindicators of urban soil quality.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Rocco, Annamaria; Maisto, Giulia

    2012-02-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment.

  3. Determining detection sensitivity and methods for invertebrate sampling

    EPA Science Inventory

    This meeting is intended to communicate Great Lakes invasive species early detection science to state management agencies to assist them in implementing monitoring. My presentation summaries lessons learned concerning invertebrate monitoring in the course of ORD research on earl...

  4. Logging cuts the functional importance of invertebrates in tropical rainforest.

    PubMed

    Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C

    2015-04-13

    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.

  5. Bacteriophage gene targeting vectors generated by transplacement.

    PubMed

    Aoyama, C; Woltjen, K; Mansergh, F C; Ishidate, K; Rancourt, D E

    2002-10-01

    A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.

  6. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    PubMed

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning.

  7. Building mosaics of therapeutic plasmid gene vectors.

    PubMed

    Tolmachov, Oleg E

    2011-12-01

    Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.

  8. Surface-engineering of lentiviral vectors.

    PubMed

    Verhoeyen, Els; Cosset, François-Loïc

    2004-02-01

    Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery.

  9. Effects of neonicotinoids and fipronil on non-target invertebrates.

    PubMed

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large

  10. Sampling and quantifying invertebrates from drinking water distribution mains.

    PubMed

    van Lieverloo, J Hein M; Bosboom, Dick W; Bakker, Geo L; Brouwer, Anke J; Voogt, Remko; De Roos, Josje E M

    2004-03-01

    Water utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated. The presented method for collecting invertebrates consists of unidirectionally flushing a mains section with a flow rate of 1 ms(-1) and filtering the flushed water in two separate flows with 500 microm and 100 microm mesh plankton gauze filters. Removal efficiency from mains was evaluated in nine experiments by collecting the invertebrates removed from the mains section by intensive cleaning immediately subsequent to sampling. Of 12 taxa distinguished, all except case-building Chironomidae larvae (2%) and Oligochaeta (30%) were removed well (51-75%). Retention of invertebrates in 100 microm filters was evaluated by filtering 39 filtrates using 30 microm filters. Except for flexible and small invertebrates such as Turbellaria (13%), Nematoda (11%) and Copepoda larvae (24%), most taxa were well retained in the 100 microm filters (53-100%). During sample processing, the method for taking sub-samples with a 10 ml pipette from the suspension of samples with high sediment concentrations was found to perform well in 75% of the samples. During a 2-year national survey in the Netherlands and consecutive investigations, the method appeared to be very suitable to assess the abundance of most invertebrate taxa in drinking water distribution systems and to be practicable for relatively inexperienced sampling and lab technicians. Although the numbers of small, less abundant or sessile taxa were not accurately assessed using the method, these taxa probably should not be the primary focus of monitoring by water utilities, as consumer complaints are not likely to be caused by these invertebrates. The accuracy of

  11. Invertebrate community response to a shifting mosaic of habitat

    USGS Publications Warehouse

    Engle, David M.; Fuhlendorf, S.D.; Roper, A.; Leslie, David M.

    2008-01-01

    Grazing management has focused largely on promoting vegetation homogeneity through uniform distribution of grazing to minimize area in a pasture that is either heavily disturbed or undisturbed. An alternative management model that couples grazing and fire (i.e., patch burning) to promote heterogeneity argues that grazing and fire interact through a series of positive and negative feedbacks to cause a shifting mosaic of vegetation composition and structure across the landscape. We compared patch burning with traditional homogeneity-based management in tallgrass prairie to determine the influence of the two treatments on the aboveground invertebrate community. Patch burning resulted in a temporal flush of invertebrate biomass in patches transitional between unburned and patches burned in the current year. Total invertebrate mass was about 50% greater in these transitional patches within patch-burned pastures as compared to pastures under traditional, homogeneity-based management. Moreover, the mosaic of patches in patch-burned pastures contained a wider range of invertebrate biomass and greater abundance of some invertebrate orders than did the traditionally managed pastures. Patch burning provides habitat that meets requirements for a broad range of invertebrate species, suggesting the potential for patch burning to benefit other native animal assemblages in the food chain.

  12. Identifying and managing threatened invertebrates through assessment of coextinction risk.

    PubMed

    Moir, Melinda L; Vesk, Peter A; Brennan, Karl E C; Keith, David A; McCarthy, Michael A; Hughes, Lesley

    2011-08-01

    Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host-breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host-breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host-breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.

  13. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda.

    PubMed

    Rota-Stabelli, Omar; Kayal, Ehsan; Gleeson, Dianne; Daub, Jennifer; Boore, Jeffrey L; Telford, Maximilian J; Pisani, Davide; Blaxter, Mark; Lavrov, Dennis V

    2010-07-12

    Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms--the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of

  14. Ecdysozoan Mitogenomics: Evidence for a Common Origin of the Legged Invertebrates, the Panarthropoda

    PubMed Central

    Rota-Stabelli, Omar; Kayal, Ehsan; Gleeson, Dianne; Daub, Jennifer; Boore, Jeffrey L.; Telford, Maximilian J.; Pisani, Davide; Blaxter, Mark; Lavrov, Dennis V.

    2010-01-01

    Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms—the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of

  15. Resistance of vectors of disease to pesticides. Fifth report of the WHO Expert Committee in Vector Biology and Control.

    PubMed

    1980-01-01

    The resistance of vectors (the term includes primary and intermediate vertebrate and invertebrate hosts and animal reservoirs of human and animal diseases) of disease to pesticides is a major problem faced by WHO member states in the control of vectorborne diseases. Since the meeting of the WHO Expert Committee on Insecticides in 1975, resistance has continued to increase and to affect disease control programs in many countries. The appearance of multiresistance in several important vectors has been the most significant development since the 1975 meeting. The sandfly Phlebotomus papatasi in Bihar, India has been found to be resistant to DDT, leaving the tsetse fly the only important vector species in which resistance has not been reported. This book discusses 1) pesticide resistance in arthropod vectors, malaria vectors, vectors of other diseases and disease reservoirs (rodents); 2) present status of research on resistance of vectors to pesticides, including the biochemistry and genetics of resistance; 3) measures to counteract resistance; 4) detection and monitoring of vector resistance to pesticides; 5) disseminatin of information and training; and 6) recommendations for future research and courses of action.

  16. Invertebrate Models for Coenzyme Q10 Deficiency

    PubMed Central

    Fernández-Ayala, Daniel J.M.; Jiménez-Gancedo, Sandra; Guerra, Ignacio; Navas, Plácido

    2014-01-01

    The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients. PMID:25126050

  17. Accumulation and inactivation of avian influenza virus by the filter-feeding invertebrate Daphnia magna.

    PubMed

    Meixell, Brandt W; Borchardt, Mark A; Spencer, Susan K

    2013-12-01

    The principal mode of avian influenza A virus (AIV) transmission among wild birds is thought to occur via an indirect fecal-oral route, whereby individuals are exposed to virus from the environment through contact with virus-contaminated water. AIV can remain viable for an extended time in water; however, little is known regarding the influence of the biotic community (i.e., aquatic invertebrates) on virus persistence and infectivity in aquatic environments. We conducted laboratory experiments to investigate the ability of an aquatic filter-feeding invertebrate, Daphnia magna, to accumulate virus from AIV-dosed water under the hypothesis that they represent a potential vector of AIV to waterfowl hosts. We placed live daphnids in test tubes dosed with low-pathogenicity AIV (H3N8 subtype isolated from a wild duck) and sampled Daphnia tissue and the surrounding water using reverse transcription-quantitative PCR (RT-qPCR) at 3- to 120-min intervals for up to 960 min following dosing. Concentrations of viral RNA averaged 3 times higher in Daphnia tissue than the surrounding water shortly after viral exposure, but concentrations decreased exponentially through time for both. Extracts from Daphnia tissue were negative for AIV by cell culture, whereas AIV remained viable in water without Daphnia present. Our results suggest daphnids can accumulate AIV RNA and effectively remove virus particles from water. Although concentrations of viral RNA were consistently higher in Daphnia tissue than the water, additional research is needed on the time scale of AIV inactivation after Daphnia ingestion to fully elucidate Daphnia's role as a potential vector of AIV infection to aquatic birds.

  18. Accumulation and Inactivation of Avian Influenza Virus by the Filter-Feeding Invertebrate Daphnia magna

    PubMed Central

    Borchardt, Mark A.; Spencer, Susan K.

    2013-01-01

    The principal mode of avian influenza A virus (AIV) transmission among wild birds is thought to occur via an indirect fecal-oral route, whereby individuals are exposed to virus from the environment through contact with virus-contaminated water. AIV can remain viable for an extended time in water; however, little is known regarding the influence of the biotic community (i.e., aquatic invertebrates) on virus persistence and infectivity in aquatic environments. We conducted laboratory experiments to investigate the ability of an aquatic filter-feeding invertebrate, Daphnia magna, to accumulate virus from AIV-dosed water under the hypothesis that they represent a potential vector of AIV to waterfowl hosts. We placed live daphnids in test tubes dosed with low-pathogenicity AIV (H3N8 subtype isolated from a wild duck) and sampled Daphnia tissue and the surrounding water using reverse transcription-quantitative PCR (RT-qPCR) at 3- to 120-min intervals for up to 960 min following dosing. Concentrations of viral RNA averaged 3 times higher in Daphnia tissue than the surrounding water shortly after viral exposure, but concentrations decreased exponentially through time for both. Extracts from Daphnia tissue were negative for AIV by cell culture, whereas AIV remained viable in water without Daphnia present. Our results suggest daphnids can accumulate AIV RNA and effectively remove virus particles from water. Although concentrations of viral RNA were consistently higher in Daphnia tissue than the water, additional research is needed on the time scale of AIV inactivation after Daphnia ingestion to fully elucidate Daphnia's role as a potential vector of AIV infection to aquatic birds. PMID:24038705

  19. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  20. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials.

    PubMed

    Doi, Knayo; Takeuchi, Yasuhiro

    2015-01-01

    Retrovirus vectors (gammaretroviral and lentiviral vectors) have been considered as promising tools to transfer therapeutic genes into patient cells because they can permanently integrate into host cellular genome. To treat monogenic, inherited diseases, retroviral vectors have been used to add correct genes into patient cells. Conventional gammaretroviral vectors achieved successful results in clinical trials: treated patients had therapeutic gene expression in target cells and had improved symptoms of diseases. However, serious side-effects of leukemia occurred, caused by retroviral insertional mutagenesis (IM). These incidences stressed the importance of monitoring vector integration sites in patient cells as well as of re-consideration on safer vectors. More recently lentiviral vectors which can deliver genes into non-dividing cells started to be used in clinical trials including neurological disorders, showing their efficacy. Vector integration site analysis revealed that lentiviruses integrate less likely to near promoter regions of oncogenes than gammaretroviruses and no adverse events have been reported in lentiviral vector-mediated gene therapy clinical trials. Therefore lentiviral vectors have promises to be applied to a wide range of common diseases in near future. For example, T cells from cancer patients were transduced to express chimeric T cell receptors recognizing their tumour cells enhancing patients' anti-cancer immunity.

  1. Genome size and chromosome number in velvet worms (Onychophora).

    PubMed

    Jeffery, Nicholas W; Oliveira, Ivo S; Gregory, T Ryan; Rowell, David M; Mayer, Georg

    2012-12-01

    The Onychophora (velvet worms) represents a small group of invertebrates (~180 valid species), which is commonly united with Tardigrada and Arthropoda in a clade called Panarthropoda. As with the majority of invertebrate taxa, genome size data are very limited for the Onychophora, with only one previously published estimate. Here we use both flow cytometry and Feulgen image analysis densitometry to provide genome size estimates for seven species of velvet worms from both major subgroups, Peripatidae and Peripatopsidae, along with karyotype data for each species. Genome sizes in these species range from roughly 5-19 pg, with densitometric estimates being slightly larger than those obtained by flow cytometry for all species. Chromosome numbers range from 2n = 8 to 2n = 54. No relationship is evident between genome size, chromosome number, or reproductive mode. Various avenues for future genomic research are presented based on these results.

  2. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a toxicity < 80 μg OA eq kg(-1), but with 74% of those toxins detected in the adductor muscle. In all evaluated species, there was no detection of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods. In addition, the STX-group and OA-group toxin concentrations in shellfish was not associated with the presence of HAB. The ranking of toxin concentration in the tissues of most species was: digestive glands > mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different bivalve and gastropod species from the south of Chile, and the analyses determined that tissues could play an important role in the biotransformation of STX-group toxins and the retention of OA-group toxins.

  3. The LBP/BPI multigenic family in invertebrates: Evolutionary history and evidences of specialization in mollusks.

    PubMed

    Baron, Olga Lucia; Deleury, Emeline; Reichhart, Jean-Marc; Coustau, Christine

    2016-04-01

    LBPs (lipopolysaccharide binding proteins) and BPIs (bactericidal permeability increasing proteins) are important proteins involved in defense against bacterial pathogens. We recently discovered a novel biocidal activity of a LBP/BPI from the gastropod Biomphalaria glabrata and demonstrated its role in parental immune protection of eggs, highlighting the importance of LBP/BPIs in invertebrate immunity. Here we characterize four additional LBP/BPI from B. glabrata, presenting conserved sequence architecture and exon-intron structure. Searches of invertebrate genomes revealed that existence of LBP/BPIs is not a conserved feature since they are absent from phyla such as arthropods and platyhelminths. Analyses of LBP/BPI transcripts from selected mollusk species showed recent parallel duplications in some species, including B. glabrata. In this snail species, LBP/BPI members vary in their expression tissue localization as well as their change in expression levels after immune challenges (Gram-negative bacterium; Gram-positive bacterium or yeast). These results, together with the predicted protein features provide evidences of functional specialization of LBP/BPI family members in molluscs.

  4. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    PubMed

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans.

  5. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including Epizootic Hemorrhagic Disease, Bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the diff...

  6. Construction of gene-targeting vectors by recombineering.

    PubMed

    Lee, Song-Choon; Wang, Wei; Liu, Pentao

    2009-01-01

    Recombineering is a technology that utilizes the efficient homologous recombination functions encoded by gamma phage to manipulate DNA in Escherichia coli. Construction of knockout vectors has been greatly facilitated by recombineering as it allows one to choose any genomic region to manipulate. We describe here an efficient recombineering-based protocol for making mouse conditional knockout targeting vectors.

  7. A thesaurus for soil invertebrate trait-based approaches.

    PubMed

    Pey, Benjamin; Laporte, Marie-Angélique; Nahmani, Johanne; Auclerc, Apolline; Capowiez, Yvan; Caro, Gaël; Cluzeau, Daniel; Cortet, Jérôme; Decaëns, Thibaud; Dubs, Florence; Joimel, Sophie; Guernion, Muriel; Briard, Charlène; Grumiaux, Fabien; Laporte, Baptiste; Pasquet, Alain; Pelosi, Céline; Pernin, Céline; Ponge, Jean-François; Salmon, Sandrine; Santorufo, Lucia; Hedde, Mickaël

    2014-01-01

    Soil invertebrates are known to be much involved in soil behaviour and therefore in the provision of ecosystem services. Functional trait-based approaches are methodologies which can be used to understand soil invertebrates' responses to their environment. They (i) improve the predictions and (ii) are less dependent on space and time. The way traits have been used recently has led to misunderstandings in the integration and interpretation of data. Trait semantics are especially concerned. The aim of this paper is to propose a thesaurus for soil invertebrate trait-based approaches. T-SITA, an Internet platform, is the first initiative to deal with the semantics of traits and ecological preferences for soil invertebrates. It reflects the agreement of a scientific expert community to fix semantic properties (e.g. definition) of approximately 100 traits and ecological preferences. In addition, T-SITA has been successfully linked with a fully operational database of soil invertebrate traits. Such a link enhances data integration and improves the scientific integrity of data.

  8. Key Factors for the Emergence of Collective Decision in Invertebrates

    PubMed Central

    Jeanson, Raphaël; Dussutour, Audrey; Fourcassié, Vincent

    2012-01-01

    In many species of group living invertebrates, in particular arthropods, collective decisions can emerge from the combined actions of individuals and the direct or indirect interactions between individuals. These decisions allow groups of individuals to respond quickly and accurately to changes that occur in their environment. Examples of such decisions are found in a variety of invertebrate taxa and in many different contexts, e.g., exploring a new territory, foraging for food, finding a suitable location where to aggregate or to establish a nest, defending oneself against predators, etc. In this paper we review the collective decisions that have been documented in different invertebrate taxa where individuals are known to live temporarily or permanently in social or gregarious groups. We first present some simple examples of collective decisions involving the choice between two alternatives. We then define the fundamental rules required for these collective decisions to emerge throughout the invertebrate taxon, from simple organisms such as caterpillars, to animals endowed with highly developed perceptive and cognitive capacities such as ants and bees. The presentation of these rules gives us the opportunity to illustrate one of the pitfalls of the study of collective choice in animals by showing through computer simulations how a choice between two alternatives can be misinterpreted as the result of the action of self-organized mechanisms. In the second part, we discuss the peculiarities of collective decisions in invertebrates, their properties, and characteristics. We conclude by discussing the issue of individual complexity in collective decision-making process. PMID:22933990

  9. Invertebrates as model organisms for research on aging biology

    PubMed Central

    Murthy, Mahadev; Ram, Jeffrey L.

    2015-01-01

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity. PMID:26241448

  10. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    PubMed

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  11. Invertebrates that aestivate in dry basins of Carolina bay wetlands.

    SciTech Connect

    Dietz-Brantley, Susan, E.; Taylor, Barbera, E.; Batzer, Darold, P.; DeBiase, Adrienne, E.

    2002-12-01

    Dietz-Brantley, S.E., B.E. Taylor, D.P. Batzer, and A.E. DeBiase. 2002. Invertebrates that aestivate in dry basins of carolina bay wetlands. Wetlands 22(4):767-775. Water levels fluctuate widely in Carolina bay wetlands and most dry periodically. Aquatic organisims inhabiting these wetlands have the capacity to either resist desication or to recolonize newly flooded habitats. The objective of this study was to determine which invertebrates aestivate in the soil of dry Carolina bays and to describe how differences in habitat affect the composition of aestivating invertebrates. Eight Carolina bays located on the Savannah River Site (SRS) near Aiken, South Carolina, USA were examined for this study. Although all of the wetlands dried seasonally, three of the wetlands were relatively wet (inundated 47-92% of the year on average), one was intermediate, and four were relatively dry (inundated 20% of the year on average). Sections of soil were removed from each bay during August and November when all sites were dry, placed into tubs, flooded, and covered with fine mesh. Invertebrates were sampled from the water biweekly for four weeks. Invertebrate assemblages were contrasted between naturally inundated bays and rehydrated samples, wetter and drier bays, August and November collections, and remnant ditches and the main basins.

  12. Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress

    PubMed Central

    Brownlie, Jeremy C.; Cass, Bodil N.; Riegler, Markus; Witsenburg, Joris J.; Iturbe-Ormaetxe, Iñaki; McGraw, Elizabeth A.; O'Neill, Scott L.

    2009-01-01

    Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects. PMID:19343208

  13. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation.

