Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Robust sliding mode control applied to double Inverted pendulum system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical
A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.
Inverted Spring Pendulum Driven by a Periodic Force: Linear versus Nonlinear Analysis
ERIC Educational Resources Information Center
Arinstein, A.; Gitterman, M.
2008-01-01
We analyse the stability of the spring inverted pendulum with the vertical oscillations of the suspension point. An important factor in the stability analysis is the interaction between radial and oscillating modes. In addition to the small oscillations near the upper position, the nonlinearity of the problem leads to the appearance of limit-cycle…
The influences of load mass changing on inverted pendulum stability based on simulation study
NASA Astrophysics Data System (ADS)
Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula
2017-09-01
An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.
Plume Characterization of Busek 600W Hall Thruster
2012-03-09
probe was used to examine the thruster plume current density while the ion species fractions were determined by the ExB probe. The inverted pendulum ...25 A. Inverted Pendulum ...Diagnostic Equipment .....................................................................................45 A. Inverted Pendulum
Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G
1998-01-01
The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.
Response of Pendulums to Translational and Rotational Components of Ground Motion
NASA Astrophysics Data System (ADS)
Graizer, V.; Kalkan, E.
2008-12-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). Pendulum response is usually simplified by considering the input from uni-axial translational motion only. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). We consider complete equations of motion for three following types of pendulum: (i) conventional mass-on-rod, (ii) mass- on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. Inverted pendulums are used in seismology for more than 100 years, for example, classical Wiechert's horizontal seismograph built around 1905 and still used at some seismological observatories, and recent Guralp's horizontal seismometers CMG-40T and CMG-3T. Inverted pendulums also have significant importance for engineering applications where they are often used to simulate the dynamic response of various structural systems. The results of this study show that a horizontal pendulum similar to a modern accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The responses of pendulums are calculated in time-domain using close-form solution Duhamel's integral with complex input forcing functions. As compared to a common horizontal pendulum, response of an inverted pendulum is sensitive to acceleration of gravity and vertical acceleration when it reaches the level close to 1.0 g. Gravity effect introduces nonlinearity into the differential equation of motion, and results in shift of the frequency response to lower frequencies. The equations of inverted pendulum represent elastic response of pendulums (as material behavior), with nonlinearity created by time and amplitude dependence of equation coefficients. Sensitivity of inverted pendulum to angular acceleration of tilt is proportional to the length of a pendulum, and should be taken into consideration since it can produce significant effect especially for long pendulums, idealizing for instance, bridge piers, bents, elevated water tanks, telecommunication towers, etc.
Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model
NASA Astrophysics Data System (ADS)
Yu, Guochen; Zhang, Jiapeng; Bo, Wu
2018-01-01
In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.
Suzuki, Yasuyuki; Nomura, Taishin; Casadio, Maura; Morasso, Pietro
2012-10-07
Human upright posture, as a mechanical system, is characterized by an instability of saddle type, involving both stable and unstable dynamic modes. The brain stabilizes such system by generating active joint torques, according to a time-delayed neural feedback control. What is still unsolved is a clear understanding of the control strategies and the control mechanisms that are used by the central nervous system in order to stabilize the unstable posture in a robust way while maintaining flexibility. Most studies in this direction have been limited to the single inverted pendulum model, which is useful for formalizing fundamental mechanical aspects but insufficient for addressing more general issues concerning neural control strategies. Here we consider a double inverted pendulum model in the sagittal plane with small passive viscoelasticity at the ankle and hip joints. Despite difficulties in stabilizing the double pendulum model in the presence of the large feedback delay, we show that robust and flexible stabilization of the upright posture can be established by an intermittent control mechanism that achieves the goal of stabilizing the body posture according to a "divide and conquer strategy", which switches among different controllers in different parts of the state space of the double inverted pendulum. Remarkably, it is shown that a global, robust stability is achieved even if the individual controllers are unstable and the information exploited for switching from one controller to another is severely delayed, as it happens in biological reality. Moreover, the intermittent controller can automatically resolve coordination among multiple active torques associated with the muscle synergy, leading to the emergence of distinct temporally coordinated active torque patterns, referred to as the intermittent ankle, hip, and mixed strategies during quiet standing, depending on the passive elasticity at the hip joint. Copyright © 2012 Elsevier Ltd. All rights reserved.
2011-03-01
for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13
Reachability and Real-Time Actuation Strategies for the Active SLIP Model
2015-06-01
spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for analyzing running and hopping. In this work we consider an actuated...forced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum , In Proceedings of the 2012 IEEE International Conference on Robotics and...Networks. Automatica, 49(1):206-213, 2013 (v) G. Piovan and K. Byl. Enforced symmetry of the stance phase for the spring-loaded inverted pendulum . In
UT Austin Villa 2011: 3D Simulation Team Report
2011-01-01
inverted pendulum model omnidirectional walk engine based on one that was originally designed for the real Nao robot [7]. The omnidirectional walk is...using a double linear inverted pendulum , where the center of mass is swinging over the stance foot. In addition, as in Graf et al.’s work [7], we use...between the inverted pendulums formed by the respective stance feet. Notation Description maxStep∗i Maximum step sizes allowed for x, y, and θ y
Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)
NASA Technical Reports Server (NTRS)
Kissel, R. R.; Sutherland, W. T.
1997-01-01
A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.
State Estimation for Humanoid Robots
2015-07-01
21 2.2.1 Linear Inverted Pendulum Model . . . . . . . . . . . . . . . . . . . 21 2.2.2 Planar Five-link Model...Linear Inverted Pendulum Model. LVDT Linear Variable Differential Transformers. MEMS Microelectromechanical Systems. MHE Moving Horizon Estimator. QP...
Loram, Ian D; Gawthrop, Peter J; Lakie, Martin
2006-01-01
While standing naturally and when manually or pedally balancing an equivalent inverted pendulum, the load sways slowly (characteristic unidirectional duration ∼1 s) and the controller, calf muscles or hand, makes more frequent adjustments (characteristic unidirectional duration 400 ms). Here we test the hypothesis that these durations reflect load properties rather than some intrinsic property of the human neuromuscular system. Using a specialized set-up mechanically analogous to real standing, subjects manually balanced inverted pendulums with different moments of inertia through a compliant spring representing the Achilles tendon. The spring bias was controlled by a sensitive joystick via a servo motor and accurate visual feedback was provided on an oscilloscope. As moment of inertia decreased, inverted pendulum sway size increased and it became difficult to sustain successful balance. The mean duration of unidirectional balance adjustments did not change. Moreover, the mean duration of unidirectional inverted pendulum sway reduced only slightly, remaining around 1 s. The simplest explanation is that balance was maintained by a process of manual adjustments intrinsically limited to a mean frequency of two to three unidirectional adjustments per second corresponding to intermittent control observed in manual tracking experiments. Consequently the inverted pendulum sway duration, mechanically related to the bias duration, reflects an intrinsic constraint of the neuromuscular control system. Given the similar durations of sway and muscle adjustments observed in real standing, we postulate that the characteristic duration of unidirectional standing sway reflects intrinsic intermittent control rather than the inertial properties of the body. PMID:16973712
Fujibayashi, Nobuaki; Otsuka, Mitsuo; Yoshioka, Shinsuke; Isaka, Tadao
2017-10-24
The present study aims to cross-sectionally clarify the characteristics of the motions of an inverted pendulum model, a stance leg, a swing leg and arms in different triple-jumping techniques to understand whether or not hop displacement is relatively longer rather than step and jump displacements. Eighteen male athletes performed the triple jump with a full run-up. Based on the technique of the jumpers, they were classified as hop-dominated (n = 10) or balance (n = 8) jumpers. The kinematic data were calculated using motion capture and compared between the two techniques using the inverted pendulum model. The hop-dominated jumpers had a significantly longer hop displacement and faster vertical centre-of-mass (COM) velocity of their whole body at hop take-off, which was generated by faster rotation behaviours of inverted pendulum model and faster swinging behaviours of arms. Conversely, balance jumpers had a significantly longer jump displacement and faster horizontal COM velocity of their whole body at take-off, which was generated by a stiffer inverted pendulum model and stance leg. The results demonstrate that hop-dominated and balance jumpers enhanced each dominated-jump displacement using different swing- and stance-leg motions. This information may help to enhance the actual displacement of triple jumpers using different jumping techniques.
Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.
Günther, Michael; Wagner, Heiko
2016-01-01
For decades, the biomechanical description of quiet human stance has been dominated by the single inverted pendulum (SIP) paradigm. However, in the past few years, the SIP model family has been falsified as an explanatory approach. Double inverted pendulum models have recently proven to be inappropriate. Human topology with three major leg joints suggests in a natural way to examine triple inverted pendulum (TIP) models as an appropriate approach. In this study, we focused on formulating a TIP model that can synthesise stable balancing attractors based on minimalistic sensor information and actuation complexity. The simulated TIP oscillation amplitudes are realistic in vertical direction. Along with the horizontal ankle, knee and hip positions, though, all simulated joint angle amplitudes still exceed the measured ones about threefold. It is likely that they could be eventually brought down to the physiological range by using more sensor information. The TIP systems' eigenfrequency spectra come out as another major result. The eigenfrequencies spread across about 0.1 Hz...20 Hz. Our main result is that joint stiffnesses can be reduced even below statically required values by using an active hip torque balancing strategy. When reducing mono- and bi-articular stiffnesses further down to levels threatening dynamic stability, the spectra indicate a change from torus-like (stable) to strange (chaotic) attractors. Spectra of measured ground reaction forces appear to be strange-attractor-like. We would conclude that TIP models are a suitable starting point to examine more deeply the dynamic character of and the essential structural properties behind quiet human stance. Abbreviations and technical terms Inverted pendulum body exposed to gravity and pivoting in a joint around position of unstable equilibrium (operating point) SIP single inverted pendulum: one rigid body pivoting around fixation to the ground (external joint) DIP double inverted pendulum: two bodies; external and internal joint operate around instability TIP triple inverted pendulum: three bodies; external and both internal joints operate around instability QIP quadruple inverted pendulum: four bodies, foot replaces external joint; all three internal joints operate around instability Eigenfrequency characteristic frequency that a physical system is oscillating at when externally excited at a limited energy level DOF degree of freedom; in mechanics: linear displacement or angle or combination thereof Mono-articular stiffness: coefficient of proportionality between mechanical displacement of a DOF and restoring force/torque component in the respective DOF Bi-articular stiffness coefficient of proportionality between mechanical displacement of a DOF and restoring force/torque component in another DOF GRF ground reaction force HAT segment including head, arms and trunk COM centre of mass COP centre of pressure in the plane of the force platform surface.
Response of pendulums to complex input ground motion
Graizer, V.; Kalkan, E.
2008-01-01
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component. ?? 2007 Elsevier Ltd. All rights reserved.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
NASA Astrophysics Data System (ADS)
Aleksandrov, V. V.; Reyes-Romero, M.; Sidorenko, G. Yu.; Temoltzi-Auila, R.
2010-04-01
We consider the problem of choosing a test perturbation of a movable foundation of a single-link inverted pendulum so as to test a vestibular prosthesis prototype located at the top of this pendulum in an extreme situation. The obtained results permit concluding that the information transmitted from otolithic organs of the human vestibular system to muscles of the locomotor apparatus is very important and improves the quality of stabilization of the human vertical posture preventing the possible fall.
NASA Astrophysics Data System (ADS)
Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David
2016-09-01
The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.
NASA Astrophysics Data System (ADS)
Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.
2018-04-01
Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.
Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.
Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P
2014-01-01
Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.
Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen
2012-08-30
Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Square-Wave Model for a Pendulum with Oscillating Suspension
ERIC Educational Resources Information Center
Yorke, Ellen D.
1978-01-01
Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)
Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin
2016-08-01
Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
Control of the constrained planar simple inverted pendulum
NASA Technical Reports Server (NTRS)
Bavarian, B.; Wyman, B. F.; Hemami, H.
1983-01-01
Control of a constrained planar inverted pendulum by eigenstructure assignment is considered. Linear feedback is used to stabilize and decouple the system in such a way that specified subspaces of the state space are invariant for the closed-loop system. The effectiveness of the feedback law is tested by digital computer simulation. Pre-compensation by an inverse plant is used to improve performance.
Ikeda, Yusuke; Ichikawa, Hiroshi; Nara, Rio; Baba, Yasuhiro; Shimoyama, Yoshimitsu; Kubo, Yasuyuki
2016-10-01
This study investigated factors that determine the velocity of the center of mass (CM) and flight distance from a track start to devise effective technical and physical training methods. Nine male and 5 female competitive swimmers participated in this study. Kinematics and ground reaction forces of the front and back legs were recorded using a video camera and force plates. The track start was modeled as an inverted pendulum system including a compliant leg, connecting the CM and front edge of the starting block. The increase in the horizontal velocity of the CM immediately after the start signal was closely correlated with the rotational component of the inverted pendulum. This rotational component at hands-off was significantly correlated with the average vertical force of the back plate from the start signal to hands-off (r = .967, P < .001). The flight distance / height was significantly correlated with the average vertical force of the front plate from the back foot-off to front foot-off (r = .783, P < .01). The results indicate that the legs on the starting block in the track start play a different role in the behavior of the inverted pendulum.
Predictor-based control for an inverted pendulum subject to networked time delay.
Ghommam, J; Mnif, F
2017-03-01
The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Dwivedi, Prakash; Pandey, Sandeep; Junghare, A S
2018-04-01
A rotary single inverted pendulum (RSIP) typically represents a space booster rocket, Segway and similar systems with unstable equilibrium. This paper proposes a novel two degree of freedom (2-DOF) fractional control strategy based on 2-loop topology for RSIP system which can be extended to control the systems with unstable equilibrium. It comprises feedback and feed-forward paths. Primary controller relates the perturbation attenuation while the secondary controller is accountable for set point tracking. To tune the parameters of proposed fractional controller a simple graphical tuning method based on frequency response is used. The study will serve the outstanding experimental results for both, stabilization and trajectory tracking tasks. The study will also serve to present a comparison of the performance of the proposed controller with the 1-DOF FOPID controller and sliding mode controller (SMC) for the RSIP system. Further to confirm the usability of the proposed controller and to avoid the random perturbations sensitivity, robustness, and stability analysis through fractional root-locus and Bode-plot is investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Fujii, Keisuke; Shinya, Masahiro; Yamashita, Daichi; Kouzaki, Motoki; Oda, Shingo
2014-01-01
We previously estimated the timing when ball game defenders detect relevant information through visual input for reacting to an attacker's running direction after a cutting manoeuvre, called cue timing. The purpose of this study was to investigate what specific information is relevant for defenders, and how defenders process this information to decide on their opponents' running direction. In this study, we hypothesised that defenders extract information regarding the position and velocity of the attackers' centre of mass (CoM) and the contact foot. We used a model which simulates the future trajectory of the opponent's CoM based upon an inverted pendulum movement. The hypothesis was tested by comparing observed defender's cue timing, model-estimated cue timing using the inverted pendulum model (IPM cue timing) and cue timing using only the current CoM position (CoM cue timing). The IPM cue timing was defined as the time when the simulated pendulum falls leftward or rightward given the initial values for position and velocity of the CoM and the contact foot at the time. The model-estimated IPM cue timing and the empirically observed defender's cue timing were comparable in median value and were significantly correlated, whereas the CoM cue timing was significantly more delayed than the IPM and the defender's cue timings. Based on these results, we discuss the possibility that defenders may be able to anticipate the future direction of an attacker by forwardly simulating inverted pendulum movement.
Dynamic stabilization of an optomechanical oscillator
2014-10-20
respectively. The proper frequency of the pendulum is ω0 = √ g/, where g is the gravitational acceleration and is the length of the pendulum . The...controlled experiments. In this paper we discuss one such situation, the dynamic stabilization of a mechanical system such as an inverted pendulum . The...quantumoptomechanics, macroscopic quantum system, dynamic stabilization, Kapitza pendulum REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S
Predictive Feature Selection for Genetic Policy Search
2014-05-22
inverted pendulum balancing problem (Gomez and Miikkulainen, 1999), where the agent must learn a policy in a continuous state space using discrete...algorithms to automate the process of training and/or designing NNs, mitigate these drawbacks and allow NNs to be easily applied to RL domains (Sher, 2012...racing simulator and the double inverted pendulum balance environments. It also includes parameter settings for all algorithms included in the study
Computer simulation of multigrid body dynamics and control
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Moon, Young I.; Venkayya, V. B.
1990-01-01
The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.
Loram, Ian D; Lakie, Martin
2002-01-01
In standing, there are small sways of the body. Our interest is to use an artificial task to illuminate the mechanisms underlying the sways and to account for changes in their size. Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. By giving full attention to minimising sway subjects could systematically reduce pendulum movement. The pendulum position, the torque generated at each ankle and the soleus and tibialis anterior EMGs were recorded. Explanations about how the human inverted pendulum is balanced usually ignore the fact that balance is maintained over a range of angles and not just at one angle. Any resting equilibrium position of the pendulum is unstable and in practice temporary; movement to a different resting equilibrium position can only be accomplished by a biphasic ‘throw and catch’ pattern of torque and not by an elastic mechanism. Results showed that balance was achieved by the constant repetition of a neurally generated ballistic-like biphasic pattern of torque which can control both position and sway size. A decomposition technique revealed that there was a substantial contribution to changes in torque from intrinsic mechanical ankle stiffness; however, by itself this was insufficient to maintain balance or to control position. Minimisation of sway size was caused by improvement in the accuracy of the anticipatory torque impulses. We hypothesise that examination of centre of mass and centre of pressure data for quiet standing will duplicate these results. PMID:11986396
NASA Astrophysics Data System (ADS)
Kawashima, T.
2016-09-01
To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.
Aranda-Escolástico, Ernesto; Guinaldo, María; Gordillo, Francisco; Dormido, Sebastián
2016-11-01
In this paper, periodic event-triggered controllers are proposed for the rotary inverted pendulum. The control strategy is divided in two steps: swing-up and stabilization. In both cases, the system is sampled periodically but the control actions are only computed at certain instances of time (based on events), which are a subset of the sampling times. For the stabilization control, the asymptotic stability is guaranteed applying the Lyapunov-Razumikhin theorem for systems with delays. This result is applicable to general linear systems and not only to the inverted pendulum. For the swing-up control, a trigger function is provided from the derivative of the Lyapunov function for the swing-up control law. Experimental results show a significant improvement with respect to periodic control in the number of control actions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Balcerzak, Marek; Dąbrowski, Artur; Pikunov, Danylo
2018-01-01
This paper presents a practical application of a new, simplified method of Lyapunov exponents estimation. The method has been applied to optimization of a real, nonlinear inverted pendulum system. Authors presented how the algorithm of the Largest Lyapunov Exponent (LLE) estimation can be applied to evaluate control systems performance. The new LLE-based control performance index has been proposed. Equations of the inverted pendulum system of the fourth order have been found. The nonlinear friction of the regulation object has been identified by means of the nonlinear least squares method. Three different friction models have been tested: linear, cubic and Coulomb model. The Differential Evolution (DE) algorithm has been used to search for the best set of parameters of the general linear regulator. This work proves that proposed method is efficient and results in faster perturbation rejection, especially when disturbances are significant.
Maple[R] Version of the "Indian Rope Trick". Classroom Notes
ERIC Educational Resources Information Center
Knight, D. G.
