Li, Jia; Gao, Lei; Chen, Shanshan; Tao, Ke; Su, Yingjuan; Wang, Ting
2016-02-11
Sciadopitys verticillata is an evergreen conifer and an economically valuable tree used in construction, which is the only member of the family Sciadopityaceae. Acquisition of the S. verticillata chloroplast (cp) genome will be useful for understanding the evolutionary mechanism of conifers and phylogenetic relationships among gymnosperm. In this study, we have first reported the complete chloroplast genome of S. verticillata. The total genome is 138,284 bp in length, consisting of 118 unique genes. The S. verticillata cp genome has lost one copy of the canonical inverted repeats and shown distinctive genomic structure comparing with other cupressophytes. Fifty-three simple sequence repeat loci and 18 forward tandem repeats were identified in the S. verticillata cp genome. According to the rearrangement of cupressophyte cp genome, we proposed one mechanism for the formation of inverted repeat: tandem repeat occured first, then rearrangement divided the tandem repeat into inverted repeats located at different regions. Phylogenetic estimates inferred from 59-gene sequences and cpDNA organizations have both shown that S. verticillata was sister to the clade consisting of Cupressaceae, Taxaceae, and Cephalotaxaceae. Moreover, accD gene was found to be lost in the S. verticillata cp genome, and a nucleus copy was identified from two transcriptome data.
Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.
Grindley, N D; Joyce, C M
1980-01-01
The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245
Fitzpatrick, Terry; Huang, Sui
2012-01-01
Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648
2013-01-01
Background Wheat gluten has unique nutritional and technological characteristics, but is also a major trigger of allergies and intolerances. One of the most severe diseases caused by gluten is coeliac disease. The peptides produced in the digestive tract by the incomplete digestion of gluten proteins trigger the disease. The majority of the epitopes responsible reside in the gliadin fraction of gluten. The location of the multiple gliadin genes in blocks has to date complicated their elimination by classical breeding techniques or by the use of biotechnological tools. As an approach to silence multiple gliadin genes we have produced 38 transgenic lines of bread wheat containing combinations of two endosperm-specific promoters and three different inverted repeat sequences to silence three fractions of gliadins by RNA interference. Results The effects of the RNA interference constructs on the content of the gluten proteins, total protein and starch, thousand seed weights and SDSS quality tests of flour were analyzed in these transgenic lines in two consecutive years. The characteristics of the inverted repeat sequences were the main factor that determined the efficiency of silencing. The promoter used had less influence on silencing, although a synergy in silencing efficiency was observed when the two promoters were used simultaneously. Genotype and the environment also influenced silencing efficiency. Conclusions We conclude that to obtain wheat lines with an optimum reduction of toxic gluten epitopes one needs to take into account the factors of inverted repeat sequences design, promoter choice and also the wheat background used. PMID:24044767
Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun
2014-01-01
Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.
The organization of repeating units in mitochondrial DNA from yeast petite mutants.
Bos, J L; Heyting, C; Van der Horst, G; Borst, P
1980-04-01
We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.
Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu
2014-01-01
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family. PMID:24911363
Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu
2014-01-01
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.
Solov'ev, V V; Kel', A E; Kolchanov, N A
1989-01-01
The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.
Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.
Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825
Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang
2016-09-01
Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.
BAC Modification through Serial or Simultaneous Use of CRE/Lox Technology
Parrish, Mark; Unruh, Jay; Krumlauf, Robb
2011-01-01
Bacterial Artificial Chromosomes (BACs) are vital tools in mouse genomic analyses because of their ability to propagate large inserts. The size of these constructs, however, prevents the use of conventional molecular biology techniques for modification and manipulation. Techniques such as recombineering and Cre/Lox methodologies have thus become heavily relied upon for such purposes. In this work, we investigate the applicability of Lox variant sites for serial and/or simultaneous manipulations of BACs. We show that Lox spacer mutants are very specific, and inverted repeat variants reduce Lox reaction rates through reducing the affinity of Cre for the site, while retaining some functionality. Employing these methods, we produced serial modifications encompassing four independent changes which generated a mouse HoxB BAC with fluorescent reporter proteins inserted into four adjacent Hox genes. We also generated specific, simultaneous deletions using combinations of spacer variants and inverted repeat variants. These techniques will facilitate BAC manipulations and open a new repertoire of methods for BAC and genome manipulation. PMID:21197414
Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification
Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.
2015-01-01
DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution. PMID:26700858
Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.
Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K
2015-12-01
DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.
Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae
Saini, Natalie; Zhang, Yu; Nishida, Yuri; Sheng, Ziwei; Choudhury, Shilpa; Mieczkowski, Piotr; Lobachev, Kirill S.
2013-01-01
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes. PMID:23785298
USDA-ARS?s Scientific Manuscript database
Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposons (devoid a transposase gene, tps) involving insertion/deletion of genomic DNA in bacterial genomes influencing gene functions. No transposon has yet been reported in “Candidatus Liberibacter asiaticus”, an alpha-pr...
USDA-ARS?s Scientific Manuscript database
Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the br...
E622, a miniature, virulence-associated mobile element.
Stavrinides, John; Kirzinger, Morgan W B; Beasley, Federico C; Guttman, David S
2012-01-01
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Monolekha; Das, Amit Kumar, E-mail: amitk@hijli.iitkgp.ernet.in
Highlights: Black-Right-Pointing-Pointer The regulatory sequences recognized by TcrX have been identified. Black-Right-Pointing-Pointer The regulatory region comprises of inverted repeats segregated by 30 bp region. Black-Right-Pointing-Pointer The mode of binding of TcrX with regulatory sequence is unique. Black-Right-Pointing-Pointer In silico TcrX-DNA docked model binds one of the inverted repeats. Black-Right-Pointing-Pointer Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has notmore » been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by {approx}30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.« less
Faraldo-Gómez, José D.
2017-01-01
The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. PMID:29167180
Lepetit, D; Pasquet, S; Olive, M; Thézé, N; Thiébaud, P
2000-01-01
We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the alpha-tropomyosin (alpha-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated alpha-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the Xenopus laevis genome. Every MITEs elements but two described in our study are found either in 5' or in 3' regulatory regions of genes suggesting a potential role in gene regulation.
Itier, Roxane J; Taylor, Margot J
2002-02-01
Using ERPs in a face recognition task, we investigated whether inversion and contrast reversal, which seem to disrupt different aspects of face configuration, differentially affected encoding and memory for faces. Upright, inverted, and negative (contrast-reversed) unknown faces were either immediately repeated (0-lag) or repeated after 1 intervening face (1-lag). The encoding condition (new) consisted of the first presentation of items correctly recognized in the two repeated conditions. 0-lag faces were recognized better and faster than 1-lag faces. Inverted and negative pictures elicited longer reaction times, lower hit rates, and higher false alarm rates than upright faces. ERP analyses revealed that negative and inverted faces affected both early (encoding) and late (recognition) stages of face processing. Early components (N170, VPP) were delayed and enhanced by both inversion and contrast reversal which also affected P1 and P2 components. Amplitudes were higher for inverted faces at frontal and parietal sites from 350 to 600 ms. Priming effects were seen at encoding stages, revealed by shorter latencies and smaller amplitudes of N170 for repeated stimuli, which did not differ depending on face type. Repeated faces yielded more positive amplitudes than new faces from 250 to 450 ms frontally and from 400 to 600 ms parietally. However, ERP differences revealed that the magnitude of this repetition effect was smaller for negative and inverted than upright faces at 0-lag but not at 1-lag condition. Thus, face encoding and recognition processes were affected by inversion and contrast-reversal differently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya
A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.
USDA-ARS?s Scientific Manuscript database
Plasmids that contain a disrupted genome of the Junonia coenia densovirus (JcDNV) integrate into the chromosomes of the somatic cells of insects. When subcloned individually, both the P9 inverted terminal repeat (P9-ITR) and the P93-ITR promote the chromosomal integration of vector plasmids in insec...
Adeno-associated virus inverted terminal repeats stimulate gene editing.
Hirsch, M L
2015-02-01
Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim
2011-01-01
Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable ‘UU172 element’ from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses. PMID:21255110
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
The Effect of Syllable Repetition Rate on Vocal Characteristics
ERIC Educational Resources Information Center
Topbas, Oya; Orlikoff, Robert F.; St. Louis, Kenneth O.
2012-01-01
This study examined whether mean vocal fundamental frequency ("F"[subscript 0]) or speech sound pressure level (SPL) varies with changes in syllable repetition rate. Twenty-four young adults (12 M and 12 F) repeated the syllables/p[inverted v]/,/p[inverted v]t[schwa]/, and/p[inverted v]t[schwa]k[schwa]/at a modeled "slow" rate of approximately one…
Scalvenzi, Thibault; Pollet, Nicolas
2014-12-01
The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331 bp, contained 25 bp long inverted terminal repeat sequences and a sequence motif of 119 bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size. Copyright © 2014 Elsevier Inc. All rights reserved.
Singh, Gurjeet; Klar, Amar J S
2002-01-01
The mat2,3 region of the fission yeast Schizosaccharomyces pombe exhibits a phenomenon of transcriptional silencing. This region is flanked by two identical DNA sequence elements, 2.1 kb in length, present in inverted orientation: IRL on the left and IRR on the right of the silent region. The repeats do not encode any ORF. The inverted repeat DNA region is also present in a newly identified related species, which we named S. kambucha. Interestingly, the left and right repeats share perfect identity within a species, but show approximately 2% bases interspecies variation. Deletion of IRL results in variegated expression of markers inserted in the silent region, while deletion of the IRR causes their derepression. When deletions of these repeats were genetically combined with mutations in different trans-acting genes previously shown to cause a partial defect in silencing, only mutations in clr1 and clr3 showed additive defects in silencing with the deletion of IRL. The rate of mat1 switching is also affected by deletion of repeats. The IRL or IRR deletion did not cause significant derepression of the mat2 or mat3 loci. These results implicate repeats for maintaining full repression of the mat2,3 region, for efficient mat1 switching, and further support the notion that multiple pathways cooperate to silence the mat2,3 domain. PMID:12399374
Nanocrystal-based complementary inverters constructed on flexible plastic substrates.
Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig
2013-05-01
We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.
DOT National Transportation Integrated Search
1963-02-01
Vestibular stimulation by repeated unilateral caloric irrigation of cats occasioned the appearance of secondary, tertiary, and inverted primary nystagmus in some animals. These inverse responses were recorded with stimulus temperatures of 5, 23.5, an...
Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan
2016-02-23
We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices.
Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers.
Zhang, Wenna; Kollwig, Gregor; Stecyk, Ewelina; Apelt, Federico; Dirks, Rob; Kragler, Friedrich
2014-10-01
In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Pang, Xiuhua; Aigle, Bertrand; Girardet, Jean-Michel; Mangenot, Sophie; Pernodet, Jean-Luc; Decaris, Bernard; Leblond, Pierre
2004-01-01
Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the β-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production. PMID:14742212
Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai
2017-01-01
The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.
Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome.
Ray, David A; Hedges, Dale J; Herke, Scott W; Fowlkes, Justin D; Barnes, Erin W; LaVie, Daniel K; Goodwin, Lindsey M; Densmore, Llewellyn D; Batzer, Mark A
2005-12-05
Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.
Stoichiometry of the Cre recombinase bound to the lox recombining site.
Mack, A; Sauer, B; Abremski, K; Hoess, R
1992-01-01
The site-specific recombinase Cre from bacteriophage P1 binds and carries out recombination at a 34 bp lox site. The lox site consists of two 13 bp inverted repeats, separated by an 8 bp spacer region. Both the palindromic nature of the site and the results of footprinting and band shift experiments suggest that a minimum of two Cre molecules bind to a lox site. We report here experiments that demonstrate the absolute stoichiometry of the Cre-lox complex to be one molecule of Cre bound per inverted repeat, or two molecules per lox site. Images PMID:1408747
Ayesh, Basim M
2017-01-01
Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.
Design and fabrication of inverted rib waveguide Bragg grating
NASA Astrophysics Data System (ADS)
Huang, Cheng-Sheng; Wang, Wei-Chih
2009-03-01
A polymeric SU8 rib waveguide Bragg grating filterfabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in which that a composite hPDMS/PDMS stamp was used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times with degradation. Using this stamp and inverter rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified.
SU8 inverted-rib waveguide Bragg grating filter.
Huang, Cheng-Sheng; Wang, Wei-Chih
2013-08-01
A polymeric SU8 inverted-rib waveguide Bragg grating filter fabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in that a composite hard-polydimethysiloxane/polydimethysiloxane stamp is used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times without degradation. Using this stamp and inverter-rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified. The experiment result shows an attenuation dip in the transmission spectra, with a value of -7 dBm at 1550 nm for a grating with a period of 0.492 μm on an inverted-rib waveguide with 6.6 μm width and 4 μm height.
Implementation of a Precast Inverted T-Beam System in Virginia: Part I : Laboratory Investigations
DOT National Transportation Integrated Search
2017-10-01
The inverted T-beam system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams with a cast-in-place concrete topping. This bridge system is not expected to...
The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).
Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu
2016-09-01
The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.
Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M. Rafiq
2013-01-01
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700 bp (−1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. PMID:24184271
Pelham, Christopher; Jimenez, Tamara; Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M Rafiq
2013-12-01
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. © 2013.
Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.
Šatović, Eva; Plohl, Miroslav
2017-10-01
Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.
DNA-directed mutations. Leading and lagging strand specificity
NASA Technical Reports Server (NTRS)
Sinden, R. R.; Hashem, V. I.; Rosche, W. A.
1999-01-01
The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.
Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Chauhan, Raj Deepika; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, Titus
2017-01-01
Cassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle. PMID:28127301
Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G
2010-10-01
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi
2016-01-01
The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.
[Active miniature inverted-repeat transposable elements transposon in plants: a review].
Hu, Bingjie; Zhou, Mingbing
2018-02-25
Miniature inverted-repeat transposable elements transposon is a special transposon that could transpose by "cut-paste" mechanism, which is one of characteristics of DNA transposons. Otherwise, the copy number of MITEs is very high, which is one of characteristics of RNA transposons. Many MITE families have been reported, but little about active MITEs. We summarize recent advances in studying active MITEs. Most the MITEs belong to the Tourist-like family, such as mPing, mGing, PhTourist1, Tmi1 and PhTst-3. Additionally, DTstu1 and MITE-39 belong to Stowaway-like family, and AhMITEs1 belongs to Mutator-like family. Moreover, we summarize the structure (terminal inverse repeats and target site duplications), copy number, evolution pattern and transposition characteristics of these active MITEs, to provide the foundation for the identification of other active MITEs and subsequent research on MITE transposition and amplification mechanism.
Huang, Ya-Yi; Matzke, Antonius J. M.; Matzke, Marjori
2013-01-01
Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available. PMID:24023703
Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori
2013-01-01
Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.
☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus.
Zou, Xiao-Hui; Bi, Zhi-Xiang; Guo, Xiao-Juan; Zhang, Zun; Zhao, Yang; Wang, Min; Zhu, Ya-Lu; Jie, Hong-Ying; Yu, Yang; Hung, Tao; Lu, Zhuo-Zhuang
2018-07-01
Plasmid bearing adenovirus genome is generally constructed with the method of homologous recombination in E. coli BJ5183 strain. Here, we utilized Gibson gene assembly technique to generate infectious clone of fowl adenovirus 4 (FAdV-4). Primers flanked with partial inverted terminal repeat (ITR) sequence of FAdV-4 were synthesized to amplify a plasmid backbone containing kanamycin-resistant gene and pBR322 origin (KAN-ORI). DNA assembly was carried out by combining the KAN-ORI fragment, virus genomic DNA and DNA assembly master mix. E. coli competent cells were transformed with the assembled product, and plasmids (pKFAV4) were extracted and confirmed to contain viral genome by restriction analysis and sequencing. Virus was successfully rescued from linear pKFAV4-transfected chicken LMH cells. This approach was further verified in cloning of human adenovirus 5 genome. Our results indicated that DNA assembly technique simplified the construction of infectious clone of adenovirus, suggesting its possible application in virus traditional or reverse genetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Aguado, Cristina; Gayà-Vidal, Magdalena; Villatoro, Sergi; Oliva, Meritxell; Izquierdo, David; Giner-Delgado, Carla; Montalvo, Víctor; García-González, Judit; Martínez-Fundichely, Alexander; Capilla, Laia; Ruiz-Herrera, Aurora; Estivill, Xavier; Puig, Marta; Cáceres, Mario
2014-01-01
In recent years different types of structural variants (SVs) have been discovered in the human genome and their functional impact has become increasingly clear. Inversions, however, are poorly characterized and more difficult to study, especially those mediated by inverted repeats or segmental duplications. Here, we describe the results of a simple and fast inverse PCR (iPCR) protocol for high-throughput genotyping of a wide variety of inversions using a small amount of DNA. In particular, we analyzed 22 inversions predicted in humans ranging from 5.1 kb to 226 kb and mediated by inverted repeat sequences of 1.6–24 kb. First, we validated 17 of the 22 inversions in a panel of nine HapMap individuals from different populations, and we genotyped them in 68 additional individuals of European origin, with correct genetic transmission in ∼12 mother-father-child trios. Global inversion minor allele frequency varied between 1% and 49% and inversion genotypes were consistent with Hardy-Weinberg equilibrium. By analyzing the nucleotide variation and the haplotypes in these regions, we found that only four inversions have linked tag-SNPs and that in many cases there are multiple shared SNPs between standard and inverted chromosomes, suggesting an unexpected high degree of inversion recurrence during human evolution. iPCR was also used to check 16 of these inversions in four chimpanzees and two gorillas, and 10 showed both orientations either within or between species, providing additional support for their multiple origin. Finally, we have identified several inversions that include genes in the inverted or breakpoint regions, and at least one disrupts a potential coding gene. Thus, these results represent a significant advance in our understanding of inversion polymorphism in human populations and challenge the common view of a single origin of inversions, with important implications for inversion analysis in SNP-based studies. PMID:24651690
Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc
2014-01-01
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805
Yi, Xuan; Gao, Lei; Wang, Bo; Su, Ying-Juan; Wang, Ting
2013-01-01
We have determined the complete chloroplast (cp) genome sequence of Cephalotaxus oliveri. The genome is 134,337 bp in length, encodes 113 genes, and lacks inverted repeat (IR) regions. Genome-wide mutational dynamics have been investigated through comparative analysis of the cp genomes of C. oliveri and C. wilsoniana. Gene order transformation analyses indicate that when distinct isomers are considered as alternative structures for the ancestral cp genome of cupressophyte and Pinaceae lineages, it is not possible to distinguish between hypotheses favoring retention of the same IR region in cupressophyte and Pinaceae cp genomes from a hypothesis proposing independent loss of IRA and IRB. Furthermore, in cupressophyte cp genomes, the highly reduced IRs are replaced by short repeats that have the potential to mediate homologous recombination, analogous to the situation in Pinaceae. The importance of repeats in the mutational dynamics of cupressophyte cp genomes is also illustrated by the accD reading frame, which has undergone extreme length expansion in cupressophytes. This has been caused by a large insertion comprising multiple repeat sequences. Overall, we find that the distribution of repeats, indels, and substitutions is significantly correlated in Cephalotaxus cp genomes, consistent with a hypothesis that repeats play a role in inducing substitutions and indels in conifer cp genomes.
The whole chloroplast genome of wild rice (Oryza australiensis).
Wu, Zhiqiang; Ge, Song
2016-01-01
The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224 bp, exhibiting a typical circular structure including a pair of 25,776 bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212 bp and a small single-copy region (SSC) of 12,470 bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.
Structure and Function of Na+-Symporters with Inverted Repeats
Abramson, Jeff; Wright, Ernest M.
2009-01-01
Summary Symporters are membrane proteins that couple energy stored in electrochemical potential gradients to drive the cotransport of molecules and ions into cells. Traditionally, proteins are classified into gene families based on sequence homology and functional properties, e.g. the sodium glucose (SLC5 or Sodium Solute Symporter Family, SSS or SSF) and GABA (SLC6 or Neurotransmitter Sodium Symporter Family, NSS or SNF) symporter families [1-4]. Recently, it has been established that four Na+-symporter proteins with unrelated sequences have a common structural core containing an inverted repeat of 5 transmembrane (TM) helices [5-8]. Analysis of these four structures reveals that they reside in different conformations along the transport cycle providing atomic insight into the mechanism of sodium solute cotransport. PMID:19631523
The complete chloroplast genome of salt cress (Eutrema salsugineum).
Guo, Xinyi; Hao, Guoqian; Ma, Tao
2016-07-01
The complete chloroplast (cp) sequence of the salt cress (Eutrema salsugineum), a plant well-adapted to salt stress, was presented in this study. The circular molecule is 153,407 bp in length and exhibit a typical quadripartite structure containing an 83,894 bp large single copy (LSC) region, a 17,607 bp small single copy (SSC) region, and the two 25,953 bp inverted repeats (IRs). The salt cress cp genome contains 135 known genes, including 87 protein-coding genes, 8 ribosomal RNA genes, and 40 tRNA genes; 21 of these are located in the inverted repeat region. As expected, phylogenetic analysis support the idea that E. salsugineum is sister to Brassiceae species within the Brassicaceae family.
The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).
Li, Jing; Chen, Chen; Wang, Zhe-Zhi
2016-07-01
Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.
Ahn, ByungChul; Zhang, Yunfei; Osterrieder, Nikolaus; O'Callaghan, Dennis J.
2010-01-01
The 150 kbp genome of equine herpesvirus -1 (EHV-1) is composed of a unique long (UL) region and a unique short (Us) segment, which is flanked by identical internal and terminal repeat (IR and TR) sequences of 12.7kbp. We constructed an EHV-1 lacking the entire IR (vL11ΔIR) and showed that the IR is dispensable for EHV-1 replication but that the vL11ΔIR exhibits a smaller plaque size and delayed growth kinetics. Western blot analyses of cells infected with vL11ΔIR showed that the synthesis of viral proteins encoded by the immediate-early, early, and late genes was reduced at immediate-early and early times, but by late stages of replication reached wild type levels. Intranasal infection of CBA mice revealed that the vL11ΔIR was significantly attenuated as mice infected with the vL11ΔIR showed a reduced lung viral titer and greater ability to survive infection compared to mice infected with parental or revertant virus. PMID:21176938
... medications or doctor visits! Yoga and Recreational Body Inversion The long-term effects of repeatedly assuming a ... shoulder and headstands or any other recreational body inversion exercises that result in head-down or inverted ...
Trinh, T. Q.; Sinden, R. R.
