NASA Astrophysics Data System (ADS)
Uesu, Y.; Kurimura, S.; Yamamoto, Y.
1995-04-01
Applied is a microscope to observations of 90 deg ferroelectric domain structure in BaTiO3 and inverted periodically are ferroelectric domains in LiTaO3. It is founded that the second harmonic generation microscope gives information which cannot be obtained by ordinary optical microscopes. The developed nonlinear optical microscope builds two dimensional second harmonic image of a specimen with inhomogenous distribution of d(sub ijk) and applied the microscope to observations of inhomogeneity in some nonlinear-optical organic microcrystals.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
NASA Astrophysics Data System (ADS)
Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu
2017-04-01
We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.
Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi
2015-09-01
Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.
Dual-mode optical microscope based on single-pixel imaging
NASA Astrophysics Data System (ADS)
Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.
2016-07-01
We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.
Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo
2009-07-01
In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.
Nowak, Derek B; Lawrence, A J; Sánchez, Erik J
2010-12-10
We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F
2015-01-01
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
Stemmer, A
1995-04-01
The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.
Horster, M; Gundlach, H
1979-12-01
The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
Nimchuk, Zachary L.; Perdue, Tony D.
2017-01-01
Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995
Nimchuk, Zachary L; Perdue, Tony D
2017-01-01
Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.
Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.
Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P
2011-08-01
The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Zimic, Mirko; Velazco, Abner; Comina, Germán; Coronel, Jorge; Fuentes, Patricia; Luna, Carmen G.; Sheen, Patricia; Gilman, Robert H.; Moore, David A. J.
2010-01-01
Background The microscopic observation drug susceptibility (MODS) assay for rapid, low-cost detection of tuberculosis and multidrug resistant tuberculosis depends upon visualization of the characteristic cording colonies of Mycobacterium tuberculosis in liquid media. This has conventionally required an inverted light microscope in order to inspect the MODS culture plates from below. Few tuberculosis laboratories have this item and the capital cost of $5,000 for a high-end microscope could be a significant obstacle to MODS roll-out. Methodology We hypothesized that the precise definition provided by costly high-specification inverted light microscopes might not be necessary for pattern recognition. Significance In this work we describe the development of a low-cost artesenal inverted microscope that can operate in both a standard or digital mode to effectively replace the expensive commercial inverted light microscope, and an integrated system that could permit a local and remote diagnosis of tuberculosis. PMID:20351778
Apertureless near-field scanning optical microscope working with or without laser source.
Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y
2004-01-01
An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of <50 nm regardless of the illumination wavelength. We have also shown optical images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.
2011-03-22
the nanogaps are engraved on. Simulations show that smaller diameters of the nanowires should provide higher enhancement factors for SERS signal...Inverted Microscope with lasers of wavelengths of 512 to 633 nm as the excitation source. The signal was collected and analyzed by a 50cm Spectrometer...the optical path which can selectively pass the Raman signals and reject the excitation lasers . Figure 2.12 Custom built Raman microscope for the
A simple water-immersion condenser for imaging living brain slices on an inverted microscope.
Prusky, G T
1997-09-05
Due to some physical limitations of conventional condensers, inverted compound microscopes are not optimally suited for imaging living brain slices with transmitted light. Herein is described a simple device that converts an inverted microscope into an effective tool for this application by utilizing an objective as a condenser. The device is mounted on a microscope in place of the condenser, is threaded to accept a water immersion objective, and has a slot for a differential interference contrast (DIC) slider. When combined with infrared video techniques, this device allows an inverted microscope to effectively image living cells within thick brain slices in an open perfusion chamber.
A universal fluid cell for the imaging of biological specimens in the atomic force microscope.
Kasas, Sandor; Radotic, Ksenja; Longo, Giovanni; Saha, Bashkar; Alonso-Sarduy, Livan; Dietler, Giovanni; Roduit, Charles
2013-04-01
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.
2013-04-01
A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.
Excitation of propagating surface plasmons with a scanning tunnelling microscope.
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G
2011-04-29
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Phase contrast and DIC instrumentation and applications in cell, developmental, and marine biology
NASA Astrophysics Data System (ADS)
Gundlach, Heinz
1994-05-01
Nomarski's differential interference contrast (DIC) microscopy is discussed in comparison to Zernike's phase contrast (PhC) microscopy. The possibilities and limits of both are demonstrated by various applications. The high contrast and the use of the full numerical aperture of the DIC optics makes it possible to obtain a series of 'optical sections' through rather thick living specimens (e.g. head of water flea, salivary gland of Drosophila, Xenopus nucleolus, sea urchen egg, mouse embryo). PhC and DIC optics are today available for high resolution light microscopy until N.A. 1.4 Oil as well as for long working distance (LWD) optics, mainly combined with inverted biological microscopes.
Mie scattering off coated microbubbles
NASA Astrophysics Data System (ADS)
Nelissen, Radboud; Koene, Elmer; Hilgenfeldt, Sascha; Versluis, Michel
2002-11-01
The acoustic behavior of coated microbubbles depends on parameters of the shell coating, which are in turn dependent on bubble size. More intimate knowledge of this size dependence is required for an improved modeling of a distribution of coated microbubbles such as found in ultrasound contrast agents (UCA). Here a setup is designed to simultaneously measure the optical and acoustic response of an ultrasound-driven single bubble contained in a capillary or levitated by the pressure field of a focused transducer. Optical detection is done by Mie scattering through an inverted microscope. Acoustical detection of the single bubble by a receiving transducer is made possible because of the large working distance of the microscope. For Mie scattering investigation of excited bubbles, two regimes can be distinguished, which require different detection techniques: Conventional wide-angle detection through the microscope objective is sufficient for bubbles of radius exceeding 10 mum. For smaller bubbles, two narrow-aperture detectors are used to reconstruct the bubble dynamics from the complex angle-dependence of the scattered light.
Proper alignment of the microscope.
Rottenfusser, Rudi
2013-01-01
The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights reserved.
Fällman, Erik; Schedin, Staffan; Jass, Jana; Andersson, Magnus; Uhlin, Bernt Eric; Axner, Ove
2004-06-15
An optical force measurement system for quantitating forces in the pN range between micrometer-sized objects has been developed. The system was based upon optical tweezers in combination with a sensitive position detection system and constructed around an inverted microscope. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omnidirectional mechanical spring in response to an external force. The particle's displacement from the equilibrium position is therefore a direct measure of the exerted force. A weak probe laser beam, focused directly below the trapping focus, was used for position detection of the trapped particle (a polystyrene bead). The bead and the condenser focus the light to a distinct spot in the far field, monitored by a position sensitive detector. Various calibration procedures were implemented in order to provide absolute force measurements. The system has been used to measure the binding forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads.
OPTiM: Optical projection tomography integrated microscope using open-source hardware and software
Andrews, Natalie; Davis, Samuel; Bugeon, Laurence; Dallman, Margaret D.; McGinty, James
2017-01-01
We describe the implementation of an OPT plate to perform optical projection tomography (OPT) on a commercial wide-field inverted microscope, using our open-source hardware and software. The OPT plate includes a tilt adjustment for alignment and a stepper motor for sample rotation as required by standard projection tomography. Depending on magnification requirements, three methods of performing OPT are detailed using this adaptor plate: a conventional direct OPT method requiring only the addition of a limiting aperture behind the objective lens; an external optical-relay method allowing conventional OPT to be performed at magnifications >4x; a remote focal scanning and region-of-interest method for improved spatial resolution OPT (up to ~1.6 μm). All three methods use the microscope’s existing incoherent light source (i.e. arc-lamp) and all of its inherent functionality is maintained for day-to-day use. OPT acquisitions are performed on in vivo zebrafish embryos to demonstrate the implementations’ viability. PMID:28700724
NASA Astrophysics Data System (ADS)
Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove
2003-06-01
Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.
Parker, I; Callamaras, N; Wier, W G
1997-06-01
We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.
21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... contrast microscopes, dissecting microscopes and inverted stage microscopes. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification...
Zhang, Haijiang; Wen, Pengyue; Esener, Sadik
2007-07-01
We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Construction of a femtosecond laser microsurgery system.
Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih
2010-03-01
Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.
Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia
2014-02-01
To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.
A Minimal Optical Trapping and Imaging Microscopy System
Hernández Candia, Carmen Noemí; Tafoya Martínez, Sara; Gutiérrez-Medina, Braulio
2013-01-01
We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter) and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules. PMID:23451216
Mechanical vibration compensation method for 3D+t multi-particle tracking in microscopic volumes.
Pimentel, A; Corkidi, G
2009-01-01
The acquisition and analysis of data in microscopic systems with spatiotemporal evolution is a very relevant topic. In this work, we describe a method to optimize an experimental setup for acquiring and processing spatiotemporal (3D+t) data in microscopic systems. The method is applied to a three-dimensional multi-tracking and analysis system of free-swimming sperm trajectories previously developed. The experimental set uses a piezoelectric device making oscillate a large focal-distance objective mounted on an inverted microscope (over its optical axis) to acquire stacks of images at a high frame rate over a depth on the order of 250 microns. A problem arise when the piezoelectric device oscillates, in such a way that a vibration is transmitted to the whole microscope, inducing undesirable 3D vibrations to the whole set. For this reason, as a first step, the biological preparation was isolated from the body of the microscope to avoid modifying the free swimming pattern of the microorganism due to the transmission of these vibrations. Nevertheless, as the image capturing device is mechanically attached to the "vibrating" microscope, the resulting acquired data are contaminated with an undesirable 3D movement that biases the original trajectory of these high speed moving cells. The proposed optimization method determines the functional form of these 3D oscillations to neutralize them from the original acquired data set. Given the spatial scale of the system, the added correction increases significantly the data accuracy. The optimized system may be very useful in a wide variety of 3D+t applications using moving optical devices.
21 CFR 864.3600 - Microscopes and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other biological...
Hahn, Paul; Migacz, Justin; O'Connell, Rachelle; Izatt, Joseph A; Toth, Cynthia A
2013-01-01
We have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications. Standard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid. Unprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts. MIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.
Sowa, Yoshihiro; Itsukage, Sizu; Morita, Daiki; Numajiri, Toshiaki
2017-10-01
An inverted nipple is a common congenital condition in young women that may cause breastfeeding difficulty, psychological distress, repeated inflammation, and loss of sensation. Various surgical techniques have been reported for correction of inverted nipples, and all have advantages and disadvantages. Here, we report a new technique for correction of an inverted nipple using an operative microscope and traction that results in low recurrence and preserves lactation function and sensation. Between January 2010 and January 2013, we treated eight inverted nipples in seven patients with selective lactiferous duct dissection using an operative microscope. An opposite Z-plasty was added at the junction of the nipple and areola. Postoperatively, traction was applied through an apparatus made from a rubber gasket attached to a sterile syringe. Patients were followed up for 15-48 months. Adequate projection was achieved in all patients, and there was no wound dehiscence or complications such as infection. Three patients had successful pregnancies and subsequent breastfeeding that was not adversely affected by the treatment. There was no loss of sensation in any patient during the postoperative period. Our technique for treating an inverted nipple is effective and preserves lactation function and nipple sensation. The method maintains traction for a longer period, which we believe increases the success rate of the surgery for correction of severely inverted nipples. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Thermal diffusivity imaging with the thermal lens microscope.
Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J
2011-12-01
A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America
Inverted light-sheet microscope for imaging mouse pre-implantation development.
Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan
2016-02-01
Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.
Tunable thin-film optical filters for hyperspectral microscopy
NASA Astrophysics Data System (ADS)
Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2013-02-01
Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.
Raman spectra and optical trapping of highly refractive and nontransparent particles
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing
2002-08-01
We measured the Raman spectra of single optically trapped highly refractive and nontransparent microscopic particles suspended in a liquid using an inverted confocal laser-tweezers-Raman-spectroscopy system. A low-power diode-laser beam of TEM00 mode was used both for optical trapping and Raman excitation of refractive, absorptive, and reflective metal particles. To form a stable trap for a nontransparent particle, the beam focus was located near the top of the particle and the particle was pushed against a glass plate by the axial repulsive force. Raman spectra from single micron-sized crystals with high index of refraction including silicon, germanium, and KNbO3, and from absorptive particles of black and color paints were recorded. Surface-enhanced Raman scattering of R6G and phenylalanine molecules absorbed on the surface of a trapped cluster of silver particles was also demonstrated.
Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.
Sen, Mrinal; Das, Mukul K
2013-12-01
In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.
Huang, Ke-Jing; Wang, Hong; Ma, Ming; Zhang, Xian; Zhang, Hua-Shan
2007-02-01
Although the importance of nitric oxide (NO) as a signalling molecule in many biological processes is becoming increasingly evident, many proposed and potential biological functions of NO still remain unclear. Bioimaging is a good technique to visualize observation of nitric oxide in biological samples. In this report, a fluorescent probe, 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence (TMDCDABODIPY), has been first applied to real-time image NO produced in PC12 cells, Sf9 cells and human vascular endothelial cells at the presence of l-arginine with inverted fluorescence microscope. NO production in the cells is successfully captured and imaged with fine temporal and spatial resolution. The results prove that the probe combined with inverted fluorescence microscope can be developed into a sensitive and selective method for further study of NO release from cells.
Verheyen, G; Crabbé, E; Joris, H; Van Steirteghem, A
1998-06-01
Based on the results of animal studies, round spermatid injection (ROSI) has been introduced into the clinical practice of several in-vitro fertilization (IVF) centres. The efficiency of this procedure in terms of fertilization rates and pregnancy rates, however, remains very poor. An essential aspect which does not receive enough attention is the correct identification of this type of round cell within a heterogeneous population of testicular cells. A Nikon inverted microscope equipped with phase-contrast optics (DLL) provided a clear image which allowed reliable recognition of round spermatids in cell suspensions smeared at the glass bottom of the dish. Fluorescent in-situ hybridization confirmed the haploid status of the selected cells. However, exploration of several biopsies from patients with non-obstructive azoospermia showing no spermatozoa after extensive search did not reveal any round spermatids. This observation questions whether enough effort is spent on searching for mature spermatozoa or late spermatids. Experimental investigations should precede the introduction of ROSI into the clinical practice of any IVF centre.
Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng
2015-01-01
We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828
Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng
2016-01-01
We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.
Inverted Signature Trees and Text Searching on CD-ROMs.
ERIC Educational Resources Information Center
Cooper, Lorraine K. D.; Tharp, Alan L.
1989-01-01
Explores the new storage technology of optical data disks and introduces a data structure, the inverted signature tree, for storing data on optical data disks for efficient text searching. The inverted signature tree approach is compared to the use of text signatures and the B+ tree. (22 references) (Author/CLB)
Multimodal biophotonic workstation for live cell analysis.
Esseling, Michael; Kemper, Björn; Antkowiak, Maciej; Stevenson, David J; Chaudet, Lionel; Neil, Mark A A; French, Paul W; von Bally, Gert; Dholakia, Kishan; Denz, Cornelia
2012-01-01
A reliable description and quantification of the complex physiology and reactions of living cells requires a multimodal analysis with various measurement techniques. We have investigated the integration of different techniques into a biophotonic workstation that can provide biological researchers with these capabilities. The combination of a micromanipulation tool with three different imaging principles is accomplished in a single inverted microscope which makes the results from all the techniques directly comparable. Chinese Hamster Ovary (CHO) cells were manipulated by optical tweezers while the feedback was directly analyzed by fluorescence lifetime imaging, digital holographic microscopy and dynamic phase-contrast microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys
NASA Astrophysics Data System (ADS)
Ivanova, A. I.; Gasanov, O. V.; Kaplunova, E. I.; Kalimullina, E. T.; Zalyotov, A. B.; Grechishkin, R. M.
2015-03-01
A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp; Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011; Adachi, Makoto
We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells wasmore » evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.« less
Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo
2004-11-01
The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.
Zuo, Chao; Chen, Qian; Li, Hongru; Qu, Weijuan; Asundi, Anand
2014-07-28
Boundary conditions play a crucial role in the solution of the transport of intensity equation (TIE). If not appropriately handled, they can create significant boundary artifacts across the reconstruction result. In a previous paper [Opt. Express 22, 9220 (2014)], we presented a new boundary-artifact-free TIE phase retrieval method with use of discrete cosine transform (DCT). Here we report its experimental investigations with applications to the micro-optics characterization. The experimental setup is based on a tunable lens based 4f system attached to a non-modified inverted bright-field microscope. We establish inhomogeneous Neumann boundary values by placing a rectangular aperture in the intermediate image plane of the microscope. Then the boundary values are applied to solve the TIE with our DCT-based TIE solver. Experimental results on microlenses highlight the importance of boundary conditions that often overlooked in simplified models, and confirm that our approach effectively avoid the boundary error even when objects are located at the image borders. It is further demonstrated that our technique is non-interferometric, accurate, fast, full-field, and flexible, rendering it a promising metrological tool for the micro-optics inspection.
Time lapse video recordings of highly purified human hematopoietic progenitor cells in culture.