2004-01-01
If the point of suspension of a multiple pendulum is suitably oscillated then the pendulum can remain in motion in an upside-down position. Since such pendulums can model flexible materials, this inverted motion is sometimes referred to as an 'Indian rope trick'. Despite the complexity of the governing differential equations, this rope trick can…
A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)
2011-08-10
plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is
Effect of reduced gravity on the preferred walk-run transition speed
NASA Technical Reports Server (NTRS)
Kram, R.; Domingo, A.; Ferris, D. P.
1997-01-01
We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.
Morphological evolution of spiders predicted by pendulum mechanics.
Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia
2008-03-26
Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.
Robust Stabilization of T-S Fuzzy Stochastic Descriptor Systems via Integral Sliding Modes.
Li, Jinghao; Zhang, Qingling; Yan, Xing-Gang; Spurgeon, Sarah K
2017-09-19
This paper addresses the robust stabilization problem for T-S fuzzy stochastic descriptor systems using an integral sliding mode control paradigm. A classical integral sliding mode control scheme and a nonparallel distributed compensation (Non-PDC) integral sliding mode control scheme are presented. It is shown that two restrictive assumptions previously adopted developing sliding mode controllers for Takagi-Sugeno (T-S) fuzzy stochastic systems are not required with the proposed framework. A unified framework for sliding mode control of T-S fuzzy systems is formulated. The proposed Non-PDC integral sliding mode control scheme encompasses existing schemes when the previously imposed assumptions hold. Stability of the sliding motion is analyzed and the sliding mode controller is parameterized in terms of the solutions of a set of linear matrix inequalities which facilitates design. The methodology is applied to an inverted pendulum model to validate the effectiveness of the results presented.
A Performance and Plume Comparison of Xenon and Krypton Propellant on the SPT-100
2012-07-02
HET (1.35 kW), performance measurements were made using an inverted pendulum thrust stand. The plume was also characterized by a Faraday probe and RPA...performance reduction for the case of the flight model SPT-100 HET (1.35 kW), per- formance measurements were made using an inverted pendulum thrust stand...where high thrust at reduced specific impulse is advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Neural network-based motion control of an underactuated wheeled inverted pendulum model.
Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong
2014-11-01
In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System
Tang, Yongchuan; Zhou, Deyun
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.
Tang, Yongchuan; Zhou, Deyun; Jiang, Wen
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.
High-power, null-type, inverted pendulum thrust stand.
Xu, Kunning G; Walker, Mitchell L R
2009-05-01
This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.
Damping system for torsion modes of mirror isolation filters in TAMA300
NASA Astrophysics Data System (ADS)
Arase, Y.; Takahashi, R.; Arai, K.; Tatsumi, D.; Fukushima, M.; Yamazaki, T.; Fujimoto, Masa-Katsu; Agatsuma, K.; Nakagawa, N.
2008-07-01
The seismic attenuation system (SAS) in TAMA300 consists of a three-legged inverted pendulum and mirror isolation filters in order to provide a high level of seismic isolation. However, the mirror isolation filters have torsion modes with long decay time which disturb the interferometer operation for about half an hour if they get excited. In order to damp the torsion modes of the filters, we constructed a digital damping system using reflective photosensors with a large linear range. This system was installed to all of four SASs. By damping of the target torsion modes, the effective quality factors of the torsion modes are reduced to less than 10 or to unmeasurable level. This system is expected to reduce the inoperative period by the torsion mode excitation, and thus will contribute to improve the duty time of the gravitational wave detector.
Nonlinear adaptive networks: A little theory, a few applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.D.; Qian, S.; Barnes, C.W.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-01-01
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338
Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking
NASA Technical Reports Server (NTRS)
Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph
2008-01-01
The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the effective bending point of the flex-joint. The second plate is pressed against two screw actuators by the weight of the IP. The screw actuators are orthogonal to each other and are used to adjust the inclination of the second plate. The actuators are driven by stepper motors. The whole IP system is housed in a box made of Lexan plastic plates to provide isolation from air currents and temperature variations. The signals from the sensors are processed and recorded with a PC using the xPC Target realtime environment of Math- Works. The control algorithms are written using the Simulink package from The MathWorks.
Dynamic Modeling and Simulation of a Rotational Inverted Pendulum
NASA Astrophysics Data System (ADS)
Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.
2017-01-01
This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.
Naturally Inspired Firefly Controller For Stabilization Of Double Inverted Pendulum
NASA Astrophysics Data System (ADS)
Srikanth, Kavirayani; Nagesh, Gundavarapu
2015-12-01
A double inverted pendulum plant as an established model that is analyzed as part of this work was tested under the influence of time delay, where the controller was fine tuned using a firefly algorithm taking into considering the fitness function of variation of the cart position and to minimize the cart position displacement and still stabilize it effectively. The naturally inspired algorithm which imitates the fireflies definitely is an energy efficient method owing to the inherent logic of the way the fireflies respond collectively and has shown that critical time delays makes the system healthy.
Reinforcement learning: Solving two case studies
NASA Astrophysics Data System (ADS)
Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto
2012-09-01
Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.
NASA Astrophysics Data System (ADS)
Demidov, Ivan; Sorokin, Vladislav
2018-05-01
Motion of a pendulum with damping and vibrating axis of suspension is considered at unconventional values of parameters. Case when the frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied. Vibration intensity is assumed to be relatively low. In this case, the corresponding equation of the pendulum's motions doesn't involve an explicit small parameter. To solve the equation a new modification of the method of direct separation of motions is used. As the result, stability conditions of the pendulum inverted position are determined. Effects of damping on these conditions are discussed.
Weaver, Tyler B; Glinka, Michal N; Laing, Andrew C
2014-11-07
Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)-COM difference. Ten young adults held static standing, stooping and crouching postures, each for 20s. For both the anterior-posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP-COM were computed, and the relationship between these two variables was determined using Pearson's correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP-COM signal, and the inertial component (i.e., -I/Wh) were compared across postures. Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP-COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002). The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Prediction and control of chaotic processes using nonlinear adaptive networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.D.; Barnes, C.W.; Flake, G.W.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Bayramoglu, Husnu; Komurcugil, Hasan
2014-07-01
A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients. Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal sliding mode control method was utilized to make both subsystems converge to their equilibrium points in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Estimation of Alpine Skier Posture Using Machine Learning Techniques
Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej
2014-01-01
High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing. PMID:25313492
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
NASA Astrophysics Data System (ADS)
Efimov, Denis; Schiffer, Johannes; Ortega, Romeo
2016-05-01
Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.
Robust Control Algorithm for a Two Cart System and an Inverted Pendulum
NASA Technical Reports Server (NTRS)
Wilson, Chris L.; Capo-Lugo, Pedro
2011-01-01
The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems
Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach.
Khan, Qudrat; Akmeliawati, Rini; Bhatti, Aamer Iqbal; Khan, Mahmood Ashraf
2017-01-01
This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.
Hongbo Wang; Kosuge, K
2012-01-01
Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.
Lakie, Martin; Caplan, Nicholas; Loram, Ian D
2003-01-01
These experiments were prompted by the recent discovery that the intrinsic stiffness of the ankle is inadequate to stabilise passively the body in standing. Our hope was that showing how a large inverted pendulum was manually balanced with low intrinsic stiffness would elucidate the active control of human standing. The results show that the pendulum can be satisfactorily stabilised when intrinsic stiffness is low. Analysis of sway size shows that intrinsic stiffness actually plays little part in stabilisation. The sway duration is also substantially independent of intrinsic stiffness. This suggests that the characteristic sway of the pendulum, rather than being dictated by stiffness and inertia, may result from the control pattern of hand movements. The key points revealed by these experiments are that with low intrinsic stiffness the hand provides pendulum stability by intermittently altering the bias of the spring and, on average, the hand moves in opposition to the load. The results lead to a new and testable hypothesis; namely that in standing, the calf muscle shortens as the body sways forward and lengthens as it sways backwards. These findings are difficult to reconcile with stretch reflex control of the pendulum and are of particular relevance to standing. They may also be relevant to postural maintenance in general whenever the CNS controls muscles which operate through compliant linkages. The results also suggest that in standing, rather than providing passive stability, the intrinsic stiffness acts as an energy efficient buffer which provides decoupling between muscle and body. PMID:12832494
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
Validation of a robotic balance system for investigations in the control of human standing balance.
Luu, Billy L; Huryn, Thomas P; Van der Loos, H F Machiel; Croft, Elizabeth A; Blouin, Jean-Sébastien
2011-08-01
Previous studies have shown that human body sway during standing approximates the mechanics of an inverted pendulum pivoted at the ankle joints. In this study, a robotic balance system incorporating a Stewart platform base was developed to provide a new technique to investigate the neural mechanisms involved in standing balance. The robotic system, programmed with the mechanics of an inverted pendulum, controlled the motion of the body in response to a change in applied ankle torque. The ability of the robotic system to replicate the load properties of standing was validated by comparing the load stiffness generated when subjects balanced their own body to the robot's mechanical load programmed with a low (concentrated-mass model) or high (distributed-mass model) inertia. The results show that static load stiffness was not significantly (p > 0.05) different for standing and the robotic system. Dynamic load stiffness for the robotic system increased with the frequency of sway, as predicted by the mechanics of an inverted pendulum, with the higher inertia being accurately matched to the load properties of the human body. This robotic balance system accurately replicated the physical model of standing and represents a useful tool to simulate the dynamics of a standing person. © 2011 IEEE
Experimental Evaluation of Balance Prediction Models for Sit-to-Stand Movement in the Sagittal Plane
Pena Cabra, Oscar David; Watanabe, Takashi
2013-01-01
Evaluation of balance control ability would become important in the rehabilitation training. In this paper, in order to make clear usefulness and limitation of a traditional simple inverted pendulum model in balance prediction in sit-to-stand movements, the traditional simple model was compared to an inertia (rotational radius) variable inverted pendulum model including multiple-joint influence in the balance predictions. The predictions were tested upon experimentation with six healthy subjects. The evaluation showed that the multiple-joint influence model is more accurate in predicting balance under demanding sit-to-stand conditions. On the other hand, the evaluation also showed that the traditionally used simple inverted pendulum model is still reliable in predicting balance during sit-to-stand movement under non-demanding (normal) condition. Especially, the simple model was shown to be effective for sit-to-stand movements with low center of mass velocity at the seat-off. Moreover, almost all trajectories under the normal condition seemed to follow the same control strategy, in which the subjects used extra energy than the minimum one necessary for standing up. This suggests that the safety considerations come first than the energy efficiency considerations during a sit to stand, since the most energy efficient trajectory is close to the backward fall boundary. PMID:24187580
Linear control of the flywheel inverted pendulum.
Olivares, Manuel; Albertos, Pedro
2014-09-01
The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
NASA Astrophysics Data System (ADS)
Wolszczak, Piotr; Łygas, Krystian; Litak, Grzegorz
2018-07-01
This study investigates dynamic responses of a nonlinear vibration energy harvester. The nonlinear mechanical resonator consists of a flexible beam moving like an inverted pendulum between amplitude limiters. It is coupled with a piezoelectric converter, and excited kinematically. Consequently, the mechanical energy input is converted into the electrical power output on the loading resistor included in an electric circuit attached to the piezoelectric electrodes. The curvature of beam mode shapes as well as deflection of the whole beam are examined using a high speed camera. The visual identification results are compared with the voltage output generated by the piezoelectric element for corresponding frequency sweeps and analyzed by the Hilbert transform.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.
Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.
Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M
2014-03-01
This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
Loram, Ian D; Kelly, Sue M; Lakie, Martin
2001-01-01
Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. Two main questions were addressed. Can subjects systematically change sway size in response to instruction and availability of visual feedback? If so, do subjects decrease sway size by increasing ankle impedance or by some alternative mechanism? The position of the pendulum, the torque generated at each ankle and the soleus and tibialis anterior EMG were recorded. Results showed that subjects could significantly reduce the mean sway size of the pendulum by giving full attention to that goal. With visual feedback sway size could be minimised significantly more than without visual feedback. In changing sway size, the frequency of the sways was not changed. Results also revealed that ankle impedance and muscle co-contraction were not significantly changed when the sway size was decreased. As the ankle impedance and sway frequency do not change when the sway size is decreased, this implies no change in ankle stiffness or viscosity. Increasing ankle impedance, stiffness or viscosity are not the only methods by which sway size could be reduced. A reduction in torque noise or torque inaccuracy via a predictive process which provides active damping could reduce sway size without changing ankle impedance and is plausible given the data. Such a strategy involving motion recognition and generation of an accurate motor response may require higher levels of control than changing ankle impedance by altering reflex or feedforward gain. PMID:11313453
2014-04-01
improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3
NASA Astrophysics Data System (ADS)
McDonald, Kirk T.
1998-03-01
The spin cycle of a washing machine involves motion that is stabilized by the Coriolis force, similar to the case of the motion of shafts of large turbines. This system is an example of a stable inverted pendulum.
Recommended Practices in Thrust Measurements
NASA Technical Reports Server (NTRS)
Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John
2013-01-01
Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.
A new paradigm for human stick balancing: a suspended not an inverted pendulum.
Lee, Kwee-Yum; O'Dwyer, Nicholas; Halaki, Mark; Smith, Richard
2012-09-01
We studied 14 skilled subjects balancing a stick (a television antenna, 52 cm, 34 g) on their middle fingertip. Comprehensive three-dimensional analyses revealed that the movement of the finger was 1.75 times that of the stick tip, such that the balanced stick behaved more like a normal noninverted pendulum than the inverted pendulum common to engineering models for stick balancing using motors. The average relation between the torque applied to the stick and its angle of deviation from the vertical was highly linear, consistent with simple harmonic motion. We observed clearly greater rotational movement of the stick in the anteroposterior plane than the mediolateral plane. Despite this magnitude difference, the duration of stick oscillatory cycles was very similar in both planes, again consistent with simple harmonic motion. The control parameter in balancing was the ratio of active torque applied to the stick relative to gravitational torque. It determined both the pivot point and oscillatory cycle period of the pendulum. The pivot point was located at the radius of gyration (about the centre of mass) of the stick from its centre of mass, showing that the subjects attuned to the gravitational dynamics and mass distribution of the stick. Hence, the key to controlling instability here was mastery of the physics of the unstable object. The radius of gyration may--similar to centre of mass--contribute to the kinesthesis of rotating limb segments and control of their gravitational dynamics.
Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum
NASA Astrophysics Data System (ADS)
Lima, Byron; Cajo, Ricardo; Huilcapi, Víctor; Agila, Wilton
2017-01-01
The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller.
Robotic system construction with mechatronic components inverted pendulum: humanoid robot
NASA Astrophysics Data System (ADS)
Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan
2017-03-01
Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.
A composite controller for trajectory tracking applied to the Furuta pendulum.
Aguilar-Avelar, Carlos; Moreno-Valenzuela, Javier
2015-07-01
In this paper, a new composite scheme is proposed, where the total control action is composed of the sum of a feedback-linearization-based controller and an energy-based compensation. This new proposition is applied to the rotary inverted pendulum or Furuta pendulum. The Furuta pendulum is a well-known underactuated mechanical system with two degrees of freedom. The control objective in this case is the tracking of a desired periodic trajectory in the actuated joint, while the unactuated link is regulated at the upward position. The closed-loop system is analyzed showing uniformly ultimately boundedness of the error trajectories. The design procedure is shown in a constructive form, such that it may be applied to other underactuated mechanical systems, with the proper definitions of the output function and the energy function. Numerical simulations and real-time experiments show the practical viability of the controller. Finally, the proposed algorithm is compared with a tracking controller previously reported in the literature. The new algorithm shows better performance in both arm trajectory tracking and pendulum regulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
School Science Review, 1977
1977-01-01
Includes methods for using harmonographs in demonstrating motion of pendulums, constructing an electrostatic "bell," inverting mirror images, demonstrating the corrosion rate of steel, demonstrating expansion, studying rate of reaction between magnesium and hydrochloric acid, using matchboxes in science for containers, problem boxes, building…
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Dynamic characteristics of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Goglia, G. L.
1977-01-01
The point transmission matrix for a vertical plane pendulum on a rotating blade undergoing combined flapwise bending, and chordwise bending and torsion is derived. The equilibrium equation of the pendulum is linearized for small oscillations about the steady state. A FORTRAN program was written for the case of a vertical plane pendulum attached to a uniform blade with flapwise bending degree of freedom for cantilever boundary conditions. The frequency has a singular value right at the uncoupled pendulum natural frequency and thus introduces two frequencies corresponding to the nearest natural frequency of the blade without pendulum. In both of these modes it was observed that the pendulum deflection is large. One frequency can be thought of as a coupled pendulum frequency and the other as a coupled bending and pendulum frequency.
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
Validation of the Inverted Pendulum Model in standing for transtibial prosthesis users.
Rusaw, David F; Ramstrand, Simon
2016-01-01
Often in balance assessment variables associated with the center of pressure are used to draw conclusions about an individual's balance. Validity of these conclusions rests upon assumptions that movement of the center of pressure is inter-dependent on movement of the center of mass. This dependency is mechanical and is referred to as the Inverted Pendulum Model. The following study aimed to validate this model both kinematically and kinetically, in transtibial prosthesis users and a control group. Prosthesis users (n=6) and matched control participants (n=6) stood quietly while force and motion data were collected under three conditions (eyes-open, eyes-closed, and weight-bearing feedback). Correlation coefficients were used to investigate the relationships between height and excursion of markers and center of masses in mediolateral/anteroposterior-directions, difference between center of pressure and center of mass and the center of mass acceleration in mediolateral/anteroposterior directions, magnitude of mediolateral/anteroposterior-component forces and center of mass acceleration, angular position of ankle and excursion in mediolateral/anteroposterior-directions, and integrated force signals. Results indicate kinematic validity of similar magnitudes (mean (SD) marker-displacement) between prosthesis users and control group for mediolateral- (r=0.77 (0.17); 0.74 (0.19)) and anteroposterior-directions (r=0.88 (0.18); 0.88 (0.19)). Correlation between difference of center of pressure and center of mass and the center of mass acceleration was negligible on the prosthetic side (r = 0.08 (0.06)) vs. control group (r=-0.51(0.13)). Results indicate kinematic validity of the Inverted Pendulum Model in transtibial prosthesis users but kinetic validity is questionable, particularly on the side with a prosthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Griffiss Institute Summer Faculty Program
2013-05-01
can inherit the advantages of the static approach while overcoming its drawbacks . Our solution is centered on the following: (i) application-layer web...inverted pendulum balancing problem. In these challenging environments we show that our algorithm not only allows NEAT to scale to high-dimensional spaces
Tuning a fuzzy controller using quadratic response surfaces
NASA Technical Reports Server (NTRS)
Schott, Brian; Whalen, Thomas
1992-01-01
Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
Interfacial fluid instabilities and Kapitsa pendula.
Krieger, Madison S
2017-07-01
The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.
van Soest, A J Knoek; Rozendaal, Leonard A
2008-07-01
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.
Stick balancing with reflex delay in case of parametric forcing
NASA Astrophysics Data System (ADS)
Insperger, Tamas
2011-04-01
The effect of parametric forcing on a PD control of an inverted pendulum is analyzed in the presence of feedback delay. The stability of the time-periodic and time-delayed system is determined numerically using the first-order semi-discretization method in the 5-dimensional parameter space of the pendulum's length, the forcing frequency, the forcing amplitude, the proportional and the differential gains. It is shown that the critical length of the pendulum (that can just be balanced against the time-delay) can significantly be decreased by parametric forcing even if the maximum forcing acceleration is limited. The numerical analysis showed that the critical stick length about 30 cm corresponding to the unforced system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceleration below the gravitational acceleration.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Improved method of step length estimation based on inverted pendulum model.