    PubMed

    Petersen, Jillian M; Kemper, Anna; Gruber-Vodicka, Harald; Cardini, Ulisse; van der Geest, Matthijs; Kleiner, Manuel; Bulgheresi, Silvia; Mußmann, Marc; Herbold, Craig; Seah, Brandon K B; Antony, Chakkiath Paul; Liu, Dan; Belitz, Alexandra; Weber, Miriam

    2016-10-24

    Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.

  14. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis

    PubMed Central

    Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdés, James J.; Villar, Margarita; de la Fuente, José

    2017-01-01

    The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks

  15. [Gene engineering of the adenovirus vector].

    PubMed

    Kondo, Saki; Terashima, Miho; Fukuda, Hiromitsu; Saito, Izumu; Kanegae, Yumi

    2007-06-01

    The adenovirus vector is very attractive tool not only for the gene therapy but also for the basic sciences. However, because a construction method of this vector had been complex, only limited scientists had constructed and enjoyed the benefits. Recently, various methods were developed and the researchers came to be able to choose an efficient method, which is the COS-TPC method, or a concise procedure, which is the intact-genome transfection method (in vitro ligation method). Here we described not only these methods but also new method to construct the various Ads simultaneously using the recombinase-mediated cassette exchange (RMCE) by the site-specific recombinase. And also we want to refer the possibility to the worth of the vector, especially the vector of the expression-switch.

  16. The genetics of host–virus coevolution in invertebrates

    PubMed Central

    Obbard, Darren J; Dudas, Gytis

    2014-01-01

    Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla — potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus ‘arms-race’ coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection. PMID:25063907

  17. Impact of hexazinone on invertebrates after application to forested watersheds.

    PubMed

    Mayack, D T; Bush, P B; Neary, D G; Douglass, J E

    1982-01-01

    The impact of the herbicide, hexazinone, was assessed on aquatic macrophytes, aquatic and terrestrial invertebrate communities within forested watersheds in the Piedmont region of Georgia. Four replicate watersheds received hexazinone on April 23, 1979, and were subsequently monitored for eight months. Residue levels in terrestrial invertebrates were a maximum of two orders of magnitude greater than comparable levels (0.01 to 0.18 ppm) found in forest floor material. Aquatic organisms in a second order perennial stream were exposed to intermittent concentrations of hexazinone (6 to 44 ppb). Hexazinone and its metabolites were generally not detected (less than 0.1 ppm) in aquatic invertebrates and macrophytes. No major alterations in species composition or diversity were detected in the aquatic macroinvertebrate community. Terrestrial microarthropod samples collected near the end of the study period revealed no major community changes.

  18. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    PubMed

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  19. Competition of Invertebrates Mixed Culture in the Closed Aquatic System

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The study considers the experimental model of interactions between invertebrates (the cilates Paramecium caudatum, Paramecium bursaria and the rotifers Brachionis plicatilis) in the closed aquatic system. The infusoria P.caudatum can feed on yeast, bacteria and chlorella; in this experiment growth and reproduction were maintained by bacteria only. The P.bursaria - zoochlorella endosymbiosis is a natural model of a simple biotic cycle. P.bursaria consumes glucose and oxygen released by zoochlorella in the process of biosynthesis and releases nitrogenous compounds and carbon dioxide necessary for algal photosynthesis. The rotifers Br. plicatilis can consume algae, bacteria and detritus. Thus in experiment with the mixed culture of invertebrates they can use different food sources. However with any initial percentage of the invertebrates the end portion of P.bursaria reaches 90-99

  20. Pro-oxidant and antioxidant processes in aquatic invertebrates.

    PubMed

    Canesi, Laura

    2015-03-01

    Most aquatic organisms behave as conformers with respect to environmental variables, including changes in O2 availability. Aquatic species that show tolerance to hypoxia/anoxia or hyperoxia can be excellent models for investigating physiological and biochemical adaptations that deal with changing O2 and consequent changes in metabolic rate and production of reactive oxygen species (ROS). Here, I summarize selected data on ROS production and antioxidant defenses in a model marine invertebrate, the bivalve Mytilus, under different environmental and physiological conditions. An example of other bivalves adapted to particular environments (the Antarctic Sea) is also reported. These studies contributed to the knowledge on pro-oxidant and antioxidant processes in aquatic invertebrates from comparative and environmental perspectives. A common role for metallothioneins in antioxidant protection in mammals and aquatic invertebrates is underlined in different conditions, from human disease to responses to environmental exposure to heavy metals.

  1. Sequence diversity and evolution of antimicrobial peptides in invertebrates.

    PubMed

    Tassanakajon, Anchalee; Somboonwiwat, Kunlaya; Amparyup, Piti

    2015-02-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.

  2. The genetics of host-virus coevolution in invertebrates.

    PubMed

    Obbard, Darren J; Dudas, Gytis

    2014-10-01

    Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.

  3. Land Use and Hydrogeological Characteristics Influence Groundwater Invertebrate Communities.

    PubMed

    Tione, María Laura; Bedano, José Camilo; Blarasin, Mónica

    2016-08-01

    We examine the influence of land use and hydrogeological characteristics on the abundance, composition and structure of groundwater invertebrate communities in a loessic aquifer from Argentina. Seven wells, selected according to surrounding land use and hydrogeological characteristics, were sampled twice. Groundwater was characterized as sodium bicarbonate, bicarbonate sulfate or sulfate type. NO3(-) was detected in all samples. Land use in the area surrounding the well, unsaturated zone thickness and geochemical characteristics of groundwater influenced the abundance, composition and community structure of groundwater invertebrates. Copepoda, Oligochaeta, Cladocera, Ostracoda and Amphipoda were highly influenced by land use, particularly by point pollution sources that produced higher abundance and changes in taxonomic composition. The lowest invertebrate abundance was observed at the wells situated in areas with the thickest unsaturated zone. Groundwater salinity and geochemical type influenced the presence of certain species, particularly Stygonitocrella sp.

  4. Experimental evidence of pollination in marine flowers by invertebrate fauna

    PubMed Central

    van Tussenbroek, Brigitta I.; Villamil, Nora; Márquez-Guzmán, Judith; Wong, Ricardo; Monroy-Velázquez, L. Verónica; Solis-Weiss, Vivianne

    2016-01-01

    Pollen transport by water-flow (hydrophily) is a typical, and almost exclusive, adaptation of plants to life in the marine environment. It is thought that, unlike terrestrial environments, animals are not involved in pollination in the sea. The male flowers of the tropical marine angiosperm Thalassia testudinum open-up and release pollen in mucilage at night when invertebrate fauna is active. Here we present experimental evidence that, in the absence of water-flow, these invertebrates visit the flowers, carry and transfer mucilage mass with embedded pollen from the male flowers to the stigmas of the female flowers. Pollen tubes are formed on the stigmas, indicating that pollination is successful. Thus, T. testudinum has mixed abiotic–biotic pollination. We propose a zoobenthophilous pollination syndrome (pollen transfer in the benthic zone by invertebrate animals) which shares many characteristics with hydrophily, but flowers are expected to open-up during the night. PMID:27680661

  5. Light axial vector mesons

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  6. Amphioxus: beginning of vertebrate and end of invertebrate type GnRH receptor lineage.

    PubMed

    Tello, Javier A; Sherwood, Nancy M

    2009-06-01

    In vertebrates, activation of the GnRH receptor is necessary to initiate the reproductive cascade. However, little is known about the characteristics of GnRH receptors before the vertebrates evolved. Recently genome sequencing was completed for amphioxus, Branchiostoma floridae. To understand the GnRH receptors (GnRHR) from this most basal chordate, which is also classified as an invertebrate, we cloned and characterized four GnRHR cDNAs encoded in the amphioxus genome. We found that incubation of GnRH1 (mammalian GnRH) and GnRH2 (chicken GnRH II) with COS7 cells heterologously expressing the amphioxus GnRHRs caused potent intracellular inositol phosphate turnover in two of the receptors. One of the two receptors displayed a clear preference for GnRH1 over GnRH2, a characteristic not previously seen outside the type I mammalian GnRHRs. Phylogenetic analysis grouped the four receptors into two paralogous pairs, with one pair grouping basally with the vertebrate GnRH receptors and the other grouping with the octopus GnRHR-like sequence and the related receptor for insect adipokinetic hormone. Pharmacological studies showed that octopus GnRH-like peptide and adipokinetic hormone induced potent inositol phosphate turnover in one of these other two amphioxus receptors. These data demonstrate the functional conservation of two distinct types of GnRH receptors at the base of chordates. We propose that one receptor type led to vertebrate GnRHRs, whereas the other type, related to the mollusk GnRHR-like receptor, was lost in the vertebrate lineage. This is the first report to suggest that distinct invertebrate and vertebrate GnRHRs are present simultaneously in a basal chordate, amphioxus.

  7. Predicting subtle behavioral responses of invertebrates to soil contaminants

    SciTech Connect

    Donkin, S.G.

    1995-12-31

    At concentration levels well below those which cause death and injury to soil invertebrates, a toxic chemical plume may yet effectively damage a soil ecosystem by triggering avoidance behavior among sensitive invertebrates as they move along the concentration gradient. The result may be a soil ecosystem lacking the benefits of effective nutrient cycling and mineralization which a thriving invertebrate population provides. While determining actual detection limits of invertebrates for chemical gradients in soils is experimentally difficult, theoretical calculations have suggested that such limits may be extremely low, and hence many organisms may sense and avoid concentrations of chemicals far below levels commonly considered acceptable. The minimum gradient (G) that can be detected by a receptor depends on the receptor radius (R), the chemical concentration (C), the diffusion constant of the chemical (D), the velocity of the organism (v), and the time over which the receptor integrates the chemical signal (t). In addition, the characteristics of that gradient are determined by interactions between the chemical and the soil particles (sorption/desorption), and advection through the pore spaces. The example of lead (Pb), a neurotoxic metal with demonstrated behavioral effects on the free-living nematode Caenorhabditis elegans, is used to model a chemical migrating through a soil. Based on experimentally determined Pb concentrations which elicited avoidance behavior in nematodes, and sorption characteristics of defined Pb-soil systems, the minimum detectable gradient (G) produced by a solubilized Pb plume in several soils was modeled. The results predict maximum allowable Pb levels in a soil if a healthy invertebrate community is desired, and suggest areas for further research into the subtle behavioral effects of environmental toxicants ore sensitive invertebrates.

  8. A generalized model for estimating the energy density of invertebrates

    USGS Publications Warehouse

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED  =  22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  9. Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses

    PubMed Central

    Nyholm, Spencer V.; Graf, Joerg

    2013-01-01

    The innate immune system is present in all animals and is a crucial first line of defence against pathogens. However, animals also harbour large numbers of beneficial microorganisms that can be housed in the digestive tract, in specialized organs or on tissue surfaces. Although invertebrates lack conventional antibody-based immunity, they are capable of eliminating pathogens and, perhaps more importantly, discriminating them from other microorganisms. This Review examines the interactions between the innate immune systems of several model invertebrates and the symbionts of these organisms, and addresses the central question of how these long-lived and specific associations are established and maintained. PMID:23147708

  10. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    USGS Publications Warehouse

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  11. A new perspective on the organization of an invertebrate brain

    PubMed Central

    Hochner, Binyamin

    2011-01-01

    The concept of ‘embodiment’ and its implications for the evolution of cognitive capacities is emerging as a major issue in biology. Invertebrates have immensely diverse nervous structures and body plans, revealing the variety of solutions evolved by animals living successfully in all kinds of niches. Among invertebrates, the octopus is a special case because of its high cognitive abilities and a uniquely flexible body and manoeuvrable arms with virtually infinite degrees of freedom. Here we discuss how the octopus embodiment may be considered a ‘key’ to the development of its neural organisation and cognitive abilities. PMID:21509172

  12. Characterization of bioactive peptides obtained from marine invertebrates.

    PubMed

    Lee, Jung Kwon; Jeon, Joong-Kyun; Kim, Se-Kwon; Byun, Hee-Guk

    2012-01-01

    Bioactive peptides as products of hydrolysis of diverse marine invertebrate (shellfish, crustacean, rotifer, etc.) proteins are the focus of current research. After much research on these muscles and by-products, some biologically active peptides were identified and applied to useful compounds for human utilization. This chapter reviews bioactive peptides from marine invertebrates in regarding to their bioactivities. Additionally, specific characteristics of antihypertensive, anti-Alzheimer, antioxidant, antimicrobial peptide enzymatic production, methods to evaluate bioactivity capacity, bioavailability, and safety concerns of peptides are reviewed.

  13. Genome sequence of a crustacean iridovirus, IIV31, isolated from the pill bug, Armadillidium vulgare.

    PubMed

    Piégu, Benoît; Guizard, Sébastien; Yeping, Tan; Cruaud, Corinne; Asgari, Sassan; Bideshi, Dennis K; Federici, Brian A; Bigot, Yves

    2014-07-01

    Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.

  14. Advances in Non-Viral DNA Vectors for Gene Therapy

    PubMed Central

    Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn

    2017-01-01

    Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635

  15. The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crest-like cells.

    PubMed

    Medeiros, Daniel Meulemans

    2013-01-01

    The neural crest is an embryonic cell population that gives rise to an array of tissues and structures in adult vertebrates including most of the head skeleton. Because neural crest cells (NCCs), and many of their derivatives, are unique to vertebrates, the evolution of the neural crest is thought to have potentiated vertebrate origins and diversification. However, the lack of clear NCC homologs in invertebrate chordates has made it difficult to reconstruct the evolutionary history of modern NCCs. In this review, the development of NCCs in the basal jawless vertebrate, lamprey, is compared with the development of neural crest-like cells in a range of invertebrates to deduce features of the first NCCs and their evolutionary precursors. These comparisons demonstrate that most of the defining attributes of NCCs are widespread features of invertebrate embryonic ectoderm. In addition, they suggest ancient origins for the neural border domain and chondroid skeletal tissue in the first bilaterian, and show that NCCs must have evolved in a chordate with an unduplicated invertebrate-type genome. On the basis of these observations, a stepwise model for the evolution of NCCs involving heterotopic and heterochronic activation of ancient ectodermal gene programs and new responsiveness to preexisting inducing signals is proposed. In light of the phylogenetic distribution of neural crest-like cells, the deep homology of developmental gene networks, and the central role of evolutionary loss in deuterostome evolution, this article concludes with suggestions for future studies in a broad range of bilaterians to test key aspects of this model. WIREs Dev Biol 2013, 2:1-15. doi: 10.1002/wdev.85 For further resources related to this article, please visit the WIREs website.

  16. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  17. WETLAND INVERTEBRATE COMMUNITY RESPONSES TO VARYING EMERGENT LITTER IN A PRAIRIE POTHOLE EMERGENT MARSH

    EPA Science Inventory

    Plant litter produced in the interior of dense emergent stands may directly or indirectly influence invertebrate communities. Low litter may provide structure and refuge to invertebrates while high litter may shade out vegetation and algae and decrease oxygen concentrations. With...

  18. Invertebrate colonization of leaves and roots within sediments of intermittent coastal plain streams across hydrologic phases

    EPA Science Inventory

    We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots and plastic roots) among three intermittent Coastal Plain streams over a one year period. Invertebrate density was significantly lower in root litterbags than in plastic root l...

  19. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  20. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.

  1. Figaro: a novel statistical method for vector sequence removal

    PubMed Central

    White, James Robert; Roberts, Michael; Yorke, James A.; Pop, Mihai

    2009-01-01

    Motivation Sequences produced by automated Sanger sequencing machines frequently contain fragments of the cloning vector on their ends. Software tools currently available for identifying and removing the vector sequence require knowledge of the vector sequence, specific splice sites and any adapter sequences used in the experiment—information often omitted from public databases. Furthermore, the clipping coordinates themselves are missing or incorrectly reported. As an example, within the ~1.24 billion shotgun sequences deposited in the NCBI Trace Archive, as many as ~735 million (~60%) lack vector clipping information. Correct clipping information is essential to scientists attempting to validate, improve and even finish the increasingly large number of genomes released at a ‘draft’ quality level. Results We present here Figaro, a novel software tool for identifying and removing the vector from raw sequence data without prior knowledge of the vector sequence. The vector sequence is automatically inferred by analyzing the frequency of occurrence of short oligo-nucleotides using Poisson statistics. We show that Figaro achieves 99.98% sensitivity when tested on ~1.5 million shotgun reads from Drosophila pseudoobscura. We further explore the impact of accurate vector trimming on the quality of whole-genome assemblies by re-assembling two bacterial genomes from shotgun sequences deposited in the Trace Archive. Designed as a module in large computational pipelines, Figaro is fast, lightweight and flexible. Availability Figaro is released under an open-source license through the AMOS package (http://amos.sourceforge.net/Figaro). PMID:18202027

  2. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    PubMed

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  3. Genome Sequencing Fishes out Longevity Genes.

    PubMed

    Lakhina, Vanisha; Murphy, Coleen T

    2015-12-03

    Understanding the molecular basis underlying aging is critical if we are to fully understand how and why we age-and possibly how to delay the aging process. Up until now, most longevity pathways were discovered in invertebrates because of their short lifespans and availability of genetic tools. Now, Reichwald et al. and Valenzano et al. independently provide a reference genome for the short-lived African turquoise killifish, establishing its role as a vertebrate system for aging research.