Denkers, I A; Dragowska, W; Jaggi, B; Palcic, B; Lansdorp, P M
1993-05-01
Major hurdles in studies of stem cell biology include the low frequency and heterogeneity of human hematopoietic precursor cells in bone marrow and the difficulty of directly studying the effect of various culture conditions and growth factors on such cells. We have adapted the cell analyzer imaging system for monitoring and recording the morphology of limited numbers of cells under various culture conditions. Hematopoietic progenitor cells with a CD34+ CD45RAlo CD71lo phenotype were purified from previously frozen organ donor bone marrow by fluorescence activated cell sorting. Cultures of such cells were analyzed with the imaging system composed of an inverted microscope contained in an incubator, a video camera, an optical memory disk recorder and a computer-controlled motorized microscope XYZ precision stage. Fully computer-controlled video images at defined XYZ positions were captured at selected time intervals and recorded at a predetermined sequence on an optical memory disk. In this study, the cell analyzer system was used to obtain descriptions and measurements of hematopoietic cell behavior, like cell motility, cell interactions, cell shape, cell division, cell cycle time and cell size changes under different culture conditions.
Duda, V I; Suzina, N E; Dmitriev, V V
2001-01-01
Anaerobacter polyendosporus cells do not have typical mesosomes. However, the analysis of this anaerobic multispore bacterium by electron microscopic cryofractography showed that its cytoplasmic membrane contains specific intramembrane structures in the form of flat lamellar inverted lipid membranes tenths of nanometers to several microns in size. It was found that these structures are located in the hydrophobic interior between the outer and inner leaflets of the cytoplasmic membrane and do not contain intramembrane particles that are commonly present on freeze-fracture replicas. The flat inverted lipid membranes were revealed in bacterial cells cultivated under normal growth conditions, indicating the existence of a complex-type compartmentalization in biological membranes, which manifests itself in the formation of intramembrane compartments having the appearance of vesicles and inverted lipid membranes.
Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Yi; Zhu Yihua; Yang Xiaoling
Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allowsmore » one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.« less
Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.
Zheng, Chong; Hu, Anming; Li, Ruozhou; Bridges, Denzel; Chen, Tao
2015-06-29
Embedded microball lenses with superior optical properties function as convex microball lens (VMBL) and concave microball lens (CMBL) were fabricated inside a PMMA substrate with a high repetition rate femtosecond fiber laser. The VMBL was created by femtosecond laser-induced refractive index change, while the CMBL was fabricated due to the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. The processing window for both types of the lenses was studied and optimized, and the optical properties were also tested by imaging a remote object with an inverted microscope. In order to obtain the microball lenses with adjustable focal lengths and suppressed optical aberration, a shape control method was thus proposed and examined with experiments and ZEMAX® simulations. Applying the optimized fabrication conditions, two types of the embedded microball lenses arrays were fabricated and then tested with imaging experiments. This technology allows the direct fabrication of microlens inside transparent bulk polymer material which has great application potential in multi-function integrated microfluidic devices.
A compact holographic optical tweezers instrument
NASA Astrophysics Data System (ADS)
Gibson, G. M.; Bowman, R. W.; Linnenberger, A.; Dienerowitz, M.; Phillips, D. B.; Carberry, D. M.; Miles, M. J.; Padgett, M. J.
2012-11-01
Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated.
Houlne, Michael P; Sjostrom, Christopher M; Uibel, Rory H; Kleimeyer, James A; Harris, Joel M
2002-09-01
Optical trapping of small structures is a powerful tool for the manipulation and investigation of colloidal and particulate materials. The tight focus excitation requirements of optical trapping are well suited to confocal Raman microscopy. In this work, an inverted confocal Raman microscope is developed for studies of chemical reactions on single, optically trapped particles and applied to reactions used in solid-phase peptide synthesis. Optical trapping and levitation allow a particle to be moved away from the coverslip and into solution, avoiding fluorescence interference from the coverslip. More importantly, diffusion of reagents into the particle is not inhibited by a surface, so that reaction conditions mimic those of particles dispersed in solution. Optical trapping and levitation also maintain optical alignment, since the particle is centered laterally along the optical axis and within the focal plane of the objective, where both optical forces and light collection are maximized. Hour-long observations of chemical reactions on individual, trapped silica particles are reported. Using two-dimensional least-squares analysis methods, the Raman spectra collected during the course of a reaction can be resolved into component contributions. The resolved spectra of the time-varying species can be observed, as they bind to or cleave from the particle surface.
A portable optical reader and wall projector towards enumeration of bio-conjugated beads or cells
McArdle, Niamh A.; Kendlin, Jane L.; O’Connell, Triona M.; Ducrée, Jens
2017-01-01
Measurement of the height of a packed column of cells or beads, which can be direclty related to the number of cells or beads present in a chamber, is an important step in a number of diagnostic assays. For example, haematocrit measurements may rapidly identify anemia or polycthemia. Recently, user-friendly and cost-efficient Lab-on-a-Chip devices have been developed towards isolating and counting cell sub-populations for diagnostic purposes. In this work, we present a low-cost optical module for estimating the filling level of packed magnetic beads within a Lab-on-a-Chip device. The module is compatible with a previously introduced, disposable microfluidic chip for rapid determination of CD4+ cell counts. The device is a simple optical microscope module is manufactured by 3D printing. An objective lens directly interrogates the height of packed beads which are efficiently isolated on the finger-actuated chip. Optionally, an inexpensive, battery-powered Light Emitting Diode may project a shadow of the microfluidic chip at approximately 50-fold magnification onto a nearby surface. The reader is calibrated with the filling levels of known concentrations of paramagnetic beads within the finger actuated chip. Results in direct and projector mode are compared to measurements from a conventional, inverted white-light microscope. All three read-out methods indicate a maximum variation of 6.5% between methods. PMID:29267367
Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin
2011-03-01
Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
Biological applications of an LCoS-based programmable array microscope (PAM)
NASA Astrophysics Data System (ADS)
Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.
2007-02-01
We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.
High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.
Sen, Mrinal; Das, Mukul K
2015-11-01
In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755 μm ×15 μm, which ensures integration compatibility with the matured silicon industry.
NASA Astrophysics Data System (ADS)
Ebert, Daniel R.
Superhydrophobic surfaces (defined as surfaces having water contact angle greater than 150°) show great promise for use in a rapidly growing number of engineering applications, ranging from biomedical devices to fluid drag reduction in pipelines. In nature, the surfaces of many organisms, such as certain plant leaves, are known to exhibit superhydrophobicity. In some cases, droplet adhesion is very low (droplet rolls away easily), while in other cases adhesion is high (droplet remains adhered when surface is inverted). The recent advent and development of microscopes with resolution down to a few nanometers (such as atomic force microscopes and scanning electron microscopes) has allowed for in-depth understanding of the micro- and nanoscale mechanisms employed by these plant leaves and other natural surfaces to achieve their particular wetting properties. Biomimetics (or "mimicking nature") is therefore a very promising approach for the development of engineering surfaces with desired wetting characteristics. However, research in creating biomimetic surfaces is still in its early stages, and many of the surfaces created thus far are not mechanically robust, which is required for many potential real-world applications. In addition, for applications such as self-cleaning windows and solar panels, optical transparency is required. In this thesis, a set of original studies are presented in which superhydrophobic surfaces were designed based on biomimetics and fabricated using a wide of variety of techniques. The surfaces were characterized with regard to wetting characteristics such as water contact angle and contact angle hysteresis, micro- and nanoscale mechanical durability, and in some cases optical transmittance. Theoretical wetting models served as guides both in the design and in the understanding of experimental results, especially in regard to different wetting regime and regime transition. This work provides important conclusions and valuable insight for identifying materials, techniques, and designs for mechanically durable, optically transparent superhydrophobic surfaces.
NASA Astrophysics Data System (ADS)
Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.
2002-09-01
We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.
[Grape seed extract induces morphological changes of prostate cancer PC-3 cells].
Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng
2008-12-01
To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.
Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke.
Talley Watts, Lora; Zheng, Wei; Garling, R Justin; Frohlich, Victoria C; Lechleiter, James Donald
2015-06-23
In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.
Open-dish incubator for live cell imaging with an inverted microscope.
Heidemann, Steven R; Lamoureux, Phillip; Ngo, Kha; Reynolds, Matthew; Buxbaum, Robert E
2003-10-01
Here we describe the design and fabrication of an inexpensive cell culture incubator for the stage of an inverted light microscope for use in live cell imaging. This device maintains the temperature of the cell culture at 37 degrees C with great stability and, after reaching equilibrium, provides focal stability of an image for 20-25 min with oil-immersion lenses. We describe two versions of the incubator: one for use with standard 60-mm plastic culture dishes, and the other version for imaging of cells on glass coverslips. Either can be made for less than $400. Most components are widely available commercially, and it requires only simple wiring and 3 h to assemble. Although the device is generally useful for live cell imaging on an inverted microscope, it is particularly suitable for work in which instruments are introduced into the culture, such as electrophysiology or micromanipulation. The design is based on the principle that control performance is limited by the lag time between detection and response. The key element of the design is a heated, temperature-controlled aluminum ring serving as a mini-incubator surrounding the culture vessel. For this reason, we call our design a "ringcubator."
Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.
Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon
2009-06-22
In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.
Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.
Maeda, Y
1994-08-10
An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.
Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U
2006-07-01
In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.
Physical realization of the Glauber quantum oscillator.
Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio
2015-11-02
More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.
Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.
Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M
2017-12-01
Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Fabrication of lateral lattice-polarity-inverted GaN heterostructure
NASA Astrophysics Data System (ADS)
Katayama, Ryuji; Kuge, Yoshihiro; Kondo, Takashi; Onabe, Kentaro
2007-04-01
Fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0 0 0 1) using a radio-frequency plasma enhanced molecular beam epitaxy is demonstrated. Its microscopic properties, which are closely related to the local polarity distribution, such as surface potentials, piezoelectric polarizations and residual carrier concentrations were investigated by Kelvin force microscopy and micro-Raman scattering. The successful inversion from Ga-polarity to N-polarity of GaN in a specific domain and its higher crystal perfection had been confirmed clearly by these microscopic analyses. The results were also fairly consistent with that of KOH etching experiments, which suggest the applicability of these processes to the fabrication of photonic nanostructures composed of nitride semiconductors.
Integrated microfluidic probe station.
Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D
2010-11-01
The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.
Minimizing Gravity Sag of a Large Mirror with an Inverted Hindle-Mount
NASA Technical Reports Server (NTRS)
Robinson, David W.; Powers, Edward I. (Technical Monitor)
2000-01-01
A method of minimizing the optical distortion from gravity sag on a suspended large autocollimating flat mirror has been devised. This method consists of an inverted nine-point Hindle-Mount. A conventional Hindle-mount is located underneath a sky-viewing mirror and is primarily under compression loads from the weight of the mirror. It is not suitable for the situation where the mirror is viewing the ground, since a mirror would tend to fall out of the mount when in an inverted position. The inverted Hindle-Mount design consists of bonded joints on the backside of the mirror that allow the mirror to be held or suspended above an object to be viewed. This ability is useful in optical setups such as a calibration test where a flat mirror is located above a telescope so that the telescope may view a known optic.
Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.
Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung
2014-07-01
Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.
Quantitative phase microscopy via optimized inversion of the phase optical transfer function.
Jenkins, Micah H; Gaylord, Thomas K
2015-10-01
Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.
Amber Yousaf, S; Ikram, M; Ali, S
2018-10-01
The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.
AO Images of Asteroids, Inverting their Lightcurves, and SSA
2008-09-01
telescopes, we have recently obtained images of Main- Belt asteroids with adaptive optics (AO) on the Keck-II 10 meter telescope, the world’s largest...telescopes, we have recently obtained images of Main- Belt asteroids with adaptive optics (AO) on the Keck-II 10 meter telescope, the world’s largest...AO Images of Asteroids , Inverting their Lightcurves, and SSA Jack Drummond a and Julian Christoub,c aStarfire Optical Range, Directed Energy
Testing a high-power LED based light source for hyperspectral imaging microscopy
NASA Astrophysics Data System (ADS)
Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.
Wave front engineering by means of diffractive optical elements for applications in microscopy
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo
2006-05-01
We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.
Optical absorption enhancement by inserting ZnO optical spacer in plasmonic organic solar cells
NASA Astrophysics Data System (ADS)
N'Konou, Kekeli; Torchio, Philippe
2018-01-01
Optical absorption enhancement (AE) using coupled optical spacer and plasmonic effects in standard and inverted organic solar cells (OSCs) are demonstrated using the finite-difference time-domain numerical method. The influence of an added zinc oxide (ZnO) optical spacer layer inserted below the active layer in standard architecture is first theoretically investigated while the influence of varying the ZnO cathodic buffer layer thickness in inverted design is studied on AE. Then, the embedding of a square periodic array of core-shell silver-silica nanospheres (Ag@SiO2 NSs) at different positions in standard and inverted OSCs is performed while AE and short-circuit current density (Jsc) are calculated. As a result of previous combined effects, the optimized standard plasmonic OSCs present 15% and 79.45% enhancement in J over the reference with and without ZnO optical spacer layer, respectively, and a 16% increase of AE when Ag@SiO2 NSs are placed on top of the PEDOT:PSS layer. Compared to the inverted OSC reference, the plasmonic OSCs present 26% and 27% enhancement in J and AE, respectively, when the Ag@SiO2 NSs are located on top of the ZnO layer. Furthermore, the spatial position of these NSs in such OSCs is a key parameter for increasing light absorption via enhanced electromagnetic field distribution.
Chaubal, K A
1988-08-01
A 'two-objective, one-area' method and related equations are suggested to measure absorbance of microscopic stained objects. In such work, the measuring field invariably includes an image of the object and some clear area surrounding the image. The total intensity in the two areas is measured photometrically, using two different objectives, and substituted in the equation for absorbance. The equation is independent of the term representing intensity from the clear area and hence the error in the measurement of absorbance is reduced. The limitations of the 'two-objective, one-area' method are discussed and its pragmatic operation described with an experimental setup involving an inverted microscope. The method permits measurement of intensity in a part of a stained cell while the rest of the cell remains in the field of view. The method is applied to measure absorbance in Giemsa stained ascites cells and Feulgen stained liver and Human Amnion cells.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-02
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-01-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115
Two-Photon Fluorescence Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Fischer, David G.
2002-01-01
We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.
1981-06-01
sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING
Near-field optical recording based on solid immersion lens system
NASA Astrophysics Data System (ADS)
Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng
2002-09-01
Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.
Babinet-inverted optical Yagi-Uda antenna for unidirectional radiation to free space.
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won
2014-06-11
Nanophotonics capable of directing radiation or enhancing quantum-emitter transition rates rely on plasmonic nanoantennas. We present here a novel Babinet-inverted magnetic-dipole-fed multislot optical Yagi-Uda antenna that exhibits highly unidirectional radiation to free space, achieved by engineering the relative phase of the interacting surface plasmon polaritons between the slot elements. The unique features of this nanoantenna can be harnessed for realizing energy transfer from one waveguide to another by working as a future "optical via".
Denture hyperplasia with areas simulating oral inverted ductal papilloma.
Vargas, Pablo Agustin; Perez, Danyel Elias da Cruz; Jorge, Jacks; Rangel, Ana Lúcia Carrinho Ayrosa; León, Jorge Esquiche; Almeida, Oslei Paes de
2005-07-01
Denture hyperplasia is a reactive lesion of the oral mucosa, usually associated to an ill-fitting denture. This lesion is easily diagnosed and in some cases distinct microscopic variations such as osseous, oncocytic and squamous metaplasia may be found. These metaplastic alterations probably are associated with the lymphocytic infiltrate usually present in denture hyperplasia. We present a case of denture hyperplasia containing salivary gland tissue with ductal alterations mimicking an oral inverted ductal papilloma.
Reitsamer, H; Groiss, H P; Franz, M; Pflug, R
2000-01-31
We present a computer-guided microelectrode positioning system that is routinely used in our laboratory for intracellular electrophysiology and functional staining of retinal neurons. Wholemount preparations of isolated retina are kept in a superfusion chamber on the stage of an inverted microscope. Cells and layers of the retina are visualized by Nomarski interference contrast using infrared light in combination with a CCD camera system. After five-point calibration has been performed the electrode can be guided to any point inside the calibrated volume without moving the retina. Electrode deviations from target cells can be corrected by the software further improving the precision of this system. The good visibility of cells avoids prelabeling with fluorescent dyes and makes it possible to work under completely dark adapted conditions.
The Scanning Optical Microscope: An Overview
NASA Astrophysics Data System (ADS)
Kino, G. S.; Corte, T. R.; Xiao, G. Q.
1988-07-01
In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.