Zhao, Qi; Zhang, Boxue; Wang, Jingjing; Feng, Wenquan; Jia, Wenyan; Sun, Mingui
2017-04-01
Step length estimation is an important issue in areas such as gait analysis, sport training, or pedestrian localization. In this article, we estimate the step length of walking using a waist-worn wearable computer named eButton. Motion sensors within this device are used to record body movement from the trunk instead of extremities. Two signal-processing techniques are applied to our algorithm design. The direction cosine matrix transforms vertical acceleration from the device coordinates to the topocentric coordinates. The empirical mode decomposition is used to remove the zero- and first-order skew effects resulting from an integration process. Our experimental results show that our algorithm performs well in step length estimation. The effectiveness of the direction cosine matrix algorithm is improved from 1.69% to 3.56% while the walking speed increased.
Investigations of quantum pendulum dynamics in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Orion GN&C Detection and Mitigation of Parachute Pendulosity
NASA Technical Reports Server (NTRS)
Kane, Mark A.; Wacker, Roger
2016-01-01
New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touchdown. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge, the control system maneuvers the vehicle using two separate strategies determined by wind velocity magnitude and pendulum energy thresholds; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities and large pendulum amplitudes the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
Requirements for Real-Time Laboratory Experimentation over the Internet.
ERIC Educational Resources Information Center
Salzmann, C.; Latchman, H. A.; Gillet, D.; Crisalle, O. D.
A prototype system based on an inverted pendulum is used to study the Quality of Service and discuss requirements of remote-experimentation systems utilized for carrying out control engineering experiments over the Internet. This class of applications involves the transmission over the network of a variety of data types with their own peculiar…
Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples
ERIC Educational Resources Information Center
Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun
2014-01-01
System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…
Shahbazi, Mohammad; Saranlı, Uluç; Babuška, Robert; Lopes, Gabriel A D
2016-12-05
This paper introduces approximate time-domain solutions to the otherwise non-integrable double-stance dynamics of the 'bipedal' spring-loaded inverted pendulum (B-SLIP) in the presence of non-negligible damping. We first introduce an auxiliary system whose behavior under certain conditions is approximately equivalent to the B-SLIP in double-stance. Then, we derive approximate solutions to the dynamics of the new system following two different methods: (i) updated-momentum approach that can deal with both the lossy and lossless B-SLIP models, and (ii) perturbation-based approach following which we only derive a solution to the lossless case. The prediction performance of each method is characterized via a comprehensive numerical analysis. The derived representations are computationally very efficient compared to numerical integrations, and, hence, are suitable for online planning, increasing the autonomy of walking robots. Two application examples of walking gait control are presented. The proposed solutions can serve as instrumental tools in various fields such as control in legged robotics and human motion understanding in biomechanics.
A 205 Hour Krypton Propellant Life Test of the SPT-100 Operating at 3 kW
2013-09-01
advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be vaporized to be ionized and accelerated within a Hall...the performance of the SPT-100 operating on krypton was characterized using an inverted pendulum thrust stand over a wide range of thruster operating
Extraordinary Oscillations of an Ordinary Forced Pendulum
ERIC Educational Resources Information Center
Butikov, Eugene I.
2008-01-01
Several well-known and newly discovered counterintuitive regular and chaotic modes of the sinusoidally driven rigid planar pendulum are discussed and illustrated by computer simulations. The software supporting the investigation offers many interesting predefined examples that demonstrate various peculiarities of this famous physical model.…
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing
ERIC Educational Resources Information Center
Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.
2012-01-01
In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…
Adhikary, Nabanita; Mahanta, Chitralekha
2013-11-01
In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin
2013-01-01
It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off. PMID:23717398
Volume 2: Compendium of Abstracts
2017-06-01
simulation work using a standard running model for legged systems, the Spring Loaded Inverted Pendulum (SLIP) Model. In this model, the dynamics of a single...bar SLIP model is analyzed using a basin of attraction analyses to determine the optimal configuration for running at different velocities and...acquisition, and the automatic target acquisition were then compared to each other. After running trials with the current system, it will be
Towards the SQL: Status of the direct thermal-noise measurements at the ANU
NASA Astrophysics Data System (ADS)
Mow-Lowry, C. M.; Goßler, S.; Slagmolen, B. J. J.; Cumpston, J.; Gray, M. B.; McClelland, D. E.
2006-03-01
We present the preliminary results for an experiment that aims to perform direct measurements of suspension thermal noise. The experiment is based on a niobium flexure membrane approximately 200 µm thickness that is operated as a stable inverted pendulum. A 0.25 g mirror suspended by this flexure membrane is used as the end mirror of a Fabry-Perot test cavity. This test cavity has a length of 12mm and a finesse of about 800. It is mounted at the lowest stage of a quadruple cascaded pendulum suspension, enclosed in a high-vacuum envelope. The length of test cavity is stabilized with 1Hz bandwidth to a Nd:YAG laser, which itself is stabilized with high bandwidth to the length of a suspended Zerodur reference cavity of finesse 6000.
Quantum dynamics of a plane pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibscher, Monika; Schmidt, Burkhard
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less
NASA Astrophysics Data System (ADS)
Acar, Cihan; Murakami, Toshiyuki
In this paper, a robust control of two-wheeled mobile manipulator with underactuated joint is considered. Two-wheeled mobile manipulators are dynamically balanced two-wheeled driven systems that do not have any caster or extra wheels to stabilize their body. Two-wheeled mobile manipulators mainly have an important feature that makes them more flexible and agile than the statically stable mobile manipulators. However, two-wheeled mobile manipulator is an underactuated system due to its two-wheeled structure. Therefore, it is required to stabilize the underactuated passive body and, at the same time, control the position of the center of gravity (CoG) of the manipulator in this system. To realize this, nonlinear backstepping based control method with virtual double inverted pendulum model is proposed in this paper. Backstepping is used with sliding mode to increase the robustness of the system against modeling errors and other perturbations. Then robust acceleration control is also achieved by utilizing disturbance observer. Performance of the proposed method is evaluated by several experiments.
Nonlinear Feedback Control of the Rotary Inverted Pendulum
2017-06-01
equations executed in the S-functions were rebuilt using Simulink Math Operation blocks. Building these equations with Math Operations was not...difficult but required attention to detail in order to make sure all the correct operations took place. Simulation outputs using the Math Operations were...compared to those using an S- function to check for correctness. After the math blocks were confirmed to work correctly, the simulation was sent to
Breniere, Y; Ribreau, C
1998-10-01
In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.
González, R C; Alvarez, D; López, A M; Alvarez, J C
2009-12-01
It has been reported that spatio-temporal gait parameters can be estimated using an accelerometer to calculate the vertical displacement of the body's centre of gravity. This method has the potential to produce realistic ambulatory estimations of those parameters during unconstrained walking. In this work, we want to evaluate the crude estimations of mean step length so obtained, for their possible application in the construction of an ambulatory walking distance measurement device. Two methods have been tested with a set of volunteers in 20 m excursions. Experimental results show that estimations of walking distance can be obtained with sufficient accuracy and precision for most practical applications (errors of 3.66 +/- 6.24 and 0.96 +/- 5.55%), the main difficulty being inter-individual variability (biggest deviations of 19.70 and 15.09% for each estimator). Also, the results indicate that an inverted pendulum model for the displacement during the single stance phase, and a constant displacement per step during double stance, constitute a valid model for the travelled distance with no need of further adjustments. It allows us to explain the main part of the erroneous distance estimations in different subjects as caused by fundamental limitations of the simple inverted pendulum approach.
Demonstrating the Principle of an rf Paul Ion Trap
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Rabchuk, James
2008-03-01
An rf ion trap uses a time-varying electric field to trap charged ions. This is useful in applications related to quantum computing and mass spectroscopy. There are several mechanical devices described in the literature which have attempted to provide illustrative demonstrations of the principle of rf ion traps, including a mechanically-rotating ``saddle trap'' and the vertically-driven, inverted pendulum^1,2. Neither demonstration, however, successfully demonstrates BOTH the sinusoidal variation in the electric potential of the rf trap AND the parametric stability of the ions in the trap described by Mathieu's equation. We have modified a design of a one-dimensional ponderomotive trap^3 so that it satisfies both criteria for demonstrating the principle of an rf Paul trap. Our studies indicate that trapping stability is highly sensitive to fluxuations in the driving frequency. Results from the demonstration apparatus constructed by the authors will be presented. ^1 Rueckner, W., et al., ``Rotating saddle Paul trap,'' Am. J. Phys., 63 (2), February 1995. ^2 Friedman, M.H., et al., ``The inverted pendulum: A mechanical analogue of a quadrupole mass filter,'' Am. J. Phys., 50 (10), October 1982. ^3 Johnson, A.K. and Rabchuk, J.A., ``A One-Dimensional Ponderomotive Trap,'' ISAAPT 2007 spring meeting, WIU, March 30, 2007.
Patnaik, Lalit; Umanand, Loganathan
2015-10-26
The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v0-φm plane. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given vx,avg. This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.
Pendulum motions of extended lunar space elevator
NASA Astrophysics Data System (ADS)
Burov, A. A.; Kosenko, I. I.
2014-09-01
In the usual everyday life, it is well known that the inverted pendulum is unstable and is ready to fall to "all four sides," to the left and to the right, forward and backward. The theoretical studies and the lunar experience of moon robots and astronauts also confirms this property. The question arises: Is this property preserved if the pendulum is "very, very long"? It turns out that the answer is negative; namely, if the pendulum length significantly exceeds the Moon radius, then the radial equilibria at which the pendulum is located along the straight line connecting the Earth and Moon centers are Lyapunov stable and the pendulum does not fall in any direction at all. Moreover, if the pendulum goes beyond the collinear libration points, then it can be extended and manufactured from cables. This property was noted by F. A. Tsander and underlies the so-called lunar space elevator (e.g., see [1]). In the plane of the Earth and Moon orbits, there are some other equilibria which turn out to be unstable. The question is, Are there equilibria at which the pendulum is located outside the orbital plane? In this paper, we show that the answer is positive, but such equilibria are unstable in the secular sense. We also study necessary conditions for the stability of lunar pendulum oscillations in the plane of the lunar orbit. It was numerically discovered that stable and unstable equilibria alternate depending on the oscillation amplitude and the angular velocity of rotation. The study of the lunar elevator dynamics originates in [2]. The concept of lunar elevator was developed in detail in [3, 4]. Several classes of equilibria with the finiteness of the Moon size taken into account were studied in [5]. The possibility of location of an orbital station fixed to the Moon surface by a pair of tethers was investigated in [6]. The problem of orientation of the terminal station of the lunar space elevator was studied in [7]. The influence of the tether length variations on the motion of the lunar tether system was considered in [8]. The alternation of stable and unstable flat oscillations is well known in the problem of satellite oscillations in a circular orbit [9, 10].
Robust hopping based on virtual pendulum posture control.
Sharbafi, Maziar A; Maufroy, Christophe; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Seyfarth, Andre
2013-09-01
A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved.
Orion GN&C Detection and Mitigation of Parachute Pendulosity
NASA Technical Reports Server (NTRS)
Kane, Mark A.; Wacker, Roger
2016-01-01
New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touch-down. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge the control system maneuvers the vehicle using two separate strategies determined by a wind velocity magnitude threshold; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).
Hall Effect Thruster Ground Testing Challenges
2009-08-18
the specic impulse, g is Earth’s gravitational constant, η is the thrust efficiency, ṁ is the propellant...lines form a composite spring with an effective spring constant of K . The thruster displaces the inverted pendulum a distance x, and the thrust stand...destabilizing force as shown in Eqn. 5. x = T K − Mgh (5) The effective spring constant is adjusted such that the unstable condition of K = Mg/h is avoided,
Measurement of Motion Transfer Functions for Mirror Suspensions
NASA Astrophysics Data System (ADS)
Stuver, Amber; Beilby, Mark; Glancy, Aran; Gonzalez, Gabriela
2001-04-01
Interferometric gravitational wave detectors, such as LIGO, use mirrors suspended in pendulums. The current LIGO dectors use simple pendulums, but advanced LIGO detectors will use multiple pendulums with some stages on soft vertical springs. A drawback of the a multiple pendulum design is that it is difficult to model and predict cross couplings from one vibrational mode to another due to slight unavoidable asymmetries in the real system. Of most concern are the couplings to motion along the optical axis and into angular motions, which have the most potential to contaminate data. Our research focuses on the experimental testing of the pendulum designs for cross couplings with a special dedicated shaking stage. The cross couplings in each degree of freedom, their isolation and damping are investigated in this research though the measurement of transfer functions as filtered though the suspension system. This research is supported by The Pennsylvania State University, the NSF Grant no. PHY-9870032, and the REU program at The Pennsylvania State University.
Mood regulation in bipolar disorders viewed through the pendulum dynamics concept.
Koutsoukos, Elias; Angelopoulos, Elias
2014-12-01
Bipolar disorders have been characterized by powerful fluctuations of energy, mood, and thinking patterns. Mood episodes (manic or depressive) could be considered as deviations of a psycho-physiological index above or below a conventionally defined value called 'normothymia'. In the present study, we analyzed the feedback techniques used to suppress the oscillatory activity exhibited on an inverted pendulum device. Subsequently, we examine the degree that this multimodal feedback design could be considered on a hypothetical pendulum where the mood plays the role of the suspended mass, and the force balance compensation circuitry is substituted by drug-specific therapeutic interventions. The study does not concern a model of bipolar illness that could simulate numerically various phases of mood episodes but focuses on the functional similarities regarding the correction treatments applied on the two different oscillating systems giving a potential perspective of how techniques of feedback control may enhance the conceptualization of the treatment schemes followed in recent guidelines for biological treatment of bipolar disorders. Our theoretical consideration, along with observations on clinical level, gives support to the concept that the compensation of the mood oscillations should be adaptive with selective therapeutic interventions that compensate the excited system in different time scales.
Limits of Stability and Adaptation to Wearing Rocker Bottom Shoes.
Vieira, Edgar Ramos; Guerrero, Gerardo; Holt, Daniel; Arreaza, Monica; Veroes, Valentina; Brunt, Denis
2014-06-01
Stability and balance are fundamental during static and dynamic activities. The effects of wearing rocker bottom sole (RBS) shoes on the limits of stability (LOS) and adaptation to wearing RBS shoes need to be investigated. The objectives of this study were to evaluate the LOS when wearing RBS shoes, and to evaluate if people improve their stability while wearing RBS shoes over time. Eleven female subjects with no lower extremity impairments participated in the study. The LOS were tested at baseline and weeks 3 and 6 using a Neurocom SMART EquiTest equipment. Center of pressure (CoP) was determined using force plates, and the center of gravity (CoG) position was estimated from the CoP measures and subjects' anthropometry. Subjects performed a series of tasks that involved leaning in different directions so as to move the vertical projection of their CoG. End-point excursions of the CoG floor projection were calculated as a percentage of the distance between the starting position and the target. Considering the body as an inverted pendulum, we recorded the average angular velocity of the inverted pendulum during the movements and quantified directional control as a percentage of movement toward versus away from the target. Shoe types were compared using paired t tests, and sessions were compared using repeated measures ANOVA. The angular velocities of the inverted pendulum (ie, CoG velocity) were not significantly different between shoe conditions in the front and back directions at baseline (4 ± 3 with RBS vs 5 ± 2 deg/sec with regular shoes, and 4 ± 1 vs 6 ± 4 deg/sec). Front directional control of the CoG was significantly worse with RBS shoes at weeks 3 and 6 ( P < .015). Front end-point excursions were also lower with RBS shoes both at baseline and week 6 ( P < .014). There were no significant changes over time. The findings indicate that the LOS were negatively affected by wearing RBS shoes and that people do not improve their stability while wearing these shoes even after a 6-week period of use. This study shows that wearing RBS shoes increase instability and the instability remains even after wearing these shoes for six weeks.
Dynamic Modeling and Simulation of an Underactuated System
NASA Astrophysics Data System (ADS)
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
2012-01-01
not trivial, and the increase is not without drawbacks . For high-density EEG systems, data processing can take a significant amount of time, even...existing wireless transmission systems. Given these drawbacks , a question naturally arises: how many electrodes are needed for MoBI? The answer will...state motor output. Neuroimage 36, 785-792. Kuo, A.D., Donelan, J.M., Ruina, A., 2005. Energetic consequences of walking like an inverted pendulum
Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M
2018-04-11
Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor
NASA Astrophysics Data System (ADS)
McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.
2017-07-01
Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.
New model of inverting substation for DC traction with regenerative braking system
NASA Astrophysics Data System (ADS)
Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris
2017-08-01
This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.
Cascaded H-bridge multilevel inverter for renewable energy generation
NASA Astrophysics Data System (ADS)
Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi
2016-04-01
In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.
Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1999-01-01
A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.
Foucault pendulum with eddy-current damping of the elliptical motion
NASA Astrophysics Data System (ADS)
Mastner, G.; Vokurka, V.; Maschek, M.; Vogt, E.; Kaufmann, H. P.
1984-10-01
A newly designed Foucault pendulum is described in which the mechanical Charron ring, used throughout in previous designs for damping of the elliptical motion of the pendulum, is replaced by an electromagnetic eddy-current brake, consisting of a permanent magnet attached to the bottom of the bob and a metallic ring. This damping device is very efficient, as it is self-aligning, symmetrical in the damping effect, and never wears out. The permanent magnet is also used, together with a coil assembly and an electronic circuitry, for the dipole-torque drive of the pendulum as well as for accurate stabilization of the amplitude of the swing. A latched time display, controlled by Hall probes activated by the magnet, is used to visualize the Foucault rotation. The pendulum system and its associated electronic circuitry are described in detail. The optimizing of the drive mode is discussed. Measurements of deviations from theoretical value of the Foucault rotation velocity made automatically in a continuous run show a reproducible accuracy of ±1% or better in individual 360° rotations during the summer months. The quality factor of the pendulum as mechanical resonator was measured as a function of the amplitude in the presence of the eddy-current damping ring.
Biomechanical and energetic determinants of the walk-trot transition in horses.
Griffin, Timothy M; Kram, Rodger; Wickler, Steven J; Hoyt, Donald F
2004-11-01
We studied nine adult horses spanning an eightfold range in body mass (M(b)) (90-720 kg) and a twofold range in leg length (L) (0.7-1.4 m). We measured the horses' walk-trot transition speeds using step-wise speed increments as they locomoted on a motorized treadmill. We then measured their rates of oxygen consumption over a wide range of walking and trotting speeds. We interpreted the transition speed results using a simple inverted-pendulum model of walking in which gravity provides the centripetal force necessary to keep the leg in contact with the ground. By studying a large size range of horses, we were naturally able to vary the absolute walking speed that would produce the same ratio of centripetal to gravitational forces. This ratio, (M(b)v2/L)/(M(b)g), reduces to the dimensionless Froude number (v2/gL), where v is forward speed, L is leg length and g is gravitational acceleration. We found that the absolute walk-trot transition speed increased with size from 1.6 to 2.3 m s(-1), but it occurred at nearly the same Froude number (0.35). In addition, horses spontaneously switched between gaits in a narrow range of speeds that corresponded to the metabolically optimal transition speed. These results support the hypotheses that the walk-trot transition is triggered by inverted-pendulum dynamics and occurs at the speed that maximizes metabolic economy.