  4. A Thesaurus for Soil Invertebrate Trait-Based Approaches

    PubMed Central

    Nahmani, Johanne; Auclerc, Apolline; Capowiez, Yvan; Caro, Gaël; Cluzeau, Daniel; Cortet, Jérôme; Decaëns, Thibaud; Dubs, Florence; Joimel, Sophie; Guernion, Muriel; Briard, Charlène; Grumiaux, Fabien; Laporte, Baptiste; Pasquet, Alain; Pelosi, Céline; Pernin, Céline; Ponge, Jean-François; Salmon, Sandrine; Santorufo, Lucia; Hedde, Mickaël

    2014-01-01

    Soil invertebrates are known to be much involved in soil behaviour and therefore in the provision of ecosystem services. Functional trait-based approaches are methodologies which can be used to understand soil invertebrates’ responses to their environment. They (i) improve the predictions and (ii) are less dependent on space and time. The way traits have been used recently has led to misunderstandings in the integration and interpretation of data. Trait semantics are especially concerned. The aim of this paper is to propose a thesaurus for soil invertebrate trait-based approaches. T-SITA, an Internet platform, is the first initiative to deal with the semantics of traits and ecological preferences for soil invertebrates. It reflects the agreement of a scientific expert community to fix semantic properties (e.g. definition) of approximately 100 traits and ecological preferences. In addition, T-SITA has been successfully linked with a fully operational database of soil invertebrate traits. Such a link enhances data integration and improves the scientific integrity of data. PMID:25310431

  5. Detection of betanodaviruses in apparently healthy aquarium fishes and invertebrates

    PubMed Central

    Gomez, Dennis Kaw; Lim, Dong Joo; Baeck, Gun Wook; Youn, Hee Jeong; Shin, Nam Shik; Youn, Hwa Young; Hwang, Cheol Yong; Park, Jun Hong

    2006-01-01

    Betanodaviruses are the causative agents of viral nervous necrosis (VNN) in cultured marine fish. A total of 237 apparently healthy aquarium fish, marine (65 species) and freshwater (12 species) fishes and marine invertebrates (4 species), which were stocked in a commercial aquarium in Seoul, South Korea, were collected from November 2005 to February 2006. The brains of the fish and other tissues of the invertebrates were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR to detect betanodavirus. Positive nested PCR results were obtained from the brains of 8 marine fish species (shrimp fish Aeoliscus strigatus, milkfish Chanos chanos, three spot damsel Dascyllus trimaculatus, Japanese anchovy Engraulis japonicus, pinecone fish Monocentris japonica, blue ribbon eel Rhinomuraena quaesita, look down fish Selene vomer, yellow tang Zebrasoma flavesenes), 1 marine invertebrate species (spiny lobster Pamulirus versicolor), and 2 freshwater fish species (South American leaf fish Monocirrhus polyacanthus and red piranha Pygocentrus nattereri). The detection rate in nested PCR was 11/237 (4.64%). These subclinically infected aquarium fish and invertebrates may constitute an inoculum source of betanodaviruses for cultured fishes in the Korean Peninsula. PMID:17106229

  6. Acoustic indicators for mapping infestation probabilities of soil invertebrates.

    PubMed

    Mankin, R W; Hubbard, J L; Flanders, K L

    2007-06-01

    Acoustic and traditional excavation methods were used in consecutive summers to conduct two geospatial surveys of distributions of white grubs and other soil invertebrates in two forage fields. Indicator variables were constructed from listener- and computer-based assessments of sounds detected at each recording site and then applied in geostatistical analysis, contingency analysis, and spatial analysis of distance indices (SADIE) of soil invertebrate distributions. Significant relationships were identified between the acoustic indicators and the counts of sound-producing soil invertebrates in a majority of the geostatistical and contingency analyses. Significant clusterings and overall spatial associations were identified also in most of the SADIE analyses. In addition, significant local spatial associations were identified between acoustic indicators and counts of sound-producing soil invertebrates that could be of potential value in selection of specific sites as targets for treatment or for untreated reserves in integrated pest management programs. An example is presented of the relative efficiency of acoustic surveys for targeting of white grub treatments.

  7. ECOLOGICAL SOIL SCREENING LEVELS FOR SOIL INVERTEBRATES AND PLANTS

    EPA Science Inventory

    Ecological Soil Screening Levels (Eco-SSLs) are being developed for 24 inorganic and inorganic chemicals for soil invertebrates and plants using procedures developed by a Task Group of the USEPA Eco-SSL Work Group. The Eco-SSL Work Group is a collaboration among USEPA, DoD, DOE, ...

  8. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    PubMed Central

    2010-01-01

    Background Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. Results We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. Conclusions The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses. PMID:21062451

  9. Basin Scale Evaluation of Stream Invertebrate Community Functional Organization

    NASA Astrophysics Data System (ADS)

    Cummins, K. W.; Matousek, J.; Shackelford, A. J.

    2005-05-01

    Invertebrate community functional organization was studied at the basin scale in the Freshwater Creek catchment in northern California in August and September, 2004. Timed, D-frame net samples were taken in six tributaries (study reaches 0.5 - 2.7 km) and two sections of the mainstem (3.4 and 4.5 km) of Freshwater Creek. The 317 samples from 106 sites were collected by habitat (cobble, 167; riparian litter, 82; fine sediments, 36; large woody debris, 32). The sample sites matched randomly selected locations within a sample frame of a concomitant juvenile salmonid survey. Juvenile salmonid stomach samples were also taken at each invertebrate survey site. Shredders and total collectors each dominated one tributary and one mainstem reach and scrapers dominated four tributaries. Using the invertebrate ecosystem surrogate method developed by Cummins and Merritt, half of the tributaries/mainstem reaches were characterized as heterotrophic, the other half as autotrophic. The invertebrate functional group community organization was strongly correlated with habitat type but, in general, the relationship with salmonid abundance was indirect. Initial analysis of juvenile salmonid stomachs from one stream (Cloney Gulch) indicated that food availability was good for drift-feeding fish.

  10. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    ERIC Educational Resources Information Center

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  11. Use of Invertebrate Animals to Teach Physiological Principles.

    ERIC Educational Resources Information Center

    Deyrup-Olsen, Ingrith; Linder, Thomas M.

    1991-01-01

    The advantages of using invertebrates in teaching physiological principles are discussed. The ability to illustrate with greater clarity physiological principles, the range and variety of physiological processes available for examination, and the unlimited possibilities for student research are topics of discussion. (KR)

  12. RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...

  13. Trends in Children's Concepts of Vertebrate and Invertebrate.

    ERIC Educational Resources Information Center

    Braund, Martin

    1998-01-01

    Presents the results of a cross-age study of 7- to 15-year-old children on their thinking about vertebrate and invertebrate animals. Suggests experiences that could be included in the school science curriculum and argues for more classroom work relating structure with function in order to address students' conceptual difficulties. (Contains 18…

  14. DNA-based methods to prepare helper virus-free herpes amplicon vectors and versatile design of amplicon vector plasmids.

    PubMed

    Kasai, Kazue; Saeki, Yoshinaga

    2006-06-01

    The herpes simplex virus (HSV) amplicon vector is a versatile plasmid-based gene delivery vehicle with a large transgene capacity (up to 150 kb) and the ability to infect a broad range of cell types. The vector system was originally developed by Frenkel and her colleagues in 1980. Ever since, a great deal of effort by various investigators has been directed at minimizing the toxicity associated with the inevitable contamination by helper virus. In 1996, Fraefel and his colleagues successfully devised a cosmid-based packaging system that was free of contamination by helper virus (so-called helper virus-free packaging), which utilized as helper a set of 5 overlapping cosmid clones that covered the entire HSV genome, which lacked the DNA packaging/cleavage signals. With the helper virus-free system, broader applications of the vector became possible. Cloning of the entire HSV genome in bacteria artificial chromosome (BAC) plasmids enabled stable maintenance and propagation of the helper HSV genome in bacteria. It also allowed for the development of BAC-based helper virus-free packaging systems. In this article, we review various versions of DNA-based methods to prepare HSV amplicon vectors free of helper virus contamination. We also examine recent advances in vector design, including methods of vector construction, hybrid amplicon vectors, and the infectious BAC system. Future directions in improving packaging systems and vector designs are discussed.

  15. Invertebrate community composition differs between invasive herb alligator weed and native sedges

    NASA Astrophysics Data System (ADS)

    Bassett, Imogen E.; Paynter, Quentin; Beggs, Jacqueline R.

    2012-05-01

    Chemical and/or architectural differences between native and exotic plants may influence invertebrate community composition. According to the enemy release hypothesis, invasive weeds should host fewer and less specialised invertebrates than native vegetation. Invertebrate communities were compared on invasive Alternanthera philoxeroides (alligator weed) and native sedges (Isolepis prolifer and Schoenoplectus tabernaemontani) in a New Zealand lake. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Lower invertebrate abundance, richness and proportionally fewer specialists were predicted on A. philoxeroides compared to native sedges, but with greatest differences between A. philoxeroides and S. tabernaemontani. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Invertebrate abundance showed taxa-specific responses, rather than consistently lower abundance on A. philoxeroides. Nevertheless, as predicted, invertebrate fauna of A. philoxeroides was more similar to that of I. prolifer than to S. tabernaemontani. The prediction of a depauperate native fauna on A. philoxeroides received support from some but not all taxa. All vegetation types hosted generalist-dominated invertebrate communities with simple guild structures. The enemy release hypothesis thus had minimal ability to predict patterns in this system. Results suggest the extent of architectural and chemical differences between native and invasive vegetation may be useful in predicting the extent to which they will host different invertebrate communities. However, invertebrate ecology also affects whether invertebrate taxa respond positively or negatively to weed invasion. Thus, exotic vegetation may support distinct invertebrate communities despite similar overall invertebrate abundance to native vegetation.

  16. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    PubMed Central

    Richter, Ingrid; Fidler, Andrew E.

    2014-01-01

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319

  17. Marine invertebrate xenobiotic-activated nuclear receptors: their application as sensor elements in high-throughput bioassays for marine bioactive compounds.

    PubMed

    Richter, Ingrid; Fidler, Andrew E

    2014-11-24

    Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.

  18. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  19. The Overlooked Biodiversity of Flower-Visiting Invertebrates

    PubMed Central

    Wardhaugh, Carl W.; Stork, Nigel E.; Edwards, Will; Grimbacher, Peter S.

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness. PMID

  20. Crawling to Collapse: Ecologically Unsound Ornamental Invertebrate Fisheries

    PubMed Central

    Rhyne, Andrew; Rotjan, Randi; Bruckner, Andrew; Tlusty, Michael

    2009-01-01

    Background Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery. The last decade has seen aquarium hobbyists shift their display preference from fish-only tanks to miniature reef ecosystems that include many invertebrate species, creating increased demand without proper oversight. The once small ornamental fishery has become an invertebrate-dominated major industry supplying five continents. Methodology/Principal Findings Here, we analyzed the Florida Marine Life Fishery (FLML) landing data from 1994 to 2007 for all invertebrate species. The data were organized to reflect both ecosystem purpose (in the wild) and ecosystem services (commodities) for each reported species to address the following question: Are ornamental invertebrates being exploited for their fundamental ecosystem services and economic value at the expense of reef resilience? We found that 9 million individuals were collected in 2007, 6 million of which were grazers. Conclusions/Significance The number of grazers now exceeds, by two-fold, the number of specimens collected for curio and ornamental purposes altogether, representing a major categorical shift. In general, landings have increased 10-fold since 1994, though the number of licenses has been dramatically reduced. Thus, despite current management strategies, the FLML Fishery appears to be crawling to collapse. PMID:20027312

  1. The overlooked biodiversity of flower-visiting invertebrates.

    PubMed

    Wardhaugh, Carl W; Stork, Nigel E; Edwards, Will; Grimbacher, Peter S

    2012-01-01

    Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.

  2. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality.

  3. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment.

    PubMed

    Kammenga, J E; Dallinger, R; Donker, M H; Köhler, H R; Simonsen, V; Triebskorn, R; Weeks, J M

    2000-01-01

    This review has served to present the most recent information on a selected series of biomarker studies undertaken on soil invertebrates during two extensive European-funded scientific consortia, BIOPRINT and BIOPRINT-II. The goals were to develop and validate methods for the analysis of markers of stress in a range of soil-dwelling organisms. We have discussed the potential and limitations of the following invertebrate biomarkers for soil risk assessment purposes: heat shock proteins, histological and ultrastructural markers, metallothioneins and metal-binding proteins, esterases, lysosomal integrity, and the novel biomarker histidine. The hsp response in soil invertebrates is especially suitable to indicate the effects of exposure to comparatively low concentrations for a range of toxicants and can be regarded as a biomarker of general stress. The application of MTs and other metal-binding proteins as biomarkers for exposure in soil invertebrates has been well described, and new methods are being developed for analyzing MT induction both at the protein and molecular level, and reliable and reproducible methods are now available. (Cd)-MT is well characterized for the springtails and its MT concentration is a useful biomarker for exposure as well as for effect. For snails, (Cd)-MT can accumulate in the midgut gland over extended periods of time and therefore its concentration is a biomarker not only for recent intoxication but also for events of cadmium exposure that snails may have experienced a long time before the measurement took place. Cellular and histological alterations can be regarded as reflecting the "health" state of a cell, which may be a measure for the presence of toxicants. Histopathological work on terrestrial invertebrates, however, is still scarce. Isozymes have been poorly studied in soil invertebrates despite their promising role as potential biomarkers in aquatic organisms. Among the large diversity of isozymes, the most well studied are

  4. Management of midges and other invertebrates for waterfowl wintering in California

    USGS Publications Warehouse

    Euliss, N.H.; Grodhaus, G.

    1987-01-01

    A review of recent waterfowl food habit studies showed that invertebrates are of major dietary importance to ducks wintering in California. However current wetland practices are directed at production of plant foods and seldom consider the propagation of invertebrates. We suggest that invertebrate repopulation of seasonally flooded marshes will occur more rapidly if an inoculum of invertebrates is provided via small ponds flooded several weeks before general marsh flooding in fall. Managers will require considerably more information before management of aquatic invertebrates can be fully developed.

  5. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules

    PubMed Central

    Watts, Katharine R; Tenney, Karen; Crews, Phillip

    2010-01-01

    This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics. PMID:20956079

  6. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules.

    PubMed

    Watts, Katharine R; Tenney, Karen; Crews, Phillip

    2010-12-01

    This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics.

  7. Molecular neurosurgery: vectors and vector delivery strategies.

    PubMed

    White, Edward

    2012-12-01

    Molecular neurosurgery involves the use of vector-mediated gene therapy and gene knockdown to manipulate in vivo gene expression for the treatment of neurological diseases. These techniques have the potential to revolutionise the practice of neurosurgery. However, significant challenges remain to be overcome before these techniques enter routine clinical practice. These challenges have been the subject of intensive research in recent years and include the development of strategies to facilitate effective vector delivery to the brain and the development of both viral and non-viral vectors that are capable of efficient cell transduction without excessive toxicity. This review provides an update on the practice of molecular neurosurgery with particular focus on the practical neurosurgical aspects of vector delivery to the brain. In addition, an introduction to the key vectors employed in clinical trials and a brief overview of previous gene therapy clinical trials is provided. Finally, key areas for future research aimed at increasing the likelihood of the successful translation of gene therapy into clinical trials are highlighted.

  8. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  9. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing.

    PubMed

    Dahms, Hans-Uwe; Won, Eun-Ji; Kim, Hui-Su; Han, Jeonghoon; Park, Heum Gi; Souissi, Sami; Raisuddin, Sheikh; Lee, Jae-Seong

    2016-11-01

    Aquatic invertebrates contribute significantly to environmental impact assessment of contaminants in aquatic ecosystems. Much effort has been made to identify viable and ecologically relevant invertebrate test organisms to meet rigorous regulatory requirements. Copepods, which are ecologically important and widely distributed in aquatic organisms, offer a huge opportunity as test organisms for aquatic toxicity testing. They have a major role not only in the transfer of energy in aquatic food chains, but also as a medium of transfer of aquatic pollutants across the tropic levels. In this regard, a supratidal and benthic harpacticoid copepod Tigriopus japonicus Mori (order Harpacticoida) has shown promising characteristics as a test organism in the field of ecotoxicology. Because there is a need to standardize a battery of test organisms from species in different phylogenetic and critical ecosystem positions, it is important to identify another unrelated planktonic species for wider application and comparison. In this regard, the cyclopoid copepod Paracyclopina nana Smirnov (order Cyclopoida) has emerged as a potential test organism to meet such requirements. Like T. japonicus, it has a number of features that make it a candidate worth consideration in such efforts. Recently, the genomics of P. nana has been unraveled. Data on biochemical and molecular responses of P. nana against exposure to environmental chemicals and other stressors have been collected. Recently, sequences and expression profiles of a number of genes in P. nana encoding for heat shock proteins, xenobiotic-metabolizing enzymes, and antioxidants have been reported. These genes serve as potential biomarkers in biomonitoring of environmental pollutants. Moreover, the application of gene expression techniques and the use of its whole transcriptome have allowed evaluation of transcriptional changes in P. nana with the ultimate aim of understanding the mechanisms of action of environmental stressors

  10. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  11. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  12. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion.

    PubMed

    Almeida, Joana R; Vasconcelos, Vitor

    2015-01-01

    Biofouling represents a major economic issue regarding maritime industries and also raise important environmental concern. International legislation is restricting the use of biocidal-based antifouling (AF) coatings, and increasing efforts have been applied in the search for environmentally friendly AF agents. A wide diversity of natural AF compounds has been described for their ability to inhibit the settlement of macrofouling species. However poor information on the specific AF targets was available before the application of different molecular approaches both on invertebrate settlement strategies and bioadhesive characterization and also on the mechanistic effects of natural AF compounds. This review focuses on the relevant information about the main invertebrate macrofouler species settlement and bioadhesive mechanisms, which might help in the understanding of the reported effects, attributed to effective and non-toxic natural AF compounds towards this macrofouling species. It also aims to contribute to the elucidation of promising biotechnological strategies in the development of natural effective environmentally friendly AF paints.

  13. Differential niche dynamics among major marine invertebrate clades.

    PubMed

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-03-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition.

  14. Gonadotropin-releasing hormone in invertebrates: structure, function, and evolution.

    PubMed

    Tsai, Pei-San

    2006-08-01

    Gonadotropin-releasing hormone (GnRH) is central to the initiation and maintenance of reproduction in vertebrates. GnRH is found in all major groups of Phylum Chordata, including the protochordates. Studies on functional and structural evolution of GnRH have, in the past, focused exclusively on chordates. However, the recent structural elucidation of an octopus GnRH-like molecule and increasing evidence that GnRH-like substances are present in multiple invertebrate phyla suggest GnRH is an ancient peptide that arose prior to the divergence of protostomes and deuterostomes. The extraordinary conservation of GnRH structure and function raises interesting questions regarding the functional role assumed by GnRH over the course of evolution. This review will focus on the current understanding of GnRH structure and function in non-chordate invertebrates. Special emphasis will be placed upon the possible and speculated functions of GnRH in mollusks.

  15. Invertebrates control metals and arsenic sequestration as ecosystem engineers.

    PubMed

    Schaller, Jörg; Weiske, Arndt; Mkandawire, Martin; Dudel, E Gert

    2010-03-01

    Organic sediments are known to be a significant sink of inorganic elements in polluted freshwater ecosystems. Hence, we investigated the role of invertebrate shredders (the freshwater shrimp Gammarus pulex L.) in metal and arsenic enrichment into organic partitions of sediments in a wetland stream at former uranium mining site. Metal and metalloid content in leaf litter increased significantly during decomposition, while at the same time the carbon content decreased. During decomposition, G. pulex as a ecosystem engineer facilitated significantly the enrichment of magnesium (250%), manganese (560%), cobalt (310%), copper (200%), zinc (43%), arsenic (670%), cadmium (100%) and lead (1340%) into small particle sizes. The enrichments occur under very high concentrations of dissolved organic carbon. Small particles have high surface area that results in high biofilm development. Further, the highest amounts of elements were observed in biofilms. Therefore, invertebrate shredder like G. pulex can enhance retention of large amounts of metal and arsenic in wetlands.

  16. Street lighting changes the composition of invertebrate communities.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Gaston, Kevin J

    2012-10-23

    Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.

  17. Differential niche dynamics among major marine invertebrate clades

    PubMed Central

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-01-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition. PMID:24313951

  18. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.

  19. Transmission of solar ultraviolet radiation through invertebrate exteriors

    SciTech Connect

    Karentz, D.; Gast, T. )

    1993-01-01

    The occurrence of springtime ozone depletion over the Antarctic has created concern about the effects of increases ultraviolet-B on marine organisms, particularly in intertidal and subtidal populations. The first line of defense that an animal has to solar radiation exposure is its outer covering. This paper examines four species of antarctic invertebrates to determine the amount of UV protection provided by their external covering (the sea urchin, the sea star; the limpet; and the tunicate). 5 refs., 3 figs.