In, Sungjun; Park, Namkyoo
2016-02-23
We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
NASA Astrophysics Data System (ADS)
Fuh, Yiin-Kuen; Chen, Pin-Wen; Lai, Zheng-Hong
2016-07-01
Mechanically deformable lenses with dynamically tunable focal lengths have been developed in this work. The fabricated five types of aspheric polydimethylsiloxane (PDMS) lenses presented here have an initial focal length of 7.0, 7.8, 9.0, 10.0 and 10.2 mm. Incorporating two modes of operation in biconvex and concave-convex configurations, the focal lengths can be tuned dynamically as 5.2-10.2, 5.5-9.9, 6.6-11.9, 6.1-13.5 and 6.6-13.5 mm respectively. Additive manufacturing was utilized to fabricate these five types of aspheric lenses (APLs) via sequential layering of PDMS materials. Complex structures with three-dimensional features and shorter focal lengths can be successfully produced by repeatedly depositing, inverting and curing controlled PDMS volume onto previously cured PDMS droplets. From our experiments, we empirically found a direct dependence of the focal length of the lenses with the amount (volume) of deposited PDMS droplets. This new mouldless, low-cost, and flexible lens fabrication method is able to transform an ordinary commercial smartphone camera into a low-cost portable microscope. A few microscopic features can be readily visualized, such as wrinkles of ladybird pupa and printed circuit board. The fabrication technique by successively applying hanging droplet and facile mechanical focal-length-tuning set-up can be easily adopted in the development of high-performance optical lenses.
Investigation of autofocus algorithms for brightfield microscopy of unstained cells
NASA Astrophysics Data System (ADS)
Wu, Shu Yu; Dugan, Nazim; Hennelly, Bryan M.
2014-05-01
In the past decade there has been significant interest in image processing for brightfield cell microscopy. Much of the previous research on image processing for microscopy has focused on fluorescence microscopy, including cell counting, cell tracking, cell segmentation and autofocusing. Fluorescence microscopy provides functional image information that involves the use of labels in the form of chemical stains or dyes. For some applications, where the biochemical integrity of the cell is required to remain unchanged so that sensitive chemical testing can later be applied, it is necessary to avoid staining. For this reason the challenge of processing images of unstained cells has become a topic of increasing attention. These cells are often effectively transparent and appear to have a homogenous intensity profile when they are in focus. Bright field microscopy is the most universally available and most widely used form of optical microscopy and for this reason we are interested in investigating image processing of unstained cells recorded using a standard bright field microscope. In this paper we investigate the application of a range of different autofocus metrics applied to unstained bladder cancer cell lines using a standard inverted bright field microscope with microscope objectives that have high magnification and numerical aperture. We present a number of conclusions on the optimum metrics and the manner in which they should be applied for this application.
Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy
NASA Astrophysics Data System (ADS)
Peiponen, K.-E.; Saarinen, J. J.
2009-05-01
Kramers-Kronig (K-K) relations have constituted one of the principal tools in the optical spectroscopy for the assessment of the optical properties of media from measured spectra. The underlying principle for the existence of the K-K relations is causality. Thanks to the K-K relations we have achieved a better understanding of both macroscopic and microscopic properties of media. Recently, various kinds of modified K-K relations have been presented in the literature. Such relations have been applied, e.g. to the nonlinear optical properties of polymers. A typical advantage of these generalized K-K relations is that the measured data do not need to be manipulated as in the case of the traditional K-K relations. Hence, the accuracy of the inverted data on linear or nonlinear optical properties of media becomes higher. A novel way to utilize generalized K-K relations is related to the measurement and correction of terahertz spectra in the time-domain reflection spectroscopy. Terahertz spectroscopy is nowadays one of the most rapidly developing fields in modern physics with applications being related to, e.g. security at the airports or inspection of pharmaceutical tablets. While recording THz spectra it is also possible to perform a chemical mapping of species. Therefore, correctness of the spectrum is of crucial importance for the identification of different species. This is possible by the generalized K-K relations. In this review paper we consider advances of K-K relations both in nonlinear optical and THz spectroscopy.
Two-Photon Fluorescence Microscope for Microgravity Research
NASA Technical Reports Server (NTRS)
Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius
2005-01-01
A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the longer-wavelength excitation light and passes the shorter-wavelength fluorescence light. Also, the confocal pinhole has been removed to increase the signal strength. The laser beam is scanned by a twoperpendicular- axis pair of galvanometer mirrors through a pupil transfer lens into the side port of an inverted microscope. Finally, the beam is focused by a 63-magnification, 1.3-numerical- aperture oil-immersion objective lens onto a specimen. The pupil transfer lens serves to match the intermediate image planes of the scanning head and the microscope, and its location is critical. In order to maximize the quality of the image, (that is, the point spread function of the objective lens for all scan positions), the entire system was modeled in optical-design software, and the various free design parameters (the parameters of the spatial-filter components as well as the separations of all of the system components) were determined through an iterative optimization process. A modular design was chosen to facilitate access to the optical train for future fluorescence correlation spectroscopy and fluorescence-lifetime experiments.
sideSPIM - selective plane illumination based on a conventional inverted microscope.
Hedde, Per Niklas; Malacrida, Leonel; Ahrar, Siavash; Siryaporn, Albert; Gratton, Enrico
2017-09-01
Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa . Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.
Hennell, Claire; Jamison, Jackie; Wells, Michael; McCluggage, W Glenn
2012-03-01
We report 2 cases of a lesion that we term inverted papilloma of the lower female genital tract, occurring in the cervix and upper vagina of 60- and 50-year-old women, respectively. Microscopically, the features were similar to those of inverted transitional papilloma of the urinary bladder with interconnecting islands, trabeculae, and solid sheets of bland transitional epithelium with an inverted growth pattern. There were small foci of squamous and glandular differentiation in the cervical case. Linear array human papillomavirus genotyping revealed human papillomavirus type 42 in both cases. Inverted papilloma in the lower female genital tract is extremely rare with, as far as we are aware, only 3 previously reported similar cases in the cervix and none in the vagina. Our results suggest that these neoplasms when occurring in the lower female genital tract may be associated with low-risk human papillomavirus, perhaps specifically human papillomavirus 42. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Zili
Since the first optical microscope invented by Anton van Leeuwenhoek in 1674, the great development of laser technique and its applications in biophotonics have helped us reveal the mechanisms underlying numerous biological activities gradually. The introduction of fs lasers to the studies of biology has emerged as a fast developing area calling for the efforts and skills both from optics and electric engineering and biology and medicine. Due to the fast update of laser source techniques, there has been an increasing number of commercialized fs lasers available for this growing market of biophotonics. To better utilize the potential offered by fs lasers, we studied the technique of optical gene delivery and tried to narrow the gap between laboratorial research and industrial/clinical applications, in that the strict experimental conditions of specific optical laboratorial studies are generally not appropriate for the practical biological applications. To carry out our experiments, we built a two-stage amplifier fs laser system to generate the desired pulse train. The laser pulse train was coupled into an invert fluorescence microscope for the imaging and manipulation of each cell. To overcome limitations brought by the tight focus of laser beam due to high NA objective, we introduced gold nanorods (GNRs), a metallic nanomaterial, with tunable optical property. With these additional membrane for membrane permeabilization, which could significantly improve the manipulation speed than that based on the tightly focused laser. We used GFP plasmid to demonstrate the applications of this technique in gene delivery, and successfully transfected and GFP-expressed cells were observed one day after the optical transfection. Additionally, as an important trend of biophotonics, the integration of optics with microfluidic chips has become the new frontier of both biology and engineering. Here we firstly demonstrated a technique of gene delivery by an on-chip device generating surface acoustic waves, which not only achieved a high efficiency of cells permeabilization in a quick speed, but also allowed us to observe the permeabilization process in real time by microscope. This device is also compatible with biophotonics studies based on fs laser, which can be further developed as a powerful tool for optical gene delivery with the capability of precisely controlling the fluid on-chip by SAW. SAW devices could also achieve exogenous gene delivery through the cell membrane without the need of adding chemical agents. Our results showed that the membrane of mammalian adherent cells could be effectively perforated transiently by applying a SAW. The transfection of pEGFP plasmids into endothelial cells was carried out successfully via this SAW-induced cell perforation. The expression of GFP was observed after 24-hour incubation subsequent to the SAW treatment. In regard to the application of fs lasers in cellular and subcellular level studies, we applied the optical nanoscissoring technique based on fs lasers in biomechanical studies to study the mechanical properties of single SF in-situ. Integrated into a confocal microscope, the fs laser showed great power in manipulating targeted in-situ subcellular structures under real-time imaging without damaging nearby regions. Here, how oxidative challenges would alter the mechanical properties of SFs in myoblasts was firstly investigated using the optical nanoscissoring technique to comprehend the whole picture of muscle tissue injury and repair from the basics. The prestress of stress fibers after the oxidative challenges was found through our modified viscoelastic retraction model and experiment result.
Design and installation of a multimode microscopy system
NASA Astrophysics Data System (ADS)
Helm, Johannes P.; Haug, Finn-Mogens S.; Storm, Johan F.; Ottersen, Ole-Petter
2001-04-01
We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laser-scanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m X 1.5m X 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar+-Kr+ laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology - including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Furukawa, Ryo, E-mail: suzuki@mat.usp.ac.jp; Akiyama, Tsuyoshi, E-mail: suzuki@mat.usp.ac.jp
2015-02-27
Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.
Structured illumination to spatially map chromatin motions.
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre
2018-05-01
We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340 ± 30 nm, which simultaneously photoactivate a 7 × 7 matrix pattern of GFP-labeled histones, with spots 1.70 μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
The Inverted Snow Globe Shadow
NASA Astrophysics Data System (ADS)
Ribeiro, Jair Lúcio Prados
2015-01-01
Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram.1 When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig. 1, showing a snow globe exposed to sunlight and its inverted shadow. This paper offers an explanation of the problem, which occurs due to light refraction from the globe.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
The Scanning Optical Microscope.
ERIC Educational Resources Information Center
Sheppard, C. J. R.
1978-01-01
Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.
Implementation of stimulated Raman scattering microscopy for single cell analysis
NASA Astrophysics Data System (ADS)
D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi
2017-05-01
In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu
2009-01-21
A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.
Microscope collision protection apparatus
DeNure, Charles R.
2001-10-23
A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.
sideSPIM – selective plane illumination based on a conventional inverted microscope
Hedde, Per Niklas; Malacrida, Leonel; Ahrar, Siavash; Siryaporn, Albert; Gratton, Enrico
2017-01-01
Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa. Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system. PMID:29026679
NASA Astrophysics Data System (ADS)
Pal, Robert; Beeby, Andrew
2014-09-01
An inverted microscope has been adapted to allow time-gated imaging and spectroscopy to be carried out on samples containing responsive lanthanide probes. The adaptation employs readily available components, including a pulsed light source, time-gated camera, spectrometer and photon counting detector, allowing imaging, emission spectroscopy and lifetime measurements. Each component is controlled by a suite of software written in LabVIEW and is powered via conventional USB ports.
Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs
NASA Astrophysics Data System (ADS)
Kumar, Kitty; Lee, Kenneth K. C.; Nogami, Jun; Herman, Peter R.; Kherani, Nazir P.
2013-03-01
This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si) into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.
Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju
2018-04-25
Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.
2018-02-01
Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.
Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki
2011-03-01
A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
NASA Astrophysics Data System (ADS)
Snigireva, I.; Snigirev, A.
2013-10-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.
Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël
2013-06-01
How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.
Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C
2011-05-01
This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.
Limits of agreement between the optical pachymeter and a noncontact specular microscope.
Ogbuehi, Kelechi C; Almubrad, Turki M
2005-07-01
To determine the limits of agreement between central corneal thickness (CCT) measurements made with the slit lamp-attached optical pachymeter and the SP2000P noncontact specular microscope. Triplicate readings for CCT were obtained for each of 130 (right) eyes of 130 patients, using the slit lamp-attached optical pachymeter and then the SP2000P noncontact specular microscope. The average CCT measured by each method was compared. Subsequently, the mean difference between both sets of measurements was assessed, and the 95% confidence interval (limits of agreement) between both techniques was determined. The mean +/- SD CCT measured by the optical pachymeter was 543 +/- 34 microm and 532 +/- 34 microm for the specular microscope. We found a statistically significant (P < 0.001) mean bias of 10 mum between CCT values measured with both types of equipment, with the optical pachymeter returning the higher values. The coefficient of variation was 6.3% for the optical pachymeter and 6.4% for the specular microscope. The right eye CCT measurements made by the optical pachymeter are, on average, 10 mum thicker than those made with the SP2000P specular microscope, which suggests that both pieces of equipment cannot be used interchangeably to monitor CCT changes in patients. Excluding left eye measurements, the reliability of the optical pachymeter is identical to that of the noncontact specular microscope.
Imaging Schwarzschild multilayer X-ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted
1993-01-01
We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.
Gavino, V C; Milo, G E; Cornwell, D G
1982-03-01
Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.
Science 101: How Does an Electron Microscope Work?
ERIC Educational Resources Information Center
Robertson, Bill
2013-01-01
Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…
Adaptive optical microscope for brain imaging in vivo
NASA Astrophysics Data System (ADS)
Wang, Kai
2017-04-01
The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.
A multi-modal stereo microscope based on a spatial light modulator.
Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J
2013-07-15
Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.
NASA Astrophysics Data System (ADS)
Böhrer, J.; Krost, A.; Heitz, R.; Heinrichsdorff, F.; Eckey, L.; Bimberg, D.; Cerva, H.
1996-02-01
The optical and structural properties of the normal InAlAs on InP and the inverted InP on the InAlAs staggered band lineup interface grown by metalorganic chemical vapor deposition (MOCVD) are compared by use of transmission electron microscopy (TEM), time integrated, and time resolved photoluminescence. TEM images show that both interfaces are dissimilar. The normal interface is very abrupt. The inverted interface shows an additional graded layer of about 2.5 nm in width of In1-xAlxAsyP1-y with x (0.48-0) and y (1.0-0.0). A large optical anisotropy exists because of the inequivalence of the two interfaces. The larger spatial separation of the carriers at the inverted interface is responsible for a smaller overlap of the electron and hole wave functions and for that reason a one order of magnitude longer e-h luminescence decay time of 45 ns is observed. The normal interface transition shifts approximately to the third root of excitation while the inverted interface transition shifts logarithmically.
Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong
2011-06-01
The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.
Simple and robust image-based autofocusing for digital microscopy.
Yazdanfar, Siavash; Kenny, Kevin B; Tasimi, Krenar; Corwin, Alex D; Dixon, Elizabeth L; Filkins, Robert J
2008-06-09
A simple image-based autofocusing scheme for digital microscopy is demonstrated that uses as few as two intermediate images to bring the sample into focus. The algorithm is adapted to a commercial inverted microscope and used to automate brightfield and fluorescence imaging of histopathology tissue sections.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
Frost, William N; Wang, Jean; Brandon, Christopher J
2007-05-15
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.
Nonlinear model analysis of all-optical flip-flop and inverter operations of microring laser
NASA Astrophysics Data System (ADS)
Kobayashi, Naoki; Kawamura, Yusaku; Aoki, Ryosuke; Kokubun, Yasuo
2018-03-01
We explore a theoretical model of bistability at two adjacent lasing wavelengths from an InGaAs/InGaAsP multiple quantum well (MQW) microring laser. We show that nonlinear effects on the phase and amplitude play significant roles in the lasing operations of the microring laser. Numerical simulations indicate that all-optical flip-flop operations and inverter operations can be observed within the same device by controlling the injection current. The validity of our analysis is confirmed by a comparison of the results for numerical simulations with experimental results of the lasing spectrum. We believe that the analysis presented in this paper will be useful for the future design of all-optical signal processing devices.
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
Laser action by optically depumping lower states
Krupke, William F.
1977-01-01
A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Laser action by optically depumping lower states
Krupke, W.F.
1975-11-26
A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.
Open-top selective plane illumination microscope for conventionally mounted specimens.
McGorty, Ryan; Liu, Harrison; Kamiyama, Daichi; Dong, Zhiqiang; Guo, Su; Huang, Bo
2015-06-15
We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.
Wang, Ling; Chen, Dong; Gutierrez-Cuevas, Karla G; Bisoyi, Hari Krishna; Fan, Jing; Zola, Rafael S; Li, Guoqiang; Urbas, Augustine M; Bunning, Timothy J; Weitz, David A; Li, Quan
2017-01-01
Optically reconfigurable monodisperse chiral microspheres of self-organized helical superstructures with dynamic chirality were fabricated via a capillary-based microfluidic technique. Light-driven handedness-invertible transformations between different configurations of microspheres were vividly observed and optically tunable RGB photonic cross-communications among the microspheres were demonstrated.
Frost, William N.; Wang, Jean; Brandon, Christopher J.