Passive control of a falling sphere by elliptic-shaped appendages
NASA Astrophysics Data System (ADS)
Lācis, Uǧis; Olivieri, Stefano; Mazzino, Andrea; Bagheri, Shervin
2017-03-01
The majority of investigations characterizing the motion of single or multiple particles in fluid flows consider canonical body shapes, such as spheres, cylinders, discs, etc. However, protrusions on bodies—either surface imperfections or appendages that serve a function—are ubiquitous in both nature and applications. In this work, we characterize how the dynamics of a sphere with an axis-symmetric wake is modified in the presence of thin three-dimensional elliptic-shaped protrusions. By investigating a wide range of three-dimensional appendages with different aspect ratios and lengths, we clearly show that the sphere with an appendage may robustly undergo an inverted-pendulum-like (IPL) instability. This means that the position of the appendage placed behind the sphere and aligned with the free-stream direction is unstable, similar to how an inverted pendulum is unstable under gravity. Due to this instability, nontrivial forces are generated on the body, leading to turn and drift, if the body is free to fall under gravity. Moreover, we identify the aspect ratio and length of the appendage that induces the largest side force on the sphere, and therefore also the largest drift for a freely falling body. Finally, we explain the physical mechanisms behind these observations in the context of the IPL instability, i.e., the balance between surface area of the appendage exposed to reversed flow in the wake and the surface area of the appendage exposed to fast free-stream flow.
Identification of the contribution of the ankle and hip joints to multi-segmental balance control
2013-01-01
Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148
Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A
2014-07-01
An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented. © 2013 ISA. Published by ISA. All rights reserved.
Invariant aspects of human locomotion in different gravitational environments.
Minetti, A E
2001-01-01
Previous literature showed that walking gait follows the same mechanical paradigm, i.e. the straight/inverted pendulum, regardless the body size, the number of legs, and the amount of gravity acceleration. The Froude number, a dimensionless parameter originally designed to normalize the same (pendulum-like) motion in differently sized subjects, proved to be useful also in the comparison, within the same subject, of walking in heterogravity. In this paper the theory of dynamic similarity is tested by comparing the predictive power of the Froude number in terms of walking speed to previously published data on walking in hypogravity simulators. It is concluded that the Froude number is a good first predictor of the optimal walking speed and of the transition speed between walking and running in different gravitational conditions. According to the Froude number a dynamically similar walking speed on another planet can be calculated as [formula: see text] where V(Earth) is the reference speed on Earth. c 2001. Elsevier Science Ltd. All rights reserved.
Stability and Control of Human Trunk Movement During Walking.
Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.
1998-01-01
A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.
Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters.
Liñares, Jesús; Prieto-Blanco, Xesús; Moreno, Vicente; Montero-Orille, Carlos; Mouriz, Dolores; Nistal, María C; Barral, David
2017-05-15
A Mach-Zehnder interferometer (MZI) that includes in an arm either a reflective image inverter or a Gouy phase shifter (RGPS) can (de)multiplex many types of modes of a few mode fiber without fundamental loss. The use of RGPSs in combination with binary phase plates for multiplexing purposes is studied for the first time, showing that the particular RGPS that shifts π the odd modes only multiplexes accurately low order modes. To overcome such a restriction, we present a new exact refractive image inverter, more compact and flexible than its reflective counterpart. Moreover, we show that these interferometers remove or reduce the crosstalk that the binary phase plates could introduce between the multiplexed modes. Finally, an experimental analysis of a MZI with both an approximated and an exact refractive image inverter is presented for the case of a bimodal multiplexing. Likewise, it is proven experimentally that a RGPS that shifts π/2 demultiplexes two odd modes which can not be achieved by any image inverter.
Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam
NASA Astrophysics Data System (ADS)
Mahmoudkhani, S.
2018-07-01
Auto-parametric pendulum absorbers perform well only in a very limited range of excitation amplitudes, above which their efficiency would be substantially degraded as a consequence of spillover effects or appearance of quasi-periodic and chaotic responses. For improving the performance against this drawback, the rigid pendulum is replaced in the present study with a low-stiffness viscoelastic beam. An additional one-to-three internal resonance between the almost non-flexural rotational and the first flexural modes of the beam is also introduced. With the aid of this internal resonance, the energy that has been transferred to the absorber due to the one-to-two internal resonance would be avoided from being transferred back to the primary system by faster dissipation of vibrations at a higher-frequency mode thereby leading to lower spillover effects. For modeling purpose, the tracking frame with the rigid-body constraint and also the third-order nonlinear beam theory are employed to account for arbitrarily large rotation angles coupled to moderately large elastic deformations. The assumed-mode method is also used to obtain discretized equations of motion. The numerical continuation of periodic solution is performed and the bifurcations with detrimental effects on the performance are determined. Various parametric studies are also conducted which show that by proper setting of the system parameters, higher efficiencies at much wider range of excitation amplitudes could be achieved.
Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1989-01-01
Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.
The quadruped robot adaptive control in trotting gait walking on slopes
NASA Astrophysics Data System (ADS)
Zhang, Shulong; Ma, Hongxu; Yang, Yu; Wang, Jian
2017-10-01
The quadruped robot can be decomposed into a planar seven-link closed kinematic chain in the direction of supporting line and a linear inverted pendulum in normal direction of supporting line. The ground slope can be estimated by using the body attitude information and supporting legs length. The slope degree is used in feedback, to achieve the point of quadruped robot adaptive control walking on slopes. The simulation results verify that the quadruped robot can achieves steady locomotion on the slope with the control strategy proposed in this passage.
An asymptotic solution to a passive biped walker model
NASA Astrophysics Data System (ADS)
Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2017-02-01
We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.
A springy pendulum could describe the swing leg kinetics of human walking.
Song, Hyunggwi; Park, Heewon; Park, Sukyung
2016-06-14
The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yeh, Chien Hung; Young, Hsu Wen Vincent; Wang, Cheng Yen; Wang, Yung Hung; Lee, Po Lei; Kang, Jiunn Horng; Lo, Men Tzung
2016-10-01
Parameters derived from the goniometer measures in the Pendulum test are insufficient in describing the function of abnormal muscle activity in the spasticity. To explore a quantitative evaluation of muscle activation-movement interaction, we propose a novel index based on phase amplitude coupling (PAC) analysis with the consideration of the relations between movement and surface electromyography (SEMG) activity among 22 hemiplegic stroke patients. To take off trend and noise, we use the empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the angular velocity due to its superior decomposing ability in nonlinear oscillations. Shannon entropy based on angular velocity (phase)-envelope of EMG (amplitude) distribution was calculated to demonstrate characteristics of the coupling between SEMG activity and joint movement. We also compare our results with those from traditional methods such as the normalized relaxation index derived from the Pendulum test and the mean root mean square (RMS) of the SEMG signals in the study. Our results show effective discrimination ability between spastic and nonaffected limbs using our method . This study indicates the feasibility of using the novel indices based on the PAC in evaluation the spasticity among the hemiplegic stroke patients with less than three swinging cycles.
The X3: A 200 kW Class Nested Channel Hall Thruster
NASA Astrophysics Data System (ADS)
Sheehan, J. P.
2016-10-01
Electric propulsion has seen rapid adoption in recent years for commercial, scientific, and exploratory space missions. The X3 is a three channel nested channel Hall thruster, designed to push the boundaries of high power electric propulsion for cargo transfer to Mars and large military assets. It has been operated at thermal steady state up to 30 kW of power. Thrust measurements were made on an inverted pendulum thrust stand, indicating over 2000 s specific impulse and 65 mN/kW thrust to power ratio. Detailed plume measurements were made with Faraday and Langmuir probes. The multiple concentric channels provide better performance than the sum of the individual channel operations due to superior propellant utilization from its compact design. Using a high speed camera, the breathing and spoke mode instabilities were captured in all three channels. Spoke and breathing instabilities couple between the channels, indicating that complex plasma and neutral interactions are at play. Electron transport, both cross field and in the cathode plume, are well suited to be explored in a thruster of this size. Supported under NASA contract No. NNH16CP17C.
Cignetti, Fabien; Zedka, Milan; Vaugoyeau, Marianne; Assaiante, Christine
2013-01-01
Although there is suggestive evidence that a link exists between independent walking and the ability to establish anticipatory strategy to stabilize posture, the extent to which this skill facilitates the development of anticipatory postural control remains largely unknown. Here, we examined the role of independent walking on the infants' ability to anticipate predictable external perturbations. Non-walking infants, walking infants and adults were sitting on a platform that produced continuous rotation in the frontal plane. Surface electromyography (EMG) of neck and lower back muscles and the positions of markers located on the platform, the upper body and the head were recorded. Results from cross-correlation analysis between rectified and filtered EMGs and platform movement indicated that although muscle activation already occurred before platform movement in non-walking infants, only walking infants demonstrated an adult-like ability for anticipation. Moreover, results from further cross-correlation analysis between segmental angular displacement and platform movement together with measures of balance control at the end-points of rotation of the platform evidenced two sorts of behaviour. The adults behaved as a non-rigid non-inverted pendulum, rather stabilizing head in space, while both the walking and non-walking infants followed the platform, behaving as a rigid inverted pendulum. These results suggest that the acquisition of independent walking plays a role in the development of anticipatory postural control, likely improving the internal model for the sensorimotor control of posture. However, despite such improvement, integrating the dynamics of an external object, here the platform, within the model to maintain balance still remains challenging in infants.
Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.
Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei
2018-06-01
Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.
The strengths and weaknesses of inverted pendulum models of human walking.
McGrath, Michael; Howard, David; Baker, Richard
2015-02-01
An investigation into the kinematic and kinetic predictions of two "inverted pendulum" (IP) models of gait was undertaken. The first model consisted of a single leg, with anthropometrically correct mass and moment of inertia, and a point mass at the hip representing the rest of the body. A second model incorporating the physiological extension of a head-arms-trunk (HAT) segment, held upright by an actuated hip moment, was developed for comparison. Simulations were performed, using both models, and quantitatively compared with empirical gait data. There was little difference between the two models' predictions of kinematics and ground reaction force (GRF). The models agreed well with empirical data through mid-stance (20-40% of the gait cycle) suggesting that IP models adequately simulate this phase (mean error less than one standard deviation). IP models are not cyclic, however, and cannot adequately simulate double support and step-to-step transition. This is because the forces under both legs augment each other during double support to increase the vertical GRF. The incorporation of an actuated hip joint was the most novel change and added a new dimension to the classic IP model. The hip moment curve produced was similar to those measured during experimental walking trials. As a result, it was interpreted that the primary role of the hip musculature in stance is to keep the HAT upright. Careful consideration of the differences between the models throws light on what the different terms within the GRF equation truly represent. Copyright © 2014 Elsevier B.V. All rights reserved.
A Sensitivity Analysis of an Inverted Pendulum Balance Control Model.
Pasma, Jantsje H; Boonstra, Tjitske A; van Kordelaar, Joost; Spyropoulou, Vasiliki V; Schouten, Alfred C
2017-01-01
Balance control models are used to describe balance behavior in health and disease. We identified the unique contribution and relative importance of each parameter of a commonly used balance control model, the Independent Channel (IC) model, to identify which parameters are crucial to describe balance behavior. The balance behavior was expressed by transfer functions (TFs), representing the relationship between sensory perturbations and body sway as a function of frequency, in terms of amplitude (i.e., magnitude) and timing (i.e., phase). The model included an inverted pendulum controlled by a neuromuscular system, described by several parameters. Local sensitivity of each parameter was determined for both the magnitude and phase using partial derivatives. Both the intrinsic stiffness and proportional gain shape the magnitude at low frequencies (0.1-1 Hz). The derivative gain shapes the peak and slope of the magnitude between 0.5 and 0.9 Hz. The sensory weight influences the overall magnitude, and does not have any effect on the phase. The effect of the time delay becomes apparent in the phase above 0.6 Hz. The force feedback parameters and intrinsic stiffness have a small effect compared with the other parameters. All parameters shape the TF magnitude and phase and therefore play a role in the balance behavior. The sensory weight, time delay, derivative gain, and the proportional gain have a unique effect on the TFs, while the force feedback parameters and intrinsic stiffness contribute less. More insight in the unique contribution and relative importance of all parameters shows which parameters are crucial and critical to identify underlying differences in balance behavior between different patient groups.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.
Daniels, Alan H.; Paller, David J.; Koruprolu, Sarath; Palumbo, Mark A.; Crisco, Joseph J.
2013-01-01
Background Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Methods Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Conclusions Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:23451222
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.
Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min
2012-07-25
A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.
Performance of a 100 kW class applied field MPD thruster
NASA Technical Reports Server (NTRS)
Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.
1989-01-01
Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.
Walking Distance Estimation Using Walking Canes with Inertial Sensors
Suh, Young Soo
2018-01-01
A walking distance estimation algorithm for cane users is proposed using an inertial sensor unit attached to various positions on the cane. A standard inertial navigation algorithm using an indirect Kalman filter was applied to update the velocity and position of the cane during movement. For quadripod canes, a standard zero-velocity measurement-updating method is proposed. For standard canes, a velocity-updating method based on an inverted pendulum model is proposed. The proposed algorithms were verified by three walking experiments with two different types of canes and different positions of the sensor module. PMID:29342971
Harvesting wind energy to detect weak signals using mechanical stochastic resonance.
Breen, Barbara J; Rix, Jillian G; Ross, Samuel J; Yu, Yue; Lindner, John F; Mathewson, Nathan; Wainwright, Elliot R; Wilson, Ian
2016-12-01
Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The regime of the experiment is readily accessible, with wind speeds ∼20 m/s and signal frequencies ∼1 Hz. We readily obtain signal-to-noise ratios on the order of 10 dB.
NASA Astrophysics Data System (ADS)
Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan
2017-12-01
Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.
Experimental demonstration of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Douglas J.; Hyland, David C.; Collins, Emmanuel G., Jr.
1990-01-01
Active vibration control of flexible structures for future space missions is addressed. Three experiments that successfully demonstrate control of flexible structures are described. The first is the pendulum experiment. The structure is a 5-m compound pendulum and was designed as an end-to-end test bed for a linear proof mass actuator and its supporting electronics. Experimental results are shown for a maximum-entropy/optimal-projection controller designed to achieve 5 percent damping in the first two pendulum modes. The second experiment was based upon the Harris Multi-Hex prototype experiment (MHPE) apparatus. This is a large optical reflector structure comprising a seven-panel array and supporting truss which typifies a number of generic characteristics of large space systems. The third experiment involved control design and implementation for the ACES structure at NASA Marshall Space Flight Center. The authors conclude with some remarks on the lessons learned from conducting these experiments.
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.
We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less
Resonance frequency broadening of wave-particle interaction in tokamaks due to Alfvénic eigenmode
Meng, Guo; Gorelenkov, Nikolai N.; Duarte, Vinicius N.; ...
2018-01-19
We use the guiding center code ORBIT to study the broadening of resonances and the parametric dependence of the resonance frequency broadening widthmore » $$\\Delta\\Omega$$ on the nonlinear particle trapping frequency $$\\omega_b$$ of wave-particle interaction with specific examples using realistic equilibrium DIII-D shot 159243 (Collins et al. 2016 Phys. Rev. Lett. 116 095001). When the mode amplitude is small, the pendulum approximation for energetic particle dynamics near the resonance is found to be applicable and the ratio of the resonance frequency width to the deeply trapped bounce frequency $$\\Delta\\Omega/\\omega_b$$ equals 4, as predicted by theory. Lastly, it is found that as the mode amplitude increases, the coefficient $$a=\\Delta\\Omega/\\omega_b$$ becomes increasingly smaller because of the breaking down of the nonlinear pendulum approximation for the wave-particle interaction.« less
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun
2014-10-07
We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.
Zijlstra, Agnes; Zijlstra, Wiebren
2013-09-01
Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.
Smart Inverter Control and Operation for Distributed Energy Resources
NASA Astrophysics Data System (ADS)
Tazay, Ahmad F.
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
A measurement of G with a cryogenic torsion pendulum.
Newman, Riley; Bantel, Michael; Berg, Eric; Cross, William
2014-10-13
A measurement of Newton's gravitational constant G has been made with a cryogenic torsion pendulum operating below 4 K in a dynamic mode in which G is determined from the change in torsional period when a field source mass is moved between two orientations. The source mass was a pair of copper rings that produced an extremely uniform gravitational field gradient, whereas the pendulum was a thin fused silica plate, a combination that minimized the measurement's sensitivity to error in pendulum placement. The measurement was made using an as-drawn CuBe torsion fibre, a heat-treated CuBe fibre, and an as-drawn Al5056 fibre. The pendulum operated with a set of different large torsional amplitudes. The three fibres yielded high Q-values: 82 000, 120 000 and 164 000, minimizing experimental bias from fibre anelasticity. G-values found with the three fibres are, respectively: {6.67435(10),6.67408(15),6.67455(13)}×10(-11) m(3) kg(-1) s(-2), with corresponding uncertainties 14, 22 and 20 ppm. Relative to the CODATA2010 G-value, these are higher by 77, 37 and 107 ppm, respectively. The unweighted average of the three G-values, with the unweighted average of their uncertainties, is 6.67433(13)×10(-11) m(3) kg(-1) s(-2) (19 ppm). © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Model based manipulator control
NASA Technical Reports Server (NTRS)
Petrosky, Lyman J.; Oppenheim, Irving J.
1989-01-01
The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.
Rhenium Disulfide Depletion-Load Inverter
NASA Astrophysics Data System (ADS)
McClellan, Connor; Corbet, Chris; Rai, Amritesh; Movva, Hema C. P.; Tutuc, Emanuel; Banerjee, Sanjay K.
2015-03-01
Many semiconducting Transition Metal Dichalcogenide (TMD) materials have been effectively used to create Field-Effect Transistor (FET) devices but have yet to be used in logic designs. We constructed a depletion-load voltage inverter using ultrathin layers of Rhenium Disulfide (ReS2) as the semiconducting channel. This ReS2 inverter was fabricated on a single micromechanically-exfoliated flake of ReS2. Electron beam lithography and physical vapor deposition were used to construct Cr/Au electrical contacts, an Alumina top-gate dielectric, and metal top-gate electrodes. By using both low (Aluminum) and high (Palladium) work-function metals as two separate top-gates on a single ReS2 flake, we create a dual-gated depletion mode (D-mode) and enhancement mode (E-mode) FETs in series. Both FETs displayed current saturation in the output characteristics as a result of the FET ``pinch-off'' mechanism and On/Off current ratios of 105. Field-effect mobilities of 23 and 17 cm2V-1s-1 and subthreshold swings of 97 and 551 mV/decade were calculated for the E-mode and D-mode FETs, respectively. With a supply voltage of 1V, at low/negative input voltages the inverter output was at a high logic state of 900 mV. Conversely with high/positive input voltages, the inverter output was at a low logic state of 500 mV. The inversion of the input signal demonstrates the potential for using ReS2 in future integrated circuit designs and the versatility of depletion-load logic devices for TMD research. NRI SWAN Center and ARL STTR Program.
Minimizing center of mass vertical movement increases metabolic cost in walking.
Ortega, Justus D; Farley, Claire T
2005-12-01
A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion.
ERIC Educational Resources Information Center
Carpenter, Jeffrey P.
2016-01-01
The professional development pendulum is swinging away from traditional methods (in which teachers passively receive information from outside experts) to teacher-centered models (in which educators take charge of their own learning). In this article, Jeffrey P. Carpenter describes new modes of teacher-powered professional learning, notably Edcamps…
Numerical simulations of an elastica pendulum
NASA Astrophysics Data System (ADS)
Sinclair, R.