  20. When growth models are not universal: evidence from marine invertebrates.

    PubMed

    Hirst, Andrew G; Forster, Jack

    2013-10-07

    The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.

  1. When growth models are not universal: evidence from marine invertebrates

    PubMed Central

    Hirst, Andrew G.; Forster, Jack

    2013-01-01

    The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates. PMID:23945691

  2. Investigations into the Settlement and Attachment of Biofouling Marine Invertebrates

    DTIC Science & Technology

    2015-12-17

    compounds prevent the 450 settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina 19 451 ( Bryozoa ) and Hydroides...in the cosmopolitan Bugula nehtina complex 458 ( Bryozoa , Cheilostomata). Zool. Schpta 43: 193-205. 459 460 Godfraind, T. 1976. Calcium exchange in...de Zoologie Experimentale et Generale, 2nd Series, 8:409-459. 487 488 Reed, CG. 1987. Phylum Bryozoa viewed from the egg. Pp. 494-510 in Reproduction

  3. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  4. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    PubMed

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed.

  5. Emerging adenoviral vectors for stable correction of genetic disorders.

    PubMed

    Jager, Lorenz; Ehrhardt, Anja

    2007-08-01

    Recent drawbacks in treating patients with severe combined immunodeficiency disorders with retroviral vectors underline the importance of generating novel tools for stable transduction of mammalian cells. Substantial progress has been made over the recent years which may offer important steps towards stable and more importantly safer correction of genetic diseases. This article discusses recent advances for stable transduction of target cells based on adenoviral gene transfer. There is accumulating evidence that recombinant adenoviral vectors (AdVs) based on various human serotypes with a broad cellular tropism and adenoviruses (Ads) from different species will play an important role in future gene therapy applications. In combination with recombinant AdVs for somatic integration these gene transfer vectors offer high transduction efficiencies with potentially safer integration patterns. Other approaches for persistent transgene expression include excision of stable episomes from the adenoviral vector genome, but also long-term persistence of the complete adenoviral vector genome as an episomal DNA molecule was demonstrated and exemplified by the treatment of various genetic diseases in small and large animal models. This review displays advantages but also limitations of these Ad based vector systems. This is the perfect time to pursue such approaches because alternative strategies for stable transduction of mammalian cells undergoing many cell divisions are urgently needed. Looking into the future, we believe that a combination of different components from different viral vectors in concert with non-viral vector systems will be successful in designing significantly optimized transfer vehicles for a broad range of different genetic diseases.

  6. The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates

    NASA Astrophysics Data System (ADS)

    van Alstyne, Kathryn L.; Schupp, Peter; Slattery, Marc

    2006-08-01

    Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g-1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g-1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g-1 DM with a mean of 4 ± 7 μmol g-1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.

  7. Improved ultrastructure of marine invertebrates using non-toxic buffers.

    PubMed

    Montanaro, Jacqueline; Gruber, Daniela; Leisch, Nikolaus

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates.

  8. Mucin-Type O-Glycosylation in Invertebrates.

    PubMed

    Staudacher, Erika

    2015-06-09

    O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.

  9. The invertebrate ecology of the Chalk aquifer in England (UK)

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Robertson, A. R.; White, D.; Knight, L.; Johns, T.; Edwards, F.; Arietti, M.; Sorensen, J. P. R.; Weitowitz, D.; Marchant, B. P.; Bloomfield, J. P.

    2016-03-01

    The Chalk is an important water supply aquifer, yet ecosystems within it remain poorly understood. Boreholes (198) in seven areas of England (UK) were sampled to determine the importance of the Chalk aquifer as a habitat, and to improve understanding of how species are distributed. Stygobitic macro-invertebrates were remarkably common, and were recorded in 67 % of boreholes in unconcealed Chalk, although they were not recorded in Chalk that is concealed by low-permeability strata and thus likely to be confined. Most species were found in shallow boreholes (<21 m) and boreholes with deep (>50 m) water tables, indicating that the habitat is vertically extensive. Stygobites were present in more boreholes in southern England than northern England (77 % compared to 38 %). Only two species were found in northern England compared to six in southern England, but overall seven of the eight stygobitic macro-invertebrate species found in England were detected in the Chalk. Two species are common in southern England, but absent from northern England despite the presence of a continuous habitat prior to the Devensian glaciation. This suggests that either they did not survive glaciations in the north where glaciers were more extensive, or dispersal rates are slow and they have never colonised northern England. Subsurface ecosystems comprising aquatic macro-invertebrates and meiofauna, as well as the microbial organisms they interact with, are likely to be widespread in the Chalk aquifer. They represent an important contribution to biodiversity, and may influence biogeochemical cycles and provide other ecosystem services.

  10. Improved ultrastructure of marine invertebrates using non-toxic buffers

    PubMed Central

    Montanaro, Jacqueline; Gruber, Daniela

    2016-01-01

    Many marine biology studies depend on field work on ships or remote sampling locations where sophisticated sample preservation techniques (e.g., high-pressure freezing) are often limited or unavailable. Our aim was to optimize the ultrastructural preservation of marine invertebrates, especially when working in the field. To achieve chemically-fixed material of the highest quality, we compared the resulting ultrastructure of gill tissue of the mussel Mytilus edulis when fixed with differently buffered EM fixatives for marine specimens (seawater, cacodylate and phosphate buffer) and a new fixative formulation with the non-toxic PHEM buffer (PIPES, HEPES, EGTA and MgCl2). All buffers were adapted for immersion fixation to form an isotonic fixative in combination with 2.5% glutaraldehyde. We showed that PHEM buffer based fixatives resulted in equal or better ultrastructure preservation when directly compared to routine standard fixatives. These results were also reproducible when extending the PHEM buffered fixative to the fixation of additional different marine invertebrate species, which also displayed excellent ultrastructural detail. We highly recommend the usage of PHEM-buffered fixation for the fixation of marine invertebrates. PMID:27069800

  11. Invertebrate mucous secretions: functional alternatives to vertebrate paradigms.

    PubMed

    Denny, M W

    1989-01-01

    Invertebrates use mucus in a far broader spectrum of functions than do vertebrates. Examples include: 1. Navigation. The slime trails of grastropods often contain directional information that is used in homing, mating, and predation. 2. Defense. Many invertebrates coat themselves with slippery, distasteful mucus secretions to ward off predators. 3. Desiccation resistance. Limpets and terrestrial snails use a thin barrier of dry mucus as a mechanism for minimizing desiccation. 4. Structural support. Mucus functions as a tensile structural element in feeding nets and mating ropes. A preliminary analysis of these structures indicates that tensile stiffnesses of 10(4)-10(5) N/m2 may be common. 5. Food. The production of mucus can account for up to 80% of the total energy expenditure of some invertebrates. Mucus is often used as a food source, and in some cases is used to enhance the growth of food items. 6. Locomotion. The adhesive locomotion of gastropods is dependent on the unusual mechanical properties of pedal mucus. These properties may set limits to the size and speed of snails and slugs.

  12. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses

    PubMed Central

    Holgado, María Pía; Falivene, Juliana; Maeto, Cynthia; Amigo, Micaela; Pascutti, María Fernanda; Vecchione, María Belén; Bruttomesso, Andrea; Calamante, Gabriela; del Médico-Zajac, María Paula; Gherardi, María Magdalena

    2016-01-01

    MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b+/IFN-γ+) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential. PMID:27223301

  13. Invertebrate Iridescent Virus 6, a DNA Virus, Stimulates a Mammalian Innate Immune Response through RIG-I-Like Receptors

    PubMed Central

    Ahlers, Laura R. H.; Bastos, Reginaldo G.; Hiroyasu, Aoi

    2016-01-01

    Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-β secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection. PMID:27824940

  14. Arsenic (+ 3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis.

    PubMed

    Thomas, David J; Nava, Gerardo M; Cai, Shi-Ying; Boyer, James L; Hernández-Zavala, Araceli; Gaskins, H Rex

    2010-01-01

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+ 3 oxidation state) methyltransferase (As3mt) yielding mono-, di-, and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation, a comparative genomic approach focusing on the invertebrate chordate Ciona intestinalis was used. Bioinformatic analyses identified an As3mt gene in the C. intestinalis genome. Constitutive As3mt RNA expression was observed in heart, branchial sac, and gastrointestinal tract. Adult animals were exposed to 0 or 1 ppm of iAs for 1 or 5 days. Steady-state As3mt RNA expression in the gastrointestinal tract was not modulated significantly by 5 days of exposure to iAs. Tissue levels of iAs and its methylated metabolites were determined by hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometry. At either time point, exposure to iAs significantly increased concentrations of iAs and its methylated metabolites in tissues. After 5 days of exposure, total speciated arsenic concentrations were highest in branchial sac (3705 ng/g), followed by heart (1019 ng/g) and gastrointestinal tract (835 ng/g). At this time point, the sum of the speciated arsenical concentrations in gastrointestinal tract and heart equaled or exceeded that of iAs; in branchial sac, iAs was the predominant species present. Ciona intestinalis metabolizes iAs to its methylated metabolites, which are retained in tissues. This metabolic pattern is consistent with the presence of an As3mt ortholog in its genome and constitutive expression of the gene in prominent organs, making this basal chordate a useful model to examine the evolution of arsenic detoxification.

  15. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  16. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  17. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  18. Matrotrophy and placentation in invertebrates: a new paradigm.

    PubMed

    Ostrovsky, Andrew N; Lidgard, Scott; Gordon, Dennis P; Schwaha, Thomas; Genikhovich, Grigory; Ereskovsky, Alexander V

    2016-08-01

    Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy-placentotrophy-is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and

  19. Three-dimensional visualisation of developmental stages of an apicomplexan fish blood parasite in its invertebrate host

    PubMed Central

    2011-01-01

    Background Although widely used in medicine, the application of three-dimensional (3D) imaging to parasitology appears limited to date. In this study, developmental stages of a marine fish haemogregarine, Haemogregarina curvata (Apicomplexa: Adeleorina), were investigated in their leech vector, Zeylanicobdella arugamensis; this involved 3D visualisation of brightfield and confocal microscopy images of histological sections through infected leech salivary gland cells. Findings 3D assessment demonstrated the morphology of the haemogregarine stages, their spatial layout, and their relationship with enlarged host cells showing reduced cellular content. Haemogregarine meronts, located marginally within leech salivary gland cells, had small tail-like connections to the host cell limiting membrane; this parasite-host cell interface was not visible in two-dimensional (2D) light micrographs and no records of a similar connection in apicomplexan development have been traced. Conclusions This is likely the first account of the use of 3D visualisation to study developmental stages of an apicomplexan parasite in its invertebrate vector. Elucidation of the extent of development of the haemogregarine within the leech salivary cells, together with the unusual connections between meronts and the host cell membrane, illustrates the future potential of 3D visualisation in parasite-vector biology. PMID:22107751

  20. A Versatile Adeno-Associated Virus Vector Producer Cell Line Method for Scalable Vector Production of Different Serotypes

    PubMed Central

    Yuan, Zhenhua; Qiao, Chunping; Hu, Peiqi; Li, Juan

    2011-01-01

    Abstract Application of adeno-associated virus (AAV) vector in large animal studies and clinical trials often requires high-titer and high-potency vectors. A number of currently used vector production methods, based on either transient transfection or helper virus infection of cell lines, have their advantages and limitations. We previously developed a 293-cell–based producer cell line method for high-titer and high-potency AAV2 vectors. Similar to several other methods, however, it requires multiple cloning steps for the vector and packaging plasmids and a two-step transfection and selection for stable cell lines. Here we report a simplified method with several key improvements and advantages: (1) a one-step cloning of AAV vector cassette into the serotype-specific packaging plasmid; (2) a single plasmid transfection and selection for stable AAV vector producer cell lines; (3) high vector yields of different serotypes, e.g., AAV2, 8, and 9, upon infection with an E1A/E1B-deleted helper adenovirus; (4) efficient packaging of both single-stranded and double-stranded (self-complementary) AAV vectors; and (5) efficient packaging of large AAV cassettes such as a mini-dystrophin vector (5.0 kb). All cell lines were stable with growth rates identical to the parental 293 cells. The vector yields were consistent among serotypes, with 5 × 1013 to 8 × 1013 vector genome particles per Nunc cell factory (equivalent to 40 15-cm plates). The vectors showed high potency for in vitro and in vivo transduction. In conclusion, the simple and versatile AAV producer cell line method can be useful for large scale AAV vector production in preclinical and clinical studies. PMID:21186998

  1. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  2. Ecological approaches to informing public health policy and risk assessments on emerging vector-borne zoonoses

    PubMed Central

    Medlock, JM; Jameson, LJ

    2010-01-01

    Pathogens associated with vector-borne zoonoses occur in enzootic cycles within nature. They are driven by a combination of vertebrate host and invertebrate vector population dynamics, which in turn respond to changes in environmental stimuli. Human involvement in these cycles, and hence the occurrence of human disease, is often to act as incidental host. From a public health perspective our ability to better predict human outbreaks of these diseases and prepare intervention and mitigation strategies relies on understanding the natural cycle of pathogen transmission. This requires consideration of, for example, invertebrate and vertebrate ecology and biology, climatology, land use and habitat change. Collectively, these can be referred to as medical entomology and medical ecology. This article reviews the importance for inclusion of such disciplines when assessing the public health risk from vector-borne zoonoses and summarizes the possible future challenges and driving forces for changes in vector status and vector-borne zoonoses emergence, with a particular focus on a UK and European context. PMID:22460391

  3. Strategies for retargeted gene delivery using vectors derived from lentiviruses.

    PubMed

    Bartosch, Birke; Cosset, Francois-Loic

    2004-12-01

    With the development of the first viral vector systems 20 years ago [Mann et al., 1983; Watanabe and Temin, 1983] gene therapy strategies have come to the forefront of novel therapeutics [Cavazzana-Calvo et al., 2000]. A deeper understanding of vector biology and the molecular mechanisms of disease alongside tremendous advances in vector technology have significantly advanced the field of human gene therapy. Over the last few years several challenges needed to be overcome in order to bring gene therapy strategies closer to the clinic. These hurdles include the preparation of large amounts of stable, high titre vectors, minimising vector-related immunology and last but not least targeting infection and transgene expression to tissue or cells, which in many cases are not or only slowly dividing. Viral vectors are useful vehicles for the delivery of foreign genes into target cells, and retroviral vectors have been popular because of their ability to integrate into the host cell genome and maintain persistent gene expression. Moreover, lentiviruses, members of the retroviral family, have the ability to infect cells at both mitotic and post-mitotic stages of the cell cycle thus opening up the possibility to target non-dividing target cells and tissues. Human immunodeficiency virus (HIV) based vectors have been used in vitro and in vivo in a number of situations, however, safety concerns still exist, and therefore the development of vector systems based on primate as well as non-primate lentiviruses is ongoing. Concomitantly with lentiviral vector design, much has been learned about the incorporation of heterologous env proteins on lentiviral cores in order to combine specific targeting properties of envelope glycoproteins with the biological properties of lentiviral vectors. In this review article we will give an overview over advantages lentiviral vector systems offer. We will then discuss the current state of our understanding of the structure and function of viral

  4. Impacts of hikers on aquatic invertebrates in the North Fork of the Virgin River, Utah

    USGS Publications Warehouse

    Caires, A.M.; Vinson, M.R.; Brasher, A.M.D.

    2010-01-01

    Effects of in-stream hiking on benthic standing stocks and drifting aquatic invertebrates and on organic matter were examined in the North Fork of the Virgin River, Zion National Park, Washington County, Utah. Densities of drifting aquatic invertebrates and organic matter increased with increasing numbers of hikers and reached a threshold level at high numbers of hikers. However, there was no apparent longer-term effect on standing stocks of benthic invertebrates or on organic matter. Densities of benthic invertebrates and organic matter did not differ among sites. Results suggest that in-stream hiking in the North Fork of the Virgin River increases drifting by invertebrates, but invertebrates from nearby undisturbed patches readily colonize impacted reaches.

  5. Null Killing vectors

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Perjés, Z.; Sebestyén, Á.

    1981-06-01

    Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.

  6. Viral Vectors for in Vivo Gene Transfer

    NASA Astrophysics Data System (ADS)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  7. [Effects of invertebrate bioturbation on vertical hydraulic conductivity of streambed for a river].

    PubMed

    Ren, Chao-Liang; Song, Jin-Xi; Yang, Xiao-Gang; Xue, Jian

    2013-11-01

    Streambed hydraulic conductivity is a key factor influencing water exchange between surface water and groundwater. However, the streambed invertebrate bioturbation has a great effect on the hydraulic conductivity. In order to determine the impact of invertebrate bioturbation on streambed hydraulic conductivity, the investigation of invertebrate bioturbation and in-situ test of vertical hydraulic conductivity of streambed are simultaneously conducted at five points along the main stream of the Weihe River. Firstly, correlation between the streambed vertical hydraulic conductivity and grain size distribution is analyzed. Secondly, type and density of the invertebrate and their correlation to hydraulic conductivity are determined. Finally, the effect of invertebrate bioturbation on the streambed hydraulic conductivity is illustrated. The results show that the vertical hydraulic conductivity and biological density of invertebrate are 18.479 m x d(-1) and 139 ind x m(-2), respectively for the Caotan site, where sediment composition with a large amount of sand and gravel particles. For Meixian site, the sediment constitutes a large amount of silt and clay particles, in which the vertical hydraulic conductivity and biological density of invertebrate are 2.807 m x d(-1) and 2 742 ind x m(-2) respectively. Besides, for the low permeability of four sites (Meixian, Xianyang, Lintong and Huaxian), grain size particles are similar while the vertical hydraulic conductivity and biological density of invertebrate are significantly different from one site to another. However, for each site, the vertical hydraulic conductivity closely related to biological density of invertebrate, the Pearson correlation coefficient is 0.987. It can be concluded that both grain size particles and invertebrate bioturbation influence sediment permeability. For example, higher values of streambed hydraulic conductivity from strong permeability site mainly due to the large amount of large-size particles

  8. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  9. Vector inflation and vortices

    SciTech Connect

    Lewis, C.M. )

    1991-09-15

    A vector field {ital A}{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker metric, constructed to generate first-order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux {ital T}{sub 0{ital i}} is tracked to the epoch where radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation give rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}{ital c}. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.

  10. The Vector Decomposition Problem

    NASA Astrophysics Data System (ADS)

    Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru

    This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.

  11. A database of lotic invertebrate traits for North America

    USGS Publications Warehouse

    Vieira, Nicole K.M.; Poff, N. LeRoy; Carlisle, Daren M.; Moulton, Stephen R.; Koski, Marci L.; Kondratieff, Boris C.