2007-01-01
Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887
Yan, Yingjun; Jiang, Liwei; Aufderheide, Karl J.; Wright, Gus A.; Terekhov, Alexander; Costa, Lino; Qin, Kevin; McCleery, W. Tyler; Fellenstein, John J.; Ustione, Alessandro; Robertson, J. Brian; Johnson, Carl Hirschie; Piston, David W.; Hutson, M. Shane; Wikswo, John P.; Hofmeister, William; Janetopoulos, Chris
2014-01-01
A microcompressor is a precision mechanical device that flattens and immobilizes living cells and small organisms for optical microscopy, allowing enhanced visualization of sub-cellular structures and organelles. We have developed an easily fabricated device, which can be equipped with microfluidics, permitting the addition of media or chemicals during observation. This device can be used on both upright and inverted microscopes. The apparatus permits micrometer precision flattening for nondestructive immobilization of specimens as small as a bacterium, while also accommodating larger specimens, such as Caenorhabditis elegans, for long-term observations. The compressor mount is removable and allows easy specimen addition and recovery for later observation. Several customized specimen beds can be incorporated into the base. To demonstrate the capabilities of the device, we have imaged numerous cellular events in several protozoan species, in yeast cells, and in Drosophila melanogaster embryos. We have been able to document previously unreported events, and also perform photobleaching experiments, in conjugating Tetrahymena thermophila. PMID:24444078
NASA Astrophysics Data System (ADS)
Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.
2012-12-01
Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.
Practical Guide for Ascidian Microinjection: Phallusia mammillata.
Yasuo, Hitoyoshi; McDougall, Alex
2018-01-01
Phallusia mammillata has recently emerged as a new ascidian model. Its unique characteristics, including the optical transparency of eggs and embryos and efficient translation of exogenously introduced mRNA in eggs, make the Phallusia system suitable for fluorescent protein (FP)-based imaging approaches. In addition, genomic and transcriptomic resources are readily available for this ascidian species, facilitating functional gene studies. Microinjection is probably the most versatile technique for introducing exogenous molecules such as plasmids, mRNAs, and proteins into ascidian eggs/embryos. However, it is not practiced widely within the community; presumably, because the system is rather laborious to set up and it requires practice. Here, we describe in as much detail as possible two microinjection methods that we use daily in the laboratory: one based on an inverted microscope and the other on a stereomicroscope. Along the stepwise description of system setup and injection procedure, we provide practical tips in the hope that this chapter might be a useful guide for introducing or improving a microinjection setup.
Dual-view plane illumination microscopy for rapid and spatially isotropic imaging
Kumar, Abhishek; Wu, Yicong; Christensen, Ryan; Chandris, Panagiotis; Gandler, William; McCreedy, Evan; Bokinsky, Alexandra; Colón-Ramos, Daniel A; Bao, Zhirong; McAuliffe, Matthew; Rondeau, Gary; Shroff, Hari
2015-01-01
We describe the construction and use of a compact dual-view inverted selective plane illumination microscope (diSPIM) for time-lapse volumetric (4D) imaging of living samples at subcellular resolution. Our protocol enables a biologist with some prior microscopy experience to assemble a diSPIM from commercially available parts, to align optics and test system performance, to prepare samples, and to control hardware and data processing with our software. Unlike existing light sheet microscopy protocols, our method does not require the sample to be embedded in agarose; instead, samples are prepared conventionally on glass coverslips. Tissue culture cells and Caenorhabditis elegans embryos are used as examples in this protocol; successful implementation of the protocol results in isotropic resolution and acquisition speeds up to several volumes per s on these samples. Assembling and verifying diSPIM performance takes ~6 d, sample preparation and data acquisition take up to 5 d and postprocessing takes 3–8 h, depending on the size of the data. PMID:25299154
Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.
Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S
2013-01-01
Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.
NASA Astrophysics Data System (ADS)
Ali, Sabir; Ray, Ayan; Chakrabarti, Alok
2016-02-01
Electromagnetically Induced Transparency as a novel type optical memory has gained enough attention in the field of research related to optical communication. This kind of transparency is an artificially created spectral window used to slow and spatially compress light pulses. Hence controlling and manipulation of such transparency window in a multilevel atom-photon system will, in turn, help in opening newer avenues of applications. In the present work an inverted Y linkage (established in the 5S1/2 → 5P3/2 → 5D5/2 hyperfine levels of 87Rb atom) is used for this purpose. The formation of matched double dark resonance in the system has been studied in details. On the application front we have demonstrated using the system as an attenuator of optical switch. This type of necessity may arise for futuristic optical communication system. Overall the system response resembles the performance of a combination logic gate.
Light sensing in a photoresponsive, organic-based complementary inverter.
Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon
2011-05-01
A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Koyama, Satoshi; Nakamura, Yosuke; Yokoyama, Yuko; Morisaki, Tsuyoshi; Fukuhara, Takahiro; Fujiwara, Kazunori; Kitano, Hiroya; Takeuchi, Hiromi
2017-10-01
Basaloid squamous cell carcinoma (BSCC) is a histologically distinctive variant of squamous cell carcinoma comprising basal cell carcinoma and squamous cell carcinoma. BSCC is aggressive and shows a poor prognosis because of frequent lymph node invasion and distant metastases. BSCC preferentially occurs in the cervix, thymus, and esophagus and is uncommonly found in the head and neck region. BSCC in the nasal cavity or paranasal sinus is particularly rare. Inverted papilloma is an uncommon, benign tumor with a propensity to be associated with malignancy; however, BSCC arising in an inverted papilloma has never been reported. Here we report a case of a 56-year-old woman with BSCC arising in an inverted papilloma in the nasal cavity. The woman was referred to our hospital for epistaxis, nasal congestion, and dysphagia. A tumor was observed to completely occupy the left nasal cavity. The biopsy specimen was histologically diagnosed as papilloma. Computed tomography demonstrated a tumor with heterogeneous contrast effect occupying the left nasal cavity; however, extra-nasal tract extension was not observed. We performed endoscopic excision of the tumor. Microscopic findings confirmed the diagnosis of BSCC arising from an inverted papilloma. No tumor recurrence has been observed for 13 months after surgery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A compact light-sheet microscope for the study of the mammalian central nervous system
Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan
2016-01-01
Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692
Factors affecting the transverse force measurements of an optical trap: I
NASA Astrophysics Data System (ADS)
Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew
2002-03-01
The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.
Evaluation of a completely robotized neurosurgical operating microscope.
Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf
2013-01-01
Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
Topical Treatment of Cutaneous Leishmaniasis W/WR279396 Phase II Study. Addendum
2006-07-01
France) g. Tape so seal plates h. Sterile flat-bottom 96-well plates i. Inverted microscope with trail (France) j . Cryomarkers 2. Check list 2...Subinvestigators: Nathalie Messaoud Amor Zaâtour Abdelkarim El Fahem Nabil Haj Hmida OBJECTIVE To collaborate with the monitoring visit SUNDAY 19/02
Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan
2011-06-01
We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America
Generic distortion model for metrology under optical microscopes
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng
2018-04-01
For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.
Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis
2015-09-01
We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.
Hyperlens-array-implemented optical microscopy
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2014-08-01
Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.
Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan
2017-12-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates
Sicilia, Giovanna; Shipp, Dustin W.; Marlow, Maria; Notingher, Ioan
2017-01-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering. PMID:28828895
Novel instrumentation for multifield time-lapse cinemicrography.
Kallman, R F; Blevins, N; Coyne, M A; Prionas, S D
1990-04-01
The most significant feature of the system that is described is its ability to image essentially simultaneously the growth of up to 99 single cells into macroscopic colonies, each in its own microscope field. Operationally, fields are first defined and programmed by a trained observer. All subsequent steps are automatic and under computer control. Salient features of the hardware are stepper motor-controlled movement of the stage and fine adjustment of an inverted microscope, a high-quality 16-mm cine camera with light meter and controls, and a miniature incubator in which cells may be grown under defined conditions directly on the microscope stage. This system, termed MUTLAS, necessitates reordering of the primary images by rephotographing them on fresh film. Software developed for the analysis of cell and colony growth requires frame-by-frame examination of the secondary film and the use of a mouse-driven cursor to trace microscopically visible (4X objective magnification) events.
An automatic system to study sperm motility and energetics
Nascimento, Jaclyn M.; Chandsawangbhuwana, Charlie; Botvinick, Elliot L.; Berns, Michael W.
2012-01-01
An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm’s mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry. PMID:18299996
An automatic system to study sperm motility and energetics.
Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W
2008-08-01
An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry.
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
NASA Astrophysics Data System (ADS)
Ding, Kun; Chan, C. T.
2018-04-01
The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.
Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E
2017-12-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.
2017-01-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505
Optical path difference microscopy with a Shack-Hartmann wavefront sensor.
Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb
2017-06-01
In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.
Design of small confocal endo-microscopic probe working under multiwavelength environment
NASA Astrophysics Data System (ADS)
Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab
2010-02-01
Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.
Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency
NASA Astrophysics Data System (ADS)
Ding, Yin-Xing; Wang, Lu-Lu; Yu, Li
2018-01-01
Not Available Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041, 11574035 and 11404030, and the State Key Laboratory of Information Photonics and Optical Communications.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2015-11-24
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-10-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2016-11-22
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
Microscopy imaging device with advanced imaging properties
Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei
2017-04-25
Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn
An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
Images from Phoenix's MECA Instruments
NASA Technical Reports Server (NTRS)
2008-01-01
The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008). A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world. The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Siebelmann, Sebastian; Steven, Philipp; Hos, Deniz; Hüttmann, Gereon; Lankenau, Eva; Bachmann, Björn; Cursiefen, Claus
2016-01-01
Boston keratoprosthesis (KPro) type I is a technique to treat patients with corneal diseases that are not amenable to conventional keratoplasty. Correct assembly and central implantation of the prosthesis are crucial for postoperative visual recovery. This study investigates the potential benefit of intraoperative optical coherence tomography (OCT) to monitor KPro surgery. Retrospective case series are presented for two patients who underwent Boston KPro type I implantation. The surgery in both patients was monitored intraoperatively using a commercially available intraoperative OCT (iOCT) device mounted on a surgical microscope. Microscope-integrated intraoperative OCT was able to evaluate the correct assembly and implantation of the KPro. All parts of the prosthesis were visible, and interfaces between the corneal graft and titanium backplate or anterior optics were clearly depictable. Moreover, iOCT visualized a gap between the backplate and graft in one case, and in the other case, a gap between the anterior optic and graft. Neither gap was visible with a conventional surgical microscope. The gap between the anterior optic and the graft could easily be corrected. Microscope-integrated iOCT delivers enhanced information, adding to the normal surgical microscope view during KPro surgery. Correct assembly can be controlled as well as the correct placement of the Boston KPro into the anterior chamber.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.
2016-01-01
We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703
Biomedical nuclear and X-ray imager using high-energy grazing incidence mirrors
Ziock, Klaus-Peter; Craig, William W.; Hasegawa, Bruce; Pivovaroff, Michael J.
2005-09-27
Imaging of radiation sources located in a subject is explored for medical applications. The approach involves using grazing-incidence optics to form images of the location of radiopharmaceuticals administered to a subject. The optics are "true focusing" optics, meaning that they project a real and inverted image of the radiation source onto a detector possessing spatial and energy resolution.
Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo
2015-01-01
The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360
NASA Astrophysics Data System (ADS)
Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick
2018-05-01
We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.
Linear laser diode arrays for improvement in optical disk recording
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.
In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography
Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong
2016-01-01
Since its first implementation in otolaryngological surgery nearly a century ago, the surgical microscope has improved the accuracy and the safety of microsurgeries. However, the microscope shows only a magnified surface view of the surgical region. To overcome this limitation, either optical coherence tomography (OCT) or photoacoustic microscopy (PAM) has been independently combined with conventional surgical microscope. Herein, we present a near-infrared virtual intraoperative photoacoustic optical coherence tomography (NIR-VISPAOCT) system that combines both PAM and OCT with a conventional surgical microscope. Using optical scattering and absorption, the NIR-VISPAOCT system simultaneously provides surgeons with real-time comprehensive biological information such as tumor margins, tissue structure, and a magnified view of the region of interest. Moreover, by utilizing a miniaturized beam projector, it can back-project 2D cross-sectional PAM and OCT images onto the microscopic view plane. In this way, both microscopic and cross-sectional PAM and OCT images are concurrently displayed on the ocular lens of the microscope. To verify the usability of the NIR-VISPAOCT system, we demonstrate simulated surgeries, including in vivo image-guided melanoma resection surgery and in vivo needle injection of carbon particles into a mouse thigh. The proposed NIR-VISPAOCT system has potential applications in neurosurgery, ophthalmological surgery, and other microsurgeries. PMID:27731390
Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca
2005-04-01
For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.
Analytical model of the optical vortex microscope.
Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2016-04-20
This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
Majima, K
1998-01-01
To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
2005-12-31
are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for
The Inverted Snow Globe Shadow
ERIC Educational Resources Information Center
Ribeiro, Jair Lúcio Prados
2015-01-01
Our high school optics course finishes with an assignment that students usually appreciate. They must take pictures of everyday situations representing optical phenomena such as reflection, refraction, or dispersion, and post them on Instagram. When the photos were presented to the class, one student revealed an intriguing photo, similar to Fig.…
Characterisation of a resolution enhancing image inversion interferometer.
Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer
2009-08-31
Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.
Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup
NASA Astrophysics Data System (ADS)
Piga, Rosaria; Micheletto, Ruggero; Kawakami, Yoichi
2007-04-01
The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s life, such as cell cycle and cell death, on rat pheochromocytoma line PC12. Working in culture medium with alive and unperturbed samples, we could detect nanometer-sized movements; Fourier components revealed a clear distinct behavior associated to regulation of neurite outgrowth and changes on morphology after necrotic stimulus.
40-Gbit/s all-optical circulating shift register with an inverter.
Hall, K L; Donnelly, J P; Groves, S H; Fennelly, C I; Bailey, R J; Napoleone, A
1997-10-01
We report what is believed to be the first demonstration of an all-optical circulating shift register using an ultrafast nonlinear interferometer with a polarization-insensitive semiconductor optical amplifier as the nonlinear switching element. The device operates at 40 Gbits/s, to our knowledge the highest speed demonstrated to date. Also, the demonstration proves the cascadability of the ultrafast nonlinear interferometric switch.
Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng
2015-09-30
Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.
Miniaturized microscope for high throughput screening of tumor spheroids in microfluidic devices
NASA Astrophysics Data System (ADS)
Uranga, Javier; Rodríguez-Pena, Alejandro; Gahigiro, Desiré; Ortiz-de-Solorzano, Carlos
2018-02-01
High-throughput in vitro screening of highly physiological three-dimensional cell cultures (3D-HTS) is rapidly gaining importance in preclinical studies, to study the effect of the microenvironment in tumor development, and to evaluate the efficacy of new anticancer drugs. Furthermore, it could also be envisioned the use of 3D-HTS systems in personalized anti-cancer treatment planning, based on tumor organoids or spheroids grown from tumor biopsies or isolated tumor circulating cells. Most commercial, multi-well plate based 3D-HTS systems are large, expensive, and are based on the use of multi-well plates that hardly provide a physiological environment and require the use of large amounts of biological material and reagents. In this paper we present a novel, miniaturized inverted microscope (hereinafter miniscospe), made up of low-cost, mass producible parts, that can be used to monitor the growth of living tumor cell spheroids within customized three-dimensional microfluidic platforms. Our 3D-HTS miniscope combines phase contrast imaging based on oblique back illumination technique with traditional widefield epi-fluorescence imaging, implemented using miniaturized electro-optical parts and gradient-index refraction lenses. This small (3x6x2cm), lightweight device can effectively image overtime the growth of (>200) tumor spheroids in a controlled and reproducible environment. Our miniscope can be used to acquire time-lapse images of cellular living spheroids over the course of several hours and captures their growth before and after drug treatment, to evaluate the effectiveness of the drug.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, Evgeny
Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
The optics of microscope image formation.
Wolf, David E
2013-01-01
Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
NASA Astrophysics Data System (ADS)
Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam
2011-08-01
Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.
Portable, battery-operated, fluorescence field microscope for the developing world
NASA Astrophysics Data System (ADS)
Miller, Andrew R.; Davis, Gregory; Pierce, Mark; Oden, Z. Maria; Richards-Kortum, Rebecca
2010-02-01
In many areas of the world, current methods for diagnosis of infectious diseases such as malaria and tuberculosis involve microscopic evaluation of a patient specimen. Advances in fluorescence microscopy can improve diagnostic sensitivity and reduce time and expertise necessary to interpret diagnostic results. However, modern research-grade microscopes are neither available nor appropriate for use in many settings in the developing world. To address this need, we designed, fabricated, and tested a portable, battery-powered, bright field and fluorescence inverted field microscope, optimized for infrastructural constraints of the developing world. We characterized an initial prototype constructed with rapidprototyping techniques, which utilized low-cost, over-the-counter components such as a battery-powered LED flashlight as the light source. The microscope exhibited suitable spatial resolution (0.8 μm) in fluorescence mode to resolve M. tuberculosis bacilli. In bright field mode, malaria parasites were resolvable at 1000x magnification. The initial prototype cost 480 USD and we estimate that the microscope can be manufactured for 230 USD. While future studies are planned to evaluate ease-of-use and reliability, our current system serves as a proof of concept that combined fluorescence and bright field microscopy is possible in a low-cost and portable system.