Folklore would have it that a massless clamped-free elastica undergoing planar motion with a point end mass possesses periodic solutions corresponding to a single mode of oscillation. We present a battery of numerical simulations leading to the single conclusion that these supposed periodic solutions do not exist, due to a strong nonlinear coupling of two modes, the frequency of one of which is apparently inversely proportional to the magnitude of the force acting on the elastica.
2015 Inverter Workshop | Photovoltaic Research | NREL
Utility PV Inverters-Ron Vidano, Advanced Energy Module Level Power Electronics-Jack Flicker (Chair ), Sandia National Laboratories Standardization and Reliability Testing of Module-Level Power Electronics Failure Modes in Inverters-Diganta Das, CALCE Corrosion of Electronics-Rob Sorensen, Sandia National
USDA-ARS?s Scientific Manuscript database
Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...
String-Coupled Pendulum Oscillators: Theory and Experiment.
ERIC Educational Resources Information Center
Moloney, Michael J.
1978-01-01
A coupled-oscillator system is given which is readily set up, using only household materials. The normal-mode analysis of this system is worked out, and an experiment or demonstration is recommended in which one verifies the theory by measuring two times and four lengths. (Author/GA)
Integrated Inverter For Driving Multiple Electric Machines
Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN
2006-04-04
An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
Esmende, Sean M; Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2015-01-01
The pendulum testing system is capable of applying physiologic compressive loads without constraining the motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. To examine the dynamic bending stiffness and energy absorption of the cervical spine, with and without implanted cervical total disc replacement (TDR) under simulated physiologic motion. A biomechanical cadaver investigation. Nine unembalmed, frozen human cervical FSUs from levels C3-C4 and C5-C6 were tested on the pendulum system with axial compressive loads of 25, 50, and 100 N before and after TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°, resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and the bending stiffness (Newton-meter/°) was calculated and compared for each testing mode. In flexion/extension, with increasing compressive loading from 25 to 100 N, the average number of cycles to equilibrium for the intact FSUs increased from 6.6 to 19.1, compared with 4.1 to 12.7 after TDR implantation (p<.05 for loads of 50 and 100 N). In flexion, with increasing compressive loading from 25 to 100 N, the bending stiffness of the intact FSUs increased from 0.27 to 0.59 Nm/°, compared with 0.21 to 0.57 Nm/° after TDR implantation. No significant differences were found in stiffness between the intact FSU and the TDR in flexion/extension and lateral bending at any load (p<.05). Cervical FSUs with implanted TDR were found to have similar stiffness, but had greater energy absorption than intact FSUs during cyclic loading with an unconstrained pendulum system. These results provide further insight into the biomechanical behavior of cervical TDR under approximated physiologic loading conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J
2012-11-01
Biomechanical cadaver investigation. To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted total disc replacement (TDR) under simulated physiological motion. The pendulum testing system is capable of applying physiological compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5º resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N·m/º) was calculated and compared for each testing mode. In flexion/extension, the TDR constructs reached equilibrium with significantly (P < 0.05) fewer cycles than the intact FSU with compressive loads of 282 N, 385 N, and 488 N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (P < 0.001). In flexion, with increasing compressive loading from 181 N to 488 N, the bending stiffness of the intact FSUs increased from 4.0 N·m/º to 5.5 N·m/º, compared with 2.1 N·m/º to 3.6 N·m/º after TDR implantation. At each compressive load, the intact FSU was significantly stiffer than the TDR (P < 0.05). Lumbar FSUs with implanted TDR were found to be less stiff, but absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion-preserving devices are not fully known, these results provide further insight into the biomechanical behavior of these devices under approximated physiological loading conditions.
1990-05-01
Obtain Thermistor Operating Characteristics ................................. 82 25. Ag+/Ci" Thermometric Titration ........................... 85 26...Experiment Program for Thermometric Titrations ............... 85 27. Appearance of the Spreadsheet in the Analysis Mode ............ 86 28...rate experiments, carbon dioxide exhalation monitoring, stream turbidity measurement, photosynthesis monitoring, pendulum timing, thermometric titrations
Quantum rotor in nanostructured superconductors
Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.
2014-01-01
Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241
Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)
2013-10-23
impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n
Delay effects in the human sensory system during balancing.
Stepan, Gabor
2009-03-28
Mechanical models of human self-balancing often use the Newtonian equations of inverted pendula. While these mathematical models are precise enough on the mechanical side, the ways humans balance themselves are still quite unexplored on the control side. Time delays in the sensory and motoric neural pathways give essential limitations to the stabilization of the human body as a multiple inverted pendulum. The sensory systems supporting each other provide the necessary signals for these control tasks; but the more complicated the system is, the larger delay is introduced. Human ageing as well as our actual physical and mental state affects the time delays in the neural system, and the mechanical structure of the human body also changes in a large range during our lives. The human balancing organ, the labyrinth, and the vision system essentially adapted to these relatively large time delays and parameter regions occurring during balancing. The analytical study of the simplified large-scale time-delayed models of balancing provides a Newtonian insight into the functioning of these organs that may also serve as a basis to support theories and hypotheses on balancing and vision.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Using a digital video camera to examine coupled oscillations
NASA Astrophysics Data System (ADS)
Greczylo, T.; Debowska, E.
2002-07-01
In our previous paper (Debowska E, Jakubowicz S and Mazur Z 1999 Eur. J. Phys. 20 89-95), thanks to the use of an ultrasound distance sensor, experimental verification of the solution of Lagrange equations for longitudinal oscillations of the Wilberforce pendulum was shown. In this paper the sensor and a digital video camera were used to monitor and measure the changes of both the pendulum's coordinates (vertical displacement and angle of rotation) simultaneously. The experiments were performed with the aid of the integrated software package COACH 5. Fourier analysis in Microsoft^{\\circledR} Excel 97 was used to find normal modes in each case of the measured oscillations. Comparison of the results with those presented in our previous paper (as given above) leads to the conclusion that a digital video camera is a powerful tool for measuring coupled oscillations of a Wilberforce pendulum. The most important conclusion is that a video camera is able to do something more than merely register interesting physical phenomena - it can be used to perform measurements of physical quantities at an advanced level.
Separation of Migration and Tomography Modes of Full-Waveform Inversion in the Plane Wave Domain
NASA Astrophysics Data System (ADS)
Yao, Gang; da Silva, Nuno V.; Warner, Michael; Kalinicheva, Tatiana
2018-02-01
Full-waveform inversion (FWI) includes both migration and tomography modes. The migration mode acts like a nonlinear least squares migration to map model interfaces with reflections, while the tomography mode behaves as tomography to build a background velocity model. The migration mode is the main response of inverting reflections, while the tomography mode exists in response to inverting both the reflections and refractions. To emphasize one of the two modes in FWI, especially for inverting reflections, the separation of the two modes in the gradient of FWI is required. Here we present a new method to achieve this separation with an angle-dependent filtering technique in the plane wave domain. We first transform the source and residual wavefields into the plane wave domain with the Fourier transform and then decompose them into the migration and tomography components using the opening angles between the transformed source and residual plane waves. The opening angles close to 180° contribute to the tomography component, while the others correspond to the migration component. We find that this approach is very effective and robust even when the medium is relatively complicated with strong lateral heterogeneities, highly dipping reflectors, and strong anisotropy. This is well demonstrated by theoretical analysis and numerical tests with a synthetic data set and a field data set.
Fluid-structure-interaction of a flag in a channel flow
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe
2017-11-01
The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.
Wind seismic noise introduced by external infrastructure: field data and transfer mechanism
NASA Astrophysics Data System (ADS)
Martysevich, Pavel; Starovoyt, Yuri
2017-04-01
Background seismic noise generated by wind was analyzed at six co-located seismic and infrasound arrays with the use of the wind speed data. The main factors affecting the noise level were identified as (a) external structures as antenna towers for intrasite communication, vegetation and heavy solar panels fixtures, (b) borehole casing and (c) local lithology. The wind-induced seismic noise peaks in the spectra can be predicted by combination of inverted pendulum model for antenna towers and structures used to support solar panels, free- or clamped-tube resonance of the borehole casing and is dependent on the type of sedimentary upper layer. Observed resonance frequencies are in agreement with calculated clamped / free tube modes for towers and borehole casings. Improvement of the seismic data quality can be achieved by minimizing the impact of surrounding structures close to seismic boreholes. The need and the advantage of the borehole installation may vanish and appear to be even not necessary at locations with non-consolidated sediments because the impact of surrounding structures on seismic background may significantly deteriorate the installation quality and therefore the detection capability of the array. Several IMS arrays where the radio telemetry antennas are used for data delivery to the central site may benefit from the redesign of the intrasite communication system by its substitute with the fiber-optic net as less harmful engineering solution.
Ankle and hip postural strategies defined by joint torques
NASA Technical Reports Server (NTRS)
Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)
1999-01-01
Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control patterns into a continuum of postural corrections.
NASA Astrophysics Data System (ADS)
Guachamin Acero, Wilson; Gao, Zhen; Moan, Torgeir
2017-09-01
Current installation costs of offshore wind turbines (OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study (based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies (RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel (HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV (in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV (which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting (response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather- and water depth-sensitivity, this novel procedure is demonstrated to be viable.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
NASA Astrophysics Data System (ADS)
Khayamy, Mehdy; Ojo, Olorunfemi
2015-04-01
A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimentel, David A.; Sheppard, Daniel G.
It was recently demonstrated that EOSPAC 6 continued to incorrectly create and interpolate pre-inverted SESAME data tables after the release of version 6.3.2beta.2. Significant interpolation pathologies were discovered to occur when EOSPAC 6's host software enabled pre-inversion with the EOS_INVERT_AT_SETUP option. This document describes a solution that uses data transformations found in EOSPAC 5 and its predecessors. The numerical results and performance characteristics of both the default and pre-inverted interpolation modes in both EOSPAC 6.3.2beta.2 and the fixed logic of EOSPAC 6.4.0beta.1 are presented herein, and the latter software release is shown to produce significantly-improved numerical results for the pre-invertedmore » interpolation mode.« less
Rapid Inversion: Running Animals and Robots Swing like a Pendulum under Ledges
Mongeau, Jean-Michel; McRae, Brian; Jusufi, Ardian; Birkmeyer, Paul; Hoover, Aaron M.; Fearing, Ronald; Full, Robert J.
2012-01-01
Escaping from predators often demands that animals rapidly negotiate complex environments. The smallest animals attain relatively fast speeds with high frequency leg cycling, wing flapping or body undulations, but absolute speeds are slow compared to larger animals. Instead, small animals benefit from the advantages of enhanced maneuverability in part due to scaling. Here, we report a novel behavior in small, legged runners that may facilitate their escape by disappearance from predators. We video recorded cockroaches and geckos rapidly running up an incline toward a ledge, digitized their motion and created a simple model to generalize the behavior. Both species ran rapidly at 12–15 body lengths-per-second toward the ledge without braking, dove off the ledge, attached their feet by claws like a grappling hook, and used a pendulum-like motion that can exceed one meter-per-second to swing around to an inverted position under the ledge, out of sight. We discovered geckos in Southeast Asia can execute this escape behavior in the field. Quantification of these acrobatic behaviors provides biological inspiration toward the design of small, highly mobile search-and-rescue robots that can assist us during natural and human-made disasters. We report the first steps toward this new capability in a small, hexapedal robot. PMID:22701594
Learning Dynamic Control of Body Roll Orientation
Vimal, Vivekanand Pandey; Lackner, James R.; DiZio, Paul
2016-01-01
Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n=10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system device (MARS) programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick commands up to 2.5 Hz with a 30 ms latency. To make the task extremely difficult, the pendulum constant was set to 600°/sec2. Each subject participated in 5 blocks of 4 trials, with a trial ending after a cumulative 100 s of balancing, excluding reset times when a subject lost control. To characterize performance and learning, we used metrics derived from joystick movements, phase portraits (joystick deflections vs MARS position and MARS velocity vs angular position), and stabilogram diffusion functions. We found that as subjects improved their balancing performance they did so by making fewer destabilizing joystick movements and reducing the number and duration of joystick commands. The control strategy they acquired involved making more persistent short-term joystick movements, waiting longer before making changes to ongoing motion, and only intervening intermittently. PMID:26525709
Robust Control Design for Uncertain Nonlinear Dynamic Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.
2012-01-01
Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.
NASA Astrophysics Data System (ADS)
Müller, Roy; Rode, Christian; Aminiaghdam, Soran; Vielemeyer, Johanna; Blickhan, Reinhard
2017-11-01
Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.
A new look at the Dynamic Similarity Hypothesis: the importance of swing phase.
Raichlen, David A; Pontzer, Herman; Shapiro, Liza J
2013-01-01
The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a "spandrel" of selection acting on limb mass distribution.
Self-induced conversion in dense neutrino gases: Pendulum in flavor space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannestad, Steen; Max-Planck-Institut fuer Physik; Raffelt, Georg G.
Neutrino-neutrino interactions can lead to collective flavor conversion effects in supernovae and in the early universe. We demonstrate that the case of bipolar oscillations, where a dense gas of neutrinos and antineutrinos in equal numbers completely converts from one flavor to another even if the mixing angle is small, is equivalent to a pendulum in flavor space. Bipolar flavor conversion corresponds to the swinging of the pendulum, which begins in an unstable upright position (the initial flavor), and passes through momentarily the vertically downward position (the other flavor) in the course of its motion. The time scale to complete onemore » cycle of oscillation depends logarithmically on the vacuum mixing angle. Likewise, the presence of an ordinary medium can be shown analytically to contribute to a logarithmic increase in the bipolar conversion period. We further find that a more complex (and realistic) system of unequal numbers of neutrinos and antineutrinos is analogous to a spinning top subject to a torque. This analogy easily explains how such a system can oscillate in both the bipolar and the synchronized mode, depending on the neutrino density and the size of the neutrino-antineutrino asymmetry. Our simple model applies strictly only to isotropic neutrino gasses. In more general cases, and especially for neutrinos streaming from a supernova core, different modes couple to each other with unequal strength, an effect that can lead to kinematical decoherence in flavor space rather than collective oscillations. The exact circumstances under which collective oscillations occur in nonisotropic media remain to be understood.« less
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1974-01-01
A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.
Significant body point labeling and tracking.
Azhar, Faisal; Tjahjadi, Tardi
2014-09-01
In this paper, a method is presented to label and track anatomical landmarks (e.g., head, hand/arm, feet), which are referred to as significant body points (SBPs), using implicit body models. By considering the human body as an inverted pendulum model, ellipse fitting and contour moments are applied to classify it as being in Stand, Sit, or Lie posture. A convex hull of the silhouette contour is used to determine the locations of SBPs. The particle filter or a motion flow-based method is used to predict SBPs in occlusion. Stick figures of various activities are generated by connecting the SBPs. The qualitative and quantitative evaluation show that the proposed method robustly labels and tracks SBPs in various activities of two different (low and high) resolution data sets.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
New determination of the gravitational constant G with time-of-swing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu Liangcheng; Li Qing; Wang Qinglan
A new determination of the Newtonian gravitational constant G is presented by using a torsion pendulum with the time-of-swing method. Compared with our previous measurement with the same method, several improvements greatly reduced the uncertainties as follows: (i) two stainless steel spheres with more homogeneous density are used as the source masses instead of the cylinders used in the previous experiment, and the offset of the mass center from the geometric center is measured and found to be much smaller than that of the cylinders; (ii) a rectangular glass block is used as the main body of the pendulum, whichmore » has fewer vibration modes and hence improves the stability of the period and reduces the uncertainty of the moment of inertia; (iii) both the pendulum and source masses are placed in the same vacuum chamber to reduce the error of measuring the relative positions; (iv) changing the configurations between the ''near'' and ''far'' positions is remotely operated by using a stepper motor to lower the environmental disturbances; and (v) the anelastic effect of the torsion fiber is first measured directly by using two disk pendulums with the help of a high-Q quartz fiber. We have performed two independent G measurements, and the two G values differ by only 9 ppm. The combined value of G is (6.673 49{+-}0.000 18)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2} with a relative uncertainty of 26 ppm.« less
Power inverter implementing phase skipping control
Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa
2016-10-18
A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.
Joint inversion of fundamental and higher mode Rayleigh waves
Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.
2008-01-01
In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; McDonnell, Matthew; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Study Design Biomechanical cadaver investigation Objective To examine dynamic bending stiffness and energy absorption of the lumbar spine with and without implanted Total Disc Replacement (TDR) under simulated physiologic motion. Summary of background data The pendulum testing system is capable of applying physiologic compressive loads without constraining motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. Methods Five unembalmed, frozen human lumbar FSUs were tested on the pendulum system with axial compressive loads of 181N, 282N, 385N, and 488N before and after Synthes ProDisc-L TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5° resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results In flexion/extension, the TDR constructs reached equilibrium with significantly (p<0.05) fewer cycles than the intact FSU with compressive loads of 282N, 385N and 488N. Mean dynamic bending stiffness in flexion, extension, and lateral bending increased significantly with increasing load for both the intact FSU and TDR constructs (p<0.001). In flexion, with increasing compressive loading from 181N to 488N, the bending stiffness of the intact FSUs increased from 4.0N-m/° to 5.5N-m/°, compared to 2.1N-m/° to 3.6N-m/° after TDR implantation. At each compressive load, the intact FSU was significantly more stiff than the TDR (p<0.05). Conclusion Lumbar FSUs with implanted TDR were found to be less stiff, but also absorbed more energy during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices are not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:22869057
NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
NASA Astrophysics Data System (ADS)
Akulenko, L. D.; Nesterov, S. V.
2013-03-01
The natural frequencies and modes of parametric vibrations of a mechanical system are studied, by way of example, for a pendulum of variable length with modulation coefficient varying from arbitrarily small to maximum admissible values. Analytic and numerical methods are used to construct and study the boundaries of the resonance domains for the first four vibration modes, and the main qualitative properties of higher modes are found. The complete degeneration of modes with even numbers, i.e., the coincidence of the frequencies of symmetric and nonsymmetric naturalmodes for admissible values of the modulation parameter, is proved. The global picture of boundaries of stability domains for the lower equilibriumis constructed, and a significant difference from the Ince-Strutt diagram is shown. Specific properties of the natural modes are established.
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
NASA Astrophysics Data System (ADS)
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
Quantifying Parkinson's disease progression by simulating gait patterns
NASA Astrophysics Data System (ADS)
Cárdenas, Luisa; Martínez, Fabio; Atehortúa, Angélica; Romero, Eduardo
2015-12-01
Modern rehabilitation protocols of most neurodegenerative diseases, in particular the Parkinson Disease, rely on a clinical analysis of gait patterns. Currently, such analysis is highly dependent on both the examiner expertise and the type of evaluation. Development of evaluation methods with objective measures is then crucial. Physical models arise as a powerful alternative to quantify movement patterns and to emulate the progression and performance of specific treatments. This work introduces a novel quantification of the Parkinson disease progression using a physical model that accurately represents the main gait biomarker, the body Center of Gravity (CoG). The model tracks the whole gait cycle by a coupled double inverted pendulum that emulates the leg swinging for the single support phase and by a damper-spring System (SDP) that recreates both legs in contact with the ground for the double phase. The patterns generated by the proposed model are compared with actual ones learned from 24 subjects in stages 2,3, and 4. The evaluation performed demonstrates a better performance of the proposed model when compared with a baseline model(SP) composed of a coupled double pendulum and a mass-spring system. The Frechet distance measured differences between model estimations and real trajectories, showing for stages 2, 3 and 4 distances of 0.137, 0.155, 0.38 for the baseline and 0.07, 0.09, 0.29 for the proposed method.