1993-01-01
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478
Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes
Huang, Yongjie; Mrázek, Jan
2014-01-01
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877
Hernández-Tamayo, Rogelio; Sohlenkamp, Christian; Puente, José Luis; Brom, Susana
2013-01-01
Site-specific recombination occurs at short specific sequences, mediated by the cognate recombinases. IntA is a recombinase from Rhizobium etli CFN42 and belongs to the tyrosine recombinase family. It allows cointegration of plasmid p42a and the symbiotic plasmid via site-specific recombination between attachment regions (attA and attD) located in each replicon. Cointegration is needed for conjugative transfer of the symbiotic plasmid. To characterize this system, two plasmids harboring the corresponding attachment sites and intA were constructed. Introduction of these plasmids into R. etli revealed IntA-dependent recombination events occurring at high frequency. Interestingly, IntA promotes not only integration, but also excision events, albeit at a lower frequency. Thus, R. etli IntA appears to be a bidirectional recombinase. IntA was purified and used to set up electrophoretic mobility shift assays with linear fragments containing attA and attD. IntA-dependent retarded complexes were observed only with fragments containing either attA or attD. Specific retarded complexes, as well as normal in vivo recombination abilities, were seen even in derivatives harboring only a minimal attachment region (comprising the 5-bp central region flanked by 9- to 11-bp inverted repeats). DNase I-footprinting assays with IntA revealed specific protection of these zones. Mutations that disrupt the integrity of the 9- to 11-bp inverted repeats abolish both specific binding and recombination ability, while mutations in the 5-bp central region severely reduce both binding and recombination. These results show that IntA is a bidirectional recombinase that binds to att regions without requiring neighboring sequences as enhancers of recombination. PMID:23935046
Lee, Kyubin; Kolb, Aaron W.; Sverchkov, Yuriy; Cuellar, Jacqueline A.; Craven, Mark
2015-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) causes recurrent mucocutaneous ulcers and is the leading cause of infectious blindness and sporadic encephalitis in the United States. HSV-1 has been shown to be highly recombinogenic; however, to date, there has been no genome-wide analysis of recombination. To address this, we generated 40 HSV-1 recombinants derived from two parental strains, OD4 and CJ994. The 40 OD4-CJ994 HSV-1 recombinants were sequenced using the Illumina sequencing system, and recombination breakpoints were determined for each of the recombinants using the Bootscan program. Breakpoints occurring in the terminal inverted repeats were excluded from analysis to prevent double counting, resulting in a total of 272 breakpoints in the data set. By placing windows around the 272 breakpoints followed by Monte Carlo analysis comparing actual data to simulated data, we identified a recombination bias toward both high GC content and intergenic regions. A Monte Carlo analysis also suggested that recombination did not appear to be responsible for the generation of the spontaneous nucleotide mutations detected following sequencing. Additionally, kernel density estimation analysis across the genome found that the large, inverted repeats comprise a recombination hot spot. IMPORTANCE Herpes simplex virus 1 (HSV-1) virus is the leading cause of sporadic encephalitis and blinding keratitis in developed countries. HSV-1 has been shown to be highly recombinogenic, and recombination itself appears to be a significant component of genome replication. To date, there has been no genome-wide analysis of recombination. Here we present the findings of the first genome-wide study of recombination performed by generating and sequencing 40 HSV-1 recombinants derived from the OD4 and CJ994 parental strains, followed by bioinformatics analysis. Recombination breakpoints were determined, yielding 272 breakpoints in the full data set. Kernel density analysis determined that the large inverted repeats constitute a recombination hot spot. Additionally, Monte Carlo analyses found biases toward high GC content and intergenic and repetitive regions. PMID:25926637
Modeling of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat Duen
2005-01-01
Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.
Chillón, Isabel; Pyle, Anna M.
2016-01-01
LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response. PMID:27378782
Meyer, C; Pouteau, S; Rouzé, P; Caboche, M
1994-01-01
By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.
Formation of Linear Amplicons with Inverted Duplications in Leishmania Requires the MRE11 Nuclease
Laffitte, Marie-Claude N.; Genois, Marie-Michelle; Mukherjee, Angana; Légaré, Danielle; Masson, Jean-Yves; Ouellette, Marc
2014-01-01
Extrachromosomal DNA amplification is frequent in the protozoan parasite Leishmania selected for drug resistance. The extrachromosomal amplified DNA is either circular or linear, and is formed at the level of direct or inverted homologous repeated sequences that abound in the Leishmania genome. The RAD51 recombinase plays an important role in circular amplicons formation, but the mechanism by which linear amplicons are formed is unknown. We hypothesized that the Leishmania infantum DNA repair protein MRE11 is required for linear amplicons following rearrangements at the level of inverted repeats. The purified LiMRE11 protein showed both DNA binding and exonuclease activities. Inactivation of the LiMRE11 gene led to parasites with enhanced sensitivity to DNA damaging agents. The MRE11−/− parasites had a reduced capacity to form linear amplicons after drug selection, and the reintroduction of an MRE11 allele led to parasites regaining their capacity to generate linear amplicons, but only when MRE11 had an active nuclease activity. These results highlight a novel MRE11-dependent pathway used by Leishmania to amplify portions of its genome to respond to a changing environment. PMID:25474106
Molecular and bioinformatic analysis of the FB-NOF transposable element.
Badal, Martí; Portela, Anna; Xamena, Noel; Cabré, Oriol
2006-04-12
The Drosophila melanogaster transposable element FB-NOF is known to play a role in genome plasticity through the generation of all sort of genomic rearrangements. Moreover, several insertional mutants due to FB mobilizations have been reported. Its structure and sequence, however, have been poorly studied mainly as a consequence of the long, complex and repetitive sequence of FB inverted repeats. This repetitive region is composed of several 154 bp blocks, each with five almost identical repeats. In this paper, we report the sequencing process of 2 kb long FB inverted repeats of a complete FB-NOF element, with high precision and reliability. This achievement has been possible using a new map of the FB repetitive region, which identifies unambiguously each repeat with new features that can be used as landmarks. With this new vision of the element, a list of FB-NOF in the D. melanogaster genomic clones has been done, improving previous works that used only bioinformatic algorithms. The availability of many FB and FB-NOF sequences allowed an analysis of the FB insertion sequences that showed no sequence specificity, but a preference for A/T rich sequences. The position of NOF into FB is also studied, revealing that it is always located after a second repeat in a random block. With the results of this analysis, we propose a model of transposition in which NOF jumps from FB to FB, using an unidentified transposase enzyme that should specifically recognize the second repeat end of the FB blocks.
Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.
Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K
2017-04-01
For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Sequence of retrovirus provirus resembles that of bacterial transposable elements
NASA Astrophysics Data System (ADS)
Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.
1980-06-01
The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.
Flexible DNA binding of the BTB/POZ-domain protein FBI-1.
Pessler, Frank; Hernandez, Nouria
2003-08-01
POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.
Weihofen, Wilhelm Andreas; Cicek, Aslan; Pratto, Florencia; Alonso, Juan Carlos; Saenger, Wolfram
2006-01-01
Repressor ω regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. ω belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel β-sheet for DNA major groove binding. Homodimeric ω2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5′-A/TATCACA/T-3′, symbolized by →) in palindromic inverted, converging (→←) or diverging (←→) orientation and also, unique to ω2 and contrasting other RHH2 repressors, to non-palindromic direct (→→) repeats. Here we investigate with crystal structures how ω2 binds specifically to heptads in minimal operators with (→→) and (→←) repeats. Since the pseudo-2-fold axis relating the monomers in ω2 passes the central C–G base pair of each heptad with ∼0.3 Å downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (→→), ∼0.6 Å shorter in (→←) but would be ∼0.6 Å longer in (←→). These variations grade interactions between adjacent ω2 and explain modulations in cooperative binding affinity of ω2 to operators with different heptad orientations. PMID:16528102
Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.
Weyand, Simone; Shimamura, Tatsuro; Yajima, Shunsuke; Suzuki, Shun'ichi; Mirza, Osman; Krusong, Kuakarun; Carpenter, Elisabeth P; Rutherford, Nicholas G; Hadden, Jonathan M; O'Reilly, John; Ma, Pikyee; Saidijam, Massoud; Patching, Simon G; Hope, Ryan J; Norbertczak, Halina T; Roach, Peter C J; Iwata, So; Henderson, Peter J F; Cameron, Alexander D
2008-10-31
The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.
Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.
Schuster, W; Unseld, M; Wissinger, B; Brennicke, A
1990-01-01
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162
Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Fengfeng; Tran Thao; Xu Ying
2008-01-25
Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most previously known MITEs in other organisms, is small in size, non-coding, carrying TIR and DR signals, and of potential to form a stable RNA secondary structure, and it tends to insert into A+T-rich regions. Recent transpositions of Nezha were observed in A. variabilis ATCC 29413 and Nostoc sp. PCC 7120, respectively.more » Nezha might have proliferated recently with aid from the transposase encoded by ISNpu3-like elements. A possible horizontal transfer event of Nezha from cyanobacteria to Polaromonas JS666 is also observed.« less
Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.
Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun
2016-01-01
Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.
Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv
2016-01-01
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548
Seier, Tracey; Padgett, Dana R; Zilberberg, Gal; Sutera, Vincent A; Toha, Noor; Lovett, Susan T
2011-06-01
Strand misalignments at DNA repeats during replication are implicated in mutational hotspots. To study these events, we have generated strains carrying mutations in the Escherichia coli chromosomal lacZ gene that revert via deletion of a short duplicated sequence or by template switching within imperfect inverted repeat (quasipalindrome, QP) sequences. Using these strains, we demonstrate that mutation of the distal repeat of a quasipalindrome, with respect to replication fork movement, is about 10-fold higher than the proximal repeat, consistent with more common template switching on the leading strand. The leading strand bias was lost in the absence of exonucleases I and VII, suggesting that it results from more efficient suppression of template switching by 3' exonucleases targeted to the lagging strand. The loss of 3' exonucleases has no effect on strand misalignment at direct repeats to produce deletion. To compare these events to other mutations, we have reengineered reporters (designed by Cupples and Miller 1989) that detect specific base substitutions or frameshifts in lacZ with the reverting lacZ locus on the chromosome rather than an F' element. This set allows rapid screening of potential mutagens, environmental conditions, or genetic loci for effects on a broad set of mutational events. We found that hydroxyurea (HU), which depletes dNTP pools, slightly elevated templated mutations at inverted repeats but had no effect on deletions, simple frameshifts, or base substitutions. Mutations in nucleotide diphosphate kinase, ndk, significantly elevated simple mutations but had little effect on the templated class. Zebularine, a cytosine analog, elevated all classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn
Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less
Non-invertible transformations of differential-difference equations
NASA Astrophysics Data System (ADS)
Garifullin, R. N.; Yamilov, R. I.; Levi, D.
2016-09-01
We discuss aspects of the theory of non-invertible transformations of differential-difference equations and, in particular, the notion of Miura type transformation. We introduce the concept of non-Miura type linearizable transformation and we present techniques that allow one to construct simple linearizable transformations and might help one to solve classification problems. This theory is illustrated by the example of a new integrable differential-difference equation depending on five lattice points, interesting from the viewpoint of the non-invertible transformation, which relate it to an Itoh-Narita-Bogoyavlensky equation.
An SCR inverter for electric vehicles
NASA Technical Reports Server (NTRS)
Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.
1980-01-01
An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.
Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R.
2015-01-01
Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called “repeat-swap modeling” to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also occurs via an elevator-like mechanism. PMID:26388773
NASA Astrophysics Data System (ADS)
Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio
2015-02-01
Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.
Gerhold, Joachim M; Aun, Anu; Sedman, Tiina; Jõers, Priit; Sedman, Juhan
2010-09-24
Molecular recombination and transcription are proposed mechanisms to initiate mitochondrial DNA (mtDNA) replication in yeast. We conducted a comprehensive analysis of mtDNA from the yeast Candida albicans. Two-dimensional agarose gel electrophoresis of mtDNA intermediates reveals no bubble structures diagnostic of specific replication origins, but rather supports recombination-driven replication initiation of mtDNA in yeast. Specific species of Y structures together with DNA copy number analyses of a C. albicans mutant strain provide evidence that a region in a mainly noncoding inverted repeat is predominantly involved in replication initiation via homologous recombination. Our further findings show that the C. albicans mtDNA forms a complex branched network that does not contain detectable amounts of circular molecules. We provide topological evidence for recombination-driven mtDNA replication initiation and introduce C. albicans as a suitable model organism to study wild-type mtDNA maintenance in yeast. Copyright © 2010 Elsevier Inc. All rights reserved.
Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia
2014-12-01
Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.
Wandstrat, A E; Schwartz, S
2000-11-01
An inverted duplication of chromosome 15 [inv dup(15)] is the most common supernumerary marker chromosome, comprising approximately 50% of all chromosomes in this class. Structurally, the inv dup(15) is a mirror image with the central axis defining a distal break within either the heterochromatic alpha-satellite array or along the euchromatin in the long (q) arm of the chromosome. There are several types of inv dup(15), classified by the amount of euchromatic material present. Generally, they are bisatellited, pseudodicentric and have a breakpoint in 15q11-q14. A suggested mechanism of formation of inv dup(15) involves illegitimate recombination between homologous chromosomes followed by nondisjunction and centromere inactivation. The proximal portion of chromosome 15 contains several low-copy repeat sequence families and it has been hypothesized that errors in pairing among these repeats may result in structural rearrangements of this chromosome including the inv dup(15). To test this hypothesis and to determine the mechanism of formation, the inv dup(15) from four cases was isolated in somatic cell hybrids and polymerase chain reaction microsatellite markers were used to determine the origin of exchange. Two appeared to result from interchromosomal and two from intrachromosomal exchange, one of which occurred post-recombination. In addition, a detailed physical map of the breakpoint region in the largest inv dup(15) was constructed placing eight new sequence-tagged sites and ten new bacterial artificial chromosome markers in the region.
Sowa, Yoshihiro; Itsukage, Sizu; Morita, Daiki; Numajiri, Toshiaki
2017-10-01
An inverted nipple is a common congenital condition in young women that may cause breastfeeding difficulty, psychological distress, repeated inflammation, and loss of sensation. Various surgical techniques have been reported for correction of inverted nipples, and all have advantages and disadvantages. Here, we report a new technique for correction of an inverted nipple using an operative microscope and traction that results in low recurrence and preserves lactation function and sensation. Between January 2010 and January 2013, we treated eight inverted nipples in seven patients with selective lactiferous duct dissection using an operative microscope. An opposite Z-plasty was added at the junction of the nipple and areola. Postoperatively, traction was applied through an apparatus made from a rubber gasket attached to a sterile syringe. Patients were followed up for 15-48 months. Adequate projection was achieved in all patients, and there was no wound dehiscence or complications such as infection. Three patients had successful pregnancies and subsequent breastfeeding that was not adversely affected by the treatment. There was no loss of sensation in any patient during the postoperative period. Our technique for treating an inverted nipple is effective and preserves lactation function and nipple sensation. The method maintains traction for a longer period, which we believe increases the success rate of the surgery for correction of severely inverted nipples. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Inverted drop testing and neck injury potential.
Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam
2003-01-01
Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.
A simple method for multiday imaging of slice cultures.
Seidl, Armin H; Rubel, Edwin W
2010-01-01
The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.
Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome
Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O.; Alawad, Abdullah O.; Al-Sadi, Abdullah M.; Hu, Songnian; Yu, Jun
2016-01-01
Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants. PMID:27736909
Tajaddod, Mansoureh; Tanzer, Andrea; Licht, Konstantin; Wolfinger, Michael T; Badelt, Stefan; Huber, Florian; Pusch, Oliver; Schopoff, Sandy; Janisiw, Michael; Hofacker, Ivo; Jantsch, Michael F
2016-10-25
Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.
NASA Astrophysics Data System (ADS)
Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.
2014-04-01
A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.
Target Site Recognition by a Diversity-Generating Retroelement
Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.
2011-01-01
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701
USDA-ARS?s Scientific Manuscript database
Creeping bentgrass (Agrostis stolonifera L.) is an important species to the turfgrass industry because of its adaptation for use in high quality turf stands such as golf course putting greens, tees, and fairways. A. stolonifera is a highly outcrossing allotetraploid making genetic marker developmen...
Molecular epidemiology of infectious laryngotracheitis: a review
USDA-ARS?s Scientific Manuscript database
Falconid herpesvirus type 1 (FHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FHV-1 has been determined. The genome is arranged as a D-type genome with large inverted repeats flanking a ...
The rolling-circle melting-pot model for porcine circovirus DNA replication
USDA-ARS?s Scientific Manuscript database
A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimentel, David A.; Sheppard, Daniel G.
It was recently demonstrated that EOSPAC 6 continued to incorrectly create and interpolate pre-inverted SESAME data tables after the release of version 6.3.2beta.2. Significant interpolation pathologies were discovered to occur when EOSPAC 6's host software enabled pre-inversion with the EOS_INVERT_AT_SETUP option. This document describes a solution that uses data transformations found in EOSPAC 5 and its predecessors. The numerical results and performance characteristics of both the default and pre-inverted interpolation modes in both EOSPAC 6.3.2beta.2 and the fixed logic of EOSPAC 6.4.0beta.1 are presented herein, and the latter software release is shown to produce significantly-improved numerical results for the pre-invertedmore » interpolation mode.« less
Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin
2013-10-10
Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.
Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula
Grzebelus, Dariusz; Lasota, Slawomir; Gambin, Tomasz; Kucherov, Gregory; Gambin, Anna
2007-01-01
Background Transposable elements constitute a significant fraction of plant genomes. The PIF/Harbinger superfamily includes DNA transposons (class II elements) carrying terminal inverted repeats and producing a 3 bp target site duplication upon insertion. The presence of an ORF coding for the DDE/DDD transposase, required for transposition, is characteristic for the autonomous PIF/Harbinger-like elements. Based on the above features, PIF/Harbinger-like elements were identified in several plant genomes and divided into several evolutionary lineages. Availability of a significant portion of Medicago truncatula genomic sequence allowed for mining PIF/Harbinger-like elements, starting from a single previously described element MtMaster. Results Twenty two putative autonomous, i.e. carrying an ORF coding for TPase and complete terminal inverted repeats, and 67 non-autonomous PIF/Harbinger-like elements were found in the genome of M. truncatula. They were divided into five families, MtPH-A5, MtPH-A6, MtPH-D,MtPH-E, and MtPH-M, corresponding to three previously identified and two new lineages. The largest families, MtPH-A6 and MtPH-M were further divided into four and three subfamilies, respectively. Non-autonomous elements were usually direct deletion derivatives of the putative autonomous element, however other types of rearrangements, including inversions and nested insertions were also observed. An interesting structural characteristic – the presence of 60 bp tandem repeats – was observed in a group of elements of subfamily MtPH-A6-4. Some families could be related to miniature inverted repeat elements (MITEs). The presence of empty loci (RESites), paralogous to those flanking the identified transposable elements, both autonomous and non-autonomous, as well as the presence of transposon insertion related size polymorphisms, confirmed that some of the mined elements were capable for transposition. Conclusion The population of PIF/Harbinger-like elements in the genome of M. truncatula is diverse. A detailed intra-family comparison of the elements' structure proved that they proliferated in the genome generally following the model of abortive gap repair. However, the presence of tandem repeats facilitated more pronounced rearrangements of the element internal regions. The insertion polymorphism of the MtPH elements and related MITE families in different populations of M. truncatula, if further confirmed experimentally, could be used as a source of molecular markers complementary to other marker systems. PMID:17996080
ALLTEM UXO detection and discrimination
Asch, T.H.; Wright, D.L.; Moulton, C.W.; Irons, T.P.; Nabighian, M.N.
2008-01-01
ALLTEM is a multi-axis electromagnetic induction system designed for unexploded ordnance (UXO) applications. It uses a continuous triangle-wave excitation and provides good late-time signal-to-noise ratio (SNR) especially for ferrous targets. Multi-axis transmitter (Tx) and receiver (Rx) systems such as ALLTEM provide a richer data set from which to invert for the target parameters required to distinguish between clutter and UXO. Inversions of field data over the Army's UXO Calibration Grid and Blind Test Grid at the Yuma Proving Ground (YPG), Arizona in 2006 produced polarizability moment values for many buried UXO items that were reasonable and generally repeatable for targets of the same type buried at different orientations and depths. In 2007 a test stand was constructed that allows for collection of data with varying spatial data density and accurate automated position control. The behavior of inverted ALLTEM test stand data as a function of spatial data density, sensor SNR, and position error has been investigated. The results indicate that the ALLTEM inversion algorithm is more tolerant of sensor noise and position error than has been reported for single-axis systems. A high confidence level in inversion-derived target parameters is required when a target is declared to be harmless scrap metal that may safely be left in the ground. Unless high confidence can be demonstrated, state regulators will likely require that targets be dug regardless of any "no-dig" classifications produced from inversions, in which case remediation costs would not be decreased.
Graph state generation with noisy mirror-inverting spin chains
NASA Astrophysics Data System (ADS)
Clark, Stephen R.; Klein, Alexander; Bruderer, Martin; Jaksch, Dieter
2007-06-01
We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e. expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two-qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five-qubit linear cluster state and a Greenberger Horne Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained.
An XML Data Model for Inverted Image Indexing
NASA Astrophysics Data System (ADS)
So, Simon W.; Leung, Clement H. C.; Tse, Philip K. C.
2003-01-01
The Internet world makes increasing use of XML-based technologies. In multimedia data indexing and retrieval, the MPEG-7 standard for Multimedia Description Scheme is specified using XML. The flexibility of XML allows users to define other markup semantics for special contexts, construct data-centric XML documents, exchange standardized data between computer systems, and present data in different applications. In this paper, the Inverted Image Indexing paradigm is presented and modeled using XML Schema.
Rhenium Disulfide Depletion-Load Inverter
NASA Astrophysics Data System (ADS)
McClellan, Connor; Corbet, Chris; Rai, Amritesh; Movva, Hema C. P.; Tutuc, Emanuel; Banerjee, Sanjay K.
2015-03-01
Many semiconducting Transition Metal Dichalcogenide (TMD) materials have been effectively used to create Field-Effect Transistor (FET) devices but have yet to be used in logic designs. We constructed a depletion-load voltage inverter using ultrathin layers of Rhenium Disulfide (ReS2) as the semiconducting channel. This ReS2 inverter was fabricated on a single micromechanically-exfoliated flake of ReS2. Electron beam lithography and physical vapor deposition were used to construct Cr/Au electrical contacts, an Alumina top-gate dielectric, and metal top-gate electrodes. By using both low (Aluminum) and high (Palladium) work-function metals as two separate top-gates on a single ReS2 flake, we create a dual-gated depletion mode (D-mode) and enhancement mode (E-mode) FETs in series. Both FETs displayed current saturation in the output characteristics as a result of the FET ``pinch-off'' mechanism and On/Off current ratios of 105. Field-effect mobilities of 23 and 17 cm2V-1s-1 and subthreshold swings of 97 and 551 mV/decade were calculated for the E-mode and D-mode FETs, respectively. With a supply voltage of 1V, at low/negative input voltages the inverter output was at a high logic state of 900 mV. Conversely with high/positive input voltages, the inverter output was at a low logic state of 500 mV. The inversion of the input signal demonstrates the potential for using ReS2 in future integrated circuit designs and the versatility of depletion-load logic devices for TMD research. NRI SWAN Center and ARL STTR Program.
77 FR 17456 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...,000.00 to Adon Construction for the construction of a 120kw photovoltaic solar array system to be built in eight 15kw sub-arrays at NIST's WWVH radio station in Kauai, HI. The objective of the solar... Recovery Act), for inverters necessary for the construction of a solar array system at NIST's WWVH radio...
Inverted ILM flap, free ILM flap and conventional ILM peeling for large macular holes.
Velez-Montoya, Raul; Ramirez-Estudillo, J Abel; Sjoholm-Gomez de Liano, Carl; Bejar-Cornejo, Francisco; Sanchez-Ramos, Jorge; Guerrero-Naranjo, Jose Luis; Morales-Canton, Virgilio; Hernandez-Da Mota, Sergio E
2018-01-01
To assess closure rate after a single surgery of large macular holes and their visual recovery in the short term with three different surgical techniques. Prospective multicenter randomized controlled trial. We included treatment-naïve patients with diagnosis of large macular hole (minimum diameter of > 400 µm). All patients underwent a comprehensive ophthalmological examination. Before surgery, the patients were randomized into three groups: group A: conventional internal limiting membrane peeling, group B: inverted-flap technique and group C: free-flap technique. All study measurements were repeated within the period of 1 and 3 months after surgery. Continuous variables were assessed with a Kruskal-Wallis test, change in visual acuity was assessed with analysis of variance for repeated measurements with a Bonferroni correction for statistical significance. Thirty-eight patients were enrolled (group A: 12, group B: 12, group C: 14). The closure rate was in group A and B: 91.6%; 95% CI 61.52-99.79%. In group C: 85.71%; 95% CI 57.19-98.22%. There were no differences in the macular hole closure rate between groups ( p = 0.85). All groups improved ≈ 0.2 logMAR, but only group B reached statistical significance ( p < 0.007). Despite all techniques displayed a trend toward visual improvement, the inverted-flap technique seems to induce a faster and more significant recovery in the short term.
Examining impulse-variability in overarm throwing.
Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David
2012-01-01
The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.
2006-11-01
terminal repetition of adenvirus type 4 DNA. Gene 18:329-334. 20. Van der Veen , J., and J. H. Dijkman . 1962. Association of type 21 adenovirus with acute respiratory illness in military recruits. Am J Hyg 76:149-159.
Molecular characterization of the complete genome of falconid herpesvirus strain S-18
USDA-ARS?s Scientific Manuscript database
Falconid herpesvirus type 1 (FHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FHV-1 has been determined. The genome is arranged as a D-type genome with large inverted repeats flanking a ...
Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum
Wang, Jianjun; Du, Yuzhou; Wang, Suzhi; Brown, Sue; Park, Yoonseong
2011-01-01
The piggyBac transposable element, originally discovered in the cabbage looper, Trichoplusia ni, has been widely used in insect transgenesis including the red flour beetle Tribolium castaneum. We surveyed piggyBac-like (PLE) sequences in the genome of Tribolium castaneum by homology searches using as queries the diverse PLE sequences that have been described previously. The search yielded a total of 32 piggyBac-like elements (TcPLEs) which were classified into 14 distinct groups. Most of the TcPLEs contain defective functional motifs in that they are lacking inverted terminal repeats or have disrupted open reading frames. Only one single copy of TcPLE1 appears to be intact with imperfect 16 bp inverted terminal repeats flanking an open reading frame encoding a transposase of 571 amino acid residues. Many copies of TcPLEs were found to be inserted into or close to other transposon-like sequences. This large diversity of TcPLEs with generally low copy numbers suggests multiple invasions of the TcPLEs over a long evolutionary time without extensive multiplications or occurrence of rapid loss of TcPLEs copies. PMID:18342253
NASA Astrophysics Data System (ADS)
Fuh, Yiin-Kuen; Lai, Zheng-Hong
2017-02-01
A fast processing route of aspheric polydimethylsiloxane (PDMS) lenses array (APLA) is proposed via the combined effect of inverted gravitational and heat-assisted forces. The fabrication time can be dramatically reduced to 30 s, compared favorably to the traditional duration of 2 hours of repeated cycles of addition-curing processes. In this paper, a low-cost flexible lens can be fabricated by repeatedly depositing, inverting, curing a hanging transparent PDMS elastomer droplet on a previously deposited curved structure. Complex structures with aspheric curve features and various focal lengths can be successfully produced and the fabricated 4 types of APLA have various focal lengths in the range of 7.03 mm, 6.00 mm, 5.33 mm, and 4.43 mm, respectively. Empirically, a direct relationship between the PDMS volume and focal lengths of the lenses can be experimentally deducted. Using these fabricated APLA, an ordinary commercial smartphone camera can be easily transformed to a low-cost, portable digital microscopy (50×magnification) such that point of care diagnostic can be implemented pervasively.
Efficient Single-Pass Index Construction for Text Databases.
ERIC Educational Resources Information Center
Heinz, Steffen; Zobel, Justin
2003-01-01
Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…
Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig
2012-11-01
In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.
NASA Astrophysics Data System (ADS)
Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu
2017-04-01
We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.
Power supply of autonomous systems using solar modules
NASA Astrophysics Data System (ADS)
Yurchenko, A. V.; Zotov, L. G.; Mekhtiev, A. D.; Yugai, V. V.; Tatkeeva, G. G.
2015-04-01
The article shows the methods of constructing autonomous decentralized energy systems from solar modules. It shows the operation of up DC inverter. It demonstrates the effectiveness of DC inverters with varying structure. The system has high efficiency and low level of conductive impulse noise and at the same time the system is practically feasible. Electrical processes have been analyzed to determine the characteristics of operating modes of the main circuit elements. Recommendations on using the converters have been given.
Barrera-Figueroa, Blanca E; Gao, Lei; Wu, Zhigang; Zhou, Xuefeng; Zhu, Jianhua; Jin, Hailing; Liu, Renyi; Zhu, Jian-Kang
2012-08-03
MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
Han, Limin; Chen, Chen; Wang, Zhezhi
2018-01-01
Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038
Efficient cascade multiple heterojunction organic solar cells with inverted structure
NASA Astrophysics Data System (ADS)
Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai
2018-05-01
In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.
Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.
Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju
2016-01-01
Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Dias, Guilherme B.; Svartman, Marta; Delprat, Alejandra; Ruiz, Alfredo; Kuhn, Gustavo C.S.
2014-01-01
Transposable elements (TEs) and satellite DNAs (satDNAs) are abundant components of most eukaryotic genomes studied so far and their impact on evolution has been the focus of several studies. A number of studies linked TEs with satDNAs, but the nature of their evolutionary relationships remains unclear. During in silico analyses of the Drosophila virilis assembled genome, we found a novel DNA transposon we named Tetris based on its modular structure and diversity of rearranged forms. We aimed to characterize Tetris and investigate its role in generating satDNAs. Data mining and sequence analysis showed that Tetris is apparently nonautonomous, with a structure similar to foldback elements, and present in D. virilis and D. americana. Herein, we show that Tetris shares the final portions of its terminal inverted repeats (TIRs) with DAIBAM, a previously described miniature inverted transposable element implicated in the generation of chromosome inversions. Both elements are likely to be mobilized by the same autonomous TE. Tetris TIRs contain approximately 220-bp internal tandem repeats that we have named TIR-220. We also found TIR-220 repeats making up longer (kb-size) satDNA-like arrays. Using bioinformatic, phylogenetic and cytogenomic tools, we demonstrated that Tetris has contributed to shaping the genomes of D. virilis and D. americana, providing internal tandem repeats that served as building blocks for the amplification of satDNA arrays. The β-heterochromatic genomic environment seemed to have favored such amplification. Our results imply for the first time a role for foldback elements in generating satDNAs. PMID:24858539
Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An
2017-09-11
The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.
Price, G Dean; Howitt, Susan M
2014-09-01
This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na(+)-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na(+)-dependent bicarbonate transporter, but of considerably higher affinity (Km 2-5 μM versus >100 μM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.
Sabir, Jamal; Schwarz, Erika; Ellison, Nicholas; Zhang, Jin; Baeshen, Nabih A; Mutwakil, Muhammed; Jansen, Robert; Ruhlman, Tracey
2014-08-01
Land plant plastid genomes (plastomes) provide a tractable model for evolutionary study in that they are relatively compact and gene dense. Among the groups that display an appropriate level of variation for structural features, the inverted-repeat-lacking clade (IRLC) of papilionoid legumes presents the potential to advance general understanding of the mechanisms of genomic evolution. Here, are presented six complete plastome sequences from economically important species of the IRLC, a lineage previously represented by only five completed plastomes. A number of characters are compared across the IRLC including gene retention and divergence, synteny, repeat structure and functional gene transfer to the nucleus. The loss of clpP intron 2 was identified in one newly sequenced member of IRLC, Glycyrrhiza glabra. Using deeply sequenced nuclear transcriptomes from two species helped clarify the nature of the functional transfer of accD to the nucleus in Trifolium, which likely occurred in the lineage leading to subgenus Trifolium. Legumes are second only to cereal crops in agricultural importance based on area harvested and total production. Genetic improvement via plastid transformation of IRLC crop species is an appealing proposition. Comparative analyses of intergenic spacer regions emphasize the need for complete genome sequences for developing transformation vectors for plastid genetic engineering of legume crops. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim
2013-01-01
Phase variation of two loci (‘mba locus’ and ‘UU172 phase-variable element’) in Ureaplasma parvum serovar 3 has been suggested as result of site-specific DNA inversion occurring at short inverted repeats. Three potential tyrosine recombinases (RipX, XerC, and CodV encoded by the genes UU145, UU222, and UU529) have been annotated in the genome of U. parvum serovar 3, which could be mediators in the proposed recombination event. We document that only orthologs of the gene xerC are present in all strains that show phase variation in the two loci. We demonstrate in vitro binding of recombinant maltose-binding protein fusions of XerC to the inverted repeats of the phase-variable loci, of RipX to a direct repeat that flanks a 20-kbp region, which has been proposed as putative pathogenicity island, and of CodV to a putative dif site. Co-transformation of the model organism Mycoplasma pneumoniae M129 with both the ‘mba locus’ and the recombinase gene xerC behind an active promoter region resulted in DNA inversion in the ‘mba locus’. Results suggest that XerC of U. parvum serovar 3 is a mediator in the proposed DNA inversion event of the two phase-variable loci. PMID:23305333
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
Robust sliding mode control applied to double Inverted pendulum system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical
A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.
Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.; Hoke, A.; Chakraborty, S.
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here,more » as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying-Tai Wang; Zhao-Cai Wang; Bajalica, S.
We present the first case of direct and inverted reciprocal chromosome insertions between human chromosomes 7 and 14, ascertained because of repeated spontaneous abortions. Prometaphase GTG banding analysis showed the karyotype to be 46, XX, inv ins (7;14)(7pter {yields} 7q11.23::14q32.2 {yields} 14q22::7q21.2 {yields} 7qter), dir ins(14;7)(14pter {yields} 14q22::7q11.23 {yields} 7q21.2::14q32.2 {yields} 14qter). Origins of the insertion have been confirmed by chromosome painting with libraries specific for chromosomes 7 and 14 using fluorescence in situ hybridization. 5 refs., 3 figs.
Linking actions and objects: Context-specific learning of novel weight priors.
Trewartha, Kevin M; Flanagan, J Randall
2017-06-01
Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.
Flyback CCM inverter for AC module applications: iterative learning control and convergence analysis
NASA Astrophysics Data System (ADS)
Lee, Sung-Ho; Kim, Minsung
2017-12-01
This paper presents an iterative learning controller (ILC) for an interleaved flyback inverter operating in continuous conduction mode (CCM). The flyback CCM inverter features small output ripple current, high efficiency, and low cost, and hence it is well suited for photovoltaic power applications. However, it exhibits the non-minimum phase behaviour, because its transfer function from control duty to output current has the right-half-plane (RHP) zero. Moreover, the flyback CCM inverter suffers from the time-varying grid voltage disturbance. Thus, conventional control scheme results in inaccurate output tracking. To overcome these problems, the ILC is first developed and applied to the flyback inverter operating in CCM. The ILC makes use of both predictive and current learning terms which help the system output to converge to the reference trajectory. We take into account the nonlinear averaged model and use it to construct the proposed controller. It is proven that the system output globally converges to the reference trajectory in the absence of state disturbances, output noises, or initial state errors. Numerical simulations are performed to validate the proposed control scheme, and experiments using 400-W AC module prototype are carried out to demonstrate its practical feasibility.
Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.
Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M
2013-01-01
The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.
Dias, Guilherme B; Svartman, Marta; Delprat, Alejandra; Ruiz, Alfredo; Kuhn, Gustavo C S
2014-05-24
Transposable elements (TEs) and satellite DNAs (satDNAs) are abundant components of most eukaryotic genomes studied so far and their impact on evolution has been the focus of several studies. A number of studies linked TEs with satDNAs, but the nature of their evolutionary relationships remains unclear. During in silico analyses of the Drosophila virilis assembled genome, we found a novel DNA transposon we named Tetris based on its modular structure and diversity of rearranged forms. We aimed to characterize Tetris and investigate its role in generating satDNAs. Data mining and sequence analysis showed that Tetris is apparently nonautonomous, with a structure similar to foldback elements, and present in D. virilis and D. americana. Herein, we show that Tetris shares the final portions of its terminal inverted repeats (TIRs) with DAIBAM, a previously described miniature inverted transposable element implicated in the generation of chromosome inversions. Both elements are likely to be mobilized by the same autonomous TE. Tetris TIRs contain approximately 220-bp internal tandem repeats that we have named TIR-220. We also found TIR-220 repeats making up longer (kb-size) satDNA-like arrays. Using bioinformatic, phylogenetic and cytogenomic tools, we demonstrated that Tetris has contributed to shaping the genomes of D. virilis and D. americana, providing internal tandem repeats that served as building blocks for the amplification of satDNA arrays. The β-heterochromatic genomic environment seemed to have favored such amplification. Our results imply for the first time a role for foldback elements in generating satDNAs. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Modular synthetic inverters from zinc finger proteins and small RNAs
Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; ...
2016-02-17
Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less
A versatile cis-acting inverter module for synthetic translational switches.
Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide
2013-01-01
Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.
USDA-ARS?s Scientific Manuscript database
Marek’s disease (MD) is the leading cause of losses in chicken production in the world. Over the past 40 years significant progress has been made in the control of MD through the use of vaccines which reduce or delay tumor formation in vaccinated flocks. However, these vaccines fail to induce an imm...
Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)
Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu
2017-01-01
The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...
Human Xq28 Inversion Polymorphism: From Sex Linkage to Genomics--A Genetic Mother Lode
ERIC Educational Resources Information Center
Kirby, Cait S.; Kolber, Natalie; Salih Almohaidi, Asmaa M.; Bierwert, Lou Ann; Saunders, Lori; Williams, Steven; Merritt, Robert
2016-01-01
An inversion polymorphism of the filamin and emerin genes at the tip of the long arm of the human X-chromosome serves as the basis of an investigative laboratory in which students learn something new about their own genomes. Long, nearly identical inverted repeats flanking the filamin and emerin genes illustrate how repetitive elements can lead to…
USDA-ARS?s Scientific Manuscript database
Transposable elements (TEs) are mobile DNA regions that alter host genome structure and gene expression. A novel 588 bp non-autonomous high copy number TE in the Ostrinia nubilalis genome has features in common with miniature inverted-repeat transposable elements (MITEs): high A+T content (62.3%),...
Spielmann, A; Stutz, E
1983-10-25
The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2.
DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations
Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.
2012-01-01
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745
S Elements: A Family of Tc1-like Transposons in the Genome of Drosophila Melanogaster
Merriman, P. J.; Grimes, C. D.; Ambroziak, J.; Hackett, D. A.; Skinner, P.; Simmons, M. J.
1995-01-01
The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and β heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion. PMID:8601484
Genomic organization of the canine herpesvirus US region.
Haanes, E J; Tomlinson, C C
1998-02-01
Canine herpesvirus (CHV) is an alpha-herpesvirus of limited pathogenicity in healthy adult dogs and infectivity of the virus appears to be largely limited to cells of canine origin. CHV's low virulence and species specificity make it an attractive candidate for a recombinant vaccine vector to protect dogs against a variety of pathogens. As part of the analysis of the CHV genome, the authors determined the complete nucleotide sequence of the CHV US region as well as portions of the flanking inverted repeats. Seven full open reading frames (ORFs) encoding proteins larger than 100 amino acids were identified within, or partially within the CHV US: cUS2, cUS3, cUS4, cUS6, cUS7, cUS8 and cUS9; which are homologs of the herpes simplex virus type-1 US2; protein kinase; gG, gD, gI, gE; and US9 genes, respectively. An eighth ORF was identified in the inverted repeat region, cIR6, a homolog of the equine herpesvirus type-1 IR6 gene. The authors identified and mapped most of the major transcripts for the predicted CHV US ORFs by Northern analysis.
Stochastic p -Bits for Invertible Logic
NASA Astrophysics Data System (ADS)
Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo
2017-07-01
Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small number of samples is enough, while for less directed connections more samples are needed, but even in the former case logical invertibility is largely preserved. This combination of digital accuracy and logical invertibility is enabled by the hybrid design that uses bidirectional BM units to construct circuits with partially directed interunit connections. We establish this key result with extensive examples including a 4-bit multiplier which in inverted mode functions as a factorizer.
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution. PMID:25251496
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.
Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping
2015-01-01
The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum.
RNA editing of non-coding RNA and its role in gene regulation.
Daniel, Chammiran; Lagergren, Jens; Öhman, Marie
2015-10-01
It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Zhang, H-H; Shen, Y-H; Xu, H-E; Liang, H-Y; Han, M-J; Zhang, Z
2013-10-01
Comparative analysis of transposable elements (TEs) from different species can make it possible to reconstruct their history over evolutionary time. In this study, we identified a novel hAT element in Bombyx mori and Rhodnius prolixus with characteristic GGGCGGCA repeats in its subterminal region. Meanwhile, phylogenetic analysis demonstrated that the elements in these two species might represent a separate cluster of the hAT superfamily. Strikingly, a previously identified miniature inverted repeat transposable element (MITE) shared high identity with this autonomous element across the entire length, supporting the hypothesis that MITEs are derived from the internal deletion of DNA transposons. Interestingly, identity of the consensus sequences of this novel hAT element between B. mori and R. prolixus, which diverged about 370 million years ago, was as high as 96.5% over their full length (about 3.6 kb) at the nucleotide level. The patchy distribution amongst species, coupled with overall lack of intense purifying selection acting on this element, suggest that this novel hAT element might have experienced horizontal transfer between the ancestors of B. mori and R. prolixus. Our results highlight that this novel hAT element could be used as a potential tool for germline transformation of R. prolixus to control the transmission of Trypanosoma cruzi, which causes Chagas disease. © 2013 Royal Entomological Society.
Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping
2015-01-01
The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum. PMID:25705213
Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald
2013-08-01
Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng
2016-02-01
Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00015k
Modeling the Volcanic Source at Long Valley, CA, Using a Genetic Algorithm Technique
NASA Technical Reports Server (NTRS)
Tiampo, Kristy F.
1999-01-01
In this project, we attempted to model the deformation pattern due to the magmatic source at Long Valley caldera using a real-value coded genetic algorithm (GA) inversion similar to that found in Michalewicz, 1992. The project has been both successful and rewarding. The genetic algorithm, coded in the C programming language, performs stable inversions over repeated trials, with varying initial and boundary conditions. The original model used a GA in which the geophysical information was coded into the fitness function through the computation of surface displacements for a Mogi point source in an elastic half-space. The program was designed to invert for a spherical magmatic source - its depth, horizontal location and volume - using the known surface deformations. It also included the capability of inverting for multiple sources.
Saathoff, Aaron J.; Sarath, Gautam; Chow, Elaine K.; Dien, Bruce S.; Tobias, Christian M.
2011-01-01
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. “Alamo” with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin. PMID:21298014
Saathoff, Aaron J; Sarath, Gautam; Chow, Elaine K; Dien, Bruce S; Tobias, Christian M
2011-01-27
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.
Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz
2014-01-01
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.
Kouprina, Natalay; Samoshkin, Alexander; Erliandri, Indri; Nakano, Megumi; Lee, Hee-Sheung; Fu, Haiging; Iida, Yuichi; Aladjem, Mirit; Oshimura, Mitsuo; Masumoto, Hiroshi; Earnshaw, William C.; Larionov, Vladimir
2012-01-01
Human artificial chromosomes (HACs) represent a novel promising episomal system for functional genomics, gene therapy and synthetic biology. HACs are engineered from natural and synthetic alphoid DNA arrays upon transfection into human cells. The use of HACs for gene expression studies requires the knowledge of their structural organization. However, none of de novo HACs constructed so far has been physically mapped in detail. Recently we constructed a synthetic alphoidtetO-HAC that was successfully used for expression of full-length genes to correct genetic deficiencies in human cells. The HAC can be easily eliminated from cell populations by inactivation of its conditional kinetochore. This unique feature provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This work describes organization of a megabase-size synthetic alphoid DNA array in the alphoidtetO-HAC that has been formed from a ~50 kb synthetic alphoidtetO-construct. Our analysis showed that this array represents a 1.1 Mb continuous sequence assembled from multiple copies of input DNA, a significant part of which was rearranged before assembling. The tandem and inverted alphoid DNA repeats in the HAC range in size from 25 to 150 kb. In addition, we demonstrated that the structure and functional domains of the HAC remains unchanged after several rounds of its transfer into different host cells. The knowledge of the alphoidtetO-HAC structure provides a tool to control HAC integrity during different manipulations. Our results also shed light on a mechanism for de novo HAC formation in human cells. PMID:23411994
Effects of quercetin and quercetin 3-glucuronide on the expression of bone sialoprotein gene.
Kim, Dong-Soon; Takai, Hideki; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Kawai, Yoshichika; Murota, Kaeko; Terao, Junji; Ogata, Yorimasa
2007-06-01
Quercetin is a typical flavonol-type flavonoid and is present in a variety of vegetables, and their antioxidant effect implies their possible role in the prevention of oxidative stress related chronic diseases. Bone sialoprotein (BSP) is a noncollagenous protein of the extracellular matrix in the mineralized connective tissues that has been implicated in the nucleation of hydroxyapatite crystals. Previously, we reported that isoflavone (genistein) activated BSP gene transcription is mediated through an inverted CCAAT box in the proximal BSP gene promoter. The present study investigates the regulation of BSP transcription in a rat osteoblast-like cell line, ROS 17/2.8 cells, by quercetin and its conjugated metabolite quercetin 3-glucuronide. Quercetin and quercetin 3-glucuronide (5 microM) increased the BSP mRNA levels at 12 h and quercetin upregulated the Cbfa1/Runx2 mRNA expression at 12 h. From transient transfection assays using various sized BSP promoter-luciferase constructs, quercetin increased the luciferase activity of the construct (pLUC3), including the promoter sequence nucleotides -116 to -43. Transcriptional stimulations by quercetin were almost completely abrogated in the constructs that included 2 bp mutations in the inverted CCAAT and FRE elements whereas the CCAAT-protein complex did not change after stimulation by quercetin according to gel shift assays. Quercetin increased the nuclear protein binding to the FRE and 3'-FRE. These data suggest that quercetin and quercetin 3-glucuronide increased the BSP mRNA expression, and that the inverted CCAAT and FRE elements in the promoter of the BSP gene are required for quercetin induced BSP transcription.
The effects of spatially displaced visual feedback on remote manipulator performance
NASA Technical Reports Server (NTRS)
Smith, Randy L.; Stuart, Mark A.
1989-01-01
The effects of spatially displaced visual feedback on the operation of a camera viewed remote manipulation task are analyzed. A remote manipulation task is performed by operators exposed to the following different viewing conditions: direct view of the work site; normal camera view; reversed camera view; inverted/reversed camera view; and inverted camera view. The task completion performance times are statistically analyzed with a repeated measures analysis of variance, and a Newman-Keuls pairwise comparison test is administered to the data. The reversed camera view is ranked third out of four camera viewing conditions, while the normal viewing condition is found significantly slower than the direct viewing condition. It is shown that generalization to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.
Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G
2007-01-01
Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.
Alu elements shape the primate transcriptome by cis-regulation of RNA editing
2014-01-01
Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196
Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen
2015-01-01
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.
Chien, Maw-Sheng; Gilbert , Teresa L.; Huang, Chienjin; Landolt, Marsha L.; O'Hara, Patrick J.; Winton, James R.
1992-01-01
The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated Mr value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of Mr 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.
Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis
2003-11-01
The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.
ERIC Educational Resources Information Center
School Science Review, 1977
1977-01-01
Includes methods for using harmonographs in demonstrating motion of pendulums, constructing an electrostatic "bell," inverting mirror images, demonstrating the corrosion rate of steel, demonstrating expansion, studying rate of reaction between magnesium and hydrochloric acid, using matchboxes in science for containers, problem boxes, building…
Cordeiro, I B; Castro, D P; Nogueira, P P O; Angelo, P C S; Nogueira, P A; Gonçalves, J F C; Pereira, A M R F; Garcia, J S; Souza, G H M F; Arruda, M A Z; Eberlin, M N; Astolfi-Filho, S; Andrade, E V; López-Lozano, J L
2013-10-29
Chromobacterium violaceum is a Gram-negative proteobacteria found in water and soil; it is widely distributed in tropical and subtropical regions, such as the Amazon rainforest. We examined protein expression changes that occur in C. violaceum at different growth temperatures using electrophoresis and mass spectrometry. The total number of spots detected was 1985; the number ranged from 99 to 380 in each assay. The proteins that were identified spectrometrically were categorized as chaperones, proteins expressed exclusively under heat stress, enzymes involved in the respiratory and fermentation cycles, ribosomal proteins, and proteins related to transport and secretion. Controlling inverted repeat of chaperone expression and inverted repeat DNA binding sequences, as well as regions recognized by sigma factor 32, elements involved in the genetic regulation of the bacterial stress response, were identified in the promoter regions of several of the genes coding proteins, involved in the C. violaceum stress response. We found that 30 °C is the optimal growth temperature for C. violaceum, whereas 25, 35, and 40 °C are stressful temperatures that trigger the expression of chaperones, superoxide dismutase, a probable small heat shock protein, a probable phasing, ferrichrome-iron receptor protein, elongation factor P, and an ornithine carbamoyltransferase catabolite. This information improves our comprehension of the mechanisms involved in stress adaptation by C. violaceum.