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Hayashi, Shinichi; Okada, Yasushi
2015-05-01
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Sol-gel derived ZnO as an electron transport layer (ETL) for inverted organic solar cells
NASA Astrophysics Data System (ADS)
Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Phukhrambam; Chandel, Tarun; Sharma, Rishi
2017-05-01
In this work, we present the study of the fabrication process of the sol-gel derived zinc oxide (ZnO) as an electron transport layer (ETL.). The solution processed inverted bulk heterojunction organic solar cells based on a thin film blend of poly (3-hexylthiophene 2, 5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester is prepared. ZnO thin films are annealed at different temperature to optimize the solar cell performance and their characterization for their structural and optical properties are carried out. We have observed Voc=70mV, Jsc=1.33 µA/cm2 and FF=26% from the inverted heterojunction solar cell.
HIGH TEMPERATURE MICROSCOPE AND FURNACE
Olson, D.M.
1961-01-31
A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.
Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin
2017-01-25
Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.
NASA Technical Reports Server (NTRS)
Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.
1999-01-01
The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
Nazaretski, Evgeny
2018-06-13
Evgeny Nazaretski, a physicist at Brookhaven Labâs National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring
NASA Astrophysics Data System (ADS)
Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua
2017-10-01
Inverted type-I heterostructure core/crown quantum rings (QRs) are quantum-efficient luminophores, whose spectral characteristics are highly tunable. Here, we study the optoelectronic properties of type-I core/crown CdS/CdSe QRs in the zincblende phase—over contrasting lateral size and crown width. For this, we inspect their strain profiles, transition energies, transition matrix elements, spatial charge densities, electronic bandstructures, band-mixing probabilities, optical gain spectra, maximum optical gains, and differential optical gains. Our framework uses an effective-mass envelope function theory based on the 8-band k ṡ p method employing the valence force field model for calculating the atomic strain distributions. The gain calculations are based on the density-matrix equation and take into consideration the excitonic effects with intraband scattering. Variations in the QR lateral size and relative widths of core and crown (ergo the composition) affect their energy levels, band-mixing probabilities, optical transition matrix elements, emission wavelengths/intensities, etc. The optical gain of QRs is also strongly dimension and composition dependent with further dependency on the injection carrier density causing the band-filling effect. They also affect the maximum and differential gain at varying dimensions and compositions.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Optical anisotropy of the human cornea determined with a polarizing microscope.
Bone, Richard A; Draper, Grenville
2007-12-01
We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12 degrees to 40 degrees (mean+/-SD=31 degrees +/-8 degrees ). The optic axial plane always inclined downward in the nasal direction at 1 degrees -45 degrees below the horizontal (mean+/-SD=22+/-13 degrees ). The retardance produced by the corneas was estimated to be less than 200 nm. In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.
Ponti, Giovanni; Muscatello, Umberto; Sgantzos, Markos
2015-01-01
For a long period the scientists did not recognized the potentialities of the compound microscope in medicine. Only few scientists recognized the potentialities of the microscope for the medicine; among them G. Campani who proposed the utilization of his microscope to investigate the skin lesions directly on the patient. The proposal was illustrated in a letter Acta Eruditorum of 1686. The recent development of optical techniques, capable of providing in-focus images of an object from different planes with high spatial resolution, significantly increased the diagnostic potential of the microscope directly on the patient.
Design of an imaging microscope for soft X-ray applications
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
1988-01-01
An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.
Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich
2009-09-01
Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.
Classification of Salmonella serotypes with hyperspectral microscope imagery
USDA-ARS?s Scientific Manuscript database
Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...
Internal scanning method as unique imaging method of optical vortex scanning microscope
NASA Astrophysics Data System (ADS)
Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2018-06-01
The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
NASA Astrophysics Data System (ADS)
Steidtner, Jens; Pettinger, Bruno
2007-10-01
An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
Micropaleontological studies of lunar and terrestrial precambrian materials
NASA Technical Reports Server (NTRS)
Schope, J. W.
1974-01-01
Optical microscopic and scanning electron microscopic studies of rock chips and dust returned by Apollo 14, 15, 16, and 17 are analyzed along with optical microscopic studies of petrographic thin sections of breccias and basalts returned by Apollo 14, 15, and 16. Results show no evidence of modern or fossil lunar organisms. The lunar surface is now, and apparently has been throughout the geologic past, inimical to known biologic systems.
Drace, Kevin; Couch, Brett; Keeling, Patrick J.
2012-01-01
The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Water window imaging x ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.
Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh
2016-07-13
We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.
NASA Astrophysics Data System (ADS)
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.
Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T
2016-11-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.
Cho, Nam Hyun; Jang, Jeong Hun; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application. PMID:24787787
(Gene sequencing by scanning molecular exciton microscopy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
Chan, K L Andrew; Kazarian, Sergei G
2008-10-01
Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)
NASA Astrophysics Data System (ADS)
De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.
2011-03-01
We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.
Integrated Real-Time Control and Imaging System for Microbiorobotics and Nanobiostructures
2016-01-11
kit with a control board and ALP 4.1 basic controller suite. The digital micromirror device is the highest resolution 16:9 aspect ratio system. This...in Figure 1, consisted of the following: (1) digital micromirror device (DMD) and controller, (2) an inverted epifluorescence microscope with a flat...accompanying control board and ALP 4.1 basic controller suite. The digital micromirror device is currently the highest commercially available
Assessment of a liquid lens enabled in vivo optical coherence microscope.
Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P
2010-06-01
The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.
Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-Infrared
2015-11-13
field characterization of nanoscale materials, it also complements the near- field scanning optical microscope currently available in the PI’s lab...field scanning optical microscope currently available in the PI’s lab. This equipment will begin making major impacts on at least three current DoD...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6
Microscopic Engine Powered by Critical Demixing
NASA Astrophysics Data System (ADS)
Schmidt, Falko; Magazzù, Alessandro; Callegari, Agnese; Biancofiore, Luca; Cichos, Frank; Volpe, Giovanni
2018-02-01
We experimentally demonstrate a microscopic engine powered by the local reversible demixing of a critical mixture. We show that, when an absorbing microsphere is optically trapped by a focused laser beam in a subcritical mixture, it is set into rotation around the optical axis of the beam because of the emergence of diffusiophoretic propulsion. This behavior can be controlled by adjusting the optical power, the temperature, and the criticality of the mixture.
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application
NASA Astrophysics Data System (ADS)
Liu, Zhihai; Guo, Chengkai; Yang, Jun; Yuan, Libo
2006-12-01
A novel single tapered fiber optical tweezers is proposed and fabricated by heating and drawing technology. The microscopic particle tapping performance of this special designed tapered fiber probe is demonstrated and investigated. The distribution of the optical field emerging from the tapered fiber tip is numerically calculated based on the beam propagation method. The trapping force FDTD analysis results, both axial and transverse, are also given.
USDA-ARS?s Scientific Manuscript database
The acquisition of hyperspectral microscopic images containing both spatial and spectral data has shown potential for the early and rapid optical classification of foodborne pathogens. A hyperspectral microscope with a metal halide light source and acousto-optical tunable filter (AOTF) collects 89 ...
USDA-ARS?s Scientific Manuscript database
Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...
The design and fabrication of an inverted IR optical trap
NASA Astrophysics Data System (ADS)
Zhu, Tianchun; Feng, Xiuzhou; Fang, Jianxing
2005-02-01
Optical tweezers offer the unique ability to manipulate particles dispersed in a liquid medium without any mechanical contact. It can trap, move and position a wide variety of living cells and sub-cellular particles. The nature of the technique has led to its predominant use in the fields of medicine and microbiology. On the other hand, different biomedical experiments require the traps with different structures and characteristics. Commercial optical tweezers are very expensive and they can"t meet the demands of some special experiments. In this paper, the authors describe a detailed recipe for fabrication of an inverted optical trap. The system uses a single mode laser with the wavelength of 1064 nm so as not to damage the living organisms. The system has a platform whose temperature is tunable at a range of 20-40°C and can be stabilized by a controller. The system is also has a video device. The significant advantage of the system is low cost and easy to be operated. It especially fits the labs that are short of fund but interested in the application of optical trap in research of living cells. By means of the system, the authors do the experiments on control over the neuronal growth successfully.
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali
2016-03-15
To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.
A pragmatic guide to multiphoton microscope design
Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff
2016-01-01
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429
Design of a normal incidence multilayer imaging x-ray microscope.
Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W
1989-01-01
Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon
2018-01-18
The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.
NASA Astrophysics Data System (ADS)
Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.
2014-02-01
A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.
Augmented microscopy with near-infrared fluorescence detection
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-03-01
Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.
Sluder, Greenfield; Nordberg, Joshua J
2013-01-01
This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.
2017-05-05
results of this project there are: (1) the investigation of the effect of phonons on the optical properties of solid state emitters. A microscopic ...In what follows we list the main results and undergoing research. 2. Results 2.1 Microscopic modeling...fluorescent markers for biological measurements. Here, we present a first-‐principles microscopic description
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Feicht, W; Buchner, A; Riesenberg, R
2001-05-01
Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.
Beltran-Parrazal, Luis; Morgado-Valle, Consuelo; Serrano, Raul E; Manzo, Jorge; Vergara, Julio L
2014-03-30
One of the limitations when establishing an electrophysiology setup, particularly in low resource settings, is the high cost of microscopes. The average cost for a microscope equipped with the optics for infrared (IR) contrast or microfluorometry is $40,000. We hypothesized that optical elements and features included in commercial microscopes are not necessary to IR video-visualize neurons or for microfluorometry. We present instructions for building a low-cost epifluorescence upright microscope suitable for visualized patch-clamp recording and fluorescence detection using mostly catalog-available parts. This microscope supports applications such as visualized whole-cell recording using IR oblique illumination (IR-OI), or more complex applications such as microfluorometry using a photodiode. In both IR-OI and fluorescence, actual resolution measured with 2-μm latex beads is close to theoretical resolution. The lack of movable parts to switch configurations ensures stability when doing intracellular recording. The low cost is a significant advantage of this microscope compared to existent custom-built microscopes. The cost of the simplest configuration with IR-OI is ∼$2000, whereas the cost of the configuration with epifluorescence is ∼$5000. Since this design does not use pieces discarded from commercial microscopes, it is completely reproducible. We suggest that this microscope is a viable alternative for doing in vitro electrophysiology and microfluorometry in low-resource settings. Characteristics such as an open box design, easy assembly, and low-cost make this microscope a useful instrument for science education and teaching for topics such as optics, biology, neuroscience, and for scientific "hands-on" workshops. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi
2018-05-01
The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.
Skogen, Erik J [Albuquerque, NM; Raring, James [Goleta, CA; Tauke-Pedretti, Anna [Albuquerque, NM
2011-08-09
An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Schwertner, M; Booth, M J; Neil, M A A; Wilson, T
2004-01-01
Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.
Nanoscale molecularly imprinted polymers and method thereof
Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA
2008-06-10
Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.
Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A
2018-01-10
To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.
NASA Astrophysics Data System (ADS)
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.
2016-01-01
Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616
Development of HiLo Microscope and its use in In-Vivo Applications
NASA Astrophysics Data System (ADS)
Patel, Shreyas J.
The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.
2013-03-21
be modified to create a non -inverting output as well. The probe beam is initially injected at a slightly higher frequency than the slave mode so...input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non -injected Fabry–Perot modes, is induced, yielding a...laser diode), SLD (slave laser diode), EOM (electro-optic modulator), P (polarizer), OI (optical isolator), G (grating), L (lens), BE ( beam expander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx
In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian
2016-03-01
Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
Near-field deformation of a liquid interface by atomic force microscopy.
Mortagne, C; Chireux, V; Ledesma-Alonso, R; Ogier, M; Risso, F; Ondarçuhu, T; Legendre, D; Tordjeman, Ph
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μm. We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant H_{pl} is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012)PLEEE81539-375510.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance d_{min} below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
Near-field deformation of a liquid interface by atomic force microscopy
NASA Astrophysics Data System (ADS)
Mortagne, C.; Chireux, V.; Ledesma-Alonso, R.; Ogier, M.; Risso, F.; Ondarçuhu, T.; Legendre, D.; Tordjeman, Ph.
2017-07-01
We experiment the interaction between a liquid puddle and a spherical probe by Atomic Force Microscopy (AFM) for a probe radius R ranging from 10 nm to 30 μ m . We have developed a new experimental setup by coupling an AFM with a high-speed camera and an inverted optical microscope. Interaction force-distance curves (in contact mode) and frequency shift-distance curves (in frequency modulation mode) are measured for different bulk model liquids for which the probe-liquid Hamaker constant Hp l is known. The experimental results, analyzed in the frame of the theoretical model developed in Phys. Rev. Lett. 108, 106104 (2012), 10.1103/PhysRevLett.108.106104 and Phys. Rev. E 85, 061602 (2012), 10.1103/PhysRevE.85.061602, allow to determine the "jump-to-contact" critical distance dmin below which the liquid jumps and wets the probe. Comparison between theory and experiments shows that the probe-liquid interaction at nanoscale is controlled by the liquid interface deformation. This work shows a very good agreement between the theoretical model and the experiments and paves the way to experimental studies of liquids at the nanoscale.
Oscillatory magnetic tweezers based on ferromagnetic beads and simple coaxial coils
NASA Astrophysics Data System (ADS)
Trepat, Xavier; Grabulosa, Mireia; Buscemi, Lara; Rico, Fèlix; Fabry, Ben; Fredberg, Jeffrey J.; Farré, Ramon
2003-09-01
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 μm magnetite beads obtaining forces up to ˜2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy
Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert
2006-01-01
We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
Liu, Lijia; Ousaka, Naoki; Horie, Miki; Mamiya, Fumihiko; Yashima, Eiji
2016-09-27
A preferred-handed helicity induced in an optically-inactive poly(phenyleneethynylene)-based foldamer bearing carboxylic acid pendants upon complexation with a single enantiomeric diamine was subsequently inverted into the opposite helix upon further addition of the diamine, accompanied by a remarkable change in the stability of the helices.
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
Thermal emission and absorption of radiation in finite inverted-opal photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang
We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
NASA Technical Reports Server (NTRS)
Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John
2008-01-01
Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.
Structured illumination 3D microscopy using adaptive lenses and multimode fibers
NASA Astrophysics Data System (ADS)
Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios
2017-06-01
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.
Vokes, David E.; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A.; Su, Jianping; Ridgway, James M.; Armstrong, William B.; Chen, Zhongping; Wong, Brian J. F.
2014-01-01
Objectives Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. Methods We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. Results An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Conclusions Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 µm, in contrast to the conventional handheld probe system (10 µm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system’s performance, potentially enabling real-time OCT-guided microsurgery of the larynx. PMID:18700431
Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-01-01
We report a field-portable lensless on-chip microscope with a lateral resolution of <1 μm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
Vawter, G Allen [Corrales, NM
2010-08-31
An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.
Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Hartmann, F.; Pfenning, A.; Rebello Sousa Dias, M.; Langer, F.; Höfling, S.; Kamp, M.; Worschech, L.; Castelano, L. K.; Marques, G. E.; Lopez-Richard, V.
2017-10-01
We study the electroluminescence (EL) emission of purely n-doped resonant tunneling diodes in a wide temperature range. The paper demonstrates that the EL originates from impact ionization and radiative recombination in the extended collector region of the tunneling device. Bistable current-voltage response and EL are detected and their respective high and low states are tuned under varying temperature. The bistability of the EL intensity can be switched from direct to inverted with respect to the tunneling current and the optical on/off ratio can be enhanced with increasing temperature. One order of magnitude amplification of the optical on/off ratio can be attained compared to the electrical one. Our observation can be explained by an interplay of moderate peak-to-valley current ratios, large resonance voltages, and electron energy loss mechanisms, and thus, could be applied as an alternative route towards optoelectronic applications of tunneling devices.