Self-learning fuzzy controllers based on temporal back propagation
NASA Technical Reports Server (NTRS)
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Experimental determination of airplane mass and inertial characteristics
NASA Technical Reports Server (NTRS)
Wolowicz, C. H.; Yancey, R. B.
1974-01-01
Current practices are evaluated for experimentally determining airplane center of gravity, moments of inertia, and products of inertia. The techniques discussed are applicable to bodies other than airplanes. In pitching- and rolling-moment-of-inertia investigations with the airplane mounted on and pivoted about knife edges, the nonlinear spring moments that occur at large amplitudes of oscillation can be eliminated by using the proper spring configuration. The single-point suspension double-pendulum technique for obtaining yawing moments of inertia, products of inertia, and the inclination of the principal axis provides accurate results from yaw-mode oscillation data, provided that the sway-mode effects are minimized by proper suspension rig design. Rocking-mode effects in the data can be isolated.
A Personal Navigation System Based on Inertial and Magnetic Field Measurements
2010-09-01
MATLAB IMPLEMENTATION.................................................................74 G. A MODEL FOR PENDULUM MOTION SENSOR DATA...76 1. Pendulum Model for MATLAB Simulation....................................76 2. Sensor Data Generated with the Pendulum Model... PENDULUM ..................................................................................................88 I. FILTER PERFORMANCE WITH REAL PENDULUM DATA
Broadband pendulum energy harvester
NASA Astrophysics Data System (ADS)
Liang, Changwei; Wu, You; Zuo, Lei
2016-09-01
A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid
NASA Astrophysics Data System (ADS)
Yao, Tong
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.
Inversion of high frequency surface waves with fundamental and higher modes
Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.
2003-01-01
The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.
Stochastic p -Bits for Invertible Logic
NASA Astrophysics Data System (ADS)
Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo
2017-07-01
Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small number of samples is enough, while for less directed connections more samples are needed, but even in the former case logical invertibility is largely preserved. This combination of digital accuracy and logical invertibility is enabled by the hybrid design that uses bidirectional BM units to construct circuits with partially directed interunit connections. We establish this key result with extensive examples including a 4-bit multiplier which in inverted mode functions as a factorizer.
NASA Astrophysics Data System (ADS)
Jhang, Hogun
2018-05-01
We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
NASA Astrophysics Data System (ADS)
Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji
We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.
Chapter 11.2: Inverters, Power Optimizers, and Microinverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Christopher A
Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
Measuring g with a classroom pendulum using changes in the pendulum string length
NASA Astrophysics Data System (ADS)
Oliveira, V.
2016-11-01
This frontline presents a simple apparatus for measuring the acceleration of gravity using a classroom pendulum. Instead of the traditional method where the pendulum period is measured as a function of its length, here the period is measured as a function of changes in the pendulum string length. The major advantage of this method is that students can measure these changes with a greater accuracy than measuring the total pendulum length.
Stability of Brillouin flow in planar, conventional, and inverted magnetrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, D. H.; Lau, Y. Y.; Greening, G.
2015-08-15
The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property inmore » the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.« less
Su, Gui-Jia
2003-06-10
A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.
NASA Astrophysics Data System (ADS)
Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo
The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barone, Fabrizio; Giordano, Gerardo
2018-02-01
We present the Extended Folded Pendulum Model (EFPM), a model developed for a quantitative description of the dynamical behavior of a folded pendulum generically oriented in space. This model, based on the Tait-Bryan angular reference system, highlights the relationship between the folded pendulum orientation in the gravitational field and its natural resonance frequency. Tis model validated by tests performed with a monolithic UNISA Folded Pendulum, highlights a new technique of implementation of folded pendulum based tiltmeters.
Experiment with Conical Pendulum
ERIC Educational Resources Information Center
Tongaonkar, S. S.; Khadse, V. R.
2011-01-01
Conical pendulum is similar to simple pendulum with the difference that the bob, instead of moving back and forth, swings around in a horizontal circle. Thus, in a conical pendulum the bob moves at a constant speed in a circle with the string tracing out a cone. This paper describes an experiment with conical pendulum, with determination of g from…
A Vibrating Jaw Crusher with Auteresonant Electric Motor Drive of Swinging Movement
NASA Astrophysics Data System (ADS)
Zagrivniy, E. A.; Poddubniy, D. A.
2018-01-01
The article relates to a vibrating jaw crusher with pendulum vibrating exciter auteresonant electric motor drive and with elastic element rational force distribution, with limited peak-to-peak swing. Its design and its math model are presented. Also disclosed is the operating principle of a vibrating jaw crusher and the control algorithm for controlling the crushing jaw for maintaining the operating mode at resonant frequency.
Passive appendages generate drift through symmetry breaking
Lācis, U.; Brosse, N.; Ingremeau, F.; Mazzino, A.; Lundell, F.; Kellay, H.; Bagheri, S.
2014-01-01
Plants and animals use plumes, barbs, tails, feathers, hairs and fins to aid locomotion. Many of these appendages are not actively controlled, instead they have to interact passively with the surrounding fluid to generate motion. Here, we use theory, experiments and numerical simulations to show that an object with a protrusion in a separated flow drifts sideways by exploiting a symmetry-breaking instability similar to the instability of an inverted pendulum. Our model explains why the straight position of an appendage in a fluid flow is unstable and how it stabilizes either to the left or right of the incoming flow direction. It is plausible that organisms with appendages in a separated flow use this newly discovered mechanism for locomotion; examples include the drift of plumed seeds without wind and the passive reorientation of motile animals. PMID:25354545
NASA Astrophysics Data System (ADS)
Bździuch, D.; Grzegożek, W.
2016-09-01
This paper shows a concept of a model of a two-wheeled self-balancing vehicle with an electric motor drive as an environmentally-friendly personal transporter. The principle of work, modelling of construction and performing a simulation are presented and discussed. The visualization of the designed vehicle was made thanks to using Solid Works a computer-aided design program. The vehicle was modelled as an inverted pendulum. The stability of the mechanism in the equilibrium position was studied. An exemplary steering system was also subjected to the analysis that compared two controllers: PID and LQR which enabled to monitor the balance of the vehicle when the required conditions were fulfilled. Modelling of work of the controllers and the evaluation of the obtained results in required conditions were performed in the MATLAB environment.
Multilevel adaptive control of nonlinear interconnected systems.
Motallebzadeh, Farzaneh; Ozgoli, Sadjaad; Momeni, Hamid Reza
2015-01-01
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.
2016-08-01
According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.
Swinging into Pendulums with a Background.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; Cook, Julie
1993-01-01
Explains reasons why students have misconceptions concerning pendulum swings. Presents a series of 10 pendulum task cards to provide middle-school students with a solid mental scaffolding upon which to build their knowledge of kinetic energy and pendulums. (PR)
Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Santiago, Walter
2004-01-01
NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.
How Short and Light Can a Simple Pendulum Be for Classroom Use?
ERIC Educational Resources Information Center
Oliveira, V.
2014-01-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more "real" pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
How short and light can a simple pendulum be for classroom use?
NASA Astrophysics Data System (ADS)
Oliveira, V.
2014-07-01
We compare the period of oscillation of an ideal simple pendulum with the period of a more ‘real’ pendulum constituted of a rigid sphere and a rigid slender rod. We determine the relative error in the calculation of the local acceleration of gravity if the period of the ideal pendulum is used instead of the period of this real pendulum.
Robust reinforcement learning.
Morimoto, Jun; Doya, Kenji
2005-02-01
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
A contribution to calculation of the mathematical pendulum
NASA Astrophysics Data System (ADS)
Anakhaev, K. N.
2014-11-01
In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.
Complex pendulum biomass sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.
A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In anmore » alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
NASA Astrophysics Data System (ADS)
Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.
2002-09-01
We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.
NASA Astrophysics Data System (ADS)
Manassah, Jamal T.
2016-08-01
Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.
Dynamic SVL and body bias for low leakage power and high performance in CMOS digital circuits
NASA Astrophysics Data System (ADS)
Deshmukh, Jyoti; Khare, Kavita
2012-12-01
In this article, a new complementary metal oxide semiconductor design scheme called dynamic self-controllable voltage level (DSVL) is proposed. In the proposed scheme, leakage power is controlled by dynamically disconnecting supply to inactive blocks and adjusting body bias to further limit leakage and to maintain performance. Leakage power measurements at 1.8 V, 75°C demonstrate power reduction by 59.4% in case of 1 bit full adder and by 43.0% in case of a chain of four inverters using SVL circuit as a power switch. Furthermore, we achieve leakage power reduction by 94.7% in case of 1 bit full adder and by 91.8% in case of a chain of four inverters using dynamic body bias. The forward body bias of 0.45 V applied in active mode improves the maximum operating frequency by 16% in case of 1 bit full adder and 5.55% in case of a chain of inverters. Analysis shows that additional benefits of using the DSVL and body bias include high performance, low leakage power consumption in sleep mode, single threshold implementation and state retention even in standby mode.
NASA Astrophysics Data System (ADS)
Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.
2018-02-01
LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.
A torsion pendulum test of the Lisa Pathfinder free-fall mode
NASA Astrophysics Data System (ADS)
Russano, Giuliana; Dolesi, Rita; Cavalleri, Antonella; Hueller, Mauro; Vitale, Stefano; Weber, William Joseph; Tu, HaiBo
The LISA Pathfinder geodesic explorer mission for gravitational wave astronomy aims to demonstrate the proof of a low acceleration noise level. The relative acceleration between two test masses free falling in orbit is perturbed by the presence of a larger constant relative acceleration that must be actively compensated in order to keep the test particles centered inside an orbiting apparatus. The actuation force applied to compensate this effect introduces a dominant source of force noise. To suppress this noise source, a “free-fall” actuation control scheme has been designed: actuation is limited to brief impulses, with test masses in free fall in between two “kicks”, with this actuation-free motion then analyzed for the remaining sources of acceleration ultra noise. In this work, we will discuss and present preliminary data for an on-ground torsion pendulum experiment to test this technique, and the associated analysis algorithms, at a level nearing the sub-femto-g/sqrt(Hz) performance required for LISA Pathfinder.
Flight-Time Identification of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; McCoy, Allen H.; Tischler, Mark B.; Tucker, George E.; Gatenio, Pinhas; Marmar, Dani
1998-01-01
This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained.Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending, on control axis and load-slung combination. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.
Lyapunov stability analysis for the generalized Kapitza pendulum
NASA Astrophysics Data System (ADS)
Druzhinina, O. V.; Sevastianov, L. A.; Vasilyev, S. A.; Vasilyeva, D. G.
2017-12-01
In this work generalization of Kapitza pendulum whose suspension point moves in the vertical and horizontal planes is made. Lyapunov stability analysis of the motion for this pendulum subjected to excitation of periodic driving forces and stochastic driving forces that act in the vertical and horizontal planes has been studied. The numerical study of the random motion for generalized Kapitza pendulum under stochastic driving forces has made. It is shown the existence of stable quasi-periodic motion for this pendulum.
Chang, Wen-Jer; Huang, Bo-Jyun
2014-11-01
The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Measurement of whole-body human centers of gravity and moments of inertia.
Albery, C B; Schultz, R B; Bjorn, V S
1998-06-01
With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.
Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.
This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2018-03-01
The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.
Pendulums in the Physics Education Literature: A Bibliography
ERIC Educational Resources Information Center
Gauld, Colin
2004-01-01
Articles about the pendulum in four journals devoted to the teaching of physics and one general science teaching journal (along with other miscellaneous articles from other journals) are listed in three broad categories--types of pendulums, the contexts in which these pendulums are used in physics teaching at secondary or tertiary levels and a…
Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum
ERIC Educational Resources Information Center
Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo
2004-01-01
We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…
Thermal Noise in the Initial LIGO Interferometers
NASA Astrophysics Data System (ADS)
Gillespie, Aaron D.
1995-01-01
Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.
Al-Thomali, Yousef; Basha, Sakeenabi; Mohamed, Roshan Noor
2017-08-01
The main purpose of the present systematic review was to evaluate the quantitative effects of the pendulum appliance and modified pendulum appliances for maxillary molar distalization in Class II malocclusion. Our systematic search included MEDLINE, EMBASE, CINAHL, PsychINFO, Scopus and key journals and review articles; the date of the last search was 30 January 2017. We graded the methodological quality of the studies by means of the Quality Assessment Tool for Quantitative Studies, developed for the Effective Public Health Practice Project (EPHPP). In total, 203 studies were identified for screening, and 25 studies were eligible. The quality assessment rated four (16%) of the study as being of strong quality and 21 (84%) of these studies as being of moderate quality. The pendulum appliances showed mean molar distalization of 2-6.4 mm, distal tipping of molars from 6.67° to 14.50° and anchorage loss with mean premolar and incisor mesial movement of 1.63-3.6 mm and 0.9-6.5 mm, respectively. The bone anchored pendulum appliances (BAPAs) showed mean molar distalization of 4.8-6.4 mm, distal tipping of molars from 9° to 11.3° and mean premolar distalization of 2.7-5.4 mm. Pendulum and modified pendulum appliances are effective in molar distalization. Pendulum appliance with K-loop modification, implant supported pendulum appliance and BAPA significantly reduced anchorage loss of the anterior teeth and distal tipping of the molar teeth.
Discontinuous Mode Power Supply
NASA Technical Reports Server (NTRS)
Lagadinos, John; Poulos, Ethel
2012-01-01
A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.
Zimic, Mirko; Velazco, Abner; Comina, Germán; Coronel, Jorge; Fuentes, Patricia; Luna, Carmen G.; Sheen, Patricia; Gilman, Robert H.; Moore, David A. J.
2010-01-01
Background The microscopic observation drug susceptibility (MODS) assay for rapid, low-cost detection of tuberculosis and multidrug resistant tuberculosis depends upon visualization of the characteristic cording colonies of Mycobacterium tuberculosis in liquid media. This has conventionally required an inverted light microscope in order to inspect the MODS culture plates from below. Few tuberculosis laboratories have this item and the capital cost of $5,000 for a high-end microscope could be a significant obstacle to MODS roll-out. Methodology We hypothesized that the precise definition provided by costly high-specification inverted light microscopes might not be necessary for pattern recognition. Significance In this work we describe the development of a low-cost artesenal inverted microscope that can operate in both a standard or digital mode to effectively replace the expensive commercial inverted light microscope, and an integrated system that could permit a local and remote diagnosis of tuberculosis. PMID:20351778
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
A Simple Method to Measure the Trajectory of a Spherical Pendulum
ERIC Educational Resources Information Center
Yang, Hujiang; Xiao, Jinghua; Yang, Tianyu; Qiu, Chen
2011-01-01
Compared with a single gravity pendulum, the spherical pendulum behaves more complicatedly in experiments, which makes it difficult to measure. In this paper, we present a method to visualize the trajectories of a spherical pendulum by employing a gravity ball with a lit LED and a digital camera. This new measurement is inexpensive and easy to…
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ±0.06 m/s measured at the center of the pendulum accelerometer, as shown in 49...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Turning Points of the Spherical Pendulum and the Golden Ratio
ERIC Educational Resources Information Center
Essen, Hanno; Apazidis, Nicholas
2009-01-01
We study the turning point problem of a spherical pendulum. The special cases of the simple pendulum and the conical pendulum are noted. For simple initial conditions the solution to this problem involves the golden ratio, also called the golden section, or the golden number. This number often appears in mathematics where you least expect it. To…
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
49 CFR 572.193 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or V2-B in appendix A to this subpart, to the 49 CFR Part 572 pendulum test fixture (Figure 22, 49... of motion of the pendulum longitudinal centerline; (3) Release the pendulum from a height sufficient to achieve a velocity of 5.57 ± 0.06 m/s measured at the center of the pendulum accelerometer, as...
49 CFR 572.73 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rotate, while translating in the direction of the pendulum preimpact flight, in reference to the pendulum... displacement at time “T” is defined as the straight line distance between the position relative to the pendulum arm of the head's center of gravity at time “zero;” and the position relative to the pendulum arm of...
Integrated Inverter And Battery Charger
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1988-01-01
Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.
NASA Astrophysics Data System (ADS)
Boudjema, Zinelaabidine; Taleb, Rachid; Bounadja, Elhadj
2017-02-01
Traditional filed oriented control strategy including proportional-integral (PI) regulator for the speed drive of the doubly fed induction motor (DFIM) have some drawbacks such as parameter tuning complications, mediocre dynamic performances and reduced robustness. Therefore, based on the analysis of the mathematical model of a DFIM supplied by two five-level SVPWM inverters, this paper proposes a new robust control scheme based on super twisting sliding mode and fuzzy logic. The conventional sliding mode control (SMC) has vast chattering effect on the electromagnetic torque developed by the DFIM. In order to resolve this problem, a second order sliding mode technique based on super twisting algorithm and fuzzy logic functions is employed. The validity of the employed approach was tested by using Matlab/Simulink software. Interesting simulation results were obtained and remarkable advantages of the proposed control scheme were exposed including simple design of the control system, reduced chattering as well as the other advantages.
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Diekmann, R.; Epple, S.
2017-01-01
A pendulum impact tester is a technical device which is used to perform plasticity characterizations of metallic materials. Results are calculated based on fracture behavior under pendulum impact loadings according to DIN 50115, DIN 51222/EN 10045. The material is held at the two ends and gets struck in the middle. A mechanical Problem occurs when testing materials with a very high impact toughness. These specimen often do not break when hit by the pendulum. To return the pendulum to its initial position, the operator presses a service button. After a delay of approximately 2 seconds a clutch is activated which connects the arm of the pendulum with an electric motor to return it back upright in start position. At the moment of clutch activation, the pendulum can still swing or bounce with any speed in any direction at any different position. Due to the lack of synchronization between pendulum speed and constant engine speed, the clutch suffers heavy wear of friction. This disadvantage results in considerable service and repair costs for the customer. As a solution to this problem this article presents a customized technical device to significantly increase the lifetime of the clutch. It was accomplished by a precisely controlled activation of the clutch at a point of time when pendulum and motor are at synchronized speed and direction using incremental encoders.
ERIC Educational Resources Information Center
Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok
2006-01-01
The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Testing new technologies for the LISA Gravitational Reference Senso
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-01-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Radial forcing and Edgar Allan Poe's lengthening pendulum
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Blasing, David; Whitney, Heather M.
2013-09-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.
Critical N = (1, 1) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan
2018-04-01
In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.
Tiltmeter studies in earthquake prediction
Johnston, M.
1978-01-01
tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817.
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2000-06-23
The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at highmore » speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.« less
A simple pendulum laser interferometer for determining the gravitational constant
Parks, Harold V.; Faller, James E.
2014-01-01
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry–Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. PMID:25201994
ERIC Educational Resources Information Center
Barnes, Marianne B.; Garner, James; Reid, David
2004-01-01
In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…
Segmented Hoop as a Physical Pendulum
ERIC Educational Resources Information Center
Layton, William; Rodriguez, Nuria
2013-01-01
An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is…
ERIC Educational Resources Information Center
Adhitama, Egy; Fauzi, Ahmad
2018-01-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies…
1999-03-01
aerodynamics to affect load motions. The effects include a load trail angle in proportion to the drag specific force, and modification of the load pendulum...equations algorithm for flight data filtering architeture . and data consistency checking; and SCIDNT 8, an output architecture. error identification...accelerations at the seven sensor locations, identified system is proportional to the number When system identification is performed, as of flexible modes
Improved Design Concepts for Millimeter Wave Power Sources
1993-03-14
depicted in Gun current 14 A Fig. 6 (see also Fig. 2). This is a helical mode launcaer. similar to those used in conventional helix TWTs . The helix ... broadband gyro- TWT amplifiers, magnetically tunable gyro-BWAs, and phase-locked inverted gyro-twystron. The realization of high efficiency and stable...inverted gyto-twistron, known as the phigtron. The phigtron combines a subharmonic gyro- TWT amplifier input sectioq with a gyroklystron type output
Ask the pendulum: personality predictors of ideomotor performance.