Spielmann, A; Stutz, E
1983-01-01
The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2. PMID:6314279
El Kafsi, Hela; Loux, Valentin; Mariadassou, Mahendra; Blin, Camille; Chiapello, Hélène; Abraham, Anne-Laure; Maguin, Emmanuelle; van de Guchte, Maarten
2017-01-01
The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp. PMID:28281695
Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae.
Turmel, Monique; Otis, Christian; Lemieux, Claude
2017-04-20
The chloroplast genomes of many algae and almost all land plants carry two identical copies of a large inverted repeat (IR) sequence that can pair for flip-flop recombination and undergo expansion/contraction. Although the IR has been lost multiple times during the evolution of the green algae, the underlying mechanisms are still largely unknown. A recent comparison of IR-lacking and IR-containing chloroplast genomes of chlorophytes from the Ulvophyceae (Ulotrichales) suggested that differential elimination of genes from the IR copies might lead to IR loss. To gain deeper insights into the evolutionary history of the chloroplast genome in the Ulvophyceae, we analyzed the genomes of Ignatius tetrasporus and Pseudocharacium americanum (Ignatiales, an order not previously sampled), Dangemannia microcystis (Oltmannsiellopsidales), Pseudoneochloris marina (Ulvales) and also Chamaetrichon capsulatum and Trichosarcina mucosa (Ulotrichales). Our comparison of these six chloroplast genomes with those previously reported for nine ulvophyceans revealed unsuspected variability. All newly examined genomes feature an IR, but remarkably, the copies of the IR present in the Ignatiales, Pseudoneochloris, and Chamaetrichon diverge in sequence, with the tRNA genes from the rRNA operon missing in one IR copy. The implications of this unprecedented finding for the mechanism of IR loss and flip-flop recombination are discussed.
Guérillot, Romain; Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael; Glaser, Philippe
2014-01-01
Transposable elements (TEs) are major components of both prokaryotic and eukaryotic genomes and play a significant role in their evolution. In this study, we have identified new prokaryotic DDE transposase families related to the eukaryotic Mutator-like transposases. These genes were retrieved by cascade PSI-Blast using as initial query the transposase of the streptococcal integrative and conjugative element (ICE) TnGBS2. By combining secondary structure predictions and protein sequence alignments, we predicted the DDE catalytic triad and the DNA-binding domain recognizing the terminal inverted repeats. Furthermore, we systematically characterized the organization and the insertion specificity of the TEs relying on these prokaryotic Mutator-like transposases (p-MULT) for their mobility. Strikingly, two distant TE families target their integration upstream σA dependent promoters. This allowed us to identify a transposase sequence signature associated with this unique insertion specificity and to show that the dissymmetry between the two inverted repeats is responsible for the orientation of the insertion. Surprisingly, while DDE transposases are generally associated with small and simple transposons such as insertion sequences (ISs), p-MULT encoding TEs show an unprecedented diversity with several families of IS, transposons, and ICEs ranging in size from 1.1 to 52 kb. PMID:24418649
Gu, Cuihua; Tembrock, Luke R.; Johnson, Nels G.; Simmons, Mark P.; Wu, Zhiqiang
2016-01-01
Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications. PMID:26950701
Power, Imana L; Dang, Phat M; Sobolev, Victor S; Orner, Valerie A; Powell, Joseph L; Lamb, Marshall C; Arias, Renee S
2017-04-01
Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B 1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins. Copyright © 2017 Elsevier B.V. All rights reserved.
Human Xq28 inversion polymorphism: From sex linkage to Genomics--A genetic mother lode.
Kirby, Cait S; Kolber, Natalie; Salih Almohaidi, Asmaa M; Bierwert, Lou Ann; Saunders, Lori; Williams, Steven; Merritt, Robert
2016-01-01
An inversion polymorphism of the filamin and emerin genes at the tip of the long arm of the human X-chromosome serves as the basis of an investigative laboratory in which students learn something new about their own genomes. Long, nearly identical inverted repeats flanking the filamin and emerin genes illustrate how repetitive elements can lead to alterations in genome structure (inversions) through nonallelic homologous recombination. The near identity of the inverted repeats is an example of concerted evolution through gene conversion. While the laboratory in its entirety is designed for college level genetics courses, portions of the laboratory are appropriate for courses at other levels. Because the polymorphism is on the X-chromosome, the laboratory can be used in introductory biology courses to enhance understanding of sex-linkage and to test for Hardy-Weinberg equilibrium in females. More advanced topics, such as chromosome interference, the molecular model for recombination, and inversion heterozygosity suppression of recombination can be explored in upper-level genetics and evolution courses. DNA isolation, restriction digests, ligation, long PCR, and iPCR provide experience with techniques in molecular biology. This investigative laboratory weaves together topics stretching from molecular genetics to cytogenetics and sex-linkage, population genetics and evolutionary genetics. © 2016 The International Union of Biochemistry and Molecular Biology.
Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm
NASA Astrophysics Data System (ADS)
Yu, Ting-To; Fernàndez, Josè; Rundle, John B.
1998-03-01
Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.
Short intronic repeat sequences facilitate circular RNA production
Liang, Dongming
2014-01-01
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217
The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.
1994-09-01
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcomamore » cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.« less
Variable presence of the inverted repeat and plastome stability in Erodium
Blazier, John C.; Jansen, Robert K.; Mower, Jeffrey P.; Govindu, Madhu; Zhang, Jin; Weng, Mao-Lun; Ruhlman, Tracey A.
2016-01-01
Background and Aims Several unrelated lineages such as plastids, viruses and plasmids, have converged on quadripartite genomes of similar size with large and small single copy regions and a large inverted repeat (IR). Except for Erodium (Geraniaceae), saguaro cactus and some legumes, the plastomes of all photosynthetic angiosperms display this structure. The functional significance of the IR is not understood and Erodium provides a system to examine the role of the IR in the long-term stability of these genomes. We compared the degree of genomic rearrangement in plastomes of Erodium that differ in the presence and absence of the IR. Methods We sequenced 17 new Erodium plastomes. Using 454, Illumina, PacBio and Sanger sequences, 16 genomes were assembled and categorized along with one incomplete and two previously published Erodium plastomes. We conducted phylogenetic analyses among these species using a dataset of 19 protein-coding genes and determined if significantly higher evolutionary rates had caused the long branch seen previously in phylogenetic reconstructions within the genus. Bioinformatic comparisons were also performed to evaluate plastome evolution across the genus. Key Results Erodium plastomes fell into four types (Type 1–4) that differ in their substitution rates, short dispersed repeat content and degree of genomic rearrangement, gene and intron content and GC content. Type 4 plastomes had significantly higher rates of synonymous substitutions (dS) for all genes and for 14 of the 19 genes non-synonymous substitutions (dN) were significantly accelerated. We evaluated the evidence for a single IR loss in Erodium and in doing so discovered that Type 4 plastomes contain a novel IR. Conclusions The presence or absence of the IR does not affect plastome stability in Erodium. Rather, the overall repeat content shows a negative correlation with genome stability, a pattern in agreement with other angiosperm groups and recent findings on genome stability in bacterial endosymbionts. PMID:27192713
Variable presence of the inverted repeat and plastome stability in Erodium.
Blazier, John C; Jansen, Robert K; Mower, Jeffrey P; Govindu, Madhu; Zhang, Jin; Weng, Mao-Lun; Ruhlman, Tracey A
2016-06-01
Several unrelated lineages such as plastids, viruses and plasmids, have converged on quadripartite genomes of similar size with large and small single copy regions and a large inverted repeat (IR). Except for Erodium (Geraniaceae), saguaro cactus and some legumes, the plastomes of all photosynthetic angiosperms display this structure. The functional significance of the IR is not understood and Erodium provides a system to examine the role of the IR in the long-term stability of these genomes. We compared the degree of genomic rearrangement in plastomes of Erodium that differ in the presence and absence of the IR. We sequenced 17 new Erodium plastomes. Using 454, Illumina, PacBio and Sanger sequences, 16 genomes were assembled and categorized along with one incomplete and two previously published Erodium plastomes. We conducted phylogenetic analyses among these species using a dataset of 19 protein-coding genes and determined if significantly higher evolutionary rates had caused the long branch seen previously in phylogenetic reconstructions within the genus. Bioinformatic comparisons were also performed to evaluate plastome evolution across the genus. Erodium plastomes fell into four types (Type 1-4) that differ in their substitution rates, short dispersed repeat content and degree of genomic rearrangement, gene and intron content and GC content. Type 4 plastomes had significantly higher rates of synonymous substitutions (dS) for all genes and for 14 of the 19 genes non-synonymous substitutions (dN) were significantly accelerated. We evaluated the evidence for a single IR loss in Erodium and in doing so discovered that Type 4 plastomes contain a novel IR. The presence or absence of the IR does not affect plastome stability in Erodium. Rather, the overall repeat content shows a negative correlation with genome stability, a pattern in agreement with other angiosperm groups and recent findings on genome stability in bacterial endosymbionts. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predictor-based control for an inverted pendulum subject to networked time delay.
Ghommam, J; Mnif, F
2017-03-01
The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M
1996-08-01
DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.
Generalized Grover's Algorithm for Multiple Phase Inversion States
NASA Astrophysics Data System (ADS)
Byrnes, Tim; Forster, Gary; Tessler, Louis
2018-02-01
Grover's algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover operator and the Oracle until the state evolves to one of the target states. In the standard version of the algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the problem of performing Grover's search where the Grover operator inverts the sign on N states. We show the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover algorithm altogether. We obtain a time complexity of this case of √{D /Mα }, where D is the search space dimension, M is the number of target states, and α ≈1 , which is close to the optimal scaling.
Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N
2013-08-21
Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.
Characterization of a Mobile clpL Gene from Lactobacillus rhamnosus
Suokko, Aki; Savijoki, Kirsi; Malinen, Erja; Palva, Airi; Varmanen, Pekka
2005-01-01
Two genes encoding ClpL ATPase proteins were identified in a probiotic Lactobacillus rhamnosus strain, E-97800. Sequence analyses revealed that the genes, designated clpL1 and clpL2, share 80% identity. The clpL2 gene showed the highest degree of identity (98.5%) to a clpL gene from Lactobacillus plantarum WCFSI, while it was not detected in three other L. rhamnosus strains studied. According to Northern analyses, the expression of clpL1 and the clpL2 were induced during heat shock by >20- and 3-fold, respectively. The functional promoter regions were determined by primer extension analyses, and the clpL1 promoter was found to be overlapped by an inverted repeat structure identical to the conserved CIRCE element, indicating that clpL1 belongs to the HrcA regulon in L. rhamnosus. No consensus binding sites for HrcA or CtsR could be identified in the clpL2 promoter region. Interestingly, the clpL2 gene was found to be surrounded by truncated transposase genes and flanked by inverted repeat structures nearly identical to the terminal repeats of the ISLpl1 from L. plantarum HN38. Furthermore, clpL2 was shown to be mobilized during prolonged cultivation at elevated temperature. The presence of a gene almost identical to clpL2 in L. plantarum and its absence in other L. rhamnosus strains suggest that the L. rhamnosus E-97800 has acquired the clpL2 gene via horizontal transfer. No change in the stress tolerance of the ClpL2-deficient derivative of E-97800 compared to the parental strain was observed. PMID:15812039
The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.
Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin
2013-01-01
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.
2012-01-01
Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141
Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M
2012-01-01
Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.
Müller, P
2004-04-01
The DNA regions upstream and downstream of the Bradyrhizobium japonicum gene sipF were cloned by in vivo techniques and subsequently sequenced. In order to study the function of the predicted genes, a new transposon for in vitro mutagenesis, Tn KPK2, was constructed. This mutagenesis system has a number of advantages over other transposons. Tn KPK2 itself has no transposase gene, making transposition events stable. Extremely short inverted repeats minimize the length of the transposable element and facilitate the determination of the nucleotide sequence of the flanking regions. Since the transposable element carries a promoterless ' phoA reporter gene, the appearance of functional PhoA fusion proteins indicates that Tn KPK2 has inserted in a gene encoding a periplasmic or secreted protein. Although such events are extremely rare, because the transposon has to insert in-frame, in the correct orientation, and at an appropriate location in the target molecule, a direct screening procedure on agar indicator plates permits the identification of candidate clones from large numbers of colonies. In this study, Tn KPK2 was used for the construction of various symbiotic mutants of B. japonicum. One of the mutant strains, A2-10, which is defective in a gene encoding a protein that comigrates with bacterioferritin ( bcpB), was found to induce the formation of small and ineffective nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoo, Masako; Fujita, Ryosuke; Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021
Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes locatedmore » between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.« less
Spectroscopic Studies of Laser Produced Plasma Metasurfaces
NASA Astrophysics Data System (ADS)
Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark
2016-10-01
In this presentation, we describe the spatial and temporal plasma characteristics of the dense plasma kernels that are used to construct a laser produced plasma metasurface (PM) that is intended to serve as a tunable THz reflector. The PM is an n x n array of plasmas generated by focusing the light from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged H α broadening data for the cross section of a single plasma element at the lens focal point. The data is then Abel inverted to derive the radial plasma density distribution. Measurements are repeated for a range of pressures, laser energies, and lens f-number, with a time resolution of 100 ns and a gate width of 20 ns. Results are presented for the variation of plasma density and size over these different conditions. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Short intronic repeat sequences facilitate circular RNA production.
Liang, Dongming; Wilusz, Jeremy E
2014-10-15
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.
Balaresque, Patricia; King, Turi E; Parkin, Emma J; Heyer, Evelyne; Carvalho-Silva, Denise; Kraaijenbrink, Thirsa; de Knijff, Peter; Tyler-Smith, Chris; Jobling, Mark A
2014-01-01
The male-specific region of the human Y chromosome (MSY) contains eight large inverted repeats (palindromes), in which high-sequence similarity between repeat arms is maintained by gene conversion. These palindromes also harbor microsatellites, considered to evolve via a stepwise mutation model (SMM). Here, we ask whether gene conversion between palindrome microsatellites contributes to their mutational dynamics. First, we study the duplicated tetranucleotide microsatellite DYS385a,b lying in palindrome P4. We show, by comparing observed data with simulated data under a SMM within haplogroups, that observed heteroallelic combinations in which the modal repeat number difference between copies was large, can give rise to homoallelic combinations with zero-repeats difference, equivalent to many single-step mutations. These are unlikely to be generated under a strict SMM, suggesting the action of gene conversion. Second, we show that the intercopy repeat number difference for a large set of duplicated microsatellites in all palindromes in the MSY reference sequence is significantly reduced compared with that for nonpalindrome-duplicated microsatellites, suggesting that the former are characterized by unusual evolutionary dynamics. These observations indicate that gene conversion violates the SMM for microsatellites in palindromes, homogenizing copies within individual Y chromosomes, but increasing overall haplotype diversity among chromosomes within related groups. PMID:24610746
What Is a Hill? An Analysis of the Meanings of Generic Topographic Terms
1985-08-01
to describe the di,.ferent characters of forms. FLAT: An area or surface with gantle, non-varying slope, that is highly platykurtic but not...Slo;e Change Index value of zero. ROLLING: A surface without elevated or Inverted forms, with platykurtic slo a Slope Ctange Index value of zero and...and contour planes of similar extent. POCKMARKEC (pitted): A surface that has within its contour repeated, small, circular or elliptical platykurtic
Tan, Benedict G.; Vijgenboom, Erik; Worrall, Jonathan A. R.
2014-01-01
Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. PMID:24121681
Sun, Di; Zhu, Jianya; Chen, Zhi; Li, Jilun; Wen, Ying
2016-11-14
Avermectins are useful anthelmintic antibiotics produced by Streptomyces avermitilis. We demonstrated that a novel AraC-family transcriptional regulator in this species, SAV742, is a global regulator that negatively controls avermectin biosynthesis and cell growth, but positively controls morphological differentiation. Deletion of its gene, sav_742, increased avermectin production and dry cell weight, but caused delayed formation of aerial hyphae and spores. SAV742 directly inhibited avermectin production by repressing transcription of ave structural genes, and also directly regulated its own gene (sav_742) and adjacent gene sig8 (sav_741). The precise SAV742-binding site on its own promoter region was determined by DNase I footprinting assay coupled with site-directed DNA mutagenesis, and 5-nt inverted repeats (GCCGA-n 10 /n 12 -TCGGC) were found to be essential for SAV742 binding. Similar 5-nt inverted repeats separated by 3, 10 or 15 nt were found in the promoter regions of target ave genes and sig8. The SAV742 regulon was predicted based on bioinformatic analysis. Twenty-six new SAV742 targets were identified and experimentally confirmed, including genes involved in primary metabolism, secondary metabolism and development. Our findings indicate that SAV742 plays crucial roles in not only avermectin biosynthesis but also coordination of complex physiological processes in S. avermitilis.
Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger
Giladi, Moshe; Almagor, Lior; van Dijk, Liat; Hiller, Reuben; Man, Petr; Forest, Eric; Khananshvili, Daniel
2016-01-01
In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins. PMID:26876271
Kayal, Ehsan; Lavrov, Dennis V
2008-02-29
The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.
Weaver, David; Karoonuthaisiri, Nitsara; Tsai, Hsiu-Hwei; Huang, Chih-Hung; Ho, Mai-Lan; Gai, Shuning; Patel, Kedar G; Huang, Jianqiang; Cohen, Stanley N; Hopwood, David A; Chen, Carton W; Kao, Camilla M
2004-03-01
The chromosomes of several widely used laboratory derivatives of Streptomyces coelicolor A3(2) were found to have 1.06 Mb inverted repeat sequences at their termini (i.e. long-terminal inverted repeats; L-TIRs), which are 50 times the length of the 22 kb TIRs of the sequenced S. coelicolor strain M145. The L-TIRs include 1005 annotated genes and increase the overall chromosome size to 9.7 Mb. The 1.06 Mb L-TIRs are the longest reported thus far for an actinomycete, and are proposed to represent the chromosomal state of the original soil isolate of S. coelicolor A3(2). S. coelicolor A3(2), M600 and J1501 possess L-TIRs, whereas approximately half the examined early mutants of A3(2) generated by ultraviolet (UV) or X-ray mutagenesis have truncated their TIRs to the 22 kb length. UV radiation was found to stimulate L-TIR truncation. Two copies of a transposase gene (SCO0020) flank 1.04 Mb of DNA in the right L-TIR, and recombination between them appears to generate strains containing short TIRs. This TIR reduction mechanism may represent a general strategy by which transposable elements can modulate the structure of chromosome ends. The presence of L-TIRs in certain S. coelicolor strains represents a major chromosomal alteration in strains previously thought to be genetically similar.
Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.
1990-01-01
Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764
NASA Astrophysics Data System (ADS)
Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong
2018-02-01
The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.
Comparison of isometric exercises for activating latissimus dorsi against the upper body weight.
Park, Se-yeon; Yoo, Won-gyu; An, Duk-hyun; Oh, Jae-seop; Lee, Jung-hoon; Choi, Bo-ram
2015-02-01
Because there is little agreement as to which exercise is the most effective for activating the latissimus dorsi, and its intramuscular components are rarely compared, we investigated the intramuscular components of the latissimus dorsi during both trunk and shoulder exercises. Sixteen male subjects performed four isometric exercises: inverted row, body lifting, trunk extension, and trunk lateral bending. Surface electromyography (sEMG) was used to collect data from the medial and lateral components of the latissimus dorsi, lower trapezius, and the erector spinae at the 12th thoracic level during the isometric exercises. Two-way repeated analysis of variance with two within-subject factors (muscles and exercise conditions) was used to determine the significance of differences between the muscles and differences between exercise variations. The inverted row showed the highest values for the medial latissimus dorsi, which were significantly higher than those of the body lifting or trunk extension exercises. For the lateral latissimus dorsi, lateral bending showed significantly higher muscle activity than the inverted row or trunk extension. During body lifting, the % maximum voluntary isometric contraction (MVIC) of the erector spinae showed the lowest value, significantly lower than those of the other isometric exercises. The inverted row exercise was effective for activating the medial latissimus dorsi versus the shoulder depression and trunk exertion exercises. The lateral bending and body lifting exercises were favorable for activating the lateral component of the latissimus dorsi. Evaluating trunk lateral bending is essential for examining the function of the latissimus dorsi. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina
2016-11-01
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.
Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina
2016-01-01
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5′-part from the 3′-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms. PMID:27329736
[Mechanical properties of nickel-titanium files following multiple heat sterilizations].
Testarelli, L; Gallottini, L; Gambarini, G
2003-04-01
The effect of cycles of sterilization procedures on nickel-titanium (NiTi) endodontic instruments is a serious concern for practitioners. There is no agreement in the literature whether these procedures could adversely affect the mechanical properties of endodontic files, and, consequently, increase the risk of intracanal failure. The purpose of this study was to evaluate the mechanichal resistance of Hero (MicroMega, Besancon, France) instruments, before and after sterilization procedures. Thirty 02, 04, 06 tapered Hero size 30 new instruments were chosen and divided into 3 groups. Group A (control) were tested according to ANSI/ADA Spec.no 28 for torsional resistance, angle of torque and angle at breakage (45 inverted exclamation mark ). Group B files were first sterilized with chemiclave for 10 cycles of 20 minutes at 124 inverted exclamation mark C and then tested as described above. Group C files were first sterilized with glass beads for 10 cycles of 20 sec. at 250 inverted exclamation mark C and then tested as described above. Data were collected and statistically analyzed (t-paired test). Differences among the 3 groups were statistically not significant for both tests. All data were well within Spec.no 28 standard values. From the results of the present study, we may conclude that repeated sterilization procedures do not adversely affect the mechanichal resistance of Hero files.
Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K
2017-04-01
There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.
A Heterotopology of the Academy: Mapping Assemblages as Possibilised Heterotopias
ERIC Educational Resources Information Center
Charteris, Jennifer; Jones, Marguerite; Nye, Adele; Reyes, Vicente
2017-01-01
Heterotopias are counter-sites of enacted utopias through which reality is simultaneously represented, contested and inverted. They are physical or mental spaces where, although norms of behaviours are suspended, there are connections with a plethora of other spaces. This article constructs a collective biography as a heterotopology of the…
Yokoyama, Victoria Y.
2014-01-01
Abstract A novel attract-and-kill trap for olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), was constructed with yellow corrugated plastic in an inverted cylindrical pan shape formed from a disk and collar. The trap components were tested under three greenhouse temperatures and humidities of warm, hot, and very hot for attractiveness to caged young or older adults. A greater proportion of adults regardless of age were found underneath the devices including disks, cylindrical pans, and pans with pheromone lures and test units of cylindrical pans sprayed with water, insecticidal bait spray, and with lures. The effect was related to lower temperatures on the underside compared with the top and the intolerance of the pest to heat. A circular collar added to the perimeter of the disk that formed the top of the inverted cylinder made the attract-and-kill trap more attractive to adults than the disk alone. Pheromone lures or bait sprays did not increase adult attraction, so were not needed for efficacy. The cylindrical pan was especially attractive to adults when temperatures were high by providing shelter from the heat. At very high temperatures, the pan became unattractive, possibly due to heating of the construction materials. Cylindrical pans sprayed with water on the underside attracted the highest number of adults especially at high temperatures. Greenhouse tests showed that the inverted cylindrical pan design has potential as an attract-and-kill device for olive fruit fly control. PMID:25368094
NASA Technical Reports Server (NTRS)
Jawerth, Bjoern; Sweldens, Wim
1993-01-01
We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.
Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L
1994-01-01
A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933
What Is Wrong with Water Barometers?
ERIC Educational Resources Information Center
Sullivan, Dan M.; Smith, Robert W.; Kemnitz, E. J.; Barton, Kevin; Graham, Robert M.; Guenther, Raymond A.; Webber, Larry
2010-01-01
Every student who studies atmospheric pressure in physics or chemistry learns the principles behind the construction of barometers. Cistern barometers, such as those found in most laboratories, consist of a long glass tube containing an inverted column of liquid having an open end in a cistern of the liquid. Students learn that the column of…
Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.
USDA-ARS?s Scientific Manuscript database
Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...