Polymeric lithography editor: Editing lithographic errors with nanoporous polymeric probes
Rajasekaran, Pradeep Ramiah; Zhou, Chuanhong; Dasari, Mallika; Voss, Kay-Obbe; Trautmann, Christina; Kohli, Punit
2017-01-01
A new lithographic editing system with an ability to erase and rectify errors in microscale with real-time optical feedback is demonstrated. The erasing probe is a conically shaped hydrogel (tip size, ca. 500 nm) template-synthesized from track-etched conical glass wafers. The “nanosponge” hydrogel probe “erases” patterns by hydrating and absorbing molecules into a porous hydrogel matrix via diffusion analogous to a wet sponge. The presence of an interfacial liquid water layer between the hydrogel tip and the substrate during erasing enables frictionless, uninterrupted translation of the eraser on the substrate. The erasing capacity of the hydrogel is extremely high because of the large free volume of the hydrogel matrix. The fast frictionless translocation and interfacial hydration resulted in an extremely high erasing rate (~785 μm2/s), which is two to three orders of magnitude higher in comparison with the atomic force microscopy–based erasing (~0.1 μm2/s) experiments. The high precision and accuracy of the polymeric lithography editor (PLE) system stemmed from coupling piezoelectric actuators to an inverted optical microscope. Subsequently after erasing the patterns using agarose erasers, a polydimethylsiloxane probe fabricated from the same conical track-etched template was used to precisely redeposit molecules of interest at the erased spots. PLE also provides a continuous optical feedback throughout the entire molecular editing process—writing, erasing, and rewriting. To demonstrate its potential in device fabrication, we used PLE to electrochemically erase metallic copper thin film, forming an interdigitated array of microelectrodes for the fabrication of a functional microphotodetector device. High-throughput dot and line erasing, writing with the conical “wet nanosponge,” and continuous optical feedback make PLE complementary to the existing catalog of nanolithographic/microlithographic and three-dimensional printing techniques. This new PLE technique will potentially open up many new and exciting avenues in lithography, which remain unexplored due to the inherent limitations in error rectification capabilities of the existing lithographic techniques. PMID:28630898
Wu, Min-Kai; de Groot, Sjoerd D; van der Sluis, Luc W M; Wesselink, Paul R
2003-09-01
We sought to measure and calculate the percentage of the gutta-percha-filled area in the apical root canal after the use of a standardized or inverted master cone in cold lateral compaction.Study design Two groups of extracted mandibular premolars with a single canal were instrumented with instruments of the same size; furthermore, they were obturated with laterally compacted gutta-percha cones with AH26 used as a sealer. In the first group, a standardized master cone was used with its narrow end in an apical position, whereas in the other group, an inverted master cone was used with its wide end in an apical position. The 2 master cones had the same apical diameter and fit in the apical canal. After lateral compaction, horizontal sections were cut at a level 3 and 5 mm from the apex of each filled tooth. Photographs of the sections were taken by using a microscope equipped with a digital camera; the photos were then scanned as tagged-image file format images. The cross-sectional area of the canal and the gutta-percha were measured by using an image-analysis program. The percentage of gutta-percha-filled area was calculated. At both levels, the inverted master cone produced a significantly higher percentage, statistically, of gutta-percha-filled area than did the standardized master cone (P =.001 at 3 mm; P =.012 at 5 mm). The use of an inverted master cone in cold lateral compaction may facilitate the apical placement of accessory cones, significantly increasing the volume of gutta-percha while reducing the volume of sealer in the apical root canal.
Annealing Effect on (FAPbI3)1−x(MAPbBr3)x Perovskite Films in Inverted-Type Perovskite Solar Cells
Chen, Lung-Chien; Wu, Jia-Ren; Tseng, Zhong-Liang; Chen, Cheng-Chiang; Chang, Sheng Hsiung; Huang, Jun-Kai; Lee, King-Lien; Cheng, Hsin-Ming
2016-01-01
This study determines the effects of annealing treatment on the structure and the optical and electronic behaviors of the mixed (FAPbI3)1−x(MAPbBr3)x perovskite system. The experimental results reveal that (FAPbI3)1−x(MAPbBr3)x (x ~ 0.2) is an effective light-absorbing material for use in inverted planar perovskite solar cells owing to its large absorbance and tunable band gap. Therefore, good band-matching between the (FAPbI3)1−x(MAPbBr3)x and C60 in photovoltaic devices can be controlled by annealing at various temperatures. Accordingly, an inverted mixed perovskite solar cell with a record efficiency of 12.0% under AM1.5G irradiation is realized. PMID:28773874
Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.
2016-01-01
A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631
Nanometric depth resolution from multi-focal images in microscopy.
Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H
2011-07-06
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.
Nanometric depth resolution from multi-focal images in microscopy
Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.
2011-01-01
We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948
NASA Technical Reports Server (NTRS)
Spencer, Dwight C.
1996-01-01
Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-01-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis. PMID:28789364
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-08-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis.
Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues
Demos,; Stavros, G [Livermore, CA
2011-05-17
An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.
NASA Astrophysics Data System (ADS)
Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope
Li, Xinjian; Cao, Vania Y; Zhang, Wenyu; Mastwal, Surjeet S; Liu, Qing; Otte, Stephani; Wang, Kuan Hong
2017-11-01
In vivo optical imaging of neural activity provides important insights into brain functions at the single-cell level. Cranial windows and virally delivered calcium indicators are commonly used for imaging cortical activity through two-photon microscopes in head-fixed animals. Recently, head-mounted one-photon microscopes have been developed for freely behaving animals. However, minimizing tissue damage from the virus injection procedure and maintaining window clarity for imaging can be technically challenging. We used a wide-diameter glass pipette at the cortical surface for infusing the viral calcium reporter AAV-GCaMP6 into the cortex. After infusion, the scalp skin over the implanted optical window was sutured to facilitate postoperative recovery. The sutured scalp was removed approximately two weeks later and a miniature microscope was attached above the window to image neuronal activity in freely moving mice. We found that cortical surface virus infusion efficiently labeled neurons in superficial layers, and scalp skin suturing helped to maintain the long-term clarity of optical windows. As a result, several hundred neurons could be recorded in freely moving animals. Compared to intracortical virus injection and open-scalp postoperative recovery, our methods minimized tissue damage and dura overgrowth underneath the optical window, and significantly increased the experimental success rate and the yield of identified neurons. Our improved cranial surgery technique allows for high-yield calcium imaging of cortical neurons with head-mounted microscopes in freely behaving animals. This technique may be beneficial for other optical applications such as two-photon microscopy, multi-site imaging, and optogenetic modulation. Published by Elsevier B.V.
In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope.
Maitland, Kristen C; Gillenwater, Ann M; Williams, Michelle D; El-Naggar, Adel K; Descour, Michael R; Richards-Kortum, Rebecca R
2008-11-01
The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in eight patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less
Sensing of Streptococcus mutans by microscopic imaging ellipsometry
NASA Astrophysics Data System (ADS)
Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung
2017-05-01
Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.
Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S
2016-07-01
Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.
Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less
Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes
Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon; ...
2018-01-11
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
A new computerized moving stage for optical microscopes
NASA Astrophysics Data System (ADS)
Hatiboglu, Can Ulas; Akin, Serhat
2004-06-01
Measurements of microscope stage movements in the x and y directions are of importance for some stereological methods. Traditionally, the length of stage movements is measured with differing precision and accuracy using a suitable motorized stage, a microscope and software. Such equipment is generally expensive and not readily available in many laboratories. One other challenging problem is the adaptability to available microscope systems which weakens the possibility of the equipment to be used with any kind of light microscope. This paper describes a simple and cheap programmable moving stage that can be used with the available microscopes in the market. The movements of the stage are controlled by two servo-motors and a controller chip via a Java-based image processing software. With the developed motorized stage and a microscope equipped with a CCD camera, the software allows complete coverage of the specimens with minimum overlap, eliminating the optical strain associated with counting hundreds of images through an eyepiece, in a quick and precise fashion. The uses and the accuracy of the developed stage are demonstrated using thin sections obtained from a limestone core plug.
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.
Maeda, Y
1994-06-20
An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.
NASA Astrophysics Data System (ADS)
Kotb, Amer
2015-06-01
The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor ( Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ˜1 Tb/s.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Scanning optical microscope with long working distance objective
Cloutier, Sylvain G.
2010-10-19
A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
Aqueous carrier waveguide in a flow cytometer
Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen
1995-01-01
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.
We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.
Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.
MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P
2015-01-01
We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.
An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope
Nguyen, Victoria; Rizzo, John
2016-01-01
We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples. PMID:27907008
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus
2013-09-09
Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.
String & Sticky Tape Experiments: The Optics of the Eye Lens.
ERIC Educational Resources Information Center
Edge, R. D., Ed.
1989-01-01
Demonstrates the inverted image, the chromatic aberration, and the floaters of the eye using an opaque 35mm film container with a small pinhole poked through the bottom. Describes the observation of Haidinger's brushes using polarized light. (YP)
Design and analysis of a fast, two-mirror soft-x-ray microscope
NASA Technical Reports Server (NTRS)
Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.
1992-01-01
During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
Schmidt, Roman; Engelhardt, Johann; Lang, Marion
2013-01-01
Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid-state optical microscope
Young, I.T.
1981-01-07
A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Shape oscillations of microparticles on an optical microscope stage.
Zhu, Z M; Apfel, R E
1985-11-01
A modulated acoustic radiation pressure technique to produce quadrupole shape oscillations of drops ranging in diameter from 50-220 micron has been used by us. These drops have been suspended by acoustic levitation in a small chamber mounted on a stage of an optical microscope, which allowed easy viewing. The fission of drops and the deformation of sea urchin eggs were also observed.
Joint Services Electronics Program Annual Progress Report.
1987-10-15
polarizability of free carriers in the semiconductor perturb the index of refraction which can be detected in a Nomarski -type optical interferometer. For...interferomters. However, the charge probe relies on a different physical effect and operates by interferometrically detecting the phase change induced in an... Nomarski microscope systems. These techniques will be applied, eventually, in our real-time V.. scanning optical microscope described below. Recently
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte
2004-03-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less
Live-Cell Imaging of Protease Activity: Assays to Screen Therapeutic Approaches.
Chalasani, Anita; Ji, Kyungmin; Sameni, Mansoureh; Mazumder, Samia H; Xu, Yong; Moin, Kamiar; Sloane, Bonnie F
2017-01-01
Methodologies to image and quantify the activity of proteolytic enzymes have been developed in an effort to identify protease-related druggable pathways that are involved in malignant progression of cancer. Our laboratory has pioneered techniques for functional live-cell imaging of protease activity in pathomimetic avatars for breast cancer. We analyze proteolysis in the context of proliferation and formation of structures by tumor cells in 3-D cultures over time (4D). In order to recapitulate the cellular composition and architecture of tumors in the pathomimetic avatars, we include other tumor-associated cells (e.g., fibroblasts, myoepithelial cells, microvascular endothelial cells). We also model noncellular aspects of the tumor microenvironment such as acidic pericellular pH. Use of pathomimetic avatars in concert with various types of imaging probes has allowed us to image, quantify, and follow the dynamics of proteolysis in the tumor microenvironment and to test interventions that impact directly or indirectly on proteolytic pathways. To facilitate use of the pathomimetic avatars for screening of therapeutic modalities, we have designed and fabricated custom 3D culture chambers with multiple wells that are either individual or connected by a channel to allow cells to migrate between wells. Optical glass microscope slides underneath an acrylic plate allow the cultures to be imaged with an inverted microscope. Fluid ports in the acrylic plate are at a level above the 3D cultures to allow introduction of culture media and test agents such as drugs into the wells and the harvesting of media conditioned by the cultures for immunochemical and biochemical analyses. We are using the pathomimetic avatars to identify druggable pathways, screen drug and natural product libraries and accelerate entry of validated drugs or natural products into clinical trials.
USDA-ARS?s Scientific Manuscript database
An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...
Litzov, Ivan; Brabec, Christoph J.
2013-01-01
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423
Litzov, Ivan; Brabec, Christoph J
2013-12-10
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-01-01
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-11-03
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.
NASA Astrophysics Data System (ADS)
Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu
2015-11-01
Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.
Measurement of the Resolution of the Optical Microscope.
ERIC Educational Resources Information Center
Bowlt, C.
1983-01-01
Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)
Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian
2005-07-20
We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.
Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A
2018-05-01
Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.
A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Yao, Yue; Zhu, Yuanhuan; Ma, Hui
2018-02-01
In a recent attempt, we developed a colinear backscattering Mueller matrix microscope by adding polarization state generator (PSG) and polarization state analyzer (PSA) into the illumination and detection optical paths of a commercial metallurgical microscope. It is found that specific efforts have to be made to reduce the artifacts due to the intrinsic residual polarizations of the optical system, particularly the dichroism due to the 45 degrees beam splitter. In this paper, we present a new calibration method based on numerical reconstruction of the instrument matrix to remove the artifacts introduced by beam splitter. Preliminary tests using a mirror as a standard sample show that the maximum Muller matrix element error of the colinear backscattering Muller matrix microscope can be reduced to a few percent.
The construction and characterization of optical traps for manipulating microscopic particles
NASA Astrophysics Data System (ADS)
Thompson, Tiffany; Behringer, Ernest
2011-04-01
Optical traps use tightly focused laser light to manipulate microscopic particles and have applications in nanofabrication, characterizing DNA, and in vitro fertilization [1]. We will describe the design, construction, and characterization of an optical trap that is capable of trapping and imaging 3 μm polystyrene spheres using a 12 mW HeNe laser. The design was based on previous work [2,3] describing how to build affordable optical traps. We will discuss trapping forces and their calibration. [4pt] [1] D.G. Grier, "A Revolution in Optical Manipulation," Nature 424, 810-816 (2003). [0pt] [2] S.P. Smith et al., "Inexpensive optical tweezers for undergraduate laboratories," Am. J. Phys. 67 (1), 26-35 (1999).[0pt] [3] J. Bechhoefer et al., "Faster, cheaper, safer optical tweezers for the undergraduate laboratory," Am. J. Phys. 70 (4), 393-400 (2001).
Voltage-sensitive dye recording from networks of cultured neurons
NASA Astrophysics Data System (ADS)
Chien, Chi-Bin
This thesis describes the development and testing of a sensitive apparatus for recording electrical activity from microcultures of rat superior cervical ganglion (SCG) neurons by using voltage-sensitive fluorescent dyes.The apparatus comprises a feedback-regulated mercury arc light source, an inverted epifluorescence microscope, a novel fiber-optic camera with discrete photodiode detectors, and low-noise preamplifiers. Using an NA 0.75 objective and illuminating at 10 W/cm2 with the 546 nm mercury line, a typical SCG neuron stained with the styryl dye RH423 gives a detected photocurrent of 1 nA; the light source and optical detectors are quiet enough that the shot noise in this photocurrent--about.03% rms--dominates. The design, theory, and performance of this dye-recording apparatus are discussed in detail.Styryl dyes such as RH423 typically give signals of 1%/100 mV on these cells; the signals are linear in membrane potential, but do not appear to arise from a purely electrochromic mechanism. Given this voltage sensitivity and the noise level of the apparatus, it should be possible to detect both action potentials and subthreshold synaptic potentials from SCG cell bodies. In practice, dye recording can easily detect action potentials from every neuron in an SCG microculture, but small synaptic potentials are obscured by dye signals from the dense network of axons.In another microculture system that does not have such long and complex axons, this dye-recording apparatus should be able to detect synaptic potentials, making it possible to noninvasively map the synaptic connections in a microculture, and thus to study long-term synaptic plasticity.
Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Liu, Zhuolin; Miller, Donald T.; Werner, John S.
2016-01-01
Purpose Optical coherence tomography (OCT) has enabled “virtual biopsy” of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. Methods We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Results Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Conclusions Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings. PMID:27409507
Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed
2015-01-01
Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Development of an automated MODS plate reader to detect early growth of Mycobacterium tuberculosis.
Comina, G; Mendoza, D; Velazco, A; Coronel, J; Sheen, P; Gilman, R H; Moore, D A J; Zimic, M
2011-06-01
In this work, an automated microscopic observation drug susceptibility (MODS) plate reader has been developed. The reader automatically handles MODS plates and after autofocussing digital images are acquired of the characteristic microscopic cording structures of Mycobacterium tuberculosis, which are the identification method utilized in the MODS technique to detect tuberculosis and multidrug resistant tuberculosis. In conventional MODS, trained technicians manually move the MODS plate on the stage of an inverted microscope while trying to locate and focus upon the characteristic microscopic cording colonies. In centres with high tuberculosis diagnostic demand, sufficient time may not be available to adequately examine all cultures. An automated reader would reduce labour time and the handling of M. tuberculosis cultures by laboratory personnel. Two hundred MODS culture images (100 from tuberculosis positive and 100 from tuberculosis negative sputum samples confirmed by a standard MODS reading using a commercial microscope) were acquired randomly using the automated MODS plate reader. A specialist analysed these digital images with the help of a personal computer and designated them as M. tuberculosis present or absent. The specialist considered four images insufficiently clear to permit a definitive reading. The readings from the 196 valid images resulted in a 100% agreement with the conventional nonautomated standard reading. The automated MODS plate reader combined with open-source MODS pattern recognition software provides a novel platform for high throughput automated tuberculosis diagnosis. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Integrated Micro-Optics for Microfluidic Detection.
Kazama, Yuto; Hibara, Akihide
2016-01-01
A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.
Optical Interferometric Micrometrology
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Lauer, James R.
1989-01-01
Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.
NASA Astrophysics Data System (ADS)
Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.
2009-11-01
The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.
Noise induced chaos in optically driven colloidal rings.
NASA Astrophysics Data System (ADS)
Roichman, Yael; Zaslavsky, George; Grier, David G.
2007-03-01
Given a constant flux of energy, many driven dissipative systems rapidly organize themselves into configurations that support steady state motion. Examples include swarming of bacterial colonies, convection in shaken sandpiles, and synchronization in flowing traffic. How simple objects interacting in simple ways self-organize generally is not understood, mainly because so few of the available experimental systems afford the necessary access to their microscopic degrees of freedom. This talk introduces a new class of model driven dissipative systems typified by three colloidal spheres circulating around a ring-like optical trap known as an optical vortex. By controlling the interplay between hydrodynamic interactions and fixed disorder we are able to drive a transition from a previously predicted periodic steady state to fully developed chaos. In addition, by tracking both microscopic trajectories and macroscopic collective fluctuations the relation between the onset of microscopic weak chaos and the evolution of space-time self-similarity in macroscopic transport properties is revealed. In a broader scope, several optical vortices can be coupled to create a large dissipative system where each building block has internal degrees of freedom. In such systems the little understood dynamics of processes like frustration and jamming, fluctuation-dissipation relations and the propagation of collective motion can be tracked microscopically.