    2006-01-01

    The assessment and study of stream communities may be enhanced if functional characteristics such as life-history, habitat preference, and reproductive strategy were more widely available for specific taxa. Species traits can be used to develop these functional indicators because many traits directly link functional roles of organisms with controlling environmental factors (for example, flow, substratum, temperature). In addition, some functional traits may not be constrained by taxonomy and are thus applicable at multiple spatial scales. Unfortunately, a comprehensive summary of traits for North American invertebrate taxa does not exist. Consequently, the U.S. Geological Survey's National Water-Quality Assessment Program in cooperation with Colorado State University compiled a database of traits for North American invertebrates. A total of 14,127 records for over 2,200 species, 1,165 genera, and 249 families have been entered into the database from 967 publications, texts and reports. Quality-assurance procedures indicated error rates of less than 3 percent in the data entry process. Species trait information was most complete for insect taxa. Traits describing resource acquisition and habitat preferences were most frequently reported, whereas those describing physiological tolerances and reproductive biology were the least frequently reported in the literature. The database is not exhaustive of the literature for North American invertebrates and is biased towards aquatic insects, but it represents a first attempt to compile traits in a web-accessible database. This report describes the database and discusses important decisions necessary for identifying ecologically relevant, environmentally sensitive, non-redundant, and statistically tractable traits for use in bioassessment programs.

  12. Macro-invertebrate decline in surface water polluted with imidacloprid.

    PubMed

    Van Dijk, Tessa C; Van Staalduinen, Marja A; Van der Sluijs, Jeroen P

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  13. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    PubMed Central

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  14. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  16. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  17. Water or ice?--the challenge for invertebrate cold survival.

    PubMed

    Block, William

    2003-01-01

    The ecophysiology of cold tolerance in many terrestrial invertebrate animals is based on water and its activity at low temperatures, affecting cell, tissue and whole organism functions. The normal body water content of invertebrates varies from 40 to 90% of their live weight, which is influenced by water in their immediate environment, especially in species with a water vapour permeable cuticle. Water gain from, or loss to, the surrounding atmosphere may affect animal survival, but under sub-zero conditions body water status becomes more critical for overwinter survival in many species. Water content influences the supercooling capacity of many insects and other arthropods. Trehalose is known to maintain membrane integrity during desiccation stress in several taxa. Dehydration affects potential ice nucleators by reducing or masking their activity and a desiccation protection strategy has been detected in some species. When water crystallises to ice in an animal it greatly influences the physiology of nearby cells, even if the cells remain unfrozen. A proportion of body water remains unfrozen in many cold hardened invertebrates when they are frozen, which allows basal metabolism to continue at a low level and aids recovery to normal function when thawing occurs. About 22% of total body water remains unfrozen from calculations using differential scanning calorimetry (compared with ca 19% in food materials). The ratio of unfrozen to frozen water components in insects is 1:4 (1:6 for foods). Such unfrozen water may aid recovery of freezing tolerant species after a freezing exposure. Rapid changes in cold hardiness of some arthropods may be brought about by subtle shifts in body water management. It is recognised that cold tolerance strategies of many invertebrates are related to desiccation resistance, and possibly to mechanisms inherent in insect diapause, but the role of water is fundamental to them all. Detailed experimental studies are needed to provide information

  18. Nickel Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1998-01-01

    This account is a selective review and synthesis of the technical literature on nickel and nickel salts in the environment and their effects on terrestrial plants and invertebrates, aquatic plants and animals, avian and mammalian wildlife, and other natural resources, The subtopics include nickel sources and uses; physical, chemical, and metabolic properties of nickel; nickel concentrations in field collections of abiotic materials and living organisms; nickel deficiency effects; lethal and sublethal effects, including effects on survival, growth, reproduction, metabolism, mutagenicity, teratogenicity, and carcinogenicity; currently proposed nickel criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  19. The phylogeny of invertebrates and the evolution of myelin.

    PubMed

    Roots, Betty I

    2008-05-01

    Current concepts of invertebrate phylogeny are reviewed. Annelida and Arthropoda, previously regarded as closely related, are now placed in separate clades. Myelin, a sheath of multiple layers of membranes around nerve axons, is found in members of the Annelida, Arthropoda and Chordata. The structure, composition and function of the sheaths in Annelida and Arthropoda are examined and evidence for the separate evolutionary origins of myelin in the three clades is presented. That myelin has arisen independently at least three times, namely in Annelids, Arthropodas and Chordates, provides a remarkable example of convergent evolution.

  20. Recent Advances in Drug Discovery from South African Marine Invertebrates.

    PubMed

    Davies-Coleman, Michael T; Veale, Clinton G L

    2015-10-14

    Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively) and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared.

  1. Pentachlorophenol Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1989-01-01

    Pentachlorophenol (PCP) is now widely used as a wood preservative, and this has contributed to the detection of PCP residues in air, rain, groundwaters, surface waters, fish and aquatic invertebrates, and in human urine, blood, and milk of nursing mothers. This report briefly reviews the technical literature on ecological and toxicological aspects of PCP in the environment, with emphasis on fishery and wildlife resources. Subtopics include sources and uses, chemical properties, fate, background concentrations, lethal and sublethal effects, and current recommendations for resource protection

  2. Recent Advances in Drug Discovery from South African Marine Invertebrates

    PubMed Central

    Davies-Coleman, Michael T.; Veale, Clinton G. L.

    2015-01-01

    Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively) and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared. PMID:26473891

  3. Fishing for divergence in a sea of connectivity: The utility of ddRADseq genotyping in a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera.

    PubMed

    Lal, Monal M; Southgate, Paul C; Jerry, Dean R; Zenger, Kyall R

    2016-02-01

    Population genomic investigations on highly dispersive marine organisms typically require thousands of genome-wide SNP loci to resolve fine-scale population structure and detect signatures of selection. This information is important for species conservation efforts and stock management in both wild and captive populations, as well as genome mapping and genome wide association studies. Double digest Restriction site-Associated DNA Sequencing (ddRADseq) is a recent tool for delivering genome wide SNPs for non-model organisms. However, its application to marine invertebrate taxa has been limited, particularly given the complex and highly repetitive nature of many of these organisms' genomes. This study develops and evaluates an optimised ddRADseq technique together with associated analyses for generating genome-wide SNP data, and performs population genomic analyses to inform aquaculture and fishery management of a marine bivalve, the black-lip pearl oyster Pinctada margaritifera. A total of 5243 high-quality genome-wide SNP markers were detected, and used to assess population structure, genome diversity, detect Fst outliers and perform association testing in 156 individuals belonging to three wild and one hatchery produced populations from the Fiji Islands. Shallow but significant population structure was revealed among all wild populations (average pairwise Fst=0.046) when visualised with DAPC and an individual network analysis (NetView P), with clear evidence of a genetic bottleneck in the hatchery population (NeLD=6.1), compared to wild populations (NeLD>192.5). Fst outlier detection revealed 42-62 highly differentiated SNPs (p<0.02), while case-control association discovered up to 152 SNPs (p<0.001). Both analyses were able to successfully differentiate individuals between the orange and black tissue colour morphotypes characteristic of this species. BLAST searches revealed that five of these SNPs were associated with a melanin biosynthesis pathway, demonstrating

  4. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface

    PubMed Central

    Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine

    2012-01-01

    The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082

  5. Concurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host

    PubMed Central

    Tsetsarkin, Konstantin A.; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G.

    2016-01-01

    Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates. PMID:27620807

  6. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

    PubMed

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-12-19

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution.

  7. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  8. Hemichordate genomes and deuterostome origins

    PubMed Central

    Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi; Gyoja, Fuki; Yue, Jia-Xing; Chen, Yi-Chih; Freeman, Robert M.; Sasaki, Akane; Hikosaka-Katayama, Tomoe; Sato, Atsuko; Fujie, Manabu; Baughman, Kenneth W.; Levine, Judith; Gonzalez, Paul; Cameron, Christopher; Fritzenwanker, Jens H.; Pani, Ariel M.; Goto, Hiroki; Kanda, Miyuki; Arakaki, Nana; Yamasaki, Shinichi; Qu, Jiaxin; Cree, Andrew; Ding, Yan; Dinh, Huyen H.; Dugan, Shannon; Holder, Michael; Jhangiani, Shalini N.; Kovar, Christie L.; Lee, Sandra L.; Lewis, Lora R.; Morton, Donna; Nazareth, Lynne V.; Okwuonu, Geoffrey; Santibanez, Jireh; Chen, Rui; Richards, Stephen; Muzny, Donna M.; Gillis, Andrew; Peshkin, Leonid; Wu, Michael; Humphreys, Tom; Su, Yi-Hsien; Putnam, Nicholas H.; Schmutz, Jeremy; Fujiyama, Asao; Yu, Jr-Kai; Tagawa, Kunifumi; Worley, Kim C.; Gibbs, Richard A.; Kirschner, Marc W.; Lowe, Christopher J.; Satoh, Noriyuki; Rokhsar, Daniel S.; Gerhart, John

    2015-01-01

    Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor. PMID:26580012

  9. Hemichordate genomes and deuterostome origins.

    PubMed

    Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi; Gyoja, Fuki; Yue, Jia-Xing; Chen, Yi-Chih; Freeman, Robert M; Sasaki, Akane; Hikosaka-Katayama, Tomoe; Sato, Atsuko; Fujie, Manabu; Baughman, Kenneth W; Levine, Judith; Gonzalez, Paul; Cameron, Christopher; Fritzenwanker, Jens H; Pani, Ariel M; Goto, Hiroki; Kanda, Miyuki; Arakaki, Nana; Yamasaki, Shinichi; Qu, Jiaxin; Cree, Andrew; Ding, Yan; Dinh, Huyen H; Dugan, Shannon; Holder, Michael; Jhangiani, Shalini N; Kovar, Christie L; Lee, Sandra L; Lewis, Lora R; Morton, Donna; Nazareth, Lynne V; Okwuonu, Geoffrey; Santibanez, Jireh; Chen, Rui; Richards, Stephen; Muzny, Donna M; Gillis, Andrew; Peshkin, Leonid; Wu, Michael; Humphreys, Tom; Su, Yi-Hsien; Putnam, Nicholas H; Schmutz, Jeremy; Fujiyama, Asao; Yu, Jr-Kai; Tagawa, Kunifumi; Worley, Kim C; Gibbs, Richard A; Kirschner, Marc W; Lowe, Christopher J; Satoh, Noriyuki; Rokhsar, Daniel S; Gerhart, John

    2015-11-26

    Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.

  10. Temporal proteomic analysis and label-free quantification of viral proteins of an invertebrate iridovirus.

    PubMed

    İnce, İkbal Agah; Boeren, Sjef; van Oers, Monique M; Vlak, Just M

    2015-01-01

    Invertebrate iridescent virus 6 (IIV-6) is a nucleocytoplasmic virus with a ~212 kb linear dsDNA genome that encodes 215 putative ORFs. The IIV-6 virion-associated proteins consist of at least 54 virally encoded proteins. One of our previous findings showed that most of these proteins are encoded by genes from the early transcriptional class. This indicated that these structural proteins may not only function in the formation of the virion, but also in the initial stage of viral infection. In the current study, we followed the protein expression profile of IIV-6 over time in Drosophila S2 cells by label-free quantification using a proteomic approach. A total of 95 virally encoded proteins were detected in infected cells, of which 37 were virion proteins. The expressed IIV-6 virion proteins could be categorized into three main clusters based on their expression profiles: proteins with stably low expression levels during infection, proteins with exponentially increasing expression levels during infection and proteins that were initially highly abundant, but showed slightly reduced levels after 48 h post-infection. We thus provided novel information on the kinetics of virion and infected cell-specific protein levels that assists in our understanding of gene regulation in this lesser-known DNA virus model.

  11. Hierarchical Population Genetic Structure in a Direct Developing Antarctic Marine Invertebrate

    PubMed Central

    Hoffman, Joseph I.; Clarke, Andrew; Clark, Melody S.; Peck, Lloyd S.

    2013-01-01

    Understanding the relationship between life-history variation and population structure in marine invertebrates is not straightforward. This is particularly true of polar species due to the difficulty of obtaining samples and a paucity of genomic resources from which to develop nuclear genetic markers. Such knowledge, however, is essential for understanding how different taxa may respond to climate change in the most rapidly warming regions of the planet. We therefore used over two hundred polymorphic Amplified Fragment Length Polymorphisms (AFLPs) to explore population connectivity at three hierachical spatial scales in the direct developing Antarctic topshell Margarella antarctica. To previously published data from five populations spanning a 1500 km transect along the length of the Western Antarctic Peninsula, we added new AFLP data for four populations separated by up to 6 km within Ryder Bay, Adelaide Island. Overall, we found a nonlinear isolation-by-distance pattern, suggestive of weaker population structure within Ryder Bay than is present over larger spatial scales. Nevertheless, significantly positive Fst values were obtained in all but two of ten pairwise population comparisons within the bay following Bonferroni correction for multiple tests. This is in contrast to a previous study of the broadcast spawner Nacella concinna that found no significant genetic differences among several of the same sites. By implication, the topshell's direct-developing lifestyle may constrain its ability to disperse even over relatively small geographic scales. PMID:23691125

  12. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    PubMed Central

    Ruiu, Luca

    2013-01-01

    Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. PMID:26462431

  13. Advances in the application of high-throughput sequencing in invertebrate virology.

    PubMed

    van Aerle, R; Santos, E M

    2017-02-27

    Over the last decade, advances in high-throughput sequencing technologies have revolutionised biological research, making it possible for DNA/RNA sequencing of any organism of interest to be undertaken. Sequencing approaches are now routinely used in the detection and characterisation of (novel) viruses, investigation of host-pathogen interactions, and effective development of disease treatment strategies. For the sequencing and identification of viruses of interest, metagenomics approaches using infected host tissue are frequently used, as it is not always possible to culture and isolate these pathogens. High-throughput sequencing can also be used to investigate host-pathogen interactions by investigating (temporal) transcriptomic responses of both the host and virus, potentially leading to the discovery of novel opportunities for treatment and drug targets. In addition, viruses in environmental samples (e.g. water or soil samples) can be identified using eDNA/metagenomics approaches. The promise that recent developments in sequencing brings to the field of invertebrate virology are not devoid of technical challenges, including the need for better laboratory and bioinformatics strategies to sequence and assemble virus genomes within complex tissue or environmental samples, and the difficulties associated with the annotation of the large number of novel viruses being discovered.

  14. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates.

    PubMed

    Elphick, Maurice R; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom.

  15. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates

    PubMed Central

    Elphick, Maurice R.; Mirabeau, Olivier

    2014-01-01

    Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom. PMID:24994999

  16. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species.

    PubMed

    Ruiu, Luca

    2013-09-05

    Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.

  17. Vectors--shuttle vehicles for gene therapy.

    PubMed

    Wilson, J M

    1997-01-01

    Gene therapy is being considered for the treatment of various inherited and acquired disorders. The basic premise of this new therapeutic modality is manipulation of gene expression towards a therapeutic end. The early development of the field focused on a technique called ex vivo gene therapy in which autologous cells are genetically manipulated in culture prior to transplantation. Recent advances have stimulated the development of in vivo gene therapy approaches based on direct delivery of the therapeutic gene to cells in vivo. The rate-limiting technologies of gene therapy are the gene delivery vehicles, called vectors, used to accomplish gene transfer. The most efficient vectors are based on recombinant versions of viruses with retroviral vectors serving as prototypes. This viral vector system has been exploited in ex vivo approaches of gene therapy in which cultured, dividing cells are transduced with the recombinant virus resulting in integration of the proviral DNA into the chromosomal DNA of the recipient cell. The use of retroviral vectors in gene therapy has been restricted to ex vivo approaches because of difficulties in purifying the virion and the requirement that the target cell is dividing at the time of transduction. More recently, vectors based on adenoviruses have been developed for in vivo gene therapy. These viruses can be grown in large quantities and highly purified. Importantly, they efficiently transduce the recombinant genome into non-dividing cells. Applications include in vivo gene delivery to a variety of targets such as muscle, lung, liver and the central nervous system. Clinical trials of in vivo delivery with adenoviruses have been undertaken for the treatment of cystic fibrosis.

  18. Lichen physiological traits and growth forms affect communities of associated invertebrates.

    PubMed

    Bokhorst, Stef; Asplund, Johan; Kardol, Paul; Wardle, David A

    2015-09-01

    While there has been much interest in the relationships between traits of primary producers and composition of associated invertebrate consumer communities, our knowledge is largely based on studies from vascular plants, while other types of functionally important producers, such as lichens, have rarely been considered. To address how physiological traits of lichens drive community composition of invertebrates, we collected thalli from 27 lichen species from southern Norway and quantified the communities of associated springtails, mites, and nematodes. For each lichen species, we measured key physiological thallus traits and determined whether invertebrate communities were correlated with these traits. We also explored whether invertebrate communities differed among lichen groups, categorized according to nitrogen-fixing ability, growth form, and substratum. Lichen traits explained up to 39% of the variation in abundances of major invertebrate groups. For many invertebrate groups, abundance was positively correlated with lichen N and P concentrations, N:P ratio, and the percentage of water content on saturation (WC), but had few relationships with concentrations of carbon-based secondary compounds. Diversity and taxonomic richness of invertebrate groups were sometimes also correlated with lichen N and N:P ratios. Nitrogen-fixing lichens showed higher abundance and diversity of some invertebrate groups than did non-N-fixing lichens. However, this emerged in part because most N-fixing lichens have a foliose growth form that benefits invertebrates, through, improving the microclimate, independently of N concentration. Furthermore, invertebrate communities associated with terricolous lichens were determined more by their close proximity to the soil invertebrate pool than by lichen traits. Overall, our results reveal that differences between lichen species have a large impact on the invertebrate communities that live among the thalli. Different invertebrate groups show

  19. Soil nutrient additions increase invertebrate herbivore abundances, but not herbivory, across three grassland systems.

    PubMed

    La Pierre, Kimberly J; Smith, Melinda D

    2016-02-01

    Resource availability may influence invertebrate communities, with important consequences for ecosystem function, such as biomass production. We assessed: (1) the effects of experimental soil nutrient additions on invertebrate abundances and feeding rates and (2) the resultant changes in the effects of invertebrates on aboveground plant biomass at three grassland sites spanning the North American Central Plains, across which plant tissue chemistry and biomass vary. Invertebrate communities and rates of herbivory were sampled within a long-term nutrient-addition experiment established at each site along the broad Central Plains precipitation gradient. Additionally, the effects of invertebrates on aboveground plant biomass were determined under ambient and elevated nutrient conditions. At the more mesic sites, invertebrate herbivore abundances increased and their per capita rate of herbivory decreased with nutrient additions. In contrast, at the semi-arid site where plant biomass is low and plant nutrient concentrations are high, invertebrate herbivore abundances did not vary and per capita rates of herbivory increased with nutrient additions. No change in the effect of invertebrate herbivores on aboveground plant biomass was observed at any of the sites. In sum, nutrient additions induced shifts in both plant biomass and leaf nutrient content, which altered invertebrate abundances and feeding rate. However, due to the inverse relationship between changes in herbivore abundance and per capita rates of herbivory, nutrient additions did not alter the effect of invertebrates on aboveground biomass. Overall, we suggest that this inverse response of herbivore abundance and per capita feeding rate may buffer ecosystems against changes in invertebrate damage in response to fluctuations in nutrient levels.

  20. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies.