Aldwin, Carolyn M.; Molitor, Nuoo-Ting; Avron, Spiro; Levenson, Michael R.; Molitor, John; Igarashi, Heidi
2011-01-01
We examined long-term patterns of stressful life events (SLE) and their impact on mortality contrasting two theoretical models: allostatic load (linear relationship) and hormesis (inverted U relationship) in 1443 NAS men (aged 41–87 in 1985; M = 60.30, SD = 7.3) with at least two reports of SLEs over 18 years (total observations = 7,634). Using a zero-inflated Poisson growth mixture model, we identified four patterns of SLE trajectories, three showing linear decreases over time with low, medium, and high intercepts, respectively, and one an inverted U, peaking at age 70. Repeating the analysis omitting two health-related SLEs yielded only the first three linear patterns. Compared to the low-stress group, both the moderate and the high-stress groups showed excess mortality, controlling for demographics and health behavior habits, HRs = 1.42 and 1.37, ps <.01 and <.05. The relationship between stress trajectories and mortality was complex and not easily explained by either theoretical model. PMID:21961066
Halász, Júlia; Kodad, Ossama; Hegedűs, Attila
2014-07-01
Miniature inverted-repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349-bp size, 82-bp terminal inverted repeats and 9-bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT-rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S-haplotype-specific F-box gene of apricot resulted in the breakdown of self-incompatibility (SI). A bioinformatics-based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae-specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non-autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss-of-function mutation in the SI locus. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Houng, Huo-Shu H; Clavio, Sarah; Graham, Katherine; Kuschner, Robert; Sun, Wellington; Russell, Kevin L; Binn, Leonard N
2006-04-01
Ad4 is the principal etiological agent of acute respiratory disease (ARD) in the US military. Discovery of the novel 208bp inverted terminal repeated (ITR) sequence from a recent Ad4 Jax78 field isolate was totally distinct from the analogous 116bp ITR of Ad4 prototype. To investigate the origin and distribution of the novel Ad4 ITR sequence from ARD infections. Direct sequencing of ligated Ad ITR termini. The new Ad4 ITR was highly homologous with the ITRs of human Ad subgroup B. The left post-ITR region of Ad4 Jax78 was found to be highly homologous to the corresponding region of subgroup B Ads: 81% for Ad11 and 98% for Ad3 and Ad7. The right post-ITR region of Ad4 Jax78 contained a truncated classic ITR of the Ad4 prototype. The Ad4 Jax78 ITR most likely evolved from Ad4 prototype by substituting the Ad4 prototype ITR with the subgroup B Ads ITR. The ITR-based PCR assays developed from this study can be used to distinguish the new Ad4 genotype from the classical Ad4 prototype. The new Ad4 genotype was first detected in 1976 from Georgia, USA, and is the main causative agent of ARD infections in US military population.
Park, Inkyu; Kim, Wook-jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin
2017-01-01
Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC–trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species. PMID:28863163
Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol
2017-01-01
Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.
Friedrich, Michael; Meier, Doreen; Schuster, Isabelle; Nellen, Wolfgang
2015-01-01
We have previously shown that the most abundant Dictyostelium discoideum retroelement DIRS-1 is suppressed by RNAi mechanisms. Here we provide evidence that both inverted terminal repeats have strong promoter activity and that bidirectional expression apparently generates a substrate for Dicer. A cassette containing the inverted terminal repeats and a fragment of a gene of interest was sufficient to activate the RNAi response, resulting in the generation of ~21 nt siRNAs, a reduction of mRNA and protein expression of the respective endogene. Surprisingly, no transitivity was observed on the endogene. This was in contrast to previous observations, where endogenous siRNAs caused spreading on an artificial transgene. Knock-down was successful on seven target genes that we examined. In three cases a phenotypic analysis proved the efficiency of the approach. One of the target genes was apparently essential because no knock-out could be obtained; the RNAi mediated knock-down, however, resulted in a very slow growing culture indicating a still viable reduction of gene expression. ADVANTAGES OF THE DIRS-1–RNAI SYSTEM: The knock-down system required a short DNA fragment (~400 bp) of the target gene as an initial trigger. Further siRNAs were generated by RdRPs since we have shown some siRNAs with a 5'-triphosphate group. Extrachromosomal vectors facilitate the procedure and allowed for molecular and phenotypic analysis within one week. The system provides an efficient and rapid method to reduce protein levels including those of essential genes.
Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald
2013-01-01
Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. PMID:23648487
Kim, Hyoung Tae; Kim, Jung Sung; Moore, Michael J; Neubig, Kurt M; Williams, Norris H; Whitten, W Mark; Kim, Joo-Hwan
2015-01-01
Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability.
NASA Astrophysics Data System (ADS)
Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun
2013-12-01
Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.
Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit
2000-01-01
A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455
Ahmed, Lubna
2018-03-01
The ability to correctly interpret facial expressions is key to effective social interactions. People are well rehearsed and generally very efficient at correctly categorizing expressions. However, does their ability to do so depend on how cognitively loaded they are at the time? Using repeated-measures designs, we assessed the sensitivity of facial expression categorization to cognitive resources availability by measuring people's expression categorization performance during concurrent low and high cognitive load situations. In Experiment1, participants categorized the 6 basic upright facial expressions in a 6-automated-facial-coding response paradigm while maintaining low or high loading information in working memory (N = 40; 60 observations per load condition). In Experiment 2, they did so for both upright and inverted faces (N = 46; 60 observations per load and inversion condition). In both experiments, expression categorization for upright faces was worse during high versus low load. Categorization rates actually improved with increased load for the inverted faces. The opposing effects of cognitive load on upright and inverted expressions are explained in terms of a cognitive load-related dispersion in the attentional window. Overall, the findings support that expression categorization is sensitive to cognitive resources availability and moreover suggest that, in this paradigm, it is the perceptual processing stage of expression categorization that is affected by cognitive load. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Hom-Yang-Baxter equation and Hom-Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Donald
2011-05-15
Motivated by recent work on Hom-Lie algebras, a twisted version of the Yang-Baxter equation, called the Hom-Yang-Baxter equation (HYBE), was introduced by Yau [J. Phys. A 42, 165202 (2009)]. In this paper, several more classes of solutions of the HYBE are constructed. Some of the solutions of the HYBE are closely related to the quantum enveloping algebra of sl(2), the Jones-Conway polynomial, and Yetter-Drinfel'd modules. Under some invertibility conditions, we construct a new infinite sequence of solutions of the HYBE from a given one.
Bausher, Michael G; Singh, Nameirakpam D; Lee, Seung-Bum; Jansen, Robert K; Daniell, Henry
2006-01-01
Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs). Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and Nymphaeales, relationship of the magnoliid genus Calycanthus, and the monophyly of the eurosid I clade. Both MP and ML trees provide strong support for the monophyly of eurosids II and for the placement of Citrus (Sapindales) sister to a clade including the Malvales/Brassicales. Conclusion This is the first complete chloroplast genome sequence for a member of the Rutaceae and Sapindales. Expansion of the inverted repeat region to include rps19 and part of rpl22 and presence of two truncated copies of rpl22 is unusual among sequenced chloroplast genomes. Availability of a complete Citrus chloroplast genome sequence provides valuable information on intergenic spacer regions and endogenous regulatory sequences for chloroplast genetic engineering. Phylogenetic analyses resolve relationships among several major clades of angiosperms and provide strong support for the monophyly of the eurosid II clade and the position of the Sapindales sister to the Brassicales/Malvales. PMID:17010212
RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster.
Giordano, Ennio; Rendina, Rosaria; Peluso, Ivana; Furia, Maria
2002-01-01
Specific silencing of target genes can be induced in a variety of organisms by providing homologous double-stranded RNA molecules. In vivo, these molecules can be generated either by transcription of sequences having an inverted-repeat (IR) configuration or by simultaneous transcription of sense-antisense strands. Since IR constructs are difficult to prepare and can stimulate genomic rearrangements, we investigated the silencing potential of symmetrically transcribed sequences. We report that Drosophila transgenes whose sense-antisense transcription was driven by two convergent arrays of Gal4-dependent UAS sequences can induce specific, dominant, and heritable repression of target genes. This effect is not dependent on a mechanism based on homology-dependent DNA/DNA interactions, but is directly triggered by transcriptional activation and is accompanied by specific depletion of the endogenous target RNA. Tissue-specific induction of these transgenes restricts the target gene silencing to selected body domains, and spreading phenomena described in other cases of post-transcriptional gene silencing (PTGS) were not observed. In addition to providing an additional tool useful for Drosophila functional genomic analysis, these results add further strength to the view that events of sense-antisense transcription may readily account for some, if not all, PTGS-cosuppression phenomena and can potentially play a relevant role in gene regulation. PMID:11861567
Xiao, Qing; Min, Taishan; Ma, Shuangping; Hu, Lingna; Chen, Hongyan; Lu, Daru
2018-04-18
Targeted integration of transgenes facilitates functional genomic research and holds prospect for gene therapy. The established microhomology-mediated end-joining (MMEJ)-based strategy leads to the precise gene knock-in with easily constructed donor, yet the limited efficiency remains to be further improved. Here, we show that single-strand DNA (ssDNA) donor contributes to efficient increase of knock-in efficiency and establishes a method to achieve the intracellular linearization of long ssDNA donor. We identified that the CRISPR/Cas9 system is responsible for breaking double-strand DNA (dsDNA) of palindromic structure in inverted terminal repeats (ITRs) region of recombinant adeno-associated virus (AAV), leading to the inhibition of viral second-strand DNA synthesis. Combing Cas9 plasmids targeting genome and ITR with AAV donor delivery, the precise knock-in of gene cassette was achieved, with 13-14% of the donor insertion events being mediated by MMEJ in HEK 293T cells. This study describes a novel method to integrate large single-strand transgene cassettes into the genomes, increasing knock-in efficiency by 13.6-19.5-fold relative to conventional AAV-mediated method. It also provides a comprehensive solution to the challenges of complicated production and difficult delivery with large exogenous fragments.
Ivanov, E. L.; Sugawara, N.; Fishman-Lobell, J.; Haber, J. E.
1996-01-01
HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching. PMID:8849880
The complete chloroplast genome sequence of Dendrobium officinale.
Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui
2016-01-01
The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.
Invariant Poisson-Nijenhuis structures on Lie groups and classification
NASA Astrophysics Data System (ADS)
Ravanpak, Zohreh; Rezaei-Aghdam, Adel; Haghighatdoost, Ghorbanali
We study right-invariant (respectively, left-invariant) Poisson-Nijenhuis structures (P-N) on a Lie group G and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra 𝔤. We show that r-n structures can be used to find compatible solutions of the classical Yang-Baxter equation (CYBE). Conversely, two compatible r-matrices from which one is invertible determine an r-n structure. We classify, up to a natural equivalence, all r-matrices and all r-n structures with invertible r on four-dimensional symplectic real Lie algebras. The result is applied to show that a number of dynamical systems which can be constructed by r-matrices on a phase space whose symmetry group is Lie group a G, can be specifically determined.
Sonnenberg, Anton S. M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Schaap, Peter J.; Van Griensven, Leo J. L. D.
1999-01-01
A 300-bp repetitive element was found in the genome of the white button mushroom, Agaricus bisporus, and designated Abr1. It is present in ∼15 copies per haploid genome in the commercial strain Horst U1. Analysis of seven copies showed 89 to 97% sequence identity. The repeat has features typical of class II transposons (i.e., terminal inverted repeats, subterminal repeats, and a target site duplication of 7 bp). The latter shows a consensus sequence. When used as probe on Southern blots, Abr1 identifies relatively little variation within traditional and present-day commercial strains, indicating that most strains are identical or have a common origin. In contrast to these cultivars, high variation is found among field-collected strains. Furthermore, a remarkable difference in copy numbers of Abr1 was found between A. bisporus isolates with a secondarily homothallic life cycle and those with a heterothallic life cycle. Abr1 is a type II transposon not previously reported in basidiomycetes and appears to be useful for the identification of strains within the species A. bisporus. PMID:10427018
Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
Deng, Sarah K; Yin, Yi; Petes, Thomas D; Symington, Lorraine S
2015-11-05
Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.
Schnare, Murray N.; Collings, James C.; Spencer, David F.; Gray, Michael W.
2000-01-01
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from ∼11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an ∼55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A′ pre-rRNA processing sites within the 5′ external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5′ ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C.fasciculata and Trypanosoma brucei involves 3′-terminal addition of three A residues that are not present in the corresponding DNA sequences. PMID:10982863
Pipeline welding goes mechanized
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeson, R.
1999-11-01
Spread four has bugs in the cornfield--but not to worry. The bug referred to here is a mechanized welding bug, specifically a single welding head, computer-aided gas metal arc (GMAW) system from CRC-Evans Automatic Welding powered by a Miller Electric XMT{reg{underscore}sign} 304 inverter-based welding machine. The bug operator and owner of 32 inverters is Welded Construction, L.P., of Perrysburgh, Ohio. Spread four is a 147-mile stretch of the Alliance Pipeline system (Alliance) cutting through the cornfields of northeast Iowa. While used successfully in Canada and Europe for onshore and offshore pipeline construction for 30 years, this is the first large-scalemore » use of mechanized welding in the US on a cross-country pipeline. On longer, larger-diameter and thicker-wall pipe projects--the Alliance mainline has 1,844 miles of pipe, most of it 36-in. diameter with a 0.622-in. wall thickness--mechanized GMAW offers better productivity than manual shielded metal arc welding (SMAW). In addition, high-strength steels, such as the API 5L Grade X70 pipe used on the Alliance, benefit from the low-hydrogen content of certain solid and tubular wire electrodes.« less
Sanderson, Michael J; Copetti, Dario; Búrquez, Alberto; Bustamante, Enriquena; Charboneau, Joseph L M; Eguiarte, Luis E; Kumar, Sudhir; Lee, Hyun Oh; Lee, Junki; McMahon, Michelle; Steele, Kelly; Wing, Rod; Yang, Tae-Jin; Zwickl, Derrick; Wojciechowski, Martin F
2015-07-01
• Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.• Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plastid genes and functionally related nuclear genes. We combined these results with available data across Cactaceae and seed plants more broadly to infer the history of gene loss and to assess the strength of phylogenetic association between gene loss and loss of the inverted repeat (IR).• The saguaro plastid genome is the smallest known for an obligately photosynthetic angiosperm (∼113 kb), having lost the IR and plastid ndh genes. This loss supports a statistically strong association across seed plants between the loss of ndh genes and the loss of the IR. Many nonplastid copies of plastid ndh genes were found in the nuclear genome, but none had intact reading frames; nor did three related nuclear-encoded subunits. However, nuclear pgr5, which functions in a partially redundant pathway, was intact.• The existence of an alternative pathway redundant with the function of the plastid NADH dehydrogenase-like complex (NDH) complex may permit loss of the plastid ndh gene suite in photoautotrophs like saguaro. Loss of these genes may be a recurring mechanism for overall plastid genome size reduction, especially in combination with loss of the IR. © 2015 Botanical Society of America, Inc.
A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein.
Li, W; Shaw, J E
1993-01-01
A variant C. elegans Tc4 transposable element, Tc4-rh1030, has been sequenced and is 3483 bp long. The Tc4 element that had been analyzed previously is 1605 bp long, consists of two 774-bp nearly perfect inverted terminal repeats connected by a 57-bp loop, and lacks significant open reading frames. In Tc4-rh1030, by comparison, a 2343-bp novel sequence is present in place of a 477-bp segment in one of the inverted repeats. The novel sequence of Tc4-rh1030 is present about five times per haploid genome and is invariably associated with Tc4 elements; we have used the designation Tc4v to denote this variant subfamily of Tc4 elements. Sequence analysis of three cDNA clones suggests that a Tc4v element contains at least five exons that could encode a novel basic protein of 537 amino acid residues. On northern blots, a 1.6-kb Tc4v-specific transcript was detected in the mutator strain TR679 but not in the wild-type strain N2; Tc4 elements are known to transpose in TR679 but appear to be quiescent in N2. We have analyzed transcripts produced by an unc-33 gene that has the Tc4-rh1030 insertional mutation in its transcribed region; all or almost all of the Tc4v sequence is frequently spliced out of the mutant unc-33 transcripts, sometimes by means of non-consensus splice acceptor sites. Images PMID:8382791
Moore, Michael J.; Neubig, Kurt M.; Williams, Norris H.; Whitten, W. Mark; Kim, Joo-Hwan
2015-01-01
Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability. PMID:26558895
Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae▿ ‡
Czurda, Stefan; Jechlinger, Wolfgang; Rosengarten, Renate; Chopra-Dewasthaly, Rohini
2010-01-01
Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery. PMID:20562305
Ducote, Matthew J.; Prakash, Shubha; Pettis, Gregg S.
2000-01-01
Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3′ end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer. PMID:11073933
Ducote, M J; Prakash, S; Pettis, G S
2000-12-01
Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.
Motor/Generator and Inverter Characterization for Flywheel System Applications
NASA Technical Reports Server (NTRS)
Tamarcus, Jeffries L.
2004-01-01
The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.
Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith
2013-07-01
Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.
Reyon, Deepak; Maeder, Morgan L.; Khayter, Cyd; Tsai, Shengdar Q.; Foley, Jonathan E.; Sander, Jeffry D.; Joung, J. Keith
2013-01-01
Customized DNA-binding domains made using Transcription Activator-Like Effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in multiple different organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or down-regulate expression of endogenous genes in human cells and plants. Here we describe a detailed protocol for practicing the recently described Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multi-channel pipet. With the automated version of FLASH, a single researcher can construct up to 96 DNA fragments encoding various length TALE repeat arrays in one day and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in one week or less. Plas-mids required to practice FLASH are available by request from the Joung Lab (http://www.jounglab.org/). We also describe here improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) webserver (http://ZiFiTBeta.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high-throughput. PMID:23821439
Xu, Qiqi; Zhao, Jianwen; Pecunia, Vincenzo; Xu, Wenya; Zhou, Chunshan; Dou, Junyan; Gu, Weibing; Lin, Jian; Mo, Lixin; Zhao, Yanfei; Cui, Zheng
2017-04-12
The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10 6 , effective mobility up to 30 cm 2 V -1 s -1 , small hysteresis, and small subthreshold swing (90-140 mV dec -1 ), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 V dd = 1 V) and a voltage gain as high as 30 (at V dd = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at V dd = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.
Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.
Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang
2016-01-01
Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.
Evidence for large inversion polymorphisms in the human genome from HapMap data
Bansal, Vikas; Bashir, Ali; Bafna, Vineet
2007-01-01
Knowledge about structural variation in the human genome has grown tremendously in the past few years. However, inversions represent a class of structural variation that remains difficult to detect. We present a statistical method to identify large inversion polymorphisms using unusual Linkage Disequilibrium (LD) patterns from high-density SNP data. The method is designed to detect chromosomal segments that are inverted (in a majority of the chromosomes) in a population with respect to the reference human genome sequence. We demonstrate the power of this method to detect such inversion polymorphisms through simulations done using the HapMap data. Application of this method to the data from the first phase of the International HapMap project resulted in 176 candidate inversions ranging from 200 kb to several megabases in length. Our predicted inversions include an 800-kb polymorphic inversion at 7p22, a 1.1-Mb inversion at 16p12, and a novel 1.2-Mb inversion on chromosome 10 that is supported by the presence of two discordant fosmids. Analysis of the genomic sequence around inversion breakpoints showed that 11 predicted inversions are flanked by pairs of highly homologous repeats in the inverted orientation. In addition, for three candidate inversions, the inverted orientation is represented in the Celera genome assembly. Although the power of our method to detect inversions is restricted because of inherently noisy LD patterns in population data, inversions predicted by our method represent strong candidates for experimental validation and analysis. PMID:17185644
Design and fabrication of a prototype system for a photovoltaic residence in the Northeast
NASA Astrophysics Data System (ADS)
1982-08-01
This project consisted of the design, fabrication, and testing of a photovoltaic residence which is suitable for construction in the Northeast. A full size residence was designed which included energy conserving and passive features, and the energy performance of the residence was completed for a 5 kW PV array in a standoff configuration. Actual construction consisted of the roof structure and a building enclosure large enough to contain the PCU, test equipment, and load simulation equipment. The PV array consists of 78 modules along with a line tie inverter.
Patrick, B.; Till, A.B.; Dinklage, W.S.
1994-01-01
During exhumation of the Brooks Range internal zone, amphibolite-facies rocks were emplaced atop the blueschist/greenschist facies schist belt. The resultant inverted metamorphic field gradient is mappable as a series of isograds encountered as one traverses up structural section. Amphibolite-facies metamorphism occurred at ??? 110 Ma as determined from 40Ar 39Ar analysis of hornblende. This contrasts with 40Ar 39Ar phengite cooling ages from the uderlying schist belt, which are clearly older (by 17-22 m.y.). Fabrics in both the amphibolite-facies rocks and schist belt are characterized by repeated cycles of N-vergent crenulation and transposition that was likely associated with out-of-sequence ductile thrusting in the internal zone of the Brooks Range orogen. Contractional deformation occurred in an overall environment of foreland-directed tectonic transport, broadly synchronous with exhumation of the internal zone, and shortening within the thin-skinned fold and thrust belt. These data are inconsistent with a recently postulated mid-Cretaceous episode of lithospheric extension in northern Alaska. ?? 1994.
Vetukuri, Ramesh R; Tian, Zhendong; Avrova, Anna O; Savenkov, Eugene I; Dixelius, Christina; Whisson, Stephen C
2011-12-01
Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing. Accumulation of small RNAs is one of the hallmarks of RNA silencing. Here we demonstrate the presence of small RNAs corresponding to the sequence of a short interspersed retrotransposable element (SINE) suggesting that small RNAs might be involved in silencing of SINEs in P. infestans. This notion was exploited to develop novel tools for gene silencing in P. infestans by engineering transcriptional fusions of the PiAvr3a gene, encoding an RXLR avirulence effector, to the infSINEm retroelement. Transgenic P. infestans lines expressing either 5'-infSINEm::PiAvr3a-3' or 5'-PiAvr3a::SINEm-3' chimeric transcripts initially exhibited partial silencing of PiAvr3a. Over time, PiAvr3a either recovered wild type transcript levels in some lines, or became fully silenced in others. Introduction of an inverted repeat construct was also successful in yielding P. infestans transgenic lines silenced for PiAvr3a. In contrast, constructs expressing antisense or aberrant RNA transcripts failed to initiate silencing of PiAvr3a. Lines exhibiting the most effective silencing of PiAvr3a were either weakly or non-pathogenic on susceptible potato cv. Bintje. This study expands the repertoire of reverse genetics tools available for P. infestans research, and provides insights into a possible mode of variation in effector expression through spread of silencing from adjacent retroelements. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Schnettler, Esther; Hemmes, Hans; Huismann, Rik; Goldbach, Rob; Prins, Marcel; Kormelink, Richard
2010-11-01
The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.
Lee, Seung-Bum; Kaittanis, Charalambos; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry
2006-01-01
Background Cotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In 2004–2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton. Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering offers the possibility of containment because of maternal inheritance of transgenes. The complete chloroplast genome of cotton provides essential information required for genetic engineering. In addition, the sequence data were used to assess phylogenetic relationships among the major clades of rosids using cotton and 25 other completely sequenced angiosperm chloroplast genomes. Results The complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19 duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20, rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other angiosperm chloroplast genomes that were not included in any previous phylogenies. Conclusion Cotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to further test this relationship. PMID:16553962
Mutational Dynamics of Aroid Chloroplast Genomes
Ahmed, Ibrar; Biggs, Patrick J.; Matthews, Peter J.; Collins, Lesley J.; Hendy, Michael D.; Lockhart, Peter J.
2012-01-01
A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304
The complete chloroplast genome sequence of Hibiscus syriacus.
Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin
2016-09-01
The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes.