Aqueous carrier waveguide in a flow cytometer
Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.
1995-12-12
The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.
Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele
2017-01-01
Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).
Sung, Kung-Bin; Liang, Chen; Descour, Michael; Collier, Tom; Follen, Michele; Richards-Kortum, Rebecca
2002-10-01
We have built a fiber-optic confocal reflectance microscope capable of imaging human tissues in near real time. Miniaturization of the objective lens and the mechanical components for positioning and axially scanning the objective enables the device to be used in inner organs of the human body. The lateral resolution is 2 micrometers and axial resolution is 10 micrometers. Confocal images of fixed tissue biopsies and the human lip in vivo have been obtained at 15 frames/s without any fluorescent stains. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope.
Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.
2015-06-24
The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.
Lagrangian 3D tracking of fluorescent microscopic objects in motion
NASA Astrophysics Data System (ADS)
Darnige, T.; Figueroa-Morales, N.; Bohec, P.; Lindner, A.; Clément, E.
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.
Okuno, Masanari; Hamaguchi, Hiro-o
2010-12-15
We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.
Lagrangian 3D tracking of fluorescent microscopic objects in motion.
Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E
2017-05-01
We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.
A line scanned light-sheet microscope with phase shaped self-reconstructing beams.
Fahrbach, Florian O; Rohrbach, Alexander
2010-11-08
We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio
2010-01-01
Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631
Combined reflection and transmission microscope for telemedicine applications in field settings.
Biener, Gabriel; Greenbaum, Alon; Isikman, Serhan O; Lee, Kelvin; Tseng, Derek; Ozcan, Aydogan
2011-08-21
We demonstrate a field-portable upright and inverted microscope that can image specimens in both reflection and transmission modes. This compact and cost-effective dual-mode microscope weighs only ∼135 grams (<4.8 ounces) and utilizes a simple light emitting diode (LED) to illuminate the sample of interest using a beam-splitter cube that is positioned above the object plane. This LED illumination is then partially reflected from the sample to be collected by two lenses, creating a reflection image of the specimen onto an opto-electronic sensor-array that is positioned above the beam-splitter cube. In addition to this, the illumination beam is also partially transmitted through the same specimen, which then casts lensfree in-line holograms of the same objects onto a second opto-electronic sensor-array that is positioned underneath the beam-splitter cube. By rapid digital reconstruction of the acquired lensfree holograms, transmission images (both phase and amplitude) of the same specimen are also created. We tested the performance of this field-portable microscope by imaging various micro-particles, blood smears as well as a histopathology slide corresponding to skin tissue. Being compact, light-weight and cost-effective, this combined reflection and transmission microscope might especially be useful for telemedicine applications in resource limited settings. This journal is © The Royal Society of Chemistry 2011
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
SIL-STED microscopy technique enhancing super-resolution of fluorescence microscopy
NASA Astrophysics Data System (ADS)
Park, No-Cheol; Lim, Geon; Lee, Won-sup; Moon, Hyungbae; Choi, Guk-Jong; Park, Young-Pil
2017-08-01
We have characterized a new type STED microscope which combines a high numerical aperture (NA) optical head with a solid immersion lens (SIL), and we call it as SIL-STED microscope. The advantage of a SIL-STED microscope is that its high NA of the SIL makes it superior to a general STED microscope in lateral resolution, thus overcoming the optical diffraction limit at the macromolecular level and enabling advanced super-resolution imaging of cell surface or cell membrane structure and function Do. This study presents the first implementation of higher NA illumination in a STED microscope limiting the fluorescence lateral resolution to about 40 nm. The refractive index of the SIL which is made of material KTaO3 is about 2.23 and 2.20 at a wavelength of 633 nm and 780 nm which are used for excitation and depletion in STED imaging, respectively. Based on the vector diffraction theory, the electric field focused by the SILSTED microscope is numerically calculated so that the numerical results of the point dispersion function of the microscope and the expected resolution could be analyzed. For further investigation, fluorescence imaging of nano size fluorescent beads is fulfilled to show improved performance of the technique.
Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S
2015-10-01
Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.
The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope.
Marko, Michael; Rose, Harald
2010-08-01
Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.
Development of Nomarski microscopy for quantitative determination of surface topography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J. S.; Gordon, R. L.; Lessor, D. L.
1979-01-01
The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
Optical chirality of achiral three-dimensional photonic crystals
NASA Astrophysics Data System (ADS)
Romanov, Sergei G.
2017-04-01
Extrinsic optical chirality in a form of the asymmetric transmission of circularly polarized light at the oblique light incidence has been observed in three-dimensional opal photonic crystals assembled from monodisperse polymer spheres in the closely packed face-centered-cubic lattice. This effect has been assigned to the translation-rotation symmetry of the lattice. The cross-polarization conversion of the circularly polarized light and the related asymmetry of the transmission of the inverted circularly polarized light have been demonstrated.
Remote Histology Learning from Static versus Dynamic Microscopic Images
ERIC Educational Resources Information Center
Mione, Sylvia; Valcke, Martin; Cornelissen, Maria
2016-01-01
Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized.…
Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy
Brooker, Gary; Siegel, Nisan; Wang, Victor; Rosen, Joseph
2011-01-01
Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging. PMID:21445140
Tapping mode imaging and measurements with an inverted atomic force microscope.
Chan, Sandra S F; Green, John-Bruce D
2006-07-18
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Jupp, David L. B.
1990-01-01
Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.
Chiral Nucleon-Nucleus Potentials at N3LO
NASA Astrophysics Data System (ADS)
Finelli, Paolo; Vorabbi, Matteo; Giusti, Carlotta
2018-03-01
Elastic scattering is probably one of the most relevant tools to study nuclear interactions. In this contribution we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. A microscopic complex optical potential is derived and tested performing calculations on 16O at different energies. Good agreement with empirical data is obtained if a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) is employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naka, T., E-mail: naka@flab.phys.nagoya-u.ac.jp; Institute for Advanced Research, Nagoya University, Aichi 464-8602; Asada, T.
Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution.more » Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically.« less
Fractal evaluation of drug amorphicity from optical and scanning electron microscope images
NASA Astrophysics Data System (ADS)
Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.
2013-09-01
Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.
High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope
Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...
2017-11-15
Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less
High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Weihe; Schlossberger, Noah; Xu, Wei
Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei
2014-03-01
A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.
Upright Imaging of Drosophila Egg Chambers
Manning, Lathiena; Starz-Gaiano, Michelle
2015-01-01
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882
The effect of mechanical drawing on optical and structural properties of nylon 6 fibres
NASA Astrophysics Data System (ADS)
El-Bakary, M. A.
2007-09-01
The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.
Spatiotemporal polarization modulation microscopy with a microretarder array
NASA Astrophysics Data System (ADS)
Ding, Changqin; Ulcickas, James R. W.; Simpson, Garth J.
2018-02-01
A patterned microretarder array positioned in the rear conjugate plane of a microscope enables rapid polarizationdependent nonlinear optical microscopy. The pattern introduced to the array results in periodic modulation of the polarization-state of the incident light as a function of position within the field of view with no moving parts or active control. Introduction of a single stationary optical element and a fixed polarizer into the beam of a nonlinear optical microscope enabled nonlinear optical tensor recovery, which informs on local structure and orientation. Excellent agreement was observed between the measured and predicted second harmonic generation (SHG) of z-cut quartz, selected as a test system with well-established nonlinear optical properties. Subsequent studies of spatially varying samples further support the general applicability of this relatively simple strategy for detailed polarization analysis in both conventional and nonlinear optical imaging of structurally diverse samples.
Operating microscopes: past, present, and future.
Uluç, Kutluay; Kujoth, Gregory C; Başkaya, Mustafa K
2009-09-01
The operating microscope is a fixture of modern surgical facilities, and it is a critically important factor in the success of many of the most complex and difficult surgical interventions used in medicine today. The rise of this key surgical tool reflects advances in understanding the principles of optics and vision that have occurred over centuries. The development of reading spectacles in the late 13th century led to the construction of early compound microscopes in the 16th and 17th centuries by Lippershey, Janssen, Galileo, Hooke, and others. Perhaps surprisingly, Leeuwenhoek's simple microscopes of this era offered improved performance over his contemporaries' designs. The intervening years saw improvements that reduced the spherical and chromatic aberrations present in compound microscopes. By the late 19th century, Carl Zeiss and Ernst Abbe ushered the compound microscope into the beginnings of the modern era of commercial design and production. The introduction of the microscope into the operating room by Nylén in 1921 initiated a revolution in surgical practice that gained momentum throughout the 1950s with multiple refinements, the introduction of the Zeiss OPMI series, and Kurze's application of the microscope to neurosurgery in 1957. Many of the refinements of the last 50 years have greatly improved the handling and practical operation of the surgical microscope, considerations which are equally important to its optical performance. Today's sophisticated operating microscopes allow for advanced real-time angiographic and tumor imaging. In this paper the authors discuss what might be found in the operating rooms of tomorrow.
Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R
2010-06-23
Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.
Inverting Image Data For Optical Testing And Alignment
NASA Technical Reports Server (NTRS)
Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.
1993-01-01
Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.
Transmission electron microscope CCD camera
Downing, Kenneth H.
1999-01-01
In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Assessment of Petrological Microscopes.
ERIC Educational Resources Information Center
Mathison, Charter Innes
1990-01-01
Presented is a set of procedures designed to check the design, ergonomics, illumination, function, optics, accessory equipment, and image quality of a microscope being considered for purchase. Functions for use in a petrology or mineralogy laboratory are stressed. (CW)
Transmissive Nanohole Arrays for Massively-Parallel Optical Biosensing
2015-01-01
A high-throughput optical biosensing technique is proposed and demonstrated. This hybrid technique combines optical transmission of nanoholes with colorimetric silver staining. The size and spacing of the nanoholes are chosen so that individual nanoholes can be independently resolved in massive parallel using an ordinary transmission optical microscope, and, in place of determining a spectral shift, the brightness of each nanohole is recorded to greatly simplify the readout. Each nanohole then acts as an independent sensor, and the blocking of nanohole optical transmission by enzymatic silver staining defines the specific detection of a biological agent. Nearly 10000 nanoholes can be simultaneously monitored under the field of view of a typical microscope. As an initial proof of concept, biotinylated lysozyme (biotin-HEL) was used as a model analyte, giving a detection limit as low as 0.1 ng/mL. PMID:25530982
NASA Astrophysics Data System (ADS)
Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael
2011-09-01
With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.
Demonstration of a plenoptic microscope based on laser optical feedback imaging.
Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric
2013-03-25
A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
High dynamic range electric field sensor for electromagnetic pulse detection.
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-08-29
We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
Surface plasmon resonance microscopy: achieving a quantitative optical response
Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.
2016-01-01
Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542
Das, Sudeep; Kummelil, Mathew Kurian; Kharbanda, Varun; Arora, Vishal; Nagappa, Somshekar; Shetty, Rohit; Shetty, Bhujang K
2016-05-01
To demonstrate the uses and applications of a microscope integrated intraoperative Optical Coherence Tomography in Micro Incision Cataract Surgery (MICS) and Femtosecond Laser Assisted Cataract Surgery (FLACS). Intraoperative real time imaging using the RESCAN™ 700 (Carl Zeiss Meditec, Oberkochen, Germany) was done for patients undergoing MICS as well as FLACS. The OCT videos were reviewed at each step of the procedure and the findings were noted and analyzed. Microscope Integrated Intraoperative Optical Coherence Tomography was found to be beneficial during all the critical steps of cataract surgery. We were able to qualitatively assess wound morphology in clear corneal incisions, in terms of subclinical Descemet's detachments, tears in the inner or outer wound lips, wound gaping at the end of surgery and in identifying the adequacy of stromal hydration, for both FLACS as well as MICS. It also enabled us to segregate true posterior polar cataracts from suspected cases intraoperatively. Deciding the adequate depth of trenching was made simpler with direct visualization. The final position of the intraocular lens in the capsular bag and the lack of bioadhesivity of hydrophobic acrylic lenses were also observed. Even though Microscope Integrated Intraoperative Optical Coherence Tomography is in its early stages for its application in cataract surgery, this initial assessment does show a very promising role for this technology in the future for cataract surgery both in intraoperative decision making as well as for training purposes.
NANOCAVITY SENSOR ARRAY FOR THE ISOLATION, DETECTION AND QUANTITATION OF ENGINEERED NANOPARTICLES
3D high- and super-resolution imaging using single-objective SPIM.
Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste
2015-07-01
Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.
Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan
2009-12-14
Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as approximately 18 cm(2). Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of approximately 5 mm without the need for refocusing which corresponds to up to approximately 9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments.
Mudanyali, Onur; Erlinger, Anthony; Seo, Sungkyu; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan
2009-01-01
Conventional optical microscopes image cells by use of objective lenses that work together with other lenses and optical components. While quite effective, this classical approach has certain limitations for miniaturization of the imaging platform to make it compatible with the advanced state of the art in microfluidics. In this report, we introduce experimental details of a lensless on-chip imaging concept termed LUCAS (Lensless Ultra-wide field-of-view Cell monitoring Array platform based on Shadow imaging) that does not require any microscope objectives or other bulky optical components to image a heterogeneous cell solution over an ultra-wide field of view that can span as large as ~18 cm2. Moreover, unlike conventional microscopes, LUCAS can image a heterogeneous cell solution of interest over a depth-of-field of ~5 mm without the need for refocusing which corresponds to up to ~9 mL sample volume. This imaging platform records the shadows (i.e., lensless digital holograms) of each cell of interest within its field of view, and automated digital processing of these cell shadows can determine the type, the count and the relative positions of cells within the solution. Because it does not require any bulky optical components or mechanical scanning stages it offers a significantly miniaturized platform that at the same time reduces the cost, which is quite important for especially point of care diagnostic tools. Furthermore, the imaging throughput of this platform is orders of magnitude better than conventional optical microscopes, which could be exceedingly valuable for high-throughput cell-biology experiments. PMID:20010542
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Gao, Shen; Xiang, Bowen
2016-01-01
An analytical expression of transient four-wave mixing (TFWM) in inverted semiconductor with carrier-injection pumping was derived from both the density matrix equation and the complex stochastic stationary statistical method of incoherent light. Numerical analysis showed that the TFWM decayed decay is towards the limit of extreme homogeneous and inhomogeneous broadenings in atoms and the decaying time is inversely proportional to half the power of the net carrier densities for a low carrier-density injection and other high carrier-density injection, while it obeys an usual exponential decay with other decaying time that is inversely proportional to half the power of the net carrier density or it obeys an unusual exponential decay with the decaying time that is inversely proportional to a third power of the net carrier density for a moderate carrier-density injection. The results can be applied to studying ultrafast carrier dephasing in the inverted semiconductors such as semiconductor laser amplifier and semiconductor optical amplifier.
Study of a quasi-microscope design for planetary landers
NASA Technical Reports Server (NTRS)
Giat, O.; Brown, E. B.
1973-01-01
The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.
Mosaic of Commemorative Microscope Substrate
NASA Technical Reports Server (NTRS)
2008-01-01
Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text. Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired. This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.Active lamp pulse driver circuit. [optical pumping of laser media
NASA Technical Reports Server (NTRS)
Logan, K. E. (Inventor)
1983-01-01
A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.
A wide field-of-view microscope based on holographic focus grid
NASA Astrophysics Data System (ADS)
Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei
2010-02-01
We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.
Tip-enhanced Raman mapping with top-illumination AFM.
Chan, K L Andrew; Kazarian, Sergei G
2011-04-29
Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.
Preparation of Murine Submandibular Salivary Gland for Upright Intravital Microscopy.
Ficht, Xenia; Thelen, Flavian; Stolp, Bettina; Stein, Jens V
2018-05-07
The submandibular salivary gland (SMG) is one of the three major salivary glands, and is of interest for many different fields of biological research, including cell biology, oncology, dentistry, and immunology. The SMG is an exocrine gland comprised of secretory epithelial cells, myofibroblasts, endothelial cells, nerves, and extracellular matrix. Dynamic cellular processes in the rat and mouse SMG have previously been imaged, mostly using inverted multi-photon microscope systems. Here, we describe a straightforward protocol for the surgical preparation and stabilization of the murine SMG in anesthetized mice for in vivo imaging with upright multi-photon microscope systems. We present representative intravital image sets of endogenous and adoptively transferred fluorescent cells, including the labeling of blood vessels or salivary ducts and second harmonic generation to visualize fibrillar collagen. In sum, our protocol allows for surgical preparation of mouse salivary glands in upright microscopy systems, which are commonly used for intravital imaging in the field of immunology.
NASA Astrophysics Data System (ADS)
Kana, J. B. Kana; Ndjaka, J. M.; Manyala, N.; Nemraoui, O.; Beye, A. C.; Maaza, M.