    PubMed

    Wang, Qing; You, Wei; Li, Xiaowei; Yang, Yufeng; Liu, Lijun

    2014-03-15

    Invertebrate colonization of granular activated carbon (GAC) filters in the waterworks is one of the most frequently occurring and least studied biological problems of water processing in China. A survey of invertebrate colonization of GAC filters was carried out weekly from October 2010 to December 2011 at a reservoir water treatment works in South China. Twenty-six kinds of invertebrates were observed. The abundance was as high as 5600ind.m(-3) with a mean of 860ind.m(-3). Large variations in abundance were observed among different seasons and before and after GAC filtration. The dominant organisms were rotifers and copepods. The average invertebrate abundance in the filtrate was 12-18.7 times of that in the pre-filtered water. Results showed that the GAC filters were colonized by invertebrates which may lead to a higher output of organisms in the filtrate than in the pre-filtered water. The invertebrate abundance in the GAC filters was statistically correlated with the water temperature. Seasonal patterns were observed. The invertebrate abundance grew faster in the spring and summer. Copepods were dominant in the summer while rotifers dominated in all other seasons of the year. There was a transition of small invertebrates (rotifers) gradually being substituted by larger invertebrates (copepods) from spring to summer. Control measures such as backwashing with chloric water, drying filter beds and soaking with saliferous water were implemented in the waterworks to reduce invertebrate abundances in the GAC filters. The results showed that soaking with saliferous water (99%, reduction in percent) was best but drying the filter beds (84%) was more economical. Soaking filter beds with 20g/L saliferous water for one day can be implemented in case of emergency. In order to keep invertebrate abundance in the acceptable range, some of these measures should be adopted.

  1. The Invertebrate Life of New Zealand: A Phylogeographic Approach

    PubMed Central

    Trewick, Steven A.; Wallis, Graham P.; Morgan-Richards, Mary

    2011-01-01

    Phylogeography contributes to our knowledge of regional biotas by integrating spatial and genetic information. In New Zealand, comprising two main islands and hundreds of smaller ones, phylogeography has transformed the way we view our biology and allowed comparison with other parts of the world. Here we review studies on New Zealand terrestrial and freshwater invertebrates. We find little evidence of congruence among studies of different taxa; instead there are signatures of partitioning in many different regions and expansion in different directions. A number of studies have revealed unusually high genetic distances within putative species, and in those where other data confirm this taxonomy, the revealed phylogeographic structure contrasts with northern hemisphere continental systems. Some taxa show a signature indicative of Pliocene tectonic events encompassing land extension and mountain building, whereas others are consistent with range expansion following the last glacial maximum (LGM) of the Pleistocene. There is some indication that montane taxa are more partitioned than lowland ones, but this observation is obscured by a broad range of patterns within the sample of lowland/forest taxa. We note that several geophysical processes make similar phylogeographic predictions for the same landscape, rendering confirmation of the drivers of partitioning difficult. Future multi-gene analyses where applied to testable alternative hypotheses may help resolve further the rich evolutionary history of New Zealand's invertebrates. PMID:26467729

  2. Sex differences in spatial cognition in an invertebrate: the cuttlefish.

    PubMed

    Jozet-Alves, Christelle; Modéran, Julien; Dickel, Ludovic

    2008-09-07

    Evidence of sex differences in spatial cognition have been reported in a wide range of vertebrate species. Several evolutionary hypotheses have been proposed to explain these differences. The one best supported is the range size hypothesis that links spatial ability to range size. Our study aimed to determine whether male cuttlefish (Sepia officinalis; cephalopod mollusc) range over a larger area than females and whether this difference is associated with a cognitive dimorphism in orientation abilities. First, we assessed the distance travelled by sexually immature and mature cuttlefish of both sexes when placed in an open field (test 1). Second, cuttlefish were trained to solve a spatial task in a T-maze, and the spatial strategy preferentially used (right/left turn or visual cues) was determined (test 2). Our results showed that sexually mature males travelled a longer distance in test 1, and were more likely to use visual cues to orient in test 2, compared with the other three groups. This paper demonstrates for the first time a cognitive dimorphism between sexes in an invertebrate. The data conform to the predictions of the range size hypothesis. Comparative studies with other invertebrate species might lead to a better understanding of the evolution of cognitive dimorphism.

  3. Multifaceted roles of Furry proteins in invertebrates and vertebrates.

    PubMed

    Nagai, Tomoaki; Mizuno, Kensaku

    2014-03-01

    Furry (Fry) is a large protein that is evolutionarily conserved from yeast to human. Fry and its orthologues in invertebrates (termed Tao3p in budding yeast, Mor2p in fission yeast, Sax-2 in nematode and Fry in fruit fly) genetically and physically interact with nuclear Dbf2-related (NDR) kinases (termed Cbk1p in budding yeast, Orb6p in fission yeast, Sax-1 in nematode and Trc in fruitfly), and function as activators or scaffolds of these kinases. Fry-NDR kinase signals are implicated in the control of polarized cell growth and morphogenesis in yeast, neurite outgrowth in nematode, and epidermal morphogenesis and dendritic tiling in fruit fly. Recent studies revealed that mammalian Fry is a microtubule-associated protein that is involved in the control of chromosome alignment, spindle organization and Polo-like kinase-1 activation in mitosis, and promotes microtubule acetylation in mitotic spindles via inhibiting the tubulin deacetylase Sirtuin 2. Here, we review current knowledge about the diverse cellular functions and regulation of Fry proteins in invertebrates and vertebrates.

  4. Soil invertebrate fauna enhances grassland succession and diversity.

    PubMed

    De Deyn, Gerlinde B; Raaijmakers, Ciska E; Zoomer, H Rik; Berg, Matty P; de Ruiter, Peter C; Verhoef, Herman A; Bezemer, T Martijn; van der Putten, Wim H

    2003-04-17

    One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems and thus influence the diversity of species in natural vegetation. Significant mechanisms in this process are known to be resource limitation and the effects of aboveground vertebrate herbivores. More recently, symbiotic and pathogenic soil microbes have been shown to exert a profound effect on the composition of vegetation and changes therein. However, the influence of invertebrate soil fauna on succession has so far received little attention. Here we report that invertebrate soil fauna might enhance both secondary succession and local plant species diversity. Soil fauna from a series of secondary grassland succession stages selectively suppress early successional dominant plant species, thereby enhancing the relative abundance of subordinate species and also that of species from later succession stages. Soil fauna from the mid-succession stage had the strongest effect. Our results clearly show that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of plant species diversity.

  5. Hydrologic variability enhances stream biofilm grazing by invertebrates

    NASA Astrophysics Data System (ADS)

    Ceola, S.; Hödl, I.; Adlboller, M.; Singer, G.; Bertuzzo, E.; Mari, L.; Botter, G.; Battin, T. J.; Gatto, M.; Rinaldo, A.

    2012-12-01

    The temporal variability of streamflows is a key feature structuring and controlling ecological communities and ecosystem processes. The magnitude, frequency and predictability of streamflows, and thus of velocity and near-bed shear stress fields, control structure and function of benthic invertebrates and biofilms - attached and matrix-enclosed microbial communities at the base of the food chain. Although alterations of streamflow regime due to climate change, habitat fragmentation or other anthropogenic factors are ubiquitous, their ecological implications remain poorly understood. Here, by experimenting with two contrasting flow regimes in stream microcosms, we show how flow variability affects invertebrate grazing of phototrophic biofilms (i.e. periphyton). In both flow regimes, we manipulated light availability as a key control on biofilm algal productivity and grazer activity, thereby allowing the test of flow regime effects across various biofilm biomass to grazing activity ratios. Average grazing rates were significantly enhanced under variable flow conditions and highest at intermediate light availability. Our results suggest that stochastic flow regime offers increased opportunity for grazing under more favorable shear stress conditions, with implications for trophic carbon transfer in stream food webs.

  6. Organic wastes as soil amendments - Effects assessment towards soil invertebrates.

    PubMed

    Renaud, Mathieu; Chelinho, Sónia; Alvarenga, Paula; Mourinha, Clarisse; Palma, Patrícia; Sousa, José Paulo; Natal-da-Luz, Tiago

    2017-05-15

    Using organic wastes, as soil amendments, is an important alternative to landfilling with benefits to soil structure, water retention, soil nutrient and organic matter concentrations. However, this practice should be monitored for its environmental risk due to the frequent presence, of noxious substances to soil organisms. To evaluate the potential of eight organic wastes with different origins, as soil amendments, reproduction tests with four soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer, Eisenia fetida) were performed using gradients of soil-waste mixtures. Results obtained demonstrated that contaminant concentrations required by current legislation might not be a protective measure for the soil ecosystem, as they do not properly translate the potential toxicity of wastes to soil invertebrates. Some wastes with contaminant loadings below thresholds showed higher toxicity than wastes with contaminants concentrations above legal limits. Also, test organism reproduction was differently sensitive to the selected wastes, which highlights the need to account for different organism sensitivities and routes of exposure when evaluating the toxicity of such complex mixtures. Finally this study shows that when combining chemical and ecotoxicological data, it is possible to postulate on potential sources of toxicity, contributing to better waste management practices and safer soil organic amendment products.

  7. Semiquantitative confocal laser scanning microscopy applied to marine invertebrate ecotoxicology.

    PubMed

    Chandler, G Thomas; Volz, David C

    2004-01-01

    Confocal laser scanning microscopy (CLSM) represents a powerful, but largely unexplored ecotoxicologic tool for rapidly assessing in vivo effects of toxicants on marine invertebrate embryo quality and development. We describe here a new semiquantitative CLSM approach for assessing relative yolk quantity in marine invertebrate embryos (harpacticoid copepods) produced by parents reared from hatching to adult in the polycylic aromatic hydrocarbon chrysene. This method is based on fluorogenic labeling of embryo yolk and subsequent statistical analysis of areal pixel intensities over multiple Z-series using a general linear model (GLM)-nested analysis of variance. The fluorescent yolk-labeling method described here was able to detect statistically significant differences in yolk concentrations in marine copepod (Amphiascus tenuiremis) eggs or embryos from females exposed to ultraviolet light and chrysene-contaminated sediments. Yolk intensities in embryos from females cultured throughout their life cycles in clean sediments were statistically identical with or without UV exposure. In contrast, yolk intensities in embryos of females cultured throughout their life cycle in chrysene-contaminated sediments were significantly higher in the non-UV-exposed treatment with chrysene at 2500 ng/g sediment (65.7% higher) and the UV-exposed treatment with chrysene at 500 ng/g sediment (76.6% higher).

  8. Antimicrobial peptides in marine invertebrate health and disease.

    PubMed

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.

  9. Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates.

    PubMed

    Lavtižar, Vesna; Berggren, Kristina; Trebše, Polonca; Kraak, Michiel H S; Verweij, Rudo A; van Gestel, Cornelis A M

    2016-09-01

    The insecticide chlorantraniliprole (CAP) is gaining importance in agricultural practice, but data on its possible negative effects on non-target organisms is severely deficient. This study therefore determined CAP toxicity to non-target soil invertebrates playing a crucial role in ecosystem functioning, including springtails (Folsomia candida), isopods (Porcellio scaber), enchytraeids (Enchytraeus crypticus) and oribatid mites (Oppia nitens). In sublethal toxicity tests in Lufa 2.2 soil, chronic exposure to CAP concentrations up to 1000 mg/kgdw did not affect the survival and reproduction of E. crypticus and O. nitens nor the survival, body weight and consumption of P. scaber. In contrast, the survival and reproduction of F. candida was severely affected, with an EC50 for effects on reproduction of 0.14 mg CAP/kgdw. The toxicity of CAP to the reproduction of F. candida was tested in four different soils following OECD guideline 232, and additionally in an avoidance test according to ISO guideline 17512-2. A significantly lower toxicity in soils rich in organic matter was observed, compared to low organic soils. Observations in the avoidance test with F. candida suggest that CAP acted in a prompt way, by affecting collembolan locomotor abilities thus preventing them from escaping contaminated soil. This study shows that CAP may especially pose a risk to non-target soil arthropods closely related to insects, while other soil invertebrates seem rather insensitive.

  10. Hidden treasures in stem cells of indeterminately growing bilaterian invertebrates.

    PubMed

    Vogt, Günter

    2012-06-01

    Indeterminate growth, the life-long growth without fixed limits, is typical of some evolutionarily very successful aquatic invertebrate groups such as the decapod crustaceans, bivalve molluscs and echinoderms. These animals enlarge their organs also in the adult life period and can regenerate lost appendages and organs, which is in sharp contrast to mammals and most insects. Interestingly, decapods, bivalves and echinoderms develop only rarely neoplastic and age-related diseases, although some species reach ages exceeding 100 years. Their stem cell systems must have co-evolved with these successful life histories suggesting possession of unknown and beneficial features that might open up new vistas in stem cell biology. Research of the last decade has identified several adult stem cell systems in these groups and also some mature cell types that are capable to dedifferentiate into multipotent progenitor cells. Investigation of stem and progenitor cells in indeterminately growing bilaterian invertebrates is assumed beneficial for basic stem cell biology, aquaculture, biotechnology and perhaps medicine. The biggest treasure that could be recovered in these animal taxa concerns maintenance of stem cell niches and fidelity of stem cell division for decades without undesirable side effects such as tumour formation. Uncovering of the underlying molecular and regulatory mechanisms might evoke new ideas for the development of anti-ageing and anti-cancer interventions in humans.

  11. Stream invertebrate community functional responses to deposited sediment

    USGS Publications Warehouse

    Rabeni, C.F.; Doisy, K.E.; Zweig, L.D.

    2005-01-01

    We investigated functional responses of benthic invertebrates to deposited sediment in four Missouri USA streams. In each stream, invertebrates were sampled along continuums of deposited sediment (particles <2 mm in size) from 0 to 100% surface cover in reaches of fairly homogeneous substrate composition, current velocity, and water depths. Correlations, graphical representations, and the cumulative response curves of feeding and habit groups provided strong empirical support for distinct community functional changes due to deposited sediment. Feeding groups were more sensitive to deposited sediment than habit groups. Densities of all the feeding groups decreased significantly with increasing deposited sediment, while relative densities of gatherers increased significantly. Taxa richness also decreased significantly for all the feeding groups except for the shredders. Increases in deposited sediment were related to significant density decreases for only the clingers and sprawlers in the habit group, resulting in significant increases in the relative densities of both burrowers and climbers. Clingers, sprawlers, and swimmers also showed significant decreases in taxa richness. ?? Eawag, 2005.

  12. Genetic mechanisms of pollution resistance in a marine invertebrate.

    PubMed

    Galletly, Bronwyn C; Blows, Mark W; Marshall, Dustin J

    2007-12-01

    Pollution is a common stress in the marine environment and one of today's most powerful agents of selection, yet we have little understanding of how anthropogenic toxicants influence mechanisms of adaptation in marine populations. Due to their life history strategies, marine invertebrates are unable to avoid stress and must adapt to variable environments. We examined the genetic basis of pollution resistance across multiple environments using the marine invertebrate, Styela plicata. Gametes were crossed in a quantitative genetic breeding design to enable partitioning of additive genetic variance across a concentration gradient of a common marine pollutant, copper. Hatching success was scored as a measure of stress resistance in copper concentrations of 0, 75, 150, and 350 microg/L. There was a significant genotype x environment interaction in hatching success across copper concentrations. Further analysis using factor analytic modeling confirmed a significant dimension of across-environment genetic variation where the genetic basis of resistance to stress in the first three environments differed from that in the environment of highest copper concentration. A second genetic dimension further differentiated between the genetic basis of resistance to low and high stress environments. These results suggest that marine organisms use different genetic mechanisms to adapt to different levels of pollution and that the level of genetic variation to adapt to intense pollution stresses may be limited.

  13. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  14. The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites.

    PubMed

    Guevara-Flores, Alberto; Martínez-González, José de Jesús; Rendón, Juan Luis; Del Arenal, Irene Patricia

    2017-02-10

    The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.

  15. Tropical seaweed beds are important habitats for mobile invertebrate epifauna

    NASA Astrophysics Data System (ADS)

    Tano, Stina; Eggertsen, M.; Wikström, S. A.; Berkström, C.; Buriyo, A. S.; Halling, C.

    2016-12-01

    Marine macrophyte habitats in temperate regions provide productive habitats for numerous organisms, with their abundant and diverse invertebrate epifaunal assemblages constituting important linkages between benthic primary production and higher trophic levels. While it is commonly also recognized that certain vegetated habitats in the tropics, such as seagrass meadows, can harbour diverse epifaunal assemblages and may constitute important feeding grounds to fish, little is known about the epifaunal assemblages associated with tropical seaweed beds. We investigated the abundance, biomass and taxon richness of the mobile epifaunal community (≥1 mm) of tropical East African seaweed beds, as well as the abundance of invertivorous fishes, and compared it with that of closely situated seagrass meadows, to establish the ecological role of seaweed beds as habitat for epifauna as well as potential feeding grounds for fish. The results showed that seaweed beds had a higher abundance of mobile epifauna (mean ± SD: 10,600 ± 6000 vs 3700 ± 2800 per m2) than seagrass meadows, as well as a higher invertebrate biomass (35.9 ± 46.8 vs 1.9 ± 2.1 g per m2) and taxon richness (32.7 ± 11.8 vs 19.1 ± 6.3 taxa per sample), despite having a lower macrophyte biomass. Additionally, the high abundance of invertivorous fishes found in seaweed beds indicates that they act as important feeding grounds to several fish species in the region.

  16. Toxicity of abamectin and doramectin to soil invertebrates.

    PubMed

    Kolar, Lucija; Kozuh Erzen, Nevenka; Hogerwerf, Lenny; van Gestel, Cornelis A M

    2008-01-01

    This study aimed at determining the toxicity of avermectins to soil invertebrates in soil and in faeces from recently treated sheep. Abamectin was more toxic than doramectin. In soil, earthworms (Eisenia andrei) were most affected with LC50s of 18 and 228 mg/kg dry soil, respectively, while LC50s were 67-111 and >300 mg/kg for springtails (Folsomia candida), isopods (Porcellio scaber) and enchytraeids (Enchytraeus crypticus). EC50s for the effect on reproduction of springtails and enchytraeids were 13 and 38 mg/kg, respectively for abamectin, and 42 and 170 mg/kg for doramectin. For earthworms, NOEC was 10 and 8.4 mg/kg for abamectin and doramectin effects on body weight. When exposed in faeces, springtails and enchytraeids gave LC50s and EC50s of 1.0-1.4 and 0.94-1.1 mg/kg dry faeces for abamectin and 2.2->2.4 mg/kg for doramectin. Earthworm reproduction was not affected. This study indicates a potential risk of avermectins for soil invertebrates colonizing faeces from recently treated sheep.

  17. Flow effects on benthic stream invertebrates and ecological processes

    NASA Astrophysics Data System (ADS)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  18. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    PubMed Central

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  19. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  20. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  1. Slovakian and Turkish Students' Fear, Disgust and Perceived Danger of Invertebrates

    ERIC Educational Resources Information Center

    Prokop, Pavol; Usak, Muhammet; Erdogan, Mehmet; Fancovicova, Jana; Bahar, Mehmet

    2011-01-01

    Human perceives invertebrates less positively than vertebrates because they are small and behaviourally and morphologically unfamiliar. This cross-cultural research focused on Slovakian (n=150) and Turkish (n=164) students' fear, disgust and perceived danger regarding 25 invertebrates [including 5 disease relevant adult insects, 5 ectoparasites, 5…

  2. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing.