Bainbridge, Brian W; Hirano, Takanori; Grieshaber, Nicole; Davey, Mary E
2015-04-01
Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5' end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp inverted repeat (77bpIR) element near the 5' end. Here, we report on the identification of an antisense RNA (asRNA) encoded within the 77bpIR. We show that overexpression of this asRNA or deletion of the element decreases the amount of capsule. LPS structures were also altered by deletion of the 77bpIR, and reactivity to monoclonal antibodies to both O-LPS and A-LPS was eliminated. Our data indicate that the 77bpIR element is involved in modulating both LPS and capsule synthesis in P. gingivalis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Bainbridge, Brian W.; Hirano, Takanori; Grieshaber, Nicole
2015-01-01
ABSTRACT Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5′ end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. IMPORTANCE The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp inverted repeat (77bpIR) element near the 5′ end. Here, we report on the identification of an antisense RNA (asRNA) encoded within the 77bpIR. We show that overexpression of this asRNA or deletion of the element decreases the amount of capsule. LPS structures were also altered by deletion of the 77bpIR, and reactivity to monoclonal antibodies to both O-LPS and A-LPS was eliminated. Our data indicate that the 77bpIR element is involved in modulating both LPS and capsule synthesis in P. gingivalis. PMID:25622614
NASA Astrophysics Data System (ADS)
Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen
2017-03-01
We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashi, V.; Allinson, P.S.; Golden, W.L.
1994-09-01
Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational eventmore » causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.« less
Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torella, JP; Boehm, CR; Lienert, F
2013-12-28
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminatormore » parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.« less
Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen
2016-01-01
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965
Do, Hoang Dang Khoa; Kim, Joo-Hwan
2017-01-01
Chloroplast genomes (cpDNA) are highly valuable resources for evolutionary studies of angiosperms, since they are highly conserved, are small in size, and play critical roles in plants. Slipped-strand mispairing (SSM) was assumed to be a mechanism for generating repeat units in cpDNA. However, research on the employment of different small repeated sequences through SSM events, which may induce the accumulation of distinct types of repeats within the same region in cpDNA, has not been documented. Here, we sequenced two chloroplast genomes from the endemic species Heloniopsis tubiflora (Korea) and Xerophyllum tenax (USA) to cover the gap between molecular data and explore "hot spots" for genomic events in Melanthiaceae. Comparative analysis of 23 complete cpDNA sequences revealed that there were different stages of deletion in the rps16 region across the Melanthiaceae. Based on the partial or complete loss of rps16 gene in cpDNA, we have firstly reported potential molecular markers for recognizing two sections ( Veratrum and Fuscoveratrum ) of Veratrum . Melathiaceae exhibits a significant change in the junction between large single copy and inverted repeat regions, ranging from trnH_GUG to a part of rps3 . Our results show an accumulation of tandem repeats in the rpl23-ycf2 regions of cpDNAs. Small conserved sequences exist and flank tandem repeats in further observation of this region across most of the examined taxa of Liliales. Therefore, we propose three scenarios in which different small repeated sequences were used during SSM events to generate newly distinct types of repeats. Occasionally, prior to the SSM process, point mutation event and double strand break repair occurred and induced the formation of initial repeat units which are indispensable in the SSM process. SSM may have likely occurred more frequently for short repeats than for long repeat sequences in tribe Parideae (Melanthiaceae, Liliales). Collectively, these findings add new evidence of dynamic results from SSM in chloroplast genomes which can be useful for further evolutionary studies in angiosperms. Additionally, genomics events in cpDNA are potential resources for mining molecular markers in Liliales.
Tian, Shi-Lin; Li, Zheng; Li, Li; Shah, S N M; Gong, Zhen-Hui
2017-07-01
Capsanthin/capsorubin synthase ( Ccs ) gene is a key gene that regulates the synthesis of capsanthin and the development of red coloration in pepper fruits. There are three tandem repeat units in the promoter region of Ccs , but the potential effects of the number of repetitive units on the transcriptional regulation of Ccs has been unclear. In the present study, expression vectors carrying different numbers of repeat units of the Ccs promoter were constructed, and the transient expression of the β-glucuronidase ( GUS ) gene was used to detect differences in expression levels associated with the promoter fragments. These repeat fragments and the plant expression vector PBI121 containing the 35s CaMV promoter were ligated to form recombinant vectors that were transfected into Agrobacterium tumefaciens GV3101. A fluorescence spectrophotometer was used to analyze the expression associated with the various repeat units. It was concluded that the constructs containing at least one repeat were associated with GUS expression, though they did not differ from one another. This repeating unit likely plays a role in transcription and regulation of Ccs expression.
Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry
NASA Astrophysics Data System (ADS)
Song, Hong Yan; Su, Xiaodi
In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.
Robotic system construction with mechatronic components inverted pendulum: humanoid robot
NASA Astrophysics Data System (ADS)
Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan
2017-03-01
Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.
Smalheiser, Neil R; Lugli, Giovanni; Thimmapuram, Jyothi; Cook, Edwin H; Larson, John
2011-01-01
We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory.
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S
2015-12-01
Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.
The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.
2005-02-01
We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similarmore » to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.« less
Zurawski, Gerard; Bohnert, Hans J.; Whitfeld, Paul R.; Bottomley, Warwick
1982-01-01
The gene for the so-called Mr 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is ≈ 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of Mr 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of Mr 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA. Images PMID:16593262
Conserved Gene Order and Expanded Inverted Repeats Characterize Plastid Genomes of Thalassiosirales
Ashworth, Matt P.; Baeshen, Nabih A.; Baeshen, Mohammad N.; Bahieldin, Ahmed; Theriot, Edward C.; Jansen, Robert K.
2014-01-01
Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Variable plastid genome sizes and extensive genome rearrangements have been observed across the diatom phylogeny, but little is known about plastid genome evolution within order- or family-level clades. The Thalassiosirales is one of the more comprehensively studied orders in terms of both genetics and morphology. Seven complete diatom plastid genomes are reported here including four Thalassiosirales: Thalassiosira weissflogii, Roundia cardiophora, Cyclotella sp. WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata. The sizes of the seven genomes vary from 116,459 to 129,498 bp, and their genomes are compact and lack introns. The larger size of the plastid genomes of Thalassiosirales compared to other diatoms is due primarily to expansion of the inverted repeat. Gene content within Thalassiosirales is more conserved compared to other diatom lineages. Gene order within Thalassiosirales is highly conserved except for the extensive genome rearrangement in Thalassiosira oceanica. Cyclotella nana, Thalassiosira weissflogii and Roundia cardiophora share an identical gene order, which is inferred to be the ancestral order for the Thalassiosirales, differing from that of the other two Cyclotella species by a single inversion. The genes ilvB and ilvH are missing in all six diatom plastid genomes except for Cerataulina daemon, suggesting an independent gain of these genes in this species. The acpP1 gene is missing in all Thalassiosirales, suggesting that its loss may be a synapomorphy for the order and this gene may have been functionally transferred to the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing in Rhizosolenia imbricata, which represents the first documented instance of the loss of photosynthetic genes in diatom plastid genomes. PMID:25233465
Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi
2016-05-01
STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.
Wu, Chung-Shien; Huang, Ya-Yi; Chaw, Shu-Miaw
2012-01-01
We determined the complete chloroplast genome (cpDNA) of Ginkgo biloba (common name: ginkgo), the only relict of ginkgophytes from the Triassic Period. The cpDNA molecule of ginkgo is quadripartite and circular, with a length of 156,945 bp, which is 6,458 bp shorter than that of Cycas taitungensis. In ginkgo cpDNA, rpl23 becomes pseudo, only one copy of ycf2 is retained, and there are at least five editing sites. We propose that the retained ycf2 is a duplicate of the ancestral ycf2, and the ancestral one has been lost from the inverted repeat A (IRA). This loss event should have occurred and led to the contraction of IRs after ginkgos diverged from other gymnosperms. A novel cluster of three transfer RNA (tRNA) genes, trnY-AUA, trnC-ACA, and trnSeC-UCA, was predicted to be located between trnC-GCA and rpoB of the large single-copy region. Our phylogenetic analysis strongly suggests that the three predicted tRNA genes are duplicates of trnC-GCA. Interestingly, in ginkgo cpDNA, the loss of one ycf2 copy does not significantly elevate the synonymous rate (Ks) of the retained copy, which disagrees with the view of Perry and Wolfe (2002) that one of the two-copy genes is subjected to elevated Ks when its counterpart has been lost. We hypothesize that the loss of one ycf2 is likely recent, and therefore, the acquired Ks of the retained copy is low. Our data reveal that ginkgo possesses several unique features that contribute to our understanding of the cpDNA evolution in seed plants. PMID:22403032
Wu, Chung-Shien; Wang, Ya-Nan; Hsu, Chi-Yao; Chaw, Shu-Miaw
2011-01-01
The relationships among the extant five gymnosperm groups—gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads—remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the “gnepines” hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms. PMID:21933779
Wu, Chung-Shien; Wang, Ya-Nan; Hsu, Chi-Yao; Lin, Ching-Ping; Chaw, Shu-Miaw
2011-01-01
The relationships among the extant five gymnosperm groups--gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads--remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the "gnepines" hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms.
Niu, Zhitao; Xue, Qingyun; Zhu, Shuying; Sun, Jing; Liu, Wei; Ding, Xiaoyu
2017-01-01
Orchidaceae (orchids) is the largest family in the monocots, including about 25,000 species in 880 genera and five subfamilies. Many orchids are highly valued for their beautiful and long-lasting flowers. However, the phylogenetic relationships among the five orchid subfamilies remain unresolved. The major dispute centers on whether the three one-stamened subfamilies, Epidendroideae, Orchidoideae, and Vanilloideae, are monophyletic or paraphyletic. Moreover, structural changes in the plastid genome (plastome) and the effective genetic loci at the species-level phylogenetics of orchids have rarely been documented. In this study, we compared 53 orchid plastomes, including four newly sequenced ones, that represent four remote genera: Dendrobium, Goodyera, Paphiopedilum, and Vanilla. These differ from one another not only in their lengths of inverted repeats and small single copy regions but also in their retention of ndh genes. Comparative analyses of the plastomes revealed that the expansion of inverted repeats in Paphiopedilum and Vanilla is associated with a loss of ndh genes. In orchid plastomes, mutational hotspots are genus specific. After having carefully examined the data, we propose that the three loci 5′trnK-rps16, trnS-trnG, and rps16-trnQ might be powerful markers for genera within Epidendroideae, and clpP-psbB and rps16-trnQ might be markers for genera within Cypripedioideae. After analyses of a partitioned dataset, we found that our plastid phylogenomic trees were congruent in a topology where two one-stamened subfamilies (i.e., Epidendroideae and Orchidoideae) were sisters to a multi-stamened subfamily (i.e., Cypripedioideae) rather than to the other one-stamened subfamily (Vanilloideae), suggesting that the living one-stamened orchids are paraphyletic. PMID:28515737
Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J
2015-01-01
In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, M.
1986-06-01
By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identifiedmore » as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.« less
CW Measurement System. Software System Maintenance Manual.
1982-04-02
37 2-7 Amplitude of Transformed Input Wave ............. 39 6-1 Flowchart of the IF-THEN-ELSE Construct ...... 99 6-2 Flowchart of FOR...Construct ................... 100 6-3 Flowchart of REPEAT Construct ................ 101 6-4 Flowchart of WHILE Construct ................. 102 6-5... Flowchart of CASEOF Construct ................ 103 6-6 Flowchart of PROCEDURE Construct ................ 104 6-7 Flowchart of PROGRAM Construct
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Mehrdad
Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.
Gill, Pooria; Ranjbar, Bijan; Saber, Reza; Khajeh, Khosro; Mohammadian, Mehdi
2011-07-01
Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.
Duan, L L; Szczesniak, R D; Wang, X
2017-11-01
Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.
Local-time survey of plasma at low altitudes over the auroral zones.
NASA Technical Reports Server (NTRS)
Frank, L. A.; Ackerson, K. L.
1972-01-01
Local-time survey of the low-energy proton and electron intensities precipitated into the earth's atmosphere over the auroral zones during periods of magnetic quiescence. This survey was constructed by selecting a typical individual satellite crossing of this region in each of eight local-time sectors from a large library of similar observations with the polar-orbiting satellite Injun 5. The trapping boundary for more-energetic electron intensities, E greater than 45 keV, was found to be a 'natural coordinate' for delineating the boundary between the two major types of lower-energy, 50 less than or equal to E less than or equal to 15,000 eV, electron precipitation commonly observed over the auroral zones at low altitudes. Poleward of this trapping boundary inverted 'V' electron precipitation bands are observed in all local-time sectors. These inverted 'V' electron bands in the evening and midnight sectors are typically more energetic and have greater latitudinal widths than their counterparts in the noon and morning sectors. In general, the main contributors to the electron energy influx into the earth's atmosphere over the auroral zones are the electron inverted 'V' precipitation poleward of the trapping boundary in late evening, the plasma-sheet electron intensities equatorward of this boundary in early morning, and both of these precipitation events near local midnight.
Duan, L. L.; Szczesniak, R. D.; Wang, X.
2018-01-01
Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.
2017-12-01
Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.
de Cambiaire, Jean-Charles; Otis, Christian; Turmel, Monique; Lemieux, Claude
2007-01-01
Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages. PMID:17610731
Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry
2006-08-31
Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.
Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng
2017-01-01
Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.
Weng, Mao-Lun; Blazier, John C; Govindu, Madhumita; Jansen, Robert K
2014-03-01
Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. These genome sequences, combined with previously published species, provide sufficient taxon sampling to reconstruct the ancestral plastid genome organization of Geraniaceae and the rearrangements unique to each genus. The ancestral plastid genome of Geraniaceae has a 4 kb inversion and a reduced, Pelargonium-like small single copy region. Our ancestral genome reconstruction suggests that a few minor rearrangements occurred in the stem branch of Geraniaceae followed by independent rearrangements in each genus. The genomic comparison demonstrates that a series of inverted repeat boundary shifts and inversions played a major role in shaping genome organization in the family. The distribution of repeats is strongly associated with breakpoints in the rearranged genomes, and the proportion and the number of large repeats (>20 bp and >60 bp) are significantly correlated with the degree of genome rearrangements. Increases in the degree of plastid genome rearrangements are correlated with the acceleration in nonsynonymous substitution rates (dN) but not with synonymous substitution rates (dS). Possible mechanisms that might contribute to this correlation, including DNA repair system and selection, are discussed.
Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.
Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M
2011-01-01
Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.
Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei
2012-01-01
Background At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering RNAs (siRNAs). Results To test whether such endogenous siRNAs are present in T. brucei and to probe the individual role of the two Dicer-like enzymes, we affinity purified TbAGO1 from wild-type procyclic trypanosomes, as well as from cells deficient in the cytoplasmic (TbDCL1) or nuclear (TbDCL2) Dicer, and subjected the bound RNAs to Illumina high-throughput sequencing. In wild-type cells the majority of reads originated from two classes of retroposons. We also considerably expanded the repertoire of trypanosome siRNAs to encompass a family of 147-bp satellite-like repeats, many of the regions where RNA polymerase II transcription converges, large inverted repeats and two pseudogenes. Production of these newly described siRNAs is strictly dependent on the nuclear DCL2. Notably, our data indicate that putative centromeric regions, excluding the CIR147 repeats, are not a significant source for endogenous siRNAs. Conclusions Our data suggest that endogenous RNAi targets may be as evolutionarily old as the mechanism itself. PMID:22925482
Li, Y M; Bai, C Y; Niu, W P; Yu, H; Yang, R J; Yan, S Q; Zhang, J Y; Zhang, M J; Zhao, Z H
2015-09-28
Microsatellite markers are widely and evenly distributed, and are highly polymorphic. Rapid and convenient detection through automated analysis means that microsatellite markers are widely used in the construction of plant and animal genetic maps, in quantitative trait loci localization, marker-assisted selection, identification of genetic relationships, and genetic diversity and phylogenetic tree construction. However, few microsatellite markers remain to be isolated. We used streptavidin magnetic beads to affinity-capture and construct a (CA)n microsatellite DNA-enriched library from sika deer. We selected sequences containing more than six repeats to design primers. Clear bands were selected, which were amplified using non-specific primers following PCR amplification to screen polymorphisms in a group of 65 unrelated sika deer. The positive clone rate reached 82.9% by constructing the enriched library, and we then selected positive clones for sequencing. There were 395 sequences with CA repeats, and the CA repeat number was 4-105. We selected sequences containing more than six repeats to design primers, of which 297 pairs were designed. We next selected clear bands and used non-specific primers to amplify following PCR amplification. In total, 245 pairs of primers were screened. We then selected 50 pairs of primers to randomly screen for polymorphisms. We detected 47 polymorphic and 3 monomorphic loci in 65 unrelated sika deer. These newly isolated and characterized microsatellite loci can be used to construct genetic maps and for lineage testing in deer. In addition, they can be used for comparative genomics between Cervidae species.
Wu, Chung-Shien; Lin, Ching-Ping; Hsu, Chi-Yao; Wang, Rui-Jiang; Chaw, Shu-Miaw
2011-01-01
Abstract Pinaceae, the largest family of conifers, has diversified organizations of chloroplast genomes (cpDNAs) with the two typical inverted repeats (IRs) highly reduced. To unravel the mechanism of this genomic diversification, we examined the cpDNA organizations from 53 species of the ten Pinaceous genera, including those of Larix decidua (122,474 bp), Picea morrisonicola (124,168 bp), and Pseudotsuga wilsoniana (122,513 bp), which were firstly elucidated. The results uncovered four distinct cpDNA forms (A−C and P) that are due to rearrangements of two ∼20 and ∼21 kb specific fragments. The C form was documented for the first time and the A form might be the most ancestral one. In addition, only the individuals of Ps. macrocarpa and Ps. wilsoniana were detected to have isomeric cpDNA forms. Three types (types 1−3) of Pinaceae-specific repeats situated nearby the rearranged fragments were found to be syntenic. We hypothesize that type 1 (949 ± 343 bp) and type 3 (608 ± 73 bp) repeats are substrates for homologous recombination (HR), whereas type 2 repeats are likely inactive for HR because of their relatively short sizes (151 ± 30 bp). Conversions among the four distinct forms may be achieved by HR and mediated by type 1 or 3 repeats, thus resulting in increased diversity of cpDNA organizations. We propose that in the Pinaceae cpDNAs, the reduced IRs have lost HR activity, then decreasing the diversity of cpDNA organizations, but the specific repeats that the evolution endowed Pinaceae complement the reduced IRs and increase the diversity of cpDNA organizations. PMID:21402866
Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium
Yang, Jiao; Yue, Ming; Niu, Chuan; Ma, Xiong-Feng; Li, Zhong-Hu
2017-01-01
Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process. PMID:28422071
General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.
Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie
2012-09-01
The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.
The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata.
Ding, Ping; Shao, Yanhua; Li, Qian; Gao, Junli; Zhang, Runjing; Lai, Xiaoping; Wang, Deqin; Zhang, Huiye
2016-07-01
The complete chloroplast genome of Andrographis paniculata, an important medicinal plant with great economic value, has been studied in this article. The genome size is 150,249 bp in length, with 38.3% GC content. A pair of inverted repeats (IRs, 25,300 bp) are separated by a large single copy region (LSC, 82,459 bp) and a small single-copy region (SSC, 17,190 bp). The chloroplast genome contains 114 unique genes, 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. In these genes, 15 genes contained 1 intron and 3 genes comprised of 2 introns.
The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.
Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo
2016-05-01
The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.
Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae).
Choi, In-Su; Kim, Joo-Hwan; Choi, Byoung-Hee
2016-07-01
The first complete plastid genome (plastome) of the largest angiosperm genus, Astragalus, was sequenced for the Korean endangered endemic species A. mongholicus var. nakaianus. Its genome is relatively short (123,633 bp) because it lacks an Inverted Repeat (IR) region. It comprises 110 genes, including four unique rRNAs, 30 tRNAs, and 76 protein-coding genes. Similar to other closely related plastomes, rpl22 and rps16 are absent. The putative pseudogene with abnormal stop codons is atpE. This plastome has no additional inversions when compared with highly variable plastomes from IRLC tribes Fabeae and Trifolieae. Our phylogenetic analysis confirms the non-monophyly of Galegeae.
The complete chloroplast genome sequence of Dendrobium nobile.
Yan, Wenjin; Niu, Zhitao; Zhu, Shuying; Ye, Meirong; Ding, Xiaoyu
2016-11-01
The complete chloroplast (cp) genome sequence of Dendrobium nobile, an endangered and traditional Chinese medicine with important economic value, is presented in this article. The total genome size is 150,793 bp, containing a large single copy (LSC) region (84,939 bp) and a small single copy region (SSC) (13,310 bp) which were separated by two inverted repeat (IRs) regions (26,272 bp). The overall GC contents of the plastid genome were 38.8%. In total, 130 unique genes were annotated and they were consisted of 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Fourteen genes contained one or two introns.
Adenovirus sequences required for replication in vivo.
Wang, K; Pearson, G D
1985-01-01
We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occupies the first 18 to 21 bp and includes sequences conserved between all adenovirus serotypes. The adjacent auxillary region extends past nucleotide 36 but not past nucleotide 67 and contains the binding site for nuclear factor I. Images PMID:2991857
Montoya, R Matthew; Horton, Robert S; Vevea, Jack L; Citkowicz, Martyna; Lauber, Elissa A
2017-05-01
To evaluate the veracity of models of the mere exposure effect and to understand the processes that moderate the effect, we conducted a meta-analysis of the influence of repeated exposure on liking, familiarity, recognition, among other evaluations. We estimated parameters from 268 curve estimates drawn from 81 articles and revealed that the mere exposure effect was characterized by a positive slope and negative quadratic effect consistent with an inverted-U shaped curve. In fact, such curves were associated with (a) all visual, but not auditory stimuli; (b) exposure durations shorter than 10 s and longer than 1 min; (c) both homogeneous and heterogeneous presentation types; and (d) ratings that were taken after all stimuli were presented. We conclude that existing models for the mere exposure effect do not adequately account for the findings, and we provide a framework to help guide future research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Computational Analysis of Mouse piRNA Sequence and Biogenesis
Betel, Doron; Sheridan, Robert; Marks, Debora S; Sander, Chris
2007-01-01
The recent discovery of a new class of 30-nucleotide long RNAs in mammalian testes, called PIWI-interacting RNA (piRNA), with similarities to microRNAs and repeat-associated small interfering RNAs (rasiRNAs), has raised puzzling questions regarding their biogenesis and function. We report a comparative analysis of currently available piRNA sequence data from the pachytene stage of mouse spermatogenesis that sheds light on their sequence diversity and mechanism of biogenesis. We conclude that (i) there are at least four times as many piRNAs in mouse testes than currently known; (ii) piRNAs, which originate from long precursor transcripts, are generated by quasi-random enzymatic processing that is guided by a weak sequence signature at the piRNA 5′ends resulting in a large number of distinct sequences; and (iii) many of the piRNA clusters contain inverted repeats segments capable of forming double-strand RNA fold-back segments that may initiate piRNA processing analogous to transposon silencing. PMID:17997596
SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.
Singer, Maxine; Winocour, Ernest
2011-04-10
The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.
Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.
Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T
1997-12-01
The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.
Bontems, Vincent
2014-01-01
The construction of historical frame of reference based on the distinction between and articulation of phenomenological and chronological times. As it relativises the notion of simultaneity and inverts its relation to causality, the special theory of relativity can induce analogous modes of reflection on the themes of "contemporaneity" in the history of art (Panofsky) and in epistemology (Bachelard). This "relativist" method, often misunderstood, sheds light on both historical and presentist methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.
2006-01-09
Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 andmore » ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies identified a number of taxa inwhich several rearrangements have occurred (reviewed in Raubeson andJansen, 2005), an extraordinary number of chloroplast genome alterationsare concentrated in several families in the angiosperm order Asterales(sensu APGII, Bremer et al., 2003). Gene mapping studies ofrepresentatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997,2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999)identified large inversions, contraction and expansion of the invertedrepeat regions, and several insertions and deletions in the cpDNAs ofthese closely related taxa. Detailed restriction site and gene mapping ofthe chloroplast genome of Trachelium caeruleum (Campanulaceae) identifiedseven to ten large inversions, families of repeats associated withrearrangements, possible transpositions, and even the disruption ofoperons (Cosner et al., 1997). Seventeen other members of theCampanulaceae were mapped and exhibit many additional rearrangements(Cosner et al., 2004). What happened in this lineage that made itsusceptible to so many chloroplast genome rearrangements? How do normallyvery conserved chloroplast genomes change? The cause of rearrangements inthis group is unclear based on the limited resolution available withmapping techniques. Several mechanisms have been proposed to explain howrearrangements occur: recombination between repeats, transposition, ortemporary instability due to loss of the inverted repeat (Raubeson andJansen, 2005). Sequencing whole chloroplast genomes within theCampanulaceae offers a unique opportunity to examine both the extent andmechanisms of rearrangements within a phylogenetic framework.We reporthere the first complete chloroplast genome sequence of a member of theCampanulaceae, Trachelium caeruleum. This work will serve as a benchmarkfor subsequent, comparative sequencing and analysis of other members ofthis family and close relatives, with the goal of further understandingchloroplast genome evolution. We confirmed features previously identifiedthrough mapping, and discovered many additional structural changes,including several partial to entire gene duplications, deterioration ofat least four normally conserved chloroplast genes into gene fragments,and the nature and position of numerous repeat elements at or nearinversion endpoints. The focus of this paper is on analyses of sequencesat or near these rearrangements in Trachelium caeruleum. Inversions arebelieved to occur due to the presence of repeat elements subject tohomologous recombination (Palmer, 1991; Knox et al., 1993). Repeats mayfacilitate inversions or other genome rearrangements (Achaz et al.,2003), and higher incidences of repeats have been correlated with greaternumbers of rearrangements (Rocha, 2003). Alternatively, repeats mayproliferate within a genome asa result of DNA strand repair mechanismsfollowing a rearrangement event such as an inversion. Gene« less
Characterization of (CA)n microsatellite repeats from large-insert clones.
Litt, M; Browne, D
2001-05-01
The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit determination of sequences flanking the microsatellites. When cosmids or large-insert phage clones are used as primary sources of (CA)n repeat markers, they have traditionally been subcloned into plasmid vectors such as pUC18 or M13 mp 18/19 cloning vectors to obtain fragments of suitable size for DNA sequencing. This unit presents an alternative approach whereby a set of degenerate sequencing primers that anneal directly to (CA)n microsatellites can be used to determine sequences that are inaccessible with vector-derived primers. Because the primers anneal to the repeat and not to the vector, they can be used with subclones containing inserts of several kilobases and should, in theory, always give sequence in the regions directly flanking the repeat. Degeneracy at the 3 end of each of these primers prevents elongation of primers that have annealed out-of-register. The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit.
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Addressable inverter matrix for process and device characterization
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Sayah, H. R.
1985-01-01
The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.
Addressable inverter matrix for process and device characterization
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Sayah, H. R.
1985-01-01
The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.
Beimers, Lijkele; Lam, Patrick H; Murrell, George A C
2014-10-01
This study investigated the biomechanical effects of expanded polytetrafluoroethylene (ePTFE) suture augmentation patches in rotator cuff repair constructs. The infraspinatus tendon in 24 cadaveric ovine shoulders was repaired using an inverted horizontal mattress suture with 2 knotless bone anchors (ArthroCare, Austin, TX, USA) in a lateral-row configuration. Four different repair groups (6 per group) were created: (1) standard repair using inverted horizontal mattress sutures, (2) repair with ePTFE suture augmentations on the bursal side of the tendon, (3) repair with ePTFE suture augmentations on the articular side, and, (4) repair with ePTFE suture augmentations on both sides of the tendon. Footprint contact pressure, stiffness, and the load to failure of the repair constructs were measured. Repairs with ePTFE suture augmentations on the bursal side exerted significantly more footprint contact pressure (0.40 ± 0.01 MPa) than those on the articular side (0.34 ± 0.02 MPa, P = .04) and those on both sides (0.33 ± 0.02 MPa, P = .01). At 15 degrees of abduction, ePTFE-augmented repairs on the bursal side had higher footprint contact pressure (0.26 ± 0.03 MPa) compared with standard repairs (0.15 ± 0.02 MPa, P = .01) and with ePTFE-augmented repairs on the articular side (0.18 ± 0.02 MPa, P = .03). The ePTFE-augmented repairs on the bursal side demonstrated significantly higher failure loads (178 ± 18 N) than standard repairs (120 ± 17 N, P = .04). Inverted horizontal mattress sutures augmented with ePTFE patches on the bursal side of the tendon enhanced footprint contact pressures and the ultimate load to failure of lateral-row rotator cuff repairs in an ovine model. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
De Feyter, R; Yang, Y; Gabriel, D W
1993-01-01
Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high frequencies (10(-3) to 10(-4) per locus) of X. c. pv. malvacearum race change mutations. Five spontaneous race change mutants of XcmH suffered avr locus deletions, strongly indicating intergenic recombination as the primary mechanism for generating new races in X. c. pv. malvacearum.
A Simple and Efficient Method for Assembling TALE Protein Based on Plasmid Library
Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477
A simple and efficient method for assembling TALE protein based on plasmid library.
Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrillo-Peixoto, M.L.; Beverley, S.M.
1988-12-01
We describe the structure of amplified DNA that was discovered in two laboratory stocks of the protozoan parasite Leishmania tarentolae. Restriction mapping and molecular cloning revealed that a region of 42 kilobases was amplified 8- to 30-fold in these lines. Southern blot analyses of digested DNAs or chromosomes separated by pulsed-field electrophoresis showed that the amplified DNA corresponded to the H region, a locus defined originally by its amplification in methotrexate-resistant Leishmania major. Similarities between the amplified DNA of the two species included (i) extensive cross-hybridization; (ii) approximate conservation of sequence order; (iii) extrachromosomal localization; (iv) an overall inverted, head-to-headmore » configuration as a circular 140-kilobase tetrameric molecule; (v) two regions of DNA sequence rearrangement, each of which was closely associated with the two centers of the inverted repeats; (vi) association with methotrexate resistance; and (vii) phenotypically conservative amplification, in which the wild-type chromosomal arrangement was retained without apparent modification. Our data showed that amplified DNA mediating drug resistance arose in unselected L. tarentolae, although the pressures leading to apparently spontaneous amplification and maintenance of the H region are not known. The simple structure and limited extent of DNA amplified in these and other Leishmania lines suggests that the study of gene amplification in Leishmania spp. offers an attractive model system for the study of amplification in cultured mammalian cells and tumors. We also introduced a method for measuring the size of large circular DNAs, using gamma-irradiation to introduce limited double-strand breaks followed by sizing of the linear DNAs by pulsed-field electrophoresis.« less
Two-wavelength laser-diode heterodyne interferometry with one phasemeter
NASA Astrophysics Data System (ADS)
Onodera, Ribun; Ishii, Yukihiro
1995-12-01
A two-wavelength laser-diode interferometer that is based on heterodyne detection with one phasemeter has been constructed. Two laser diodes are frequency modulated by mutually inverted sawtooth currents on an unbalanced interferometer. One can measure the tested phase at a synthetic wavelength from the sum of the interference beat signals by synchronizing them with the modulation frequency. The experimental result presented shows a phase-measurement range with a 4.7- mu m synthetic wavelength.
A linearization of quantum channels
NASA Astrophysics Data System (ADS)
Crowder, Tanner
2015-06-01
Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.
Overload protection system for power inverter
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1977-01-01
An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.
Kaempferol stimulates bone sialoprotein gene transcription and new bone formation.
Yang, Li; Takai, Hideki; Utsunomiya, Tadahiko; Li, Xinyue; Li, Zhengyang; Wang, Zhitao; Wang, Shuang; Sasaki, Yoko; Yamamoto, Hirotsugu; Ogata, Yorimasa
2010-08-15
Kaempferol is a typical flavonol-type flavonoid that is present in a variety of vegetables and fruits, and has a protective effect on postmenopausal bone loss. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone and could be crucial for osteoblast differentiation, bone matrix mineralization and tumor metastasis. In the present study we investigated the regulation of BSP transcription by kaempferol in rat osteoblast-like UMR106 cells, and the effect of kaempferol on new bone formation. Kaempferol (5 microM) increased BSP and Osterix mRNA levels at 12 h and up-regulated Runx2 mRNA expression at 6 h. Kaempferol increased luciferase activity of the construct pLUC3, which including the promoter sequence between nucleotides -116 to +60. Transcriptional stimulation by kaempferol abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, and FRE elements. Gel shift analyses showed that kaempferol increased nuclear protein binding to CRE and FRE elements, whereas the CCAAT-protein complex did not change after kaempferol stimulation. Twelve daily injections of 5 microM kaempferol directly into the periosteum of parietal bones of newborn rats increased new bone formation. These data suggest that kaempferol increased BSP gene transcription mediated through inverted CCAAT, CRE, and FRE elements in the rat BSP gene promoter, and could induce osteoblast activities in the early stage of bone formation. (c) 2010 Wiley-Liss, Inc.
High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun
Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.
2016-02-01
Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less
High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.
Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less
Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno
2008-08-01
Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.
Lei, Wanjun; Ni, Dapeng; Wang, Yujun; Shao, Junjie; Wang, Xincun; Yang, Dan; Wang, Jinsheng; Chen, Haimei; Liu, Chang
2016-02-22
Astragalus membranaceus is an important medicinal plant in Asia. Several of its varieties have been used interchangeably as raw materials for commercial production. High resolution genetic markers are in urgent need to distinguish these varieties. Here, we sequenced and analyzed the chloroplast genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao using the next generation DNA sequencing technology. The genome was assembled using Abyss and then subjected to gene prediction using CPGAVAS and repeat analysis using MISA, Tandem Repeats Finder, and REPuter. Finally, the genome was subjected phylogenetic and comparative genomic analyses. The complete genome is 123,582 bp long, containing only one copy of the inverted repeat. Gene prediction revealed 110 genes encoding 76 proteins, 30 tRNAs, and four rRNAs. Five intra-specific hypermutation loci were identified, three of which are heteroplasmic. Furthermore, three gene losses and two large inversions were identified. Comparative genomic analyses demonstrated the dynamic nature of the Papilionoideae chloroplast genomes, which showed occurrence of numerous hypermutation loci, frequent gene losses, and fragment inversions. Results obtained herein elucidate the complex evolutionary history of chloroplast genomes and have laid the foundation for the identification of genetic markers to distinguish A. membranaceus varieties.
Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe
2016-02-15
Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
NASA Astrophysics Data System (ADS)
Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung
2016-03-01
In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
NASA Astrophysics Data System (ADS)
Rewieński, M.; Lamecki, A.; Mrozowski, M.
2013-09-01
This paper proposes a technique, based on the Inexact Shift-Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented results of numerical experiments confirm the technique can be effectively applied to challenging, large-scale problems characterized by very dense spectra, such as resonant cavities with spatial dimensions which are large with respect to wavelengths of the resonating electromagnetic fields. It is also shown that the proposed scheme based on inexact linear solves delivers superior performance, as compared to methods which rely on exact linear solves, indicating tremendous potential of the 'inexact solve' concept. Finally, the scheme which generates an extended projection basis is found to provide a cost-efficient alternative to classical deflation schemes when several eigenvalues are computed.
Interfacial fluid instabilities and Kapitsa pendula.
Krieger, Madison S
2017-07-01
The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-01-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3′ end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. PMID:28606943
Hao, Chenyang; Tang, Saijun; Zhang, Xueyong; Li, Tian
2014-01-01
To better understand the transcriptional regulation of high molecular weight glutenin subunit (HMW-GS) expression, we isolated four Glu-1Bx promoters from six wheat cultivars exhibiting diverse protein expression levels. The activities of the diverse Glu-1Bx promoters were tested and compared with β-glucuronidase (GUS) reporter fusions. Although all the full-length Glu-1Bx promoters showed endosperm-specific activities, the strongest GUS activity was observed with the 1Bx7OE promoter in both transient expression assays and stable transgenic rice lines. A 43 bp insertion in the 1Bx7OE promoter, which is absent in the 1Bx7 promoter, led to enhanced expression. Analysis of promoter deletion constructs confirmed that a 185 bp MITE (miniature inverted-repeat transposable element) in the 1Bx14 promoter had a weak positive effect on Glu-1Bx expression, and a 54 bp deletion in the 1Bx13 promoter reduced endosperm-specific activity. To investigate the effect of the 43 bp insertion in the 1Bx7OE promoter, a functional marker was developed to screen 505 Chinese varieties and 160 European varieties, and only 1Bx7-type varieties harboring the 43 bp insertion in their promoters showed similar overexpression patterns. Hence, the 1Bx7OE promoter should be important tool in crop genetic engineering as well as in molecular assisted breeding. PMID:25133580
Collection, quality control and delivery of ground-based magnetic data during ESA's Swarm mission
NASA Astrophysics Data System (ADS)
Macmillan, Susan; Humphries, Thomas; Flower, Simon; Swan, Anthony
2016-04-01
Ground-based magnetic data are used in a variety of ways when analysing satellite data. Selecting satellite data often involves the use of magnetic disturbance indices derived from ground-based stations and inverting satellite magnetic data for models of fields from various sources often requires ground-based data. Ground-based data can also be valuable independent data for validation purposes. We summarise data collection and quality control procedures in place at the British Geological Survey for global ground-based observatory and repeat station data. Whilst ongoing participation in the ICSU World Data System and INTERMAGNET facilitates this work, additional procedures have been specially developed for the Swarm mission. We describe these in detail.
Chew, David S. H.; Choi, Kwok Pui; Leung, Ming-Ying
2005-01-01
Many empirical studies show that there are unusual clusters of palindromes, closely spaced direct and inverted repeats around the replication origins of herpesviruses. In this paper, we introduce two new scoring schemes to quantify the spatial abundance of palindromes in a genomic sequence. Based on these scoring schemes, a computational method to predict the locations of replication origins is developed. When our predictions are compared with 39 known or annotated replication origins in 19 herpesviruses, close to 80% of the replication origins are located within 2% of the genome length. A list of predicted locations of replication origins in all the known herpesviruses with complete genome sequences is reported. PMID:16141192
The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae).
Kim, Na-Rae; Kim, Kyunghee; Lee, Sang-Choon; Lee, Jung-Hoon; Cho, Seong-Hyun; Yu, Yeisoo; Kim, Young-Dong; Yang, Tae-Jin
2016-11-01
Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis.
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less
Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen
2015-01-01
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.
Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen
2015-01-01
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Approaches to linear local gauge-invariant observables in inflationary cosmologies
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Hack, Thomas-Paul; Khavkine, Igor
2018-06-01
We review and relate two recent complementary constructions of linear local gauge-invariant observables for cosmological perturbations in generic spatially flat single-field inflationary cosmologies. After briefly discussing their physical significance, we give explicit, covariant and mutually invertible transformations between the two sets of observables, thus resolving any doubts about their equivalence. In this way, we get a geometric interpretation and show the completeness of both sets of observables, while previously each of these properties was available only for one of them.
A photovoltaic generator on coconut island
NASA Astrophysics Data System (ADS)
Sheridan, N. R.
A description is given of the design principles of a photovoltaic—diesel power generator that has been constructed on Coconut Island, Torres Strait, to supply a village of 130 people with 240 V: 50 Hz electricity. Even though the solar fraction is only 0.4, the system sets a precedent for Australia with an array size of 23 kW. The uniqueness arises, however, from the fact that it is a stand-alone, inverter-driven system of considerable size with a sine-wave output.
Operating temperatures of open-rack installed photovoltaic inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Wang, L.; Kurtz, S.
This paper presents a model for evaluating the heat-sink and component temperatures of open-rack installed photovoltaic inverters. These temperatures can be used for predicting inverter reliability. Inverter heat-sink temperatures were measured for inverters connected to three grid-connected PV (photovoltaic) test systems in Golden, Colorado, US. A model is proposed for calculating the inverter heat-sink temperature based on the ambient temperature, the ratio of the consumed power to the rated power of the inverter, and the measured wind speed. To verify and study this model, more than one year of inverter DC/AC power, irradiance, wind speed, and heat sink temperature risemore » data were collected and analyzed. The model is shown to be accurate in predicting average inverter temperatures, but will require further refinement for prediction of transient temperatures.« less
Goodwin, Stephen B; McCorison, Cassandra B; Cavaletto, Jessica R; Culley, David E; LaButti, Kurt; Baker, Scott E; Grigoriev, Igor V
2016-08-01
Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
A Virus-Derived Stacked RNAi Construct Confers Robust Resistance to Cassava Brown Streak Disease
Beyene, Getu; Chauhan, Raj Deepika; Ilyas, Muhammad; Wagaba, Henry; Fauquet, Claude M.; Miano, Douglas; Alicai, Titus; Taylor, Nigel J.
2017-01-01
Cassava brown streak disease (CBSD) threatens food and economic security for smallholder farmers throughout East and Central Africa, and poses a threat to cassava production in West Africa. CBSD is caused by two whitefly-transmitted virus species: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) (Genus: Ipomovirus, Family Potyviridae). Although varying levels of tolerance have been achieved through conventional breeding, to date, effective resistance to CBSD within East African cassava germplasm has not been identified. RNAi technology was utilized to integrate CBSD resistance into the Ugandan farmer-preferred cassava cultivar TME 204. Transgenic plant lines were generated expressing an inverted repeat construct (p5001) derived from coat-protein (CP) sequences of CBSV and UCBSV fused in tandem. Northern blots using probes specific for each CP sequence were performed to characterize 169 independent transgenic lines for accumulation of CP-derived siRNAs. Transgenic plant lines accumulating low, medium and high levels of siRNAs were bud graft challenged with the virulent CBSV Naliendele isolate alone or in combination with UCBSV. Resistance to CBSD in the greenhouse directly correlated to levels of CP-derived siRNAs as determined by visual assessment of leaf and storage root symptoms, and RT-PCR diagnosis for presence of the pathogens. Low expressing lines were found to be susceptible to CBSV and UCBSV, while medium to high accumulating plant lines were resistant to both virus species. Absence of detectable virus in the best performing p5001 transgenic lines was further confirmed by back-inoculation via sap or graft challenge to CBSD susceptible Nicotiana benthamiana and cassava cultivar 60444, respectively. Data presented shows robust resistance of transgenic p5001 TME 204 lines to both CBSV and UCBSV under greenhouse conditions. Levels of resistance correlated directly with levels of transgene derived siRNA expression such that the latter can be used as predictor of resistance to CBSD. PMID:28149300
Wachter, Shaun; Raghavan, Rahul; Wachter, Jenny; Minnick, Michael F
2018-04-11
Coxiella burnetii is a Gram-negative gammaproteobacterium and zoonotic agent of Q fever. C. burnetii's genome contains an abundance of pseudogenes and numerous selfish genetic elements. MITEs (miniature inverted-repeat transposable elements) are non-autonomous transposons that occur in all domains of life and are thought to be insertion sequences (ISs) that have lost their transposase function. Like most transposable elements (TEs), MITEs are thought to play an active role in evolution by altering gene function and expression through insertion and deletion activities. However, information regarding bacterial MITEs is limited. We describe two MITE families discovered during research on small non-coding RNAs (sRNAs) of C. burnetii. Two sRNAs, Cbsr3 and Cbsr13, were found to originate from a novel MITE family, termed QMITE1. Another sRNA, CbsR16, was found to originate from a separate and novel MITE family, termed QMITE2. Members of each family occur ~ 50 times within the strains evaluated. QMITE1 is a typical MITE of 300-400 bp with short (2-3 nt) direct repeats (DRs) of variable sequence and is often found overlapping annotated open reading frames (ORFs). Additionally, QMITE1 elements possess sigma-70 promoters and are transcriptionally active at several loci, potentially influencing expression of nearby genes. QMITE2 is smaller (150-190 bps), but has longer (7-11 nt) DRs of variable sequences and is mainly found in the 3' untranslated region of annotated ORFs and intergenic regions. QMITE2 contains a GTAG repetitive extragenic palindrome (REP) that serves as a target for IS1111 TE insertion. Both QMITE1 and QMITE2 display inter-strain linkage and sequence conservation, suggesting that they are adaptive and existed before divergence of C. burnetii strains. We have discovered two novel MITE families of C. burnetii. Our finding that MITEs serve as a source for sRNAs is novel. QMITE2 has a unique structure and occurs in large or small versions with unique DRs that display linkage and sequence conservation between strains, allowing for tracking of genomic rearrangements. QMITE1 and QMITE2 copies are hypothesized to influence expression of neighboring genes involved in DNA repair and virulence through transcriptional interference and ribonuclease processing.
Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry
2006-01-01
Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140
Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko
2008-06-23
The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the C. japonica cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.
Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R
2004-07-01
The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.
NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric
Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter
Inverter design for high frequency power distribution
NASA Technical Reports Server (NTRS)
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
Status and Needs of Power Electronics for Photovoltaic Inverters
NASA Astrophysics Data System (ADS)
Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.
2002-06-01
Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less
Comparative study of SiC- and Si-based photovoltaic inverters
NASA Astrophysics Data System (ADS)
Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio
2017-01-01
This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonskaya, Zhanna; Benham, Craig J.; Hearing, Janet
The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component ofmore » oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication.« less
Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?
Kaur, Simranjeet; Pociot, Flemming
2015-07-13
Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value < 10e-16), which highlights their importance in T1D. Functional annotation of T1D genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value < 10e-6). We also identified eight T1D genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.
Dinsmore, P K; Klaenhammer, T R
1997-05-01
A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.
Yamada, Kazuteru; Kaneko, Jun; Kamio, Yoshiyuki; Itoh, Yoshifumi
2008-01-01
Pectobacterium carotovorum subsp. carotovorum strain Er simultaneously produces the phage tail-like bacteriocin carotovoricin (Ctv) and pectin lyase (Pnl) in response to DNA-damaging agents. The regulatory protein RdgB of the Mor/C family of proteins activates transcription of pnl through binding to the promoter. However, the optimal temperature for the synthesis of Ctv (23°C) differs from that for synthesis of Pnl (30°C), raising the question of whether RdgB directly activates ctv transcription. Here we report that RdgB directly regulates Ctv synthesis. Gel mobility shift assays demonstrated RdgB binding to the P0, P1, and P2 promoters of the ctv operons, and DNase I footprinting determined RdgB-binding sequences (RdgB boxes) on these and on the pnl promoters. The RdgB box of the pnl promoter included a perfect 7-bp inverted repeat with high binding affinity to the regulator (Kd [dissociation constant] = 150 nM). In contrast, RdgB boxes of the ctv promoters contained an imperfect inverted repeat with two or three mismatches that consequently reduced binding affinity (Kd = 250 to 350 nM). Transcription of the rdgB and ctv genes was about doubled at 23°C compared with that at 30°C. In contrast, the amount of pnl transcription tripled at 30°C. Thus, the inverse synthesis of Ctv and Pnl as a function of temperature is apparently controlled at the transcriptional level, and reduced rdgB expression at 30°C obviously affected transcription from the ctv promoters with low-affinity RdgB boxes. Pathogenicity toward potato tubers was reduced in an rdgB knockout mutant, suggesting that the RdgAB system contributes to the pathogenicity of this bacterium, probably by activating pnl expression. PMID:18689515
Scott, Stuart A; Cohen, Ninette; Brandt, Tracy; Warburton, Peter E; Edelmann, Lisa
2010-09-01
Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.
A Gammaherpesviral Internal Repeat Contributes to Latency Amplification
Thakur, Nagendra N.; El-Gogo, Susanne; Steer, Beatrix; Freimüller, Klaus; Waha, Andreas; Adler, Heiko
2007-01-01
Background Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. Methodology/Principal Findings We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. Conclusions/Significance These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression. PMID:17710133
Fault-tolerant three-level inverter
Edwards, John; Xu, Longya; Bhargava, Brij B.
2006-12-05
A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.
21 CFR 184.1859 - Invert sugar.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous solution of inverted or...
Repeatability of nest morphology in African weaver birds.
Walsh, Patrick T; Hansell, Mike; Borello, Wendy D; Healy, Susan D
2010-04-23
It is generally assumed that birds build nests according to a genetic 'template', little influenced by learning or memory. One way to confirm the role of genetics in nest building is to assess the repeatability of nest morphology with repeated nest attempts. Solitary weaver birds, which build multiple nests in a single breeding season, are a useful group with which to do this. Here we show that repeatability of nest morphology was low, but significant, in male Southern Masked weaver birds and not significant in the Village weavers. The larger bodied Village weavers built larger nests than did Southern Masked weavers, but body size did not explain variation in Southern Masked weaver nest dimensions. Nests built by the same male in both species got shorter and lighter as more nests were constructed. While these data demonstrate the potential for a genetic component of variation in nest building in solitary weavers, it is also clear that there remains plenty of scope in both of these species for experience to shape nest construction.
Photovoltaic system with improved DC connections and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott
A micro-inverter assembly includes a housing having an opening formed in a bottom surface thereof, and a direct current (DC)-to-alternating current (AC) micro-inverter disposed within the housing at a position adjacent to the opening. The micro-inverter assembly further includes a micro-inverter DC connector electrically coupled to the DC-to-AC micro-inverter and positioned within the opening of the housing, the micro-inverter DC connector having a plurality of exposed electrical contacts.
Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters
NASA Technical Reports Server (NTRS)
Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.
1989-01-01
The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some sample results are compared to data obtained from testing hardware inverters.
Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters
NASA Technical Reports Server (NTRS)
Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.
1989-01-01
The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramar, M.; Lin, H.; Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu
We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, wemore » compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.« less
Strength Investigations in Aircraft Construction Under Repeated Application of the Load
NASA Technical Reports Server (NTRS)
Gassner, E.
1946-01-01
In the calculation of the dimensions of modern machines and building constructions, account is taken of the frequency of the occurrence of the anticipated loads. It is generally assumed that these loads will be repeated an infinite number, or at any rate some millions, of times during the total working life of the construction, When calculating the dimensions of the structural parts of aircraft, on the contrary, a consideration only of those frequencies in the appearance of the loads which actually come into play in the various states of stress is allowable. This is because in aircraft construction it is absolutely essential not only to ensure adequate structural strength but also to keep down the structural weight to the lowest possible limit, Strength tests in which this requirement is directly taken into account have recently been carried out by the DVL Material Strength Department.
Shimizu, Emi; Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Saito, Ryoichiro; Sodek, Jaro; Ogata, Yorimasa
2006-07-01
Bone sialoprotein (BSP) is a noncollagenous protein of the mineralized bone extracellular matrix. We here report that FGF2 and cAMP act synergistically to stimulate BSP gene expression. Treatment of ROS 17/2.8 cells with either 10 ng/ml FGF2 or 1 microM FSK for 6 h resulted in 5.4- and 8.2-fold increases, respectively, in the levels of BSP mRNA. However, in the presence of both FGF2 and forskolin (FGF/FSK), BSP mRNA levels were increased synergistically by 20.4-fold. Using a luciferase reporter construct, encompassing BSP promoter nucleotides -116 to +60, transcription was also increased synergistically by 15.0-fold with FGF/FSK, compared to stimulations of 2.6- and 5.3-fold, respectively, for FGF2 and FSK alone. Transcriptional stimulation by FGF/FSK abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, FRE and Pit-1 elements. Whereas the FRE-protein complex was increased by FGF2 and FGF/FSK, the Pit-1-protein complex was decreased by FSK and FGF/FSK. Notably, transcriptional activity induced by FGF/FSK was blocked by protein kinase A, tyrosine kinase and MEK inhibitors. These studies indicate that the combinatorial effects of FGF and FSK act through PKA, tyrosine kinase and MAP-kinase-dependent pathways, which target the inverted CCAAT, CRE, FRE and Pit-1 elements in the BSP gene to synergistically increase BSP expression.
Status and Needs of Power Electronics for Photovoltaic Inverters: Summary Document
NASA Astrophysics Data System (ADS)
West, R.; Mauch, K.; Qin, Y. C.; Mohan, N.; Bonn, R.
2002-05-01
Photovoltaic inverters are the most mature of any DER inverter, and their mean time to first failure (MTFF) is about five years. This is an unacceptable MTFF and will inhibit the rapid expansion of PV. With all DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. The increasing need for all of these technologies to have a reliable inverter provides a unique opportunity to address these needs with focused R&D development projects. The requirements for these inverters are so similar that modular designs with universal features are obviously the best solution for a 'next generation' inverter. A 'next generation' inverter will have improved performance, higher reliability, and improved profitability. Sandia National Laboratories has estimated that the development of a 'next generation' inverter could require approximately 20 man-years of work over an 18- to 24-month time frame, and that a government-industry partnership will greatly improve the chances of success.
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro
2006-04-14
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
An SCR inverter with an integral battery charger for electric vehicles
NASA Technical Reports Server (NTRS)
Thimmeach, D.
1983-01-01
The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.
Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu
2009-01-01
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593
Oggioni, M R; Claverys, J P
1999-10-01
A survey of all Streptococcus pneumoniae GenBank/EMBL DNA sequence entries and of the public domain sequence (representing more than 90% of the genome) of an S. pneumoniae type 4 strain allowed identification of 108 copies of a 107-bp-long highly repeated intergenic element called RUP (for repeat unit of pneumococcus). Several features of the element, revealed in this study, led to the proposal that RUP is an insertion sequence (IS)-derivative that could still be mobile. Among these features are: (1) a highly significant homology between the terminal inverted repeats (IRs) of RUPs and of IS630-Spn1, a new putative IS of S. pneumoniae; and (2) insertion at a TA dinucleotide, a characteristic target of several members of the IS630 family. Trans-mobilization of RUP is therefore proposed to be mediated by the transposase of IS630-Spn1. To account for the observation that RUPs are distributed among four subtypes which exhibit different degrees of sequence homogeneity, a scenario is invoked based on successive stages of RUP mobility and non-mobility, depending on whether an active transposase is present or absent. In the latter situation, an active transposase could be reintroduced into the species through natural transformation. Examination of sequences flanking RUP revealed a preferential association with ISs. It also provided evidence that RUPs promote sequence rearrangements, thereby contributing to genome flexibility. The possibility that RUP preferentially targets transforming DNA of foreign origin and subsequently favours disruption/rearrangement of exogenous sequences is discussed.
Source Repeatability of Time-Lapse Offset VSP Surveys for Monitoring CO2 Injection
NASA Astrophysics Data System (ADS)
Zhang, Z.; Huang, L.; Rutledge, J. T.; Denli, H.; Zhang, H.; McPherson, B. J.; Grigg, R.
2009-12-01
Time-lapse vertical seismic profiling (VSP) surveys have the potential to remotely track the migration of injected CO2 within a geologic formation. To accurately detect small changes due to CO2 injection, the sources of time-lapse VSP surveys must be located exactly at the same positions. However, in practice, the source locations can vary from one survey to another survey. Our numerical simulations demonstrate that a variation of a few meters in the VSP source locations can result in significant changes in time-lapse seismograms. To address the source repeatability issue, we apply double-difference tomography to downgoing waves of time-lapse offset VSP data to invert for the source locations and the velocity structures simultaneously. In collaboration with Resolute Natural Resources, Navajo National Oil and Gas Company, and the Southwest Regional Partnership on Carbon Sequestration under the support of the U.S. Department of Energy’s National Energy Technology Laboratory, one baseline and two repeat offset VSP datasets were acquired in 2007-2009 for monitoring CO2 injection at the Aneth oil field in Utah. A cemented geophone string was used to acquire the data for one zero-offset and seven offset source locations. During the data acquisition, there was some uncertainty in the repeatability of the source locations relative to the baseline survey. Our double-difference tomography results of the Aneth time-lapse VSP data show that the source locations for different surveys are separated up to a few meters. Accounting for these source location variations during VSP data analysis will improve reliability of time-lapse VSP monitoring.
Galli, Alvaro; Cervelli, Tiziana; Schiestl, Robert H
2003-05-01
The DNA polymerase delta (Pol3p/Cdc2p) allele pol3-t of Saccharomyces cerevisiae has previously been shown to increase the frequency of deletions between short repeats (several base pairs), between homologous DNA sequences separated by long inverted repeats, and between distant short repeats, increasing the frequency of genomic deletions. We found that the pol3-t mutation increased intrachromosomal recombination events between direct DNA repeats up to 36-fold and interchromosomal recombination 14-fold. The hyperrecombination phenotype of pol3-t was partially dependent on the Rad52p function but much more so on Rad1p. However, in the double-mutant rad1 Delta rad52 Delta, the pol3-t mutation still increased spontaneous intrachromosomal recombination frequencies, suggesting that a Rad1p Rad52p-independent single-strand annealing pathway is involved. UV and gamma-rays were less potent inducers of recombination in the pol3-t mutant, indicating that Pol3p is partly involved in DNA-damage-induced recombination. In contrast, while UV- and gamma-ray-induced intrachromosomal recombination was almost completely abolished in the rad52 or the rad1 rad52 mutant, there was still good induction in those mutants in the pol3-t background, indicating channeling of lesions into the above-mentioned Rad1p Rad52p-independent pathway. Finally, a heterozygous pol3-t/POL3 mutant also showed an increased frequency of deletions and MMS sensitivity at the restrictive temperature, indicating that even a heterozygous polymerase delta mutation might increase the frequency of genetic instability.
Microgrid and Inverter Control and Simulator Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-13
A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule producesmore » movies of wind data with a web interface.« less
Design and Implementation of nine level multilevel Inverter
NASA Astrophysics Data System (ADS)
Dhineshkumar, K.; Subramani, C.
2018-04-01
In this paper the solar based boost converter integrated Nine level multilevel inverter presented. It uses 7 switches to produce nine level output stepped waveform. The aim of the work to produce 9 level wave form using solar and boost converter. The conventional inverter has multiple sources and has 16 switches are required and also more number of voltage sources required. The proposed inverter required single solar panel and reduced number of switches and integrated boost converter which increase the input voltage of the inverter. The proposed inverter simulated and compared with R load using Mat lab and prototype model experimentally verified. The proposed inverter can be used in n number of solar applications.
System and method for regulating resonant inverters
Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO
2007-08-28
A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.
Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan
Synchronous machines have traditionally acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, with the increased integration of distributed renewable resources and energy-storage technologies, there is a need to systematically acknowledge the dynamics of power-electronics inverters - the primary energy-conversion interface in such systems - in all aspects of modeling, analysis, and control of the bulk power network. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. The inverter model is formulatedmore » such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less
Klobutcher, L A; Swanton, M T; Donini, P; Prescott, D M
1981-01-01
In hypotrichous ciliates, all of the macronuclear DNA is in the form of low molecular weight molecules with an average size of approximately 2200 base pairs. Total macronuclear DNA from four hypotrichs has been shown to have inverted terminal repeats by direct sequence analysis. In Oxytricha nova, Oxytricha sp., and Stylonychia pustulata, this terminal sequence may be written as 5'-C4A4C4A4C4 ... 3'-G4T4G4T4G4T4G4T4G4 ... In Euplotes aediculatus, the sequences is similar but differs in the lengths of the duplex region (28 base pairs) and of the putative 3' extension (14 base pairs). Also in Euplotes, a second common sequence of 5 base pairs (A-A-C-T-T-T-T-G-A-A) occurs internal to the terminal repeat and a 17-base-pair heterogeneous region: 5'-C4A4C4A4C4A4C4(X)17T-T-G-A-A ... 3'-G2T4G4T4G4T4G4T4G4T4G4(X)17A-A-C-T-T ... The length of the terminal repeat sequence for O. nova was confirmed in cloned macronuclear DNA molecules. Images PMID:6265931
Recognizing the enemy within: licensing RNA-guided genome defense
Dumesic, Phillip A.; Madhani, Hiten D.
2014-01-01
How do cells distinguish normal genes from transposons? Although much has been learned about RNAi-related RNA silencing pathways responsible for genome defense, this fundamental question remains. The literature points to several classes of mechanisms. In some cases, double-stranded RNA structures produced by transposon inverted repeats or antisense integration trigger endo-siRNA biogenesis. In other instances, DNA features associated with transposons—such as their unusual copy number, chromosomal arrangement, and/or chromatin environment—license RNA silencing. Finally, recent studies have identified improper transcript processing events, such as stalled pre-mRNA splicing, as signals for siRNA production. Thus, the suboptimal gene expression properties of selfish elements can enable their identification by RNA silencing pathways. PMID:24280023
Mammalian DNA enriched for replication origins is enriched for snap-back sequences.
Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G
1984-11-15
Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.
Importance Sampling of Word Patterns in DNA and Protein Sequences
Chan, Hock Peng; Chen, Louis H.Y.
2010-01-01
Abstract Monte Carlo methods can provide accurate p-value estimates of word counting test statistics and are easy to implement. They are especially attractive when an asymptotic theory is absent or when either the search sequence or the word pattern is too short for the application of asymptotic formulae. Naive direct Monte Carlo is undesirable for the estimation of small probabilities because the associated rare events of interest are seldom generated. We propose instead efficient importance sampling algorithms that use controlled insertion of the desired word patterns on randomly generated sequences. The implementation is illustrated on word patterns of biological interest: palindromes and inverted repeats, patterns arising from position-specific weight matrices (PSWMs), and co-occurrences of pairs of motifs. PMID:21128856
The complete chloroplast genome of a medicinal plant Epimedium koreanum Nakai (Berberidaceae).
Lee, Jung-Hoon; Kim, Kyunghee; Kim, Na-Rae; Lee, Sang-Choon; Yang, Tae-Jin; Kim, Young-Dong
2016-11-01
Epimedium koreanum is a perennial medicinal plant distributed in Eastern Asia. The complete chloroplast genome sequences of E. koreanum was obtained by de novo assembly using whole genome next-generation sequences. The chloroplast genome of E. koreanum was 157 218 bp in length and separated into four distinct regions such as large single copy region (89 600 bp), small single copy region (17 222 bp) and a pair of inverted repeat regions (25 198 bp). The genome contained a total of 112 genes including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that E. koreanum is most closely related to Berberis bealei, a traditional medicinal plant in the Berberidaceae family.
A-to-I editing of coding and non-coding RNAs by ADARs
Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264
Ali, Md Emran; Ishii, Yuko; Taniguchi, Jyun-Ichi; Waliullah, Sumyya; Kobayashi, Kappei; Yaeno, Takashi; Yamaoka, Naoto; Nishiguchi, Masamichi
2018-05-01
The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.
The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis.
Duan, Naibin; Sun, Honghe; Wang, Nan; Fei, Zhangjun; Chen, Xuesen
2016-07-01
The complete mitochondrial genome sequence of Malus hupehensis var. pinyiensis, a widely used apple rootstock, was determined using the Illumina high-throughput sequencing approach. The genome is 422,555 bp in length and has a GC content of 45.21%. It is separated by a pair of inverted repeats of 32,504 bp, to form a large single copy region of 213,055 bp and a small single copy region of 144,492 bp. The genome contains 38 protein-coding genes, four pseudogenes, 25 tRNA genes, and three rRNA genes. The genome is 25,608 bp longer than that of M. domestica, and several structural variations between these two mitogenomes were detected.
Characterization of species-specific repeated DNA sequences from B. nigra.
Gupta, V; Lakshmisita, G; Shaila, M S; Jagannathan, V; Lakshmikumaran, M S
1992-07-01
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.
Reuter-Lorenz, P A; Givis, R P; Moscovitch, M
1983-01-01
Right-handers and inverted and non-inverted left-handers viewed emotional expressions in one hemifield and, simultaneously, a neutral expression of the same poser in the other hemifield. Subjects were required to identify the side containing the affective face. Happy faces with open (i.e. salient) and closed mouth smiles and sad faces were used as stimuli. For right-handers and inverters reaction time was faster to right hemifield presentations for happy faces and to left hemifield presentations for sad faces. Non-inverters showed the reverse pattern. The saliency of the happy expressions had no effect on the magnitude and direction of asymmetry for any group. The data support the hypothesis of differential hemispheric specialization for positive and negative emotion and demonstrate opposite patterns of asymmetry in affect perception for inverted and non-inverted left-handers.
A new method for overhead drilling.
Rempel, David; Star, Demetra; Barr, Alan; Gibbons, Billy; Janowitz, Ira
2009-12-01
In the construction sector, overhead drilling into concrete or metal ceilings is a strenuous task associated with shoulder, neck and back musculoskeletal disorders due to the large applied forces and awkward arm postures. Two intervention devices, an inverted drill press and a foot lever design, were developed then compared to the usual method by construction workers performing their normal overhead drilling activities (n = 14). While the intervention devices were rated as less fatiguing than the usual method, their ratings on usability measures were worse than the usual method. The study demonstrates that the intervention devices can reduce fatigue; however, additional modifications are necessary in order to improve usability and productivity. Devices designed to improve workplace safety may need to undergo several rounds of field testing and modification prior to implementation.
Voltage balanced multilevel voltage source converter system
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.
Voltage balanced multilevel voltage source converter system
Peng, F.Z.; Lai, J.S.
1997-07-01
Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Impacts of Inverter-Based Advanced Grid Support Functions on Islanding Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Hoke, Anderson; Miller, Brian
A long-standing requirement for inverters paired with distributed energy resources is that they are required to disconnect from the electrical power system (EPS) when an electrical island is formed. In recent years, advanced grid support controls have been developed for inverters to provide voltage and frequency support by integrating functions such as voltage and frequency ride-through, volt-VAr control, and frequency-Watt control. With these new capabilities integrated into the inverter, additional examination is needed to determine how voltage and frequency support will impact pre-existing inverter functions like island detection. This paper inspects how advanced inverter functions will impact its ability tomore » detect the formation of an electrical island. Results are presented for the unintentional islanding laboratory tests of three common residential-scale photovoltaic inverters performing various combinations of grid support functions. For the inverters tested, grid support functions prolonged island disconnection times slightly; however, it was found that in all scenarios the inverters disconnected well within two seconds, the limit imposed by IEEE Std 1547-2003.« less
Construction and validation of a Tamil logMAR chart.
Varadharajan, Srinivasa; Srinivasan, Krithica; Kumaresan, Brindha
2009-09-01
To design, construct and validate a new Tamil logMAR visual acuity chart based on current recommendations. Ten Tamil letters of equal legibility were identified experimentally and were used in the chart. Two charts, one internally illuminated and one externally illuminated, were constructed for testing at 4 m distance. The repeatability of the two charts was tested. For validation, the two charts were compared with a standard English logMAR chart (ETDRS). When compared to the ETDRS chart, a difference of 0.06 +/- 0.07 and 0.07 +/- 0.07 logMAR was found for the internally and externally illuminated charts respectively. Limits of agreement between the internally illuminated Tamil logMAR chart and ETDRS chart were found to be (-0.08, 0.19), and (-0.07, 0.20) for the externally illuminated chart. The test - retest results showed a difference of 0.02 +/- 0.04 and 0.02 +/- 0.06 logMAR for the internally and externally illuminated charts respectively. Limits of agreement for repeated measurements for the internally illuminated Tamil logMAR chart were found to be (-0.06, 0.10), and (-0.10, 0.14) for the externally illuminated chart. The newly constructed Tamil logMAR charts have good repeatability. The difference in visual acuity scores between the newly constructed Tamil logMAR chart and the standard English logMAR chart was within acceptable limits. This new chart can be used for measuring visual acuity in the literate Tamil population.
Chen, Jonathan L; VanEtten, Damian M; Fountain, Matthew A; Yildirim, Ilyas; Disney, Matthew D
2017-07-11
RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.
Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Kumar, Lalit; Luthra, Kalpana; Agarwal, Sanjay Kumar; Sreenivas, Vishnubhatla
2013-01-01
Pneumocystis jirovecii is an opportunistic pathogen that causes severe pneumonia in immunocompromised patients. To study the genetic diversity of P. jirovecii in India the upstream conserved sequence (UCS) region of Pneumocystis genome was amplified, sequenced and genotyped from a set of respiratory specimens obtained from 50 patients with a positive result for nested mitochondrial large subunit ribosomal RNA (mtLSU rRNA) PCR during the years 2005-2008. Of these 50 cases, 45 showed a positive PCR for UCS region. Variations in the tandem repeats in UCS region were characterized by sequencing all the positive cases. Of the 45 cases, one case showed five repeats, 11 cases showed four repeats, 29 cases showed three repeats and four cases showed two repeats. By running amplified DNA from all these cases on a high-resolution gel, mixed infection was observed in 12 cases (26.7%, 12/45). Forty three of 45 cases included in this study had previously been typed at mtLSU rRNA and internal transcribed spacer (ITS) region by our group. In the present study, the genotypes at those two regions were combined with UCS repeat patterns to construct allelic profiles of 43 cases. A total of 36 allelic profiles were observed in 43 isolates indicating high genetic variability. A statistically significant association was observed between mtLSU rRNA genotype 1, ITS type Ea and UCS repeat pattern 4. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manturov, Vassily O
2010-06-29
In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtualmore » knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.« less
Optimum Construction of Heating Coil for Domestic Induction Cooker
NASA Astrophysics Data System (ADS)
Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai
2010-10-01
The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.
The Composition and Thermal State of Mars
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J.
Previous studies concerning the internal composition and constitution of Mars are essentially limited to forward modeling of some relatively simple models of the martian internal structure and therefore provide little information on what we can actually learn from the data. In view of the limitations inherent in forward models, we propose to invert a number of geophysical data to directly constrain the martian composition and thermal state. The inverse method employed here is general and provides through the unified description of phase equilibria a way of constructing planetary models where the radial variation of mineralogy and physical structure with pressure and temperature is naturally specified, allowing us to directly invert for chemical composition and temperature. Given these parameters mineralogy, Mg# (MgO/(MgO+FeO)) and bulk physical properties can be calculated. The approach used here has recently been applied successfully to the Moon and Earth in analyses of both eletromagnetic sounding as well as seismic data. The data used in the inversion are, mean moment of inertia, mean density, second degree tidal Love number, tidal dissipation factor and of course mean radius.
Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate Switching Time Analysis
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; Macleod, Todd C.; Ho, Fat D.
2006-01-01
Previous research investigated the modeling of a N Wga te constructed of Metal-Ferroelectric- Semiconductor Field-Effect Transistors (MFSFETs) to obtain voltage transfer curves. The NAND gate was modeled using n-channel MFSFETs with positive polarization for the standard CMOS n-channel transistors and n-channel MFSFETs with negative polarization for the standard CMOS p-channel transistors. This paper investigates the MFSFET NAND gate switching time propagation delay, which is one of the other important parameters required to characterize the performance of a logic gate. Initially, the switching time of an inverter circuit was analyzed. The low-to-high and high-to-low propagation time delays were calculated. During the low-to-high transition, the negatively polarized transistor pulls up the output voltage, and during the high-to-low transition, the positively polarized transistor pulls down the output voltage. The MFSFETs were simulated by using a previously developed model which utilized a partitioned ferroelectric layer. Then the switching time of a 2-input NAND gate was analyzed similarly to the inverter gate. Extension of this technique to more complicated logic gates using MFSFETs will be studied.
He, Xuexia; Chow, WaiLeong; Liu, Fucai; Tay, BengKang; Liu, Zheng
2017-01-01
2D transition metal dichalcogenides are promising channel materials for the next-generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS 2 ) few layers and organic crystal - 5,6,11,12-tetraphenylnaphthacene (rubrene). In this work, ambipolar field-effect transistors are successfully achieved based on MoS 2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm 2 V -1 s -1 , respectively. The ambipolar behavior is explained based on the band alignment of MoS 2 and rubrene. Furthermore, being a building block, the MoS 2 /rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of -26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng
2017-07-01
Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.
Connecting the Past and Present: Reading History.
ERIC Educational Resources Information Center
Zarnowski, Myra
Educational theorists repeatedly call for more hands-on, authentic, interpretative instruction in social studies. They characterize such instruction as "helping students understand the knowledge construction process" or teaching students "to construct their own historical narratives." While there have been some exceptions, most…
Integral inverter/battery charger for use in electric vehicles
NASA Technical Reports Server (NTRS)
Thimmesch, D.
1983-01-01
The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).
Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.
Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim
2017-01-01
Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362
Anomalous electron collimation in HgTe quantum wells with inverted band structure.
Zou, Y L; Zhang, L B; Song, J T
2013-02-20
We investigate the electron collimation behavior in HgTe quantum wells (QWs) with a magnetic-electric barrier induced by a ferromagnetic metal stripe. We find that electrons can transmit perfectly through the magnetic-electric barrier at some specific incidence angles. These angles can be controlled by the tuning gate voltage, local magnetic field and Fermi energy of incident electrons in QWs with appropriate barrier length. This collimation feature can be used to construct momentum filters in HgTe QWs and has potential application in