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with "yes" and "no" responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants ( N = 80 ) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally "asked" a hand-held pendulum whether the target was present; particular motions signified "yes" and "no". We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one's life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition ( d = 1.10 ). We confirmed this bias difference in a second study ( d = 0.47 , N = 40 ). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making.
Ask the pendulum: personality predictors of ideomotor performance
Olson, Jay A; Jeyanesan, Ewalina; Raz, Amir
2017-01-01
Abstract For centuries, people have asked questions to hand-held pendulums and interpreted their movements as responses from the divine. These movements occur due to the ideomotor effect, wherein priming or thinking of a motion causes muscle movements that end up swinging the pendulum. By associating particular swinging movements with “yes” and “no” responses, we investigated whether pendulums can aid decision-making and which personality traits correlate with this performance. Participants (N=80) completed a visual detection task in which they searched for a target letter among rapidly presented characters. In the verbal condition, participants stated whether they saw the target in each trial. In the pendulum condition, participants instead mentally “asked” a hand-held pendulum whether the target was present; particular motions signified “yes” and “no”. We measured the accuracy of their responses as well as their sensitivity and bias using signal detection theory. We also assessed four personality measures: locus of control (feelings of control over one’s life), transliminality (sensitivity to subtle stimuli), need for cognition (preference for analytical thinking), and faith in intuition (preference for intuitive thinking). Overall, locus of control predicted verbal performance and transliminality predicted pendulum performance. Accuracy was low in both conditions (verbal: 57%, pendulum: 53%), but bias was higher in the verbal condition (d=1.10). We confirmed this bias difference in a second study (d=0.47, N=40). Our results suggest that people have different decision strategies when using a pendulum compared to conscious guessing. These findings may help explain why some people can answer questions more accurately with pendulums and Ouija boards. More broadly, identifying the differences between ideomotor and verbal responses could lead to practical ways to improve decision-making. PMID:29877514
Charge management for gravitational-wave observatories using UV LEDs
NASA Astrophysics Data System (ADS)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.
2010-01-01
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ˜105e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz.
Energy behavior of an electromechanical system with internal impacts and uncertainties
NASA Astrophysics Data System (ADS)
Lima, Roberta; Sampaio, Rubens
2016-07-01
This paper analyzes the maximal energy stored in an elastic barrier due to the impacts of a pendulum fitted within a vibro-impact electromechanical system considering the existence of epistemic uncertainties in the system parameters. The vibro-impact electromechanical system is composed of two subsystems. The first subsystem is the electromechanical system composed by a motor, cart and pendulum, and the second is an elastic barrier. The first will be called striker system. The pendulum is fitted within the cart. Its suspension point is fixed in the cart, so that it may exist a relative motion between cart and pendulum. The influence of the DC motor in the dynamic behavior of the pendulum is considered. The coupling between the motor and the cart is made by a scotch yoke mechanism, so that the motor rotational motion is transformed in horizontal cart motion over a rail. The pendulum is modeled as a mathematical pendulum (bar without mass and particle of mass mp at the end). A flexible barrier, placed inside the cart, constrains the pendulum motion. Due to the relative motion between the cart and the pendulum, impacts may occur between these two elements. The objective of the paper is to analyze the energy stored in the barrier due to impacts as a function of some parameters of the electromechanical system from a deterministic and from a stochastic viewpoint. The system is designed as an aid in drilling. The impacts damage or fracture the rock and facilitate the conventional drilling.
NASA Astrophysics Data System (ADS)
Priya Darshini, B.; Ranjit, M.; Babu, V. Ramesh
2018-04-01
In this paper different Multicarrier PWM (MCPWM) techniques are proposed for dual inverter fed open end induction motor (IM) drive to achieve multilevel operation. To generate the switching pulses for the dual inverter sinusoidal modulating signal is compared with multi carrier signals. A common mode voltage (CMV) has been analyzed in the proposed open end winding induction motor drive. All the proposed techniques mitigate the CMV along with the harmonic distortion in the phase voltage. To authenticate the proposed work several simulation techniques have been carried out using MATLAB/SIMULINK and the corresponding results are presented and compared.
Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber
NASA Astrophysics Data System (ADS)
Kecik, Krzysztof
2018-06-01
The paper presents a novel system for simultaneous energy harvesting and vibration mitigation. The system consists of two main parts: an autoparametric pendulum vibration absorber and an energy harvester device. The recovered energy is from oscillation of a levitating magnet in a coil. The energy harvesting system is mounted in a pendulum structure. The system allows energy recovery from a semi-trivial solution (pendulum in rest) or/and swinging of a pendulum. The influence of harvester parameters on the system response and energy harvesting in a parametric resonance is studied in detail. The harvester device does not decrease vibration reduction effectiveness.
Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system
NASA Astrophysics Data System (ADS)
Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang
2018-01-01
In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.
A simple pendulum laser interferometer for determining the gravitational constant.
Parks, Harold V; Faller, James E
2014-10-13
We present a detailed account of our 2004 experiment to measure the Newtonian constant of gravitation with a suspended laser interferometer. The apparatus consists of two simple pendulums hanging from a common support. Each pendulum has a length of 72 cm and their separation is 34 cm. A mirror is embedded in each pendulum bob, which then in combination form a Fabry-Perot cavity. A laser locked to the cavity measures the change in pendulum separation as the gravitational field is modulated due to the displacement of four 120 kg tungsten masses. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Shoulder Injuries and Disorders - Multiple Languages
... Af-Soomaali (Somali) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - Af-Soomaali (Somali) Bilingual PDF ... Exercises - español (Spanish) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - English PDF Pendulum Exercises for ...
Precessional Periods of Long and Short Foucault Pendulums
ERIC Educational Resources Information Center
Soga, Michitoshi
1978-01-01
Derives the precessional period of a Foucault pendulum without using small oscillation amplitudes. Shows that if the path of the pendulum passes through the origin, the periods for differing amplitudes are essentially the same. (GA)
Ma, Xue-Qin; Li, Guo-Shan; Fu, Xue-Yan; Ma, Jing-Zu
2011-03-01
To investigate CD molecular recognition technology applied in active constituents extracted and isolated from traditional Chinese medicine--Aconitum pendulum. The inclusion constant and form probability of the inclusion complex of Aconitum pendulum with p-CD was calculated by UV spectra method. The active constituents of Aconitum pendulum were extracted and isolated by molecular recognition technology. The inclusion complex was identified by UV. The chemical constituents of Aconitum pendulum and inclusion complex was determined by HPLC. The analgesic effects of inclusion complex was investigated by experiment of intraperitoneal injection of acetic acid in rats. The inclusion complex was identified and confirmed by UV spectra method, the chemical components of inclusion complex were simple, and the content of active constituents increased significantly, the analgesic effects of inclusion complex was well. The molecular recognition technology can be used for extracting and isolating active constituents of Aconitum pendulum, and the effects are obvious.
Charge management for gravitational-wave observatories using UV LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging ofmore » the pendulum with equivalent charging rates of {approx}10{sup 5}e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3x10{sup 5}e/{radical}(Hz).« less
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
NASA Astrophysics Data System (ADS)
Manabu, Sumida
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's understanding, mostly non-scientific, made a marked developmental change to another type of non-scientific understanding by the time they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded children,even though about half of them can apply scientific conceptions that shorter pendulums swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There seems to be another type of developmental change from scientific understanding to non-scientific understanding around their fifties. Itis suggested that the scientific understanding in the public about pendulum motion become predominant due to the educational intervention through school science.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, G. L.; Marrone, A.; Tamborra, I.
2008-11-01
In the dense supernova core, self-interactions may align the flavor polarization vectors of {nu} and {nu} and induce collective flavor transformations. Different alignment Ansaetze are known to describe approximately the phenomena of synchronized or bipolar oscillations and the split of {nu} energy spectra. We discuss another phenomenon observed in some numerical experiments in inverted hierarchy, showing features akin to a low-energy split of {nu} spectra. The phenomenon appears to be approximately described by another alignment Ansatz which, in the considered scenario, reduces the (nonadiabatic) dynamics of all energy modes to only two {nu} plus two {nu} modes. The associated spectralmore » features, however, appear to be fragile when passing from single to multiangle simulations.« less
NASA Astrophysics Data System (ADS)
Dhumale, R. B.; Lokhande, S. D.
2017-05-01
Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.
Design and Experimental Implementation of Optimal Spacecraft Antenna Slews
2013-12-01
LINK PENDULUM MODEL ............................................................58 C. AZIMUTH-ELEVATION SYSTEM...BOUNDARY VALUE PROBLEM ......................77 B. DOUBLE PENDULUM EXAMPLE............................................................82 C. SOLVING THE...Figure 15. Two-link Pendulum .........................................................................................58 Figure 16. Double
NASA Astrophysics Data System (ADS)
Adhitama, Egy; Fauzi, Ahmad
2018-05-01
In this study, a pendulum experimental tool with a light-based timer has been developed to measure the period of a simple pendulum. The obtained data was automatically recorded in an Excel spreadsheet. The intensity of monochromatic light, sensed by a 3DU5C phototransistor, dynamically changes as the pendulum swings. The changed intensity varies the resistance value and was processed by the microcontroller, ATMega328, to obtain a signal period as a function of time and brightness when the pendulum crosses the light. Through the experiment, using calculated average periods, the gravitational acceleration value has been accurately and precisely determined.
Pendulum Mass Affects the Measurement of Articular Friction Coefficient
Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.
2012-01-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223
Pendulum mass affects the measurement of articular friction coefficient.
Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C
2013-02-01
Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Caprioglio, Alberto; Beretta, Matteo; Lanteri, Claudio
2011-01-01
To compare the dento-alveolar and skeletal effects produced by two different molar intraoral distalization appliances, Pendulum and Fast-Back, both followed by fixed appliances, in the treatment of Class II malocclusion. 41 patients for Pendulum (18 males and 23 females) and 35 for Fast-Back (14 males and 21 females) were selected, with a mean age at the start of treatment of 12.11 years in the Pendulum group and 13.3 for in the Fast-Back group. The durations of the distalization phase were 8 months in the Pendulum group and 9 months in the Fast-Back group, and the durations of the second phase of treatment with fixed appliances were 19 months in the Pendulum group and 20 months in the Fast-Back group. Lateral cephalograms were analyzed at 3 observation times: before treatment, after distalization and after comprehensive orthodontic treatment. During molar distalization the Pendulum subjects showed greater distal molar movement and less anchorage loss at both the premolars and maxillary incisors than the Fast-Back subjects. Pendulum and Fast-Back produced similar amounts of distal molar movement and overcorrection of molar relationship at the end of distalization though the Fast-Back induced a more bodily movement. Very little change occurred in the inclination of the mandibular plane at the end of the 2-phase treatment in both groups. At the end of treatment the maxillary first molars were on average 1mm more distal in the Pendulum group compared to the Fast-Back group, while the total molar correction was 3.2mm with 3.9° of distal inclination for the Pendulum and 2mm with 1.1° of mesial inclination for the Fast-Back. Both appliance were equally effective in inducing a satisfactory Class I relationship in 97.2% of the cases. The Pendulum and the Fast-Back induce similar dentoskeletal effects. The use of the two distalization devices, therefore, can be considered clinically equivalent. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog
2017-09-20
We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.
Joint inversion of high-frequency surface waves with fundamental and higher modes
Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.
2007-01-01
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.
Examining Functions in Mathematics and Science Using Computer Interfacing.
ERIC Educational Resources Information Center
Walton, Karen Doyle
1988-01-01
Introduces microcomputer interfacing as a method for explaining and demonstrating various aspects of the concept of function. Provides three experiments with illustrations and typical computer graphic displays: pendulum motion, pendulum study using two pendulums, and heat absorption and radiation. (YP)
Control of Torsional Vibrations by Pendulum Masses
NASA Technical Reports Server (NTRS)
Stieglitz, Albert
1942-01-01
Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.
A novel pendulum test for measuring roller chain efficiency
NASA Astrophysics Data System (ADS)
Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.
2018-07-01
This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.
Szopa, Andrzej; Domagalska-Szopa, Małgorzata; Kidoń, Zenon; Syczewska, Małgorzata
2014-12-16
Development of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy. We studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis. The data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data. This study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.
Angelieri, Fernanda; de Almeida, Renato Rodrigues; Janson, Guilherme; Castanha Henriques, José Fernando; Pinzan, Arnaldo
2008-12-01
This study compared the effects produced by two different molar distalizers, namely cervical headgear (CHG) and the intraoral pendulum appliance, associated with fixed orthodontic appliances. The headgear group comprised 30 patients (19 females, 11 males), with an initial age of 13.07 years [standard deviation (SD) = 1.3], treated with CHG and fixed orthodontic appliances for a mean period of 3.28 years, and the pendulum group 22 patients (15 females, 7 males), with initial age of 13.75 years (SD = 1.86), treated with the pendulum appliance followed by fixed orthodontic appliances for a mean period of 4.12 years. Lateral cephalograms were taken at the start (T1) and on completion (T2) of orthodontic treatment. The pendulum and CHG groups were similar as to initial age, severity of the Class II malocclusion, gender distribution, initial cephalometric characteristics, and initial and final treatment priority index (TPI). Only treatment time was not similar between the groups, with a need for annualization for data for the pendulum group. The data were compared with independent t-tests. There was significantly greater restriction of maxillary forward growth and improvement of the skeletal maxillomandibular relationship in the CHG group (P < 0.05). The maxillary molars were more mesially tipped and extruded and the mandibular molars more uprighted in the CHG group compared with the pendulum group (P < 0.05). There was more labial tipping of the mandibular incisors and greater overbite reduction in the pendulum group. The pendulum appliance produced only dentoalveolar effects, different from the CHG appliance, which restricted maxillary forward displacement, thus improving the skeletal maxillomandibular relationship.
Fault Analysis and Detection in Microgrids with High PV Penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham
In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less
Analyzing spring pendulum phenomena with a smart-phone acceleration sensor
NASA Astrophysics Data System (ADS)
Kuhn, Jochen; Vogt, Patrik
2012-11-01
This paper describes two further pendulum experiments using the acceleration sensor of a smartphone in this column (for earlier contributions concerning this topic, including the description of the operation and use of the acceleration sensor, see Refs. 1 and 2). In this paper we focus on analyzing spring pendulum phenomena. Therefore two spring pendulum experiments will be described in which a smartphone is used as a pendulum body and SPARKvue3 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger4 app for an Android device.1,2 As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.
Power supply of autonomous systems using solar modules
NASA Astrophysics Data System (ADS)
Yurchenko, A. V.; Zotov, L. G.; Mekhtiev, A. D.; Yugai, V. V.; Tatkeeva, G. G.
2015-04-01
The article shows the methods of constructing autonomous decentralized energy systems from solar modules. It shows the operation of up DC inverter. It demonstrates the effectiveness of DC inverters with varying structure. The system has high efficiency and low level of conductive impulse noise and at the same time the system is practically feasible. Electrical processes have been analyzed to determine the characteristics of operating modes of the main circuit elements. Recommendations on using the converters have been given.
A novel double gate metal source/drain Schottky MOSFET as an inverter
NASA Astrophysics Data System (ADS)
Loan, Sajad A.; Kumar, Sunil; Alamoud, Abdulrahman M.
2016-03-01
In this work, we propose and simulate a novel structure of a double gate metal source/drain (MSD) Schottky MOSFET. The novelty of the proposed device is that it realizes a complete CMOS inverter action, which is actually being realized by the combination of two n and p type MOS transistors in the conventional CMOS technology. Therefore, the use of this device will significantly reduce the transistor count in implementing combinational and sequential circuits. Further, there is a significant reduction in the number of junctions and regions in the proposed device in comparison to the conventional CMOS inverter. Therefore, the proposed device is compact and can consume less power. The proposed device has been named as Sajad-Sunil-Schottky (SSS) device. The mixed mode circuit analysis of the proposed SSS device has shown that a CMOS inverter action with high logic level (VOH) and low logic level (VOL) as ∼VDD and ∼ground respectively. A two dimensional calibrated simulation study using the experimental data has revealed that the proposed SSS device in n and p type modes have subthreshold slopes (S) of 130 mV/decade and 85 mV/decade respectively and have reasonable high ION and ION/IOFF ratio's. Furthermore, it has been proved that such a device action cannot be realised by folding the conventional doped n and p MOS transistors.
NASA Astrophysics Data System (ADS)
Zábranová, Eliška; Matyska, Ctirad
2014-10-01
After the 2010 Maule and 2011 Tohoku earthquakes the spheroidal modes up to 1 mHz were clearly registered by the Global Geodynamic Project (GGP) network of superconducting gravimeters (SG). Fundamental parameters in synthetic calculations of the signals are the quality factors of the modes. We study the role of their uncertainties in the centroid-moment-tensor (CMT) inversions. First, we have inverted the SG data from selected GGP stations to jointly determine the quality factors of these normal modes and the three low-frequency CMT components, Mrr,(Mϑϑ-Mφφ)/2 and Mϑφ, that generate the observed SG signal. We have used several-days-long records to minimize the trade-off between the quality factors and the CMT but it was not eliminated completely. We have also inverted each record separately to get error estimates of the obtained parameters. Consequently, we have employed the GGP records of 60-h lengths for several published modal-quality-factor sets and inverted only the same three CMT components. The obtained CMT tensors are close to the solution from the joint Q-CMT inversion of longer records and resulting variability of the CMT components is smaller than differences among routine agency solutions. Reliable low-frequency CMT components can thus be obtained for any quality factors from the studied sets.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum
NASA Astrophysics Data System (ADS)
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
Instability dynamics and breather formation in a horizontally shaken pendulum chain.
Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G
2014-10-01
Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
Nagao, N; Yokota, S; Komurasaki, K; Arakawa, Y
2007-11-01
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors [axial and horizontal (transverse) direction thrusts] of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%) in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of +/-2.3 degrees was measured with the error of +/-0.2 degrees under the typical operating conditions for the thruster.
Mathematic study of the rotor motion with a pendulum selfbalancing device
NASA Astrophysics Data System (ADS)
Ivkina, O. P.; Ziyakaev, G. R.; Pashkov, E. N.
2016-09-01
The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ’ parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.
Converter topologies for common mode voltage reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Fernando
An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adaptedmore » to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.« less
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
49 CFR 572.123 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with respect to the pendulum's longitudinal centerline between 74 degrees and 92 degrees. Within this... direction of preimpact flight with respect to the pendulum's longitudinal centerline between 85 degrees and... contact between the pendulum striker plate and the honeycomb material. (c) Test procedure. The test...
Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities
ERIC Educational Resources Information Center
Zachos, Paul
2004-01-01
Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…
Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.
Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan
2018-04-01
In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
NASA Astrophysics Data System (ADS)
Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei
2016-01-01
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).
Activity patterns in networks stabilized by background oscillations.