2008-09-01
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO2) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 °C to 600 °C. The X-ray diffraction results demonstrated that the Au and VO2 were well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 °C to 100 °C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at ˜57 nm for substrate temperature higher than 500 °C.
Michalewska, Zofia; Nawrocki, Jerzy
2018-04-30
To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.
Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N
2011-11-01
In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.
Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors
NASA Technical Reports Server (NTRS)
Wang, Yu
2000-01-01
Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.
The PC9A Filter Screening Tool
2016-02-01
conjunction with an optical microscope for identification of other important debris such as glass beads. The FST has now been installed at RAAF East...conservative screening limits need to be sent for detailed laboratory analysis. Laboratory analysis has traditionally involved a manual microscopic ...Electron Microscope with Energy Dispersive Spectroscopy (SEM EDS) to determine the composition and likely source. The Engine Maintenance Manual
A high-resolution multimode digital microscope system.
Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry
2013-01-01
This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.
Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
NASA Astrophysics Data System (ADS)
Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha
2018-01-01
Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.
Jung, Seungon; Lee, Junghyun; Seo, Jihyung; Kim, Ungsoo; Choi, Yunseong; Park, Hyesung
2018-02-14
An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.
Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology
Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.
2016-01-01
There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337
Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.
Sun, Zhe; Zheng, Desheng; Baldelli, Steven
2017-02-21
A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M
1992-08-20
An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.
Microsphere-aided optical microscopy and its applications for super-resolution imaging
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2017-12-01
The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.
NASA Astrophysics Data System (ADS)
Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein
2018-04-01
The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.
Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S
2012-03-26
A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.
Remote probing of the optical strength of atmospheric turbulence and of wind velocity
NASA Technical Reports Server (NTRS)
Fried, D. L.
1969-01-01
A procedure for determining the optical strength of turbulence of the atmosphere and the wind velocity at various altitudes by measuring the spatial and temporal covariance of scintillation is developed. Emphasis is placed on the development of the formal relationships that have to be inverted to obtain the desired results. For determination of optical strength of turbulence, it is a linear integral equation that is developed. However, for determination of remote wind velocity, a nonlinear integral equation is obtained. A computer approach for solving each of the equations is suggested. The configuration and performance requirements of the measurement apparatus are discussed.
Integrated optical modulator for signal up-conversion over radio-on-fiber link.
Kim, Woo-Kyung; Kwon, Soon-Woo; Jeong, Woo-Jin; Son, Geun-Sik; Lee, Kwang-Hyun; Choi, Woo-Young; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young
2009-02-16
An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.
Optical scanning tests of complex CMOS microcircuits
NASA Technical Reports Server (NTRS)
Levy, M. E.; Erickson, J. J.
1977-01-01
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.
Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices
Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter
2009-01-01
We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271
Multimodal nonlinear microscope based on a compact fiber-format laser source
NASA Astrophysics Data System (ADS)
Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario
2018-01-01
We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.
Microscope-integrated optical coherence tomography: A new surgical tool in vitreoretinal surgery.
Jayadev, Chaitra; Dabir, Supriya; Vinekar, Anand; Shah, Urmil; Vaid, Tania; Yadav, Naresh Kumar
2015-05-01
Optical coherence tomography (OCT) has revolutionized imaging of ocular structures and various disease conditions. Though it has been used in the clinic for some decades, the OCT has only recently found its way into the operating theater. Early attempts at intraoperative OCT, hand-held and microscope mounted, have already improved our understanding of the surgical pathology and the role it might play in surgical decision-making. The microscope-integrated OCT now allows seamless, high-resolution, real-time imaging of surgical maneuvers from the incision to wound closure. Visualization of instruments and intraoperative tissue manipulation are possible with this in vivo modality and, therefore, help improve the outcome of surgery. In this article, we describe the advantages it offers during various vitreoretinal procedures.
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source
NASA Astrophysics Data System (ADS)
Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.
2010-03-01
We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.
Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won
2014-06-01
Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.
Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-04-07
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
Volumetric Light-field Encryption at the Microscopic Scale
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149
Harrison, Thomas C; Sigler, Albrecht; Murphy, Timothy H
2009-09-15
We describe a simple and low-cost system for intrinsic optical signal (IOS) imaging using stable LED light sources, basic microscopes, and commonly available CCD cameras. IOS imaging measures activity-dependent changes in the light reflectance of brain tissue, and can be performed with a minimum of specialized equipment. Our system uses LED ring lights that can be mounted on standard microscope objectives or video lenses to provide a homogeneous and stable light source, with less than 0.003% fluctuation across images averaged from 40 trials. We describe the equipment and surgical techniques necessary for both acute and chronic mouse preparations, and provide software that can create maps of sensory representations from images captured by inexpensive 8-bit cameras or by 12-bit cameras. The IOS imaging system can be adapted to commercial upright microscopes or custom macroscopes, eliminating the need for dedicated equipment or complex optical paths. This method can be combined with parallel high resolution imaging techniques such as two-photon microscopy.
Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un
2010-10-01
In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.
Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina
Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.
2009-01-01
Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590
Enhanced optical coupling and Raman scattering via microscopic interface engineering
NASA Astrophysics Data System (ADS)
Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.
2017-11-01
Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.
Volumetric Light-field Encryption at the Microscopic Scale
NASA Astrophysics Data System (ADS)
Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu
2017-01-01
We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert
2017-04-01
We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.
Optical Tweezer Assembly and Calibration
NASA Technical Reports Server (NTRS)
Collins, Timothy M.
2004-01-01
An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.
Quantitative estimation of the fluorescent parameters for crop leaves with the Bayesian inversion
USDA-ARS?s Scientific Manuscript database
In this study, the fluorescent parameters of crop leaves were retrieved from the leaf hyperspectral measurements by inverting the FluorMODleaf model, which is a leaf-level fluorescence model that is based on the widely used and validated PROSPECT (leaf optical properties) model and can simulate the ...
Suspension and simple optical characterization of two-dimensional membranes
NASA Astrophysics Data System (ADS)
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Microscopic Optical Projection Tomography In Vivo
Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios
2011-01-01
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481
Enhancement of graphene visibility on transparent substrates by refractive index optimization.
Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter
2013-05-20
Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.
Dynamic-focusing microscope objective for optical coherence tomography
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-01-01
Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.
Trache, Andreea; Meininger, Gerald A
2005-01-01
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
Skucha-Nowak, Małgorzata; Machorowska-Pieniążek, Agnieszka; Tanasiewicz, Marta
2016-01-01
The aim of the infiltration technique is to penetrate demineralized enamel with a low viscosity resin. Icon® (DMG) is the first ever and so far the only dental infiltrant. Bacteriostaticity is one of the properties that should be inherent in dental infiltrants, but Icon lacks this feature. The aim of the preliminary study was to properly choose a dye which would allow us to assess the penetrating abilities of our own, experimental preparation with features of a dental infiltrant with bacteriostatic properties and to compare using an optical microscope the depth of infiltration of the designed experimental preparation with the infiltrant available on the market. The preparation is supposed to infiltrate decalcified human enamel and be assessed with an optical microscope. Eosin, neutral fuchsine and methylene blue were added to experimental preparation with dental infiltrant features and to Icon® (DMG) in order to assess the depth of penetration of the experimental solution into the decalcified layers of enamel. The experimental solution mixes well with eosin, neutral fuchsine, and methylene blue. During the preliminary study, the authors concluded that the experimental solution mixes well with methylene blue, neutral fuchsine, and eosin. An addition of eosin to a preparation which infiltrates inner, demineralized enamel layers, facilitates the assessment of such a preparation with an optical microscope. A designed experimental solution with the main ingredients, i.e., 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethacrylate (TEGDMA) with a ratio of 75% to 25% penetrates the demineralized (decalcified) inner parts of the enamel and polymerizes when exposed to light. In order to assess the infiltration of the experimental solution into the demineralized enamel layers, it is required to improve the measurement techniques that utilize optical microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tongcang; Ota, Sadao; Kim, Jeongmin
This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.
Environmental Integrity of Coating/Metal Interface
1989-03-01
occurred. For this explanation to be correct, microblisters would be optically detectable using a microscope with Nomarsky contrast or by examining the...polymer surface with an interferometric microscope. Both of these techniques have been tried, but neither of them was able to detect any surface
A simple optical tweezers for trapping polystyrene particles
NASA Astrophysics Data System (ADS)
Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana
2013-09-01
Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.
Optical joint transform correlation on the DMD. [deformable mirror device
NASA Technical Reports Server (NTRS)
Knopp, Jerome; Juday, Richard D.
1989-01-01
Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.
1990-01-05
submitted). 3. 0. J. Kim, A. Madhukar, W. Chen, K. Z. Hu, "Realization of High Mobilities at Ultra Low Electron Density in GaAs-Al O.3GaO.7As Inverted...to-Coherent Optical Conversion", in Photorefractive Materials and Aplications , J. P. Huignard and P. Gunter, Eds., Springer-Verlag, New York (1989). 2...Schottky Barrier Epitaxial Structures," USC Ph.D. Thesis (May 1989). 2. E. Garmire, N. M. Jokerst, A. Kost, A. Dar,---, and P. D. Dapkus, "Optical
An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules
Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne
2014-01-01
Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799
Simulation study on compressive laminar optical tomography for cardiac action potential propagation
Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro
2017-01-01
To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675
Imaging arrangement and microscope
Pertsinidis, Alexandros; Chu, Steven
2015-12-15
An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.
NASA Astrophysics Data System (ADS)
Suen, Ricky Wai
The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.
Electrically controlled magnetic circular dichroism and Faraday rotation in graphene
NASA Astrophysics Data System (ADS)
Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome
Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing
2018-04-01
The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.
NASA Astrophysics Data System (ADS)
Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.
2017-04-01
Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Method to deterministically study photonic nanostructures in different experimental instruments.
Husken, B H; Woldering, L A; Blum, C; Vos, W L
2009-01-01
We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.
[Intraoperative Optical Coherence Tomography (MI-OCT) for the Treatment of Corneal Dystrophies].
Siebelmann, Sebastian; Matthaei, Mario; Heindl, Ludwig M; Bachmann, Björn O; Cursiefen, Claus
2018-06-01
The surgical treatment of corneal dystrophies develops rapidly as the use of lamellar corneal grafting techniques continue. While penetrating keratoplasty was the gold standard for treating a variety of dystrophies a few years ago, the affected layers of the cornea can, nowadays, be selectively replaced or ablated using laser technology. Of particular importance for these methods is optical coherence tomography, which has recently been integrated into surgical microscopes (MI-OCT). Literature overview from PubMed and Google.scholar.de supplemented with own imaging data. The MI-OCT enables the intraoperative real-time monitoring of different ophthalmic surgical procedures, such as deep anterior lamellar keratoplasty, Descemet's membrane endothelial keratoplasty, as well as minimally-invasive procedures, such as phototherapeutic keratectomy. In addition, it enables an evaluation of the cornea, but also of structures of the anterior chamber, in situations in which the cornea, for example, is clouded by an edema. Microscope-integrated, intraoperative optical coherence tomography (MI-OCT) represents a useful supplement to the normal surgical microscope. It is superior to the sole surgical microscope, especially in already severely clouded corneas, and represents a sensible supplement, especially for novel lamellar transplantation procedures. Prospective randomized trials are necessary to increase safety and efficacy when using MI-OCT for different indications. Georg Thieme Verlag KG Stuttgart · New York.
Light field creating and imaging with different order intensity derivatives
NASA Astrophysics Data System (ADS)
Wang, Yu; Jiang, Huan
2014-10-01
Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.
NASA Astrophysics Data System (ADS)
Lauinger, N.
2007-09-01
A better understanding of the color constancy mechanism in human color vision [7] can be reached through analyses of photometric data of all illuminants and patches (Mondrians or other visible objects) involved in visual experiments. In Part I [3] and in [4, 5 and 6] the integration in the human eye of the geometrical-optical imaging hardware and the diffractive-optical hardware has been described and illustrated (Fig.1). This combined hardware represents the main topic of the NAMIROS research project (nano- and micro- 3D gratings for optical sensors) [8] promoted and coordinated by Corrsys 3D Sensors AG. The hardware relevant to (photopic) human color vision can be described as a diffractive or interference-optical correlator transforming incident light into diffractive-optical RGB data and relating local RGB onto global RGB data in the near-field behind the 'inverted' human retina. The relative differences at local/global RGB interference-optical contrasts are available to photoreceptors (cones and rods) only after this optical pre-processing.
Truxal, Steven C; Huang, Nien-Tsu; Kurabayashi, Katsuo
2009-01-01
We report a microelectromechanical (MEMS) tunable optical filter and its integration in a fluorescence microscope for high speed on-chip spectral measurements. This integration allows for measurements of any fluorescence sample placed onto the microscope stage. We demonstrate the system capabilities by taking spectral measurements of multicolor fluorescent beads and fluorescently labeled cells passing through a microfluidic cytometer. The system has applications in biological studies where the measurement of multiple fluorescent peaks is restricted by the detection method's speed and sensitivity.
Electron microscopic and optical studies of prism faces of synthetic quartz
NASA Technical Reports Server (NTRS)
Buzek, B. C.; Vagh, A. S.
1977-01-01
Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.
Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira
2016-01-28
We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method
NASA Astrophysics Data System (ADS)
Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.
2013-09-01
An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.
Model wavefront sensor for adaptive confocal microscopy
NASA Astrophysics Data System (ADS)
Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony
2000-05-01
A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.
NASA Astrophysics Data System (ADS)
Bocsi, Jozsef; Luther, Ed; Mittag, Anja; Jensen, Ingo; Sack, Ulrich; Lenz, Dominik; Trezl, Lajos; Varga, Viktor S.; Molnar, Beea; Tarnok, Attila
2004-06-01
Background: Slide based cytometry (SBC) is a technology for the rapid stoichiometric analysis of cells fixed to surfaces. Its applications are highly versatile and ranges from the clinics to high throughput drug discovery. SBC is realized in different instruments such as the Laser Scanning Cytometer (LSC) and Scanning Fluorescent Microscope (SFM) and the novel inverted microscope based iCyte image cytometer (Compucyte Corp.). Methods: Fluorochrome labeled specimens were immobilized on microscopic slides. They were placed on a conventional fluorescence microscope and analyzed by photomultiplayers or digital camera. Data comparable to flow cytometry were generated. In addition, each individual event could be visualized. Applications: The major advantage of instruments is the combination of two features: a) the minimal sample volume needed, and b) the connection of fluorescence data and morphological information. Rare cells were detected, frequency of apoptosis by myricetin formaldehyde and H2O2 mixtures was determined;. Conclusion: LSC, SFM and the novel iCyte have a wide spectrum of applicability in SBC and can be introduced as a standard technology for multiple settings. In addition, the iCyte and SFM instrument is suited for high throughput screening by automation and may be in future adapted to telepathology due to their high quality images. (This study was supported by the IZKF-Leipzig, Germany and T 034245 OTKA, Hungary)
NASA Technical Reports Server (NTRS)
Patterson, John W.
1992-01-01
The objectives are to build and demonstrate a low cost and highly flexible TV microscope facility and then use it to view the motion of magnetic domain boundaries as the local magnetic field is varied. The expense of an optical microscope and the videocam adapters sold for them is largely avoided by using the facility described below. The equipment, supplies, and procedure are presented.
Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I
2017-07-01
Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.
Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery
NASA Astrophysics Data System (ADS)
Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong
2015-07-01
Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Asbestos Testing: Is the EPA Misleading You?
ERIC Educational Resources Information Center
Levins, Hoag
1983-01-01
Experts warn that only electron microscopes can see the smaller fibers of asbestos that are known to cause the most cancers, though the Environmental Protection Agency still endorses optical microscopes for asbestos removal verification. Asbestos testing methods are explained and sources of information are provided. (MLF)
Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron
2015-01-01
Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633
Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A
2014-10-01
Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.
Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
Cheng, Li-Chung; Chang, Chia-Yuan; Lin, Chun-Yu; Cho, Keng-Chi; Yen, Wei-Chung; Chang, Nan-Shan; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2012-04-09
In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm² at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.
Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials
Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.
2015-01-01
In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
Label-free evanescent microscopy for membrane nano-tomography in living cells.
Bon, Pierre; Barroca, Thomas; Lévèque-Fort, Sandrine; Fort, Emmanuel
2014-11-01
We show that through-the-objective evanescent microscopy (epi-EM) is a powerful technique to image membranes in living cells. Readily implementable on a standard inverted microscope, this technique enables full-field and real-time tracking of membrane processes without labeling and thus signal fading. In addition, we demonstrate that the membrane/interface distance can be retrieved with 10 nm precision using a multilayer Fresnel model. We apply this nano-axial tomography of living cell membranes to retrieve quantitative information on membrane invagination dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Electron Optics for Biologists: Physical Origins of Spherical Aberrations
ERIC Educational Resources Information Center
Geissler, Peter; Zadunaisky, Jose
1974-01-01
Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)
Applied physics: Optical trapping for space mirrors.
McGloin, David
2014-02-27
Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.