    PubMed

    Baun, A; Hartmann, N B; Grieger, K; Kusk, K O

    2008-07-01

    Based on a literature review and an overview of toxic effects of engineered nanoparticles in aquatic invertebrates, this paper proposes a number of recommendations for the developing field of nanoecotoxicology by highlighting the importance of invertebrates as sensitive and relevant test organisms. Results show that there is a pronounced lack of data in this field (less than 20 peer-reviewed papers are published so far), and the most frequently tested engineered nanoparticles in invertebrate tests are C(60), carbon nanotubes, and titanium dioxide. In addition, the majority of the studies have used Daphnia magna as the test organism. To date, the limited number of studies has indicated acute toxicity in the low mg l(-1) range and higher of engineered nanoparticles to aquatic invertebrates, although some indications of chronic toxicity and behavioral changes have also been described at concentrations in the high microg l(-1) range. Nanoparticles have also been found to act as contaminant carriers of co-existing contaminants and this interaction has altered the toxicity of specific chemicals towards D. magna. We recommend that invertebrate testing is used to advance the level of knowledge in nanoecotoxicology through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long-term low exposure with chronic endpoints along with more research in bioaccumulation of engineered nanoparticles in aquatic invertebrates.

  3. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition.

    PubMed

    Fujita, D S; Takeda, A M; Coutinho, R; Fernandes, F C

    2015-11-01

    We conducted a study about invertebrates on artificial substrates with different antifouling paints in order to answer the following questions 1) is there lower accumulation of organic matter on substrates with antifouling paints, 2) is invertebrate colonization influenced by the release of biocides from antifouling paints, 3) is the colonization of aquatic invertebrates positively influenced by the material accumulated upon the substrate surface and 4) is the assemblage composition of invertebrates similar among the different antifouling paints? To answer these questions, four structures were installed in the Baía River in February 1st, 2007. Each structure was composed of 7 wood boards: 5 boards painted with each type of antifouling paints (T1, T2, T3, T4 and T5), one painted only with the primer (Pr) and the other without any paint (Cn). After 365 days, we observed a greater accumulation of organic matter in the substrates with T2 and T3 paint coatings. Limnoperna fortunei was recorded in all tested paints, with higher densities in the control, primer, T2 and T3. The colonization of Chironomidae and Naididae on the substrate was positively influenced by L. fortunei density. The non-metric multidimensional scaling (NMDS) of the invertebrate community provided evidence of the clear distinction of invertebrate assemblages among the paints. Paints T2 and T3 were the most similar to the control and primer. Our results suggest that antifouling paints applied on substrates hinder invertebrate colonization by decreasing the density and richness of invertebrates.

  4. Streamflow characteristics and benthic invertebrate assemblages in streams across the western United States

    USGS Publications Warehouse

    Brasher, Anne M.D.; Konrad, Chris P.; May, Jason T.; Edmiston, C. Scott; Close, Rebecca N.

    2010-01-01

    Hydrographic characteristics of streamflow, such as high-flow pulses, base flow (background discharge between floods), extreme low flows, and floods, significantly influence aquatic organisms. Streamflow can be described in terms of magnitude, timing, duration, frequency, and variation (hydrologic regime). These characteristics have broad effects on ecosystem productivity, habitat structure, and ultimately on resident fish, invertebrate, and algae communities. Increasing human use of limited water resources has modified hydrologic regimes worldwide. Identifying the most ecologically significant hydrographic characteristics would facilitate the development of water-management strategies.Benthic invertebrates include insects, mollusks (snails and clams), worms, and crustaceans (shrimp) that live on the streambed. Invertebrates play an important role in the food web, consuming other invertebrates and algae and being consumed by fish and birds. Hydrologic alteration associated with land and water use can change the natural hydrologic regime and may affect benthic invertebrate assemblage composition and structure through changes in density of invertebrates or taxa richness (number of different species).This study examined associations between the hydrologic regime and characteristics of benthic invertebrate assemblages across the western United States and developed tools to identify streamflow characteristics that are likely to affect benthic invertebrate assemblages.

  5. Pond and Stream Safari: A Guide to the Ecology of Aquatic Invertebrates.

    ERIC Educational Resources Information Center

    Edelstein, Karen

    This packet includes a leader's guide, a quick reference guide to aquatic invertebrates, a checklist of common aquatic invertebrates, and activity sheets. The leader's guide includes four sections on background information and seven activities. Background sections include: Understanding Aquatic Insects; Growing Up: Aquatic Insect Forms; Adapting…

  6. The Evolutionary Origin of Diversity in Chagas Disease Vectors.

    PubMed

    Justi, Silvia A; Galvão, Cleber

    2017-01-01

    Chagas disease is amongst the ten most important neglected tropical diseases but knowledge on the diversification of its vectors, Triatominae (Hemiptera: Reduviidae), is very scarce. Most Triatominae species occur in the Americas, and are all considered potential vectors. Despite its amazing ecological vignette, there are remarkably few evolutionary studies of the whole subfamily, and only one genome sequence has been published. The young age of the subfamily, coupled with the high number of independent lineages, are intriguing, yet the lack of genome-wide data makes it a challenge to infer the phylogenetic relationships within Triatominae. Here we synthesize what is known, and suggest the next steps towards a better understanding of how this important group of disease vectors came to be.

  7. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  8. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    PubMed

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  9. An invertebrate stomach's view on vertebrate ecology: certain invertebrates could be used as "vertebrate samplers" and deliver DNA-based information on many aspects of vertebrate ecology.

    PubMed

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Gilbert, M Thomas P; Schubert, Grit

    2013-11-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population and conservation biologists. Here, we identify some invertebrate characteristics that will likely influence iDNA retrieval and elaborate on the potential uses of invertebrate-derived information. We hypothesize that beyond inventorying local faunal diversity, iDNA should allow for more profound insights into wildlife population density, size, mortality, and infectious agents. Based on the similarities of iDNA with other low-quality sources of DNA, a general technical framework for iDNA analyses is proposed. As it is likely that no such thing as a single ideal iDNA sampler exists, forthcoming research efforts should aim at cataloguing invertebrate properties relevant to iDNA retrieval so as to guide future usage of the invertebrate tool box.

  10. Lentiviral vector engineering for anti-HIV RNAi gene therapy.

    PubMed

    ter Brake, Olivier; Westerink, Jan-Tinus; Berkhout, Ben

    2010-01-01

    RNA interference or RNAi-based gene therapy for the treatment of HIV-1 infection has recently emerged as a highly effective antiviral approach. The lentiviral vector system is a good candidate for the expression of antiviral short hairpin RNAs (shRNA) in HIV-susceptible cells. However, this strategy can give rise to vector problems because the anti-HIV shRNAs can also target the HIV-based lentiviral vector system. In addition, there may be self-targeting of the shRNA-encoding sequences within the vector RNA genome in the producer cell. The insertion of microRNA (miRNA) cassettes in the vector may introduce Drosha cleavage sites that will also result in the destruction of the vector genome during the production and/or the transduction process. Here, we describe possible solutions to these lentiviral-RNAi problems. We also describe a strategy for multiple shRNA expression to establish a combinatorial RNAi therapy.

  11. MAR characteristic motifs mediate episomal vector in CHO cells.

    PubMed

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression.

  12. Complete Genome Sequence of Flavobacteriales Bacterium Strain UJ101 Isolated from a Xanthid Crab

    PubMed Central

    Yang, Jhung-Ahn; Kwon, Kae Kyoung

    2017-01-01

    ABSTRACT Flavobacteriales bacterium strain UJ101 was isolated from a xanthid crab species collected from the East Sea of Korea. Here, we report the complete genome sequence of strain UJ101 for the study of major metabolic pathways related to microbial species from marine invertebrate species. PMID:28153900

  13. Functional traits of soil invertebrates as indicators for exposure to soil disturbance.

    PubMed

    Hedde, Mickaël; van Oort, Folkert; Lamy, Isabelle

    2012-05-01

    We tested a trait-based approach to link a soil disturbance to changes in invertebrate communities. Soils and macro-invertebrates were sampled in sandy soils contaminated by long-term wastewater irrigation, adding notably organic matter and trace metals (TM). We hypothesized that functional traits of invertebrates depict ways of exposure and that exposure routes relate to specific TM pools. Geophages and soft-body invertebrates were chosen to inform on exposure by ingestion or contact, respectively. Trait-based indices depicted more accurately effects of pollution than community density and diversity did. Exposure by ingestion had more deleterious effects than by contact. Both types of exposed invertebrates were influenced by TM, but geophages mainly responded to changes in soil organic matter contents. The trait-based approach requires to be applied in various conditions to uncorrelate specific TM impacts from those of other environmental factors.

  14. Effects of fish predation on invertebrates associated with a macrophyte in Lake Onalaska, Wisconsin

    USGS Publications Warehouse

    Chilton, E.W.; Margraf, F.J.

    1990-01-01

    We tested the effects of fish predation on the macroinvertebrates associated with Vallisneria americana (Michx) by using enclosure/exclosure experiments in lake Onalaska, Wisconsin. Four treatments were used: open water (cageless) controls, cage-effect controls (partially enclosed cages), exclosures (all fish removed), and enclosures (cages stocked with a known density of bluegills Lepomis macrochirus, Rafinesque). Bluegill predation at the density tested (one 70 mm fish per 0.37m2) did not depress Vallisneria associated invertebrate density. Mean invertebrate abundance and biomass (number and dry weight of invertebrates per g dry plant weight) increased in both exclosures and enclosures relative to open water controls. The most likely explanation is that the cages excluded some vertebrate predator(s) from those two treatments and decreased predation pressure within the cages. Large invertebrates, such as Hyalella azteca, Enallagma sp., Gyraulus sp., and Physa sp., increased in abundance within cages, whereas, small invertebrates such as chironomid larvae decreased in abundance.

  15. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  16. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  17. Application of Multiple Index Development Approaches to Benthic Invertebrate Data from the Virginian Biogeographic Province (SETAC NA)

    EPA Science Inventory

    Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...

  18. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    PubMed Central

    Bae, Young-An; Cai, Guo-Bin; Kim, Seon-Hee; Zo, Young-Gun; Kong, Yoon

    2009-01-01

    Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon

  19. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.

    1996-01-01

    Aluminum is extremely common throughout the world and is innocuous under circumneutral or alkaline conditions. However, in acidic environments, it can be a maJor limiting factor to many plants and aquatic organisms. The greatest concern for toxicity in North America occurs in areas that are affected by wet and dry acid deposition, such as eastern Canada and the northeastern U.S. Acid mine drainage, logging, and water treatment plant effluents containing alum can be other maJor sources of Al. In solution, the metal can combine with several different agents to affect toxicity. In general, Al hydroxides and monomeric Al are the most toxic forms. Dissolved organic carbons, F, PO(3)3- and SO(4)2- ameliorate toxicity by reducing bioavailability. Elevated metal levels in water and soil can cause serious problems for some plants. Algae tend to be both acid- and Al tolerant and, although some species may disappear with reduced pH, overall algae productivity and biomass are seldom affected if pH is above 3.0. Aluminum and acid toxicity tend to be additive to some algae when pH is less than 4.5. Because the metal binds with inorganic P, it may reduce P availability and reduce productivity. Forest die-backs in North America involving red spruce, Fraser fir, balsam fir, loblolly pine, slash pine, and sugar maples have been ascribed to Al toxicity, and extensive areas of European forests have died because of the combination of high soil Al and low pH. Extensive research on crops has produced Al-resistant cultivars and considerable knowledge about mechanisms of and defenses against toxicity. Very low Al levels may benefit some plants, although the metal is not recognized as an essential nutrient. Hyperaccumulator species of plants may concentrate Al to levels that are toxic to herbivores. Toxicity in aquatic invertebrates is also acid dependent. Taxa such as Ephemeroptera, Plecoptera, and Cladocera are sensitive and may perish when Al is less than 1 mg.L-1 whereas dipterans

  20. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife.

    PubMed

    Sparling, D W; Lowe, T P

    1996-01-01

    Aluminum is extremely common throughout the world and is innocuous under circumneutral or alkaline conditions. However, in acidic environments, it can be a major limiting factor to many plants and aquatic organisms. The greatest concern for toxicity in North America occurs in areas that are affected by wet and dry acid deposition, such as eastern Canada and the northeastern U.S. Acid mine drainage, logging, and water treatment plant effluents containing alum can be other major sources of Al. In solution, the metal can combine with several different agents to affect toxicity. In general, Al hydroxides and monomeric Al are the most toxic forms. Dissolved organic carbons, F, PO(3)3- and SO(4)2- ameliorate toxicity by reducing bioavailability. Elevated metal levels in water and soil can cause serious problems for some plants. Algae tend to be both acid- and Al tolerant and, although some species may disappear with reduced pH, overall algae productivity and biomass are seldom affected if pH is above 3.0. Aluminum and acid toxicity tend to be additive to some algae when pH is less than 4.5. Because the metal binds with inorganic P, it may reduce P availability and reduce productivity. Forest die-backs in North America involving red spruce, Fraser fir, balsam fir, loblolly pine, slash pine, and sugar maples have been ascribed to Al toxicity, and extensive areas of European forests have died because of the combination of high soil Al and low pH. Extensive research on crops has produced Al-resistant cultivars and considerable knowledge about mechanisms of and defenses against toxicity. Very low Al levels may benefit some plants, although the metal is not recognized as an essential nutrient. Hyperaccumulator species of plants may concentrate Al to levels that are toxic to herbivores. Toxicity in aquatic invertebrates is also acid dependent. Taxa such as Ephemeroptera, Plecoptera, and Cladocera are sensitive and may perish when Al is less than 1 mg.L-1 whereas dipterans

  1. Impact theory of mass extinctions and the invertebrate fossil record

    SciTech Connect

    Alvarez, W.; Kauffman, E.G.; Surlyk, F.; Alvarez, L.W.; Asaro, F.; Michel, H.V.

    1984-03-16

    There is much evidence that the Cretaceous-Tertiary boundary was marked by a massive meteorite impact. Theoretical consideration of the consequences of such an impact predicts sharp extinctions in many groups of animals precisely at the boundary. Paleontological data clearly show gradual declines in diversity over the last 1 to 10 million years in various invertebrate groups. Reexamination of data from careful studies of the best sections shows that, in addition to undergoing the decline, four groups (ammonites, cheilostomate bryozoans, brachiopods, and bivalves) were affected by sudden truncations precisely at the iridium anomaly that marks the boundary. The paleontological record thus bears witness to terminal-Cretaceous extinctions on two time scales: a slow decline unrelated to the impact and a sharp truncation synchronous with and probably caused by the impact. 50 references, 4 figures.

  2. Production ecology of invertebrates in small experimental ponds

    SciTech Connect

    Cushman, R.M.; Franco, P.J.; Goyert, J.C.; Lesslie, P.A.

    1986-07-01

    Production of invertebrates is estimated for a series of small experimental ponds in Tennessee. Annual dry weight production of predator insects is about 4.5 g/m/sup 2/ and of herbivore-detritivore insects about 3.8 g/m/sup 2/; insects whose trophic position could not be classified account for an annual dry weight production of about 0.3 g/m/sup 2/. Annual dry weight production of zooplankton is about 14.5 t/m/sup 2/, of annelids 25.4 g/m/sup 2/ and of snails 3.1 g/m/sup 2/. The data are consistent with published information that the predator insects probably depend on a variety of energy sources to support their estimated production rate.

  3. The colloid osmotic pressures of invertebrate body fluids.

    PubMed

    Mangum, C P; Johansen, K

    1975-12-01

    Colloid osmotic pressures of the body fluids of twenty invertebrate species were measured directly. The results, which are generally lower than predicted values for the same species, pertain to several physiological questions: (1) they do not quantitatively explain the frequently observed hyperosmoticity of body fluids in species believed to be osmoconformers, indicating that the condition cannot be merely a consequence of a Gibbs-Donnan equilibrium; (2) the excess of hydrostatic over colloid osmotic pressure is very small. This result supports the hypothesis that the oxygen transport function of bloods with extracellular haemocyanins and haem proteins is limited by their colligative properties; (3) the pressure relationships and the absence of colloid osmotic activity in urine indicates that filtration contributes to urine formation in several species.

  4. Effects of Microgravity and Hypergravity on Invertebrate Development

    NASA Technical Reports Server (NTRS)

    Miquel, J.

    1985-01-01

    Data suggest that abnormal gravity loads do not increase the rate of mutations in lower animals. Insects such as Drosophila melanogaster and Tribolium confusum have been able to reproduce aboard unmanned and manned space satellites, though no precise quantitative data have been obtained on mating competence and various aspects of development. Research with Drosophila flown on Cosmos spacecraft suggests that flight behavior is seriously disturbed in insects exposed to microgravity, which is reflected in increased oxygen utilization and concomitant life shortening. The decrease in longevity was less striking when the flies were enclosed in space, which suggests that they could adapt to the altered gravitational environment when maturation of flight behavior took place in microgravity. The reviewed data suggest that further research on the development of invertebrates in space is in order for clarification of the metabolic and behavioral effects of microgravity and of the development and function of the orientation and gravity sensing mechanisms of lower animals.

  5. The Physics of Broadcast Spawning in Benthic Invertebrates

    NASA Astrophysics Data System (ADS)

    Crimaldi, John P.; Zimmer, Richard K.

    2014-01-01

    Most benthic invertebrates broadcast their gametes into the sea, whereupon successful fertilization relies on the complex interaction between the physics of the surrounding fluid flow and the biological properties and behavior of eggs and sperm. We present a holistic overview of the impact of instantaneous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Although mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before dilution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance contact rates between sperm and chemoattractant-releasing eggs. We argue that sperm motility is a biological adaptation that replaces molecular diffusion in conventional mixing processes and enables gametes to bridge the gap that remains after aggregation by the flow.

  6. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants.

    PubMed

    Perilla-Henao, Laura M; Casteel, Clare L

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.

  7. Designing plasmid vectors.

    PubMed

    Tolmachov, Oleg

    2009-01-01

    Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.

  8. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  9. Vectors Point Toward Pisa

    ERIC Educational Resources Information Center

    Dean, Richard A.

    1971-01-01

    The author shows that the set of all sequences in which each term is the sum of the two previous terms forms a vector space of dimension two. He uses this result to obtain the formula for the Fibonacci sequence and applies the same technique to other linear recursive relations. (MM)

  10. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  11. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  12. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  13. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  14. Acute toxicity value extrapolation with fish and aquatic invertebrates.

    PubMed

    Buckler, Denny R; Mayer, Foster L; Ellersieck, Mark R; Asfaw, Amha

    2005-11-01

    Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled "Ecological Risk Analysis" (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more sensitive to

  15. An investigation into the chemical composition of alternative invertebrate prey.

    PubMed

    Oonincx, D G A B; Dierenfeld, E S

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches (Gromphadorhina portentosa), fruit flies (Drosophila melanogaster), false katydids (Microcentrum rhombifolium), beetles of the mealworm (Tenebrio molitor), and superworm beetles (Zophobas morio), as well as woodlice (Porcellio scaber). Dry matter (DM), crude protein, crude fat, neutral detergent fiber, acid detergent fiber, ash, macro and trace minerals, vitamins A and E, and carotenoid concentrations were quantified. Significant differences were found between species. Crude protein content ranged from 38 to 76% DM, fat from14 to 54% DM, and ash from 2 to 8% DM. In most species, calcium:phosphorus was low (0.08-0.30:1); however, P. scaber was an exception (12:1) and might prove useful as a dietary source of calcium for insectivores. Vitamin E content was low for most species (6-16 mg/kg DM), except for D. melanogaster and M. rhombifolium (112 and 110 mg/kg DM). The retinol content, as a measure of vitamin A activity, was low in all specimens, but varied greatly among samples (0.670-886 mg/kg DM). The data presented can be used to alter diets to better suit the estimated requirements of insectivores in captivity. Future research on the topic of composition of invertebrate prey species should focus on determination of nutrient differences owing to species, developmental stage, and diet.

  16. Iron isotope fractionation in marine invertebrates in near shore environments

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-04-01

    Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.

  17. Acute toxicity value extrapolation with fish and aquatic invertebrates

    USGS Publications Warehouse

    Buckler, Denny R.; Mayer, Foster L.; Ellersieck, Mark R.; Asfaw, Amha

    2005-01-01

    Assessment of risk posed by an environmental contaminant to an aquatic community requires estimation of both its magnitude of occurrence (exposure) and its ability to cause harm (effects). Our ability to estimate effects is often hindered by limited toxicological information. As a result, resource managers and environmental regulators are often faced with the need to extrapolate across taxonomic groups in order to protect the more sensitive members of the aquatic community. The goals of this effort were to 1) compile and organize an extensive body of acute toxicity data, 2) characterize the distribution of toxicant sensitivity across taxa and species, and 3) evaluate the utility of toxicity extrapolation methods based upon sensitivity relations among species and chemicals. Although the analysis encompassed a wide range of toxicants and species, pesticides and freshwater fish and invertebrates were emphasized as a reflection of available data. Although it is obviously desirable to have high-quality acute toxicity values for as many species as possible, the results of this effort allow for better use of available information for predicting the sensitivity of untested species to environmental contaminants. A software program entitled “Ecological Risk Analysis” (ERA) was developed that predicts toxicity values for sensitive members of the aquatic community using species sensitivity distributions. Of several methods evaluated, the ERA program used with minimum data sets comprising acute toxicity values for rainbow trout, bluegill, daphnia, and mysids provided the most satisfactory predictions with the least amount of data. However, if predictions must be made using data for a single species, the most satisfactory results were obtained with extrapolation factors developed for rainbow trout (0.412), bluegill (0.331), or scud (0.041). Although many specific exceptions occur, our results also support the conventional wisdom that invertebrates are generally more

  18. Recurrent Horizontal Transfers of Chapaev Transposons in Diverse Invertebrate and Vertebrate Animals

    PubMed Central

    Zhang, Hua-Hao; Feschotte, Cédric; Han, Min-Jin; Zhang, Ze

    2014-01-01

    Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus. Multiple alignments of the Chapaev transposons identified in these species revealed extremely high levels of nucleotide sequence identity (79–99%), which are inconsistent with vertical evolution given the deep divergence time separating these host species. Rather, the discontinuous distribution amongst species and lack of purifying selection acting on these transposons strongly suggest that they were independently and horizontally transferred into these species lineages. The detection of Chapaev transposons in an insect bracovirus indicated that these viruses might act as a possible vector for the horizontal spread of Chapaev transposons. One of the Chapaev families was also shared by lampreys and some of their common hosts (such as sturgeon and paddlefish), which suggested that parasite–host interaction might facilitate HTs. PMID:24868016

  19. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals.

    PubMed

    Zhang, Hua-Hao; Feschotte, Cédric; Han, Min-Jin; Zhang, Ze

    2014-05-27

    Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus. Multiple alignments of the Chapaev transposons identified in these species revealed extremely high levels of nucleotide sequence identity (79-99%), which are inconsistent with vertical evolution given the deep divergence time separating these host species. Rather, the discontinuous distribution amongst species and lack of purifying selection acting on these transposons strongly suggest that they were independently and horizontally transferred into these species lineages. The detection of Chapaev transposons in an insect bracovirus indicated that these viruses might act as a possible vector for the horizontal spread of Chapaev transposons. One of the Chapaev families was also shared by lampreys and some of their common hosts (such as sturgeon and paddlefish), which suggested that parasite-host interaction might facilitate HTs.

  20. Overview of the HIV-1 Lentiviral Vector System.

    PubMed

    Ramezani, Ali; Hawley, Robert G

    2002-11-01

    Replication-defective oncoretroviral vectors have been the most widely used vehicles for gene-transfer studies because of their capacity to efficiently introduce and stably express transgenes in mammalian cells. A limitation of oncoretroviral vectors is that cell division is required for proviral integration into the host genome. By comparison, lentiviruses such as human immunodeficiency virus type 1 (HIV-1) have evolved a nuclear-import machinery that allows them to infect nondividing as well as dividing cells. This unique property has led to the development of lentiviral vectors for gene delivery to a variety of nondividing or slowly dividing cells including neurons and glial cells of the central nervous system and others. This unit is intended to provide an overview of HIV-1 molecular biology and an introduction to successive generations of HIV-1-based lentiviral vectors.

  1. Babesial Vector Tick Defensin against Babesia sp. Parasites▿ †

    PubMed Central

    Tsuji, Naotoshi; Battsetseg, Badgar; Boldbaatar, Damdinsuren; Miyoshi, Takeharu; Xuan, Xuenan; Oliver, James H.; Fujisaki, Kozo

    2007-01-01

    Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms. PMID:17485458

  2. Babesial vector tick defensin against Babesia sp. parasites.

    PubMed

    Tsuji, Naotoshi; Battsetseg, Badgar; Boldbaatar, Damdinsuren; Miyoshi, Takeharu; Xuan, Xuenan; Oliver, James H; Fujisaki, Kozo

    2007-07-01

    Antimicrobial peptides are major components of host innate immunity, a well-conserved, evolutionarily ancient defensive mechanism. Infectious disease-bearing vector ticks are thought to possess specific defense molecules against the transmitted pathogens that have been acquired during their evolution. We found in the tick Haemaphysalis longicornis a novel parasiticidal peptide named longicin that may have evolved from a common ancestral peptide resembling spider and scorpion toxins. H. longicornis is the primary vector for Babesia sp. parasites in Japan. Longicin also displayed bactericidal and fungicidal properties that resemble those of defensin homologues from invertebrates and vertebrates. Longicin showed a remarkable ability to inhibit the proliferation of merozoites, an erythrocyte blood stage of equine Babesia equi, by killing the parasites. Longicin was localized at the surface of the Babesia sp. parasites, as demonstrated by confocal microscopic analysis. In an in vivo experiment, longicin induced significant reduction of parasitemia in animals infected with the zoonotic and murine B. microti. Moreover, RNA interference data demonstrated that endogenous longicin is able to directly kill the canine B. gibsoni, thus indicating that it may play a role in regulating the vectorial capacity in the vector tick H. longicornis. Theoretically, longicin may serve as a model for the development of chemotherapeutic compounds against tick-borne disease organisms.

  3. Packaging capacity and stability of human adenovirus type 5 vectors.

    PubMed Central

    Bett, A J; Prevec, L; Graham, F L

    1993-01-01

    Adenovirus vectors are extensively used for high-level expression of proteins in mammalian cells and are receiving increasing attention for their potential use as live recombinant vaccines and as transducing viruses for use in gene therapy. Although it is commonly argued that one of the chief advantages of adenovirus vectors is their relative stability, this has not been thoroughly investigated. To examine the genetic stability of adenovirus type 5 vectors and in particular to examine the relationship between genetic stability and genome size, adenovirus vectors were constructed with inserts of 4.88 (herpes simplex virus type 1 gB), 4.10 (herpes simplex virus type 1 gB), or 3.82 (LacZ) kb combined with a 1.88-kb E3 deletion or with a newly generated 2.69-kb E3 deletion. The net excess of DNA over the wild-type (wt) genome size ranged from 1.13 to 3.00 kb or 3.1 to 8.3%. Analysis of these vectors during serial passage in tissue culture revealed that when the size exceeded 105% of the wt genome length by approximately 1.2 kb (4.88-kb insert combined with a 1.88-kb deletion), the resulting vector grew very poorly and underwent rapid rearrangement, resulting in loss of the insert after only a few passages. In contrast, vectors with inserts resulting in viral DNA close to or less than a net genome size of 105% of that of the wt grew well and were relatively stable. In general, viruses with genomes only slightly above 105% of that of the wt were unstable and the rapidity with which rearrangement occurred correlated with the size of the insert. These findings suggest that there is a relatively tight constraint on the amount of DNA which can be packaged into virions and that exceeding the limit results in a sharply decreased rate of virus growth. The resultant strong selection for variants which have undergone rearrangement, generating smaller genomes, is manifested as genetic instability of the virus population. Images PMID:8371349

  4. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    PubMed

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  5. Invertebrate response to snow goose herbivory on moist-soil vegetation

    USGS Publications Warehouse

    Sherfy, M.H.; Kirkpatrick, R.L.

    2003-01-01

    Foraging activity by snow geese (Chen caerulescens) often creates large areas devoid of vegetation ("eat-outs") in moist-soil impoundments and coastal wetlands. Open-water habitats that result from eat-outs may be valuable foraging areas for other wetland-dependent birds (i.e., waterfowl and shorebirds). However, few studies have examined the effects of goose-induced habitat changes on invertebrates, an important food source for both waterfowl and shorebirds. We quantified changes in abundance and composition of benthic invertebrates in response to snow goose herbivory in moist-soil impoundments at Prime Hook National Wildlife Refuge, Delaware, USA. We found invertebrate taxon richness and diversity and abundance of Chironomidae, Coleoptera, and Total Invertebrates to be higher in goose-excluded sites than in adjacent eat-outs. These effects were most pronounced during January, February, and early April. We also measured invertebrate abundance in shorebird exclosures in eat-outs but found few detectable effects of shorebird predation on invertebrates. Our study demonstrated that abundant snow geese may negatively influence availability of invertebrates for other nonbreeding waterbirds, suggesting that management actions to reduce local goose populations or deter feeding in impoundments may be warranted.

  6. Grasslands, Invertebrates, and Precipitation: A Review of the Effects of Climate Change

    PubMed Central

    Barnett, Kirk L.; Facey, Sarah L.

    2016-01-01

    Invertebrates are the main components of faunal diversity in grasslands, playing substantial roles in ecosystem processes including nutrient cycling and pollination. Grassland invertebrate communities are heavily dependent on the plant diversity and production within a given system. Climate change models predict alterations in precipitation patterns, both in terms of the amount of total inputs and the frequency, seasonality and intensity with which these inputs occur, which will impact grassland productivity. Given the ecological, economic and biodiversity value of grasslands, and their importance globally as areas of carbon storage and agricultural development, it is in our interest to understand how predicted alterations in precipitation patterns will affect grasslands and the invertebrate communities they contain. Here, we review the findings from manipulative and observational studies which have examined invertebrate responses to altered rainfall, with a particular focus on large-scale field experiments employing precipitation manipulations. Given the tight associations between invertebrate communities and their underlying plant communities, invertebrate responses to altered precipitation generally mirror those of the plants in the system. However, there is evidence that species responses to future precipitation changes will be idiosyncratic and context dependent across trophic levels, challenging our ability to make reliable predictions about how grassland communities will respond to future climatic changes, without further investigation. Thus, moving forward, we recommend increased consideration of invertebrate communities in current and future rainfall manipulation platforms, as well as the adoption of new technologies to aid such studies. PMID:27547213

  7. Density constrains cascading consequences of warming and nitrogen from invertebrate growth to litter decomposition.

    PubMed

    Hines, Jes; Reyes, Marta; Gessner, Mark O

    2016-07-01

    Smaller invertebrate body mass is claimed to be a universal response to climate warming. It has been suggested that body mass could also predict consumer influences on ecosystem processes in a warmer world because generalized rules describe relationships between body mass, temperature, and metabolism. However, the utility of this suggestion remains tenuous because the nutritional and physiological constraints underlying relationships between body mass and consumer-driven processes are highly variable in realistic settings. Here we test, using a generalist invertebrate detritivore, fungi, and leaf litter, the limitations imposed by nutrition on growth and decomposition in response to global change. Strong competition for fungal food resources limited invertebrate growth and reduced body mass plasticity in response to warming and nitrogen pollution scenarios. When competition was relaxed by experimentally reducing invertebrate density, consumption of fungi promoted rapid invertebrate growth and enhanced invertebrate sensitivity to the global change scenarios, especially warming and nitrogen pollution together. Accordingly, fungi promoted invertebrate body mass plasticity and mediated consumer effects on decomposition causing the relative influence of warming and nitrogen pollution to vary across trophic levels. An important implication is that managing nitrogen pollution may alter which trophic level is most sensitive to warming.

  8. Comparative biology of pain: What invertebrates can tell us about how nociception works.

    PubMed

    Burrell, Brian D

    2017-04-01

    The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.

  9. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae.

    PubMed

    Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven

    2011-11-01

    Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms.

  10. Acute toxicity and inactivation tests of CO2 on invertebrates in drinking water treatment systems.

    PubMed

    Yin, Wen-Chao; Zhang, Jin-Song; Liu, Li-Jun; Zhao, Jian-Shu; Li, Tuo

    2011-01-01

    In addition to the esthetic problem caused by invertebrates, researchers are recently starting to be more aware of their potential importance in terms of public health. However, the inactivation methods of invertebrates which could proliferate in drinking water treatment systems are not well developed. The objective of this study is to assess the acute toxicity and inactivation effects of CO2 on familiar invertebrates in water treatment processes. The results of this study revealed that CO2 has a definite toxicity to familiar invertebrates. The values of 24-h LC50 (median lethal concentration) were calculated for each test with six groups of invertebrates. The toxicity of CO2 was higher with increasing concentrations in solution but was lower with the increase in size of the invertebrates. Above the concentration of 1,000 mg/L for the CO2 solution, the 100% inactivation time of all the invertebrates was less than 5 s, and in 15 min, the inactivation ratio showed a gradient descent with a decline in concentration. As seen for Mesocyclops thermocyclopoides, by dosing with a sodium bicarbonate solution first and adding a dilute hydrochloric acid solution 5 min later, it is possible to obtain a satisfactory inactivation effect in the GAC (granular activated carbon) filters.

  11. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    PubMed

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  12. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  13. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses.

    PubMed

    Ling, Chen; Li, Baozheng; Ma, Wenqin; Srivastava, Arun

    2016-08-01

    We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.

  14. Transstadial Transmission and Long-term Association of Crimean-Congo Hemorrhagic Fever Virus in Ticks Shapes Genome Plasticity

    PubMed Central

    Xia, Han; Beck, Andrew S.; Gargili, Aysen; Forrester, Naomi; Barrett, Alan D. T.; Bente, Dennis A.

    2016-01-01

    The trade-off hypothesis, the current paradigm of arbovirus evolution, proposes that cycling between vertebrate and invertebrate hosts presents significant constraints on genetic change of arboviruses. Studying these constraints in mosquito-borne viruses has led to a new understanding of epizootics. The trade-off hypothesis is assumed to be applicable to tick-borne viruses too, although studies are lacking. Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the family Bunyaviridae, is a major cause of severe human disease worldwide and shows an extraordinary amount of genetic diversity compared to other arboviruses, which has been linked to increased virulence and emergence in new environments. Using a transmission model for CCHFV, utilizing the main vector tick species and mice plus next generation sequencing, we detected a substantial number of consensus-level mutations in CCHFV recovered from ticks after only a single transstadial transmission, whereas none were detected in CCHFV obtained from the mammalian host. Furthermore, greater viral intra-host diversity was detected in the tick compared to the vertebrate host. Long-term association of CCHFV with its tick host for 1 year demonstrated mutations in the viral genome become fixed over time. These findings suggest that the trade-off hypothesis may not be accurate for all arboviruses. PMID:27775001

  15. Development of Gutless Adenoviral Vectors Encoding Anti Angiogenic Proteins for Therapy of Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    B. Molecular cloning of recombination-inactivatable helper virus A plasmid containing a recombination-inactivatable helper virus genome has been...for gutless vectors, Months 1-18 A. Molecular cloning of conditionally-inactive helper genomes A P-deleted, I-Scel-flanked and El-E2-flipped...Months 1-18 A. Molecular cloning of conditionally inactive helper genomes: completed (see last year’s report). B. Evaluation of the I-Scel- and ore

  16. Vector fields in cosmology

    NASA Astrophysics Data System (ADS)

    Davydov, E. A.

    2012-06-01

    Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.

  17. Insights into bilaterian evolution from three spiralian genomes

    SciTech Connect

    Simakov, Oleg; Marletaz, Ferdinand; Cho, Sung-Jin; Edsinger-Gonzales, Eric; Havlak, Paul; Hellsten, Uffe; Kuo, Dian-Han; Larsson, Tomas; Lv, Jie; Arendt, Detlev; Savage, Robert; Osoegawa, Kazutoyo; de Jong, Pieter; Grimwood, Jane; Chapman, Jarrod A.; Shapiro, Harris; Otillar, Robert P.; Terry, Astrid Y.; Boore, Jeffrey L.; Grigoriev, Igor V.; Lindberg, David R.; Seaver, Elaine C.; Weisblat, David A.; Putnam, Nicholas H.; Rokhsar, Daniel S.; Aerts, Andrea

    2012-01-07

    Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1, 2, 3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.

  18. Standing crops and ecology of aquatic invertebrates in agricultural drainwater ponds in California

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1991-01-01

    We examined standing crops and ecology of aquatic invertebrates in agricultural drainwater evaporation ponds in California from October 1982 to March 1983 and September 1983 to March 1984. Evaporation ponds supported low diversities but high standing crops of aquatic invertebrates. A water boatman (Trichocorixa reticulata) and a midge (Tanypus grodhausi) were the most abundant invertebrates, constituting 44.9% and 51.4% of total macroinvertebrate biomass. Regression models indicated that of 6 environmental variables measured, only electrical conductivity (EC) and Julian date affected biomass and density of water boatmen. EC was the only significant correlate of midge biomass in evaporation ponds.

  19. Uselessness and indirect negative effects of an insecticide on rice field invertebrates.

    PubMed

    Mesléard, François; Garnero, Stéphanie; Beck, Nicolas; Rosecchi, Elisabeth

    2005-01-01

    Macro-invertebrate assemblages on organic and conventional rice fields were quantitatively compared in the Camargue (Rhone delta, France). There was no major difference in family richness, but significant differences as regard to abundance. Fipronil, the insecticide used to control chironomid larvae, was one of the main factors explaining those differences. Its negative impact on predatory invertebrates appears to explain the paradoxical lack of difference in chironomid abundance between organic and conventional fields, observed during the study. Macro-invertebrate biomass estimation showed that, for some birds such as herons, conventional rice fields offered a lower value as foraging habitats than organic ones.

  20. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    PubMed Central

    Hegazy, Mohamed Elamir F.; Mohamed, Tarik A.; Alhammady, Montaser A.; Shaheen, Alaa M.; Reda, Eman H.; Elshamy, Abdelsamed I.; Aziz, Mina; Paré, Paul W.

    2015-01-01

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species. PMID:26006713