Hoppensteadt, Frank
2009-07-01
The brain operates in a highly oscillatory environment. We investigate here how such an oscillating background can create stable organized behavior in an array of neuro-oscillators that is not observable in the absence of oscillation, much like oscillating the support point of an inverted pendulum can stabilize its up position, which is unstable without the oscillation. We test this idea in an array of electronic circuits coming from neuroengineering: we show how the frequencies of the background oscillation create a partition of the state space into distinct basins of attraction. Thus, background signals can stabilize persistent activity that is otherwise not observable. This suggests that an image, represented as a stable firing pattern which is triggered by a voltage pulse and is sustained in synchrony or resonance with the background oscillation, can persist as a stable behavior long after the initial stimulus is removed. The background oscillations provide energy for organized behavior in the array, and these behaviors are categorized by the basins of attraction determined by the oscillation frequencies.
Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.
Palmer, Luther R; Eaton, Caitrin E
2014-09-01
This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg.
Tapping mode imaging and measurements with an inverted atomic force microscope.
Chan, Sandra S F; Green, John-Bruce D
2006-07-18
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.
ERIC Educational Resources Information Center
Fay, Temple H.
2002-01-01
We investigate the pendulum equation [theta] + [lambda][squared] sin [theta] = 0 and two approximations for it. On the one hand, we suggest that the third and fifth-order Taylor series approximations for sin [theta] do not yield very good differential equations to approximate the solution of the pendulum equation unless the initial conditions are…
Equilibrium and Stability of a Pendulum in an Orbiting Spaceship.
ERIC Educational Resources Information Center
Blitzer, Leon
1979-01-01
Investigates the behavior of a simple pendulum attached to a fixed point inside a satellite moving in a circular orbit about the earth. It is found that the number of equilibrium positions depends on the length of the pendulum and the location of the point of attachment. (HM)
Code of Federal Regulations, 2011 CFR
2011-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2014 CFR
2014-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the vehicle if they are optional equipment. (b) Pendulum test conditions. The following conditions apply to the pendulum test procedures of § 581.7 (a) and (b). (1) The test device consists of a block... 1963. From the point of release of the device until the onset of rebound, the pendulum suspension...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
Conical Pendulum--Linearization Analyses
ERIC Educational Resources Information Center
Dean, Kevin; Mathew, Jyothi
2016-01-01
A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period "T", as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m-2.130 m) are plotted with the theoretical lines and…
Code of Federal Regulations, 2011 CFR
2011-10-01
... (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline a... distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at time T as...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2012 CFR
2012-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.173 - Neck assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... respect to the pendulum's longitudinal centerline between 76 degrees and 90 degrees. During the time..., referenced in Figure T3, shall rotate in the direction of preimpact flight with respect to the pendulum's... occipital condyle. (3) Time zero is defined as the time of initial contact between the pendulum striker...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.133 - Neck assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pendulum's longitudinal centerline between 77 degrees and 91 degrees. During the time interval while the... respect to the pendulum's longitudinal centerline between 99 degrees and 114 degrees. During the time... force to occipital condyle. (3) Time-zero is defined as the time of initial contact between the pendulum...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2013 CFR
2013-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
Experiments with a Magnetically Controlled Pendulum
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.153 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...
49 CFR 572.113 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...
Code of Federal Regulations, 2011 CFR
2011-10-01
... paragraph (c) of this section, the head shall rotate in reference to the pendulum's longitudinal centerline... the straight line distance between (1) the position relative to the pendulum arm of the head center of gravity at time zero, and (2) the position relative to the pendulum arm of the head center of gravity at...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
49 CFR 572.36 - Test conditions and instrumentation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be mounted with its sensitive axis colinear with the pendulum's longitudinal centerline. (h) The... acceleration—Class 1000 (2) Neck forces—Class 1000 (3) Neck moments—Class 600 (4) Neck pendulum acceleration—Class 60 (5) Thorax and thorax pendulum acceleration—Class 180 (6) Thorax deflection—Class 180 (7) Knee...
49 CFR 572.143 - Neck-headform assembly and test procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart, shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal... rotation data channels are defined to be zero when the longitudinal centerline of the neck and pendulum are... of preimpact flight with respect to the pendulum's longitudinal centerline between 83 degrees and 93...
"Time: What Is It that It Can Be Measured?"
ERIC Educational Resources Information Center
Raju, C. K.
2006-01-01
Experiments with the simple pendulum are easy, but its motion is nevertheless confounded with simple harmonic motion. However, refined theoretical models of the pendulum can, today, be easily taught using software like CALCODE. Similarly, the cycloidal pendulum is isochronous only in simplified theory. But what "are" theoretically equal intervals…
NASA Astrophysics Data System (ADS)
Rubio, Rafael M.; Salamanca, Juan J.
2018-07-01
The dynamics of external force free motion of pendulums on surfaces of constant Gaussian curvature is addressed when the pivot moves along a geodesic obtaining the Lagrangian of the system. As an application it is possible the study of elastic and quantum pendulums.
The Pendulum and the Calculus.
ERIC Educational Resources Information Center
Sworder, Steven C.
A pair of experiments, appropriate for the lower division fourth semester calculus or differential equations course, are presented. The second order differential equation representing the equation of motion of a simple pendulum is derived. The period of oscillation for a particular pendulum can be predicted from the solution to this equation. As a…
Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu
This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
NASA Astrophysics Data System (ADS)
Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen
2012-08-01
Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.
Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
NASA Astrophysics Data System (ADS)
Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.
2012-08-01
Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
What Makes the Foucault Pendulum Move among the Stars?
ERIC Educational Resources Information Center
Phillips, Norman
2004-01-01
Foucault's pendulum exhibition in 1851 occurred in an era now known by development of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel. Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal component of Newtonian gravitation is essential for understanding the behavior with…
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2013 CFR
2013-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... The sum mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum... filtered CFC 180; (3)Neck and lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis... 180. (j)(1) Filter the pendulum acceleration data using a SAE J211 CFC 60 filter. (2) Determine the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2011 CFR
2011-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2013 CFR
2013-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Code of Federal Regulations, 2012 CFR
2012-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
Code of Federal Regulations, 2012 CFR
2012-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2013 CFR
2013-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2012 CFR
2012-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
49 CFR 572.189 - Instrumentation and test conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mass of the attachments and 1/3 cable mass must not exceed 5 percent of the total pendulum mass. No... lumbar spine pendulum accelerations—Digitally filtered CFC 60; (4) Pelvis, shoulder, thorax without arm...—Digitally filtered at CFC 600; (6) Thorax deflection—Digitally filtered CFC 180. (j)(1) Filter the pendulum...
Analysis of the Pendular and Pitch Motions of a Driven Three-Dimensional Pendulum
ERIC Educational Resources Information Center
Findley, T.; Yoshida, S.; Norwood, D. P.
2007-01-01
A three-dimensional pendulum, modelled after the Laser Interferometer Gravitational-Wave Observatory's suspended optics, was constructed to investigate the pendulum's dynamics due to suspension point motion. In particular, we were interested in studying the pendular-pitch energy coupling. Determination of the pendular's Q value (the quality factor…
Explicit Analytical Solution of a Pendulum with Periodically Varying Length
ERIC Educational Resources Information Center
Yang, Tianzhi; Fang, Bo; Li, Song; Huang, Wenhu
2010-01-01
A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper,…
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Code of Federal Regulations, 2011 CFR
2011-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
The Doppler Pendulum Experiment
ERIC Educational Resources Information Center
Lee, C. K.; Wong, H. K.
2011-01-01
An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
Code of Federal Regulations, 2010 CFR
2010-10-01
... in accordance with paragraph (b)(2) of this section, at 6.9 ft/sec ±0.10 ft/sec by the pendulum defined in § 572.36(b), the peak knee impact force, which is a product of pendulum mass and acceleration... the femur load cell simulator. (v) Guide the pendulum so that there is no significant lateral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...
49 CFR 572.183 - Neck assembly.
Code of Federal Regulations, 2014 CFR
2014-10-01
... subpart E pendulum test fixture as shown in Figure U2-A in appendix A to this subpart, so that the... pendulum longitudinal centerline shown in Figure U2-A. Torque the half-spherical screws (175-2004) located... equivalent; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact...
A Simple, Low-Cost, Data-Logging Pendulum Built from a Computer Mouse
ERIC Educational Resources Information Center
Gintautas, Vadas; Hubler, Alfred
2009-01-01
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in…
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
ERIC Educational Resources Information Center
Manabu, Sumida
2004-01-01
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's…
The Multiple Pendulum Problem via Maple[R
ERIC Educational Resources Information Center
Salisbury, K. L.; Knight, D. G.
2002-01-01
The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…
ERIC Educational Resources Information Center
Matthews, Michael R.
2004-01-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the…
Hammerschlag, Richard; Linda Baldwin, Ann; Schwartz, Gary E
When a human subject sits beneath a wire mesh, hemispheric torsion pendulum (TP) a rapid-onset series of oscillations at frequencies both higher and lower than the fundamental frequency of the TP have been consistently observed. This study was designed to replicate and extend prior findings that suggest the human subject effect on TP behavior is due to subject-generated, heat-induced convection currents. Effects on pendulum behavior were tested after draping an aluminized "space blanket" over the subject and by replacing the subject with a thermal mattress pad shaped to approximate the human form. Experiments were performed in a basic science university research laboratory. Real-time recordings and Fast Fourier Transform frequency spectra of pendulum oscillatory movement. The space blanket blocked, while the mattress pad mimicked, the human subject induced complex array of pendulum oscillations. Our findings support and strengthen previous results that suggest the effects of human subjects on behavior of a torsion pendulum are mediated by body-heat-induced air convection rather than an unknown type of biofield. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, N.; Yokota, S.; Komurasaki, K.
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less
Analytical study of the critical behavior of the nonlinear pendulum
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2010-11-01
The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.
Note: A 1-m Foucault pendulum rolling on a ball.
Salva, H R; Benavides, R E; Venturino, J A; Cuscueta, D J; Ghilarducci, A A
2013-10-01
We have built a short Foucault pendulum of 1-m length. The aim of this work was to increase the sensitivity to elliptical trajectories from other longer pendula. The design was a semi-rigid pendulum that rolls over a small ball. The measurements of the movements (azimuth and elliptical trajectory) were done by an optical method. The resulting pendulum works in a medium satisfactory way due to problems of the correct choice of the mass of the bob together with the diameter of the supporting ball. It is also important to keep the rolling surface very clean.
Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scammell, K.L.
1987-01-01
The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.
A Comprehensive Analytical Solution of the Nonlinear Pendulum
ERIC Educational Resources Information Center
Ochs, Karlheinz
2011-01-01
In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…
Code of Federal Regulations, 2014 CFR
2014-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Oscillations of a Simple Pendulum with Extremely Large Amplitudes
ERIC Educational Resources Information Center
Butikov, Eugene I.
2012-01-01
Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…
Code of Federal Regulations, 2012 CFR
2012-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Measurement of Gravitational Acceleration Using a Computer Microphone Port
ERIC Educational Resources Information Center
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny
2012-01-01
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?
ERIC Educational Resources Information Center
Puri, Avinash
2015-01-01
According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…
A Laboratory Experiment on Coupled Non-Identical Pendulums
ERIC Educational Resources Information Center
Li, Ang; Zeng, Jingyi; Yang, Hujiang; Xiao, Jinghua
2011-01-01
In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase…
Code of Federal Regulations, 2010 CFR
2010-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the damage criteria of §§ 581.5(c)(1) through 581.5(c)(9) when impacted by a pendulum-type test device... of 1.5 m.p.h., and when impacted by a pendulum-type test device in accordance with the procedures of... original contours 30 minutes after completion of each pendulum and barrier impact, except where such damage...
An Apparatus to Demonstrate Linear and Nonlinear Oscillations of a Pendulum
ERIC Educational Resources Information Center
Mayer, V. V.; Varaksina, E. I.
2016-01-01
A physical pendulum with a magnetic load is proposed for comparison of linear and nonlinear oscillations. The magnetic load is repelled by permanent magnets which are disposed symmetrically relative to the load. It is established that positions of the pendulum and the magnets determine the dependence of restoring force on displacement of the load.…
Chemistry and the Pendulum--What Have They to Do with Each Other?
ERIC Educational Resources Information Center
De Berg, K. C.
2006-01-01
Physicists have known for some time that pendulum motion is a useful analogy for other physical processes. Chemists have played with the idea from time to time but the strength of the analogy between pendulum motion and chemical processes has only received prominent published recognition since about 1980, although there are details of the analogy…
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido
2016-01-01
The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.
Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi
2016-03-01
As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A trade-off between model resolution and variance with selected Rayleigh-wave data
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.
Extending the Range for Force Calibration in Magnetic Tweezers
Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf
2015-01-01
Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733
NASA Technical Reports Server (NTRS)
Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.
2013-01-01
The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo
2018-05-11
The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.
NASA Technical Reports Server (NTRS)
Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon
2010-01-01
Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.
The Pendulum in the 21st Century-Relic or Trendsetter
ERIC Educational Resources Information Center
Peters, Randall D.
2004-01-01
When identifying instruments that have had great influence on the history of physics, none comes to mind more quickly than the pendulum. Though first treated scientifically by Galileo in the 16th century, and in some respects nearly "dead" by the middle of the 20th century; the pendulum experienced "rebirth" by becoming an archetype of chaos. With…
Analysis of Pendulum Period with an iPod Touch/iPhone
ERIC Educational Resources Information Center
Briggle, Justin
2013-01-01
We describe the use of Apple's iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device's three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment.…
On the Stable Limit Cycle of a Weight-Driven Pendulum Clock
ERIC Educational Resources Information Center
Llibre, J; Teixeira, M. A.
2010-01-01
In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
The Bravais Pendulum: The Distinct Charm of an Almost Forgotten Experiment
ERIC Educational Resources Information Center
Babovic, V. M.; Mekic, S.
2011-01-01
In the year 1851 in Paris, the apparent change of the plane of oscillation of a linear pendulum was observed by Leon Foucault. In the same year, at the same place, the unequal duration of the oscillations of a right- and left-handed conical pendulum was observed by Bravais. Today, the Foucault pendula are common at universities, the Bravais…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ± 5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
49 CFR 572.187 - Lumbar spine.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-headform assembly to the Part 572 pendulum test fixture per procedure in § 572.183(b)(2) and as shown in... assembly (175-5506) to 50 ±5 in-lb; (3) Release the pendulum from a height sufficient to allow it to fall freely to achieve an impact velocity of 6.05 ±0.1 m/s measured at the center of the pendulum...
Experimental Uncertainty Associated with Traveling Wave Excitation
2014-09-15
20 2.9 Schematic of the Lumped Model [6] . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Multiple Coupled Pendulum [7...model to describe the physical system, the authors chose to employ a coupled pendulum model to represent a rotor. This system is shown in Figure 2.10...System mistuning is introduced by altering pendulum lengths. All other system parameters are equal. A linear viscous proportional damping force is
Working Model of a Foucault Pendulum at Intermediate Latitudes
ERIC Educational Resources Information Center
Sears, Francis W.
1969-01-01
Describes a working model of a Foucault pendulum at intermediate latitudes constructed of a steel drill rod with a steel ball attached at one end. The rod makes an angle of 45 degrees with the rotation axis of a horizontal turntable. The vibrating system is the same as that which led Foucault to construct his first gravity pendulum. (LC)
Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.
Dennis, Mark R; Ring, James D
2013-09-01
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
Analysis of the linearity of half periods of the Lorentz pendulum
NASA Astrophysics Data System (ADS)
Wickramasinghe, T.; Ochoa, R.
2005-05-01
We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.
An inexpensive, multipurpose physical pendulum
NASA Astrophysics Data System (ADS)
Schultz, David
2012-10-01
The pendulum is a highly versatile tool for teaching physics. Many special purpose pendula for student experiments have been described.1-4 In this paper, I describe an inexpensive, multipurpose physical pendulum that can function as both a variable gravity and ballistic pendulum. I designed the apparatus for use in a rotational dynamics unit of the AP Physics C mechanics course. The use of a bike wheel hub pivot allows for low-friction, rugged operation that yields results commensurate with those obtained with much more expensive pendula available on the market (typically 500 per unit5), placing these types of experiments within reach of the teacher on a restricted budget.
Pendulum Motion in Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Machin, Ricardo A.
2015-01-01
The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.
NASA Astrophysics Data System (ADS)
Gröber, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-05-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy Δg ~ 0.01 m s-2). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes the physical origin of this phenomenon g(phiv), that the Earth's effective gravitational acceleration g depends on the angle of latitude phiv. Then, we present all necessary formula to deduce g(phiv) from oscillations of a string pendulum. The technical part explains tips and tricks to realize such an apparatus to measure all necessary values with sufficient accuracy. In addition, we justify the precise dimensions of a physical pendulum such that the formula for a mathematical pendulum is applicable to determine g(phiv) without introducing errors. To conclude, we describe the internet version—the string pendulum as a remotely controlled laboratory. The teaching relevance and educational value will be discussed in detail at the end of this paper including global experimenting, using the internet and communication techniques in teaching and new ways of teaching and learning methods.
Control of discrete time systems based on recurrent Super-Twisting-like algorithm.
Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L
2016-09-01
Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Method and system for controlling a permanent magnet machine during fault conditions
Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.
2004-05-25
Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.
Nonlinear analysis of a family of LC tuned inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1975-01-01
Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
Code of Federal Regulations, 2010 CFR
2010-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact
2016-06-01
for creating an E-glass composite cubic structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of...structure and a pendulum was designed and built to provide a repeatable low velocity impact. The behavior of the composite structure was studied at various...SET-UP .......................................................31 1. Impact Pendulum
Code of Federal Regulations, 2014 CFR
2014-07-01
...,000-kg) weight acting as a pendulum. The impact face of the weight shall be 27 ±1 in. by 27 ±1 in... restraining cables shall be located in the plane in which the center of gravity of the pendulum will swing, or... side on the same enclosure structure. The pendulum swinging from the height determined by paragraph (d...
ERIC Educational Resources Information Center
Grober, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.
2007-01-01
We suggest that different string pendulums are positioned at different locations on Earth and measure at each place the gravitational acceleration (accuracy [delta]g is approximately equal to 0.01 m s[superscript -2]). Each pendulum can be remotely controlled via the internet by a computer located somewhere on Earth. The theoretical part describes…
Code of Federal Regulations, 2012 CFR
2012-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Code of Federal Regulations, 2011 CFR
2011-07-01
... accomplished by using a 4,410-lb (2,000-kg) weight acting as a pendulum. The impact face of the weight shall be... of the pendulum will swing, or alternatively, two sets of symmetrically located cables may be used at... from the rear, followed by a load to the side on the same enclosure structure. The pendulum swinging...
Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Kim, Minsung
2017-12-01
This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.
Single Active Switch PV Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, V. R.; Pan, Zhiguo
This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
Linear laser diode arrays for improvement in optical disk recording
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
Proposal of a new electromechanical total artificial heart: the TAH Serpentina.
Sauer, I M; Frank, J; Bücherl, E S
1999-03-01
A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.
NASA Astrophysics Data System (ADS)
Matthews, Michael R.
2004-11-01
Galileo's discovery of the properties of pendulum motion depended on his adoption of the novel methodology of idealisation. Galileo's laws of pendulum motion could not be accepted until the empiricist methodological constraints placed on science by Aristotle, and by common sense, were overturned. As long as scientific claims were judged by how the world was immediately seen to behave, and as long as mathematics and physics were kept separate, then Galileo's pendulum claims could not be substantiated; the evidence was against them. Proof of the laws required not just a new science, but a new way of doing science, a new way of handling evidence, a new methodology of science. This was Galileo's method of idealisatioin. It was the foundation of the Galilean-Newtonian Paradigm which characterised the Scientific Revolution of the 17th century, and the subsequent centuries of modern science. As the pendulum was central to Galileo's and Newton's physics, appreciating the role of idealisation in their work is an instructive way to learn about the nature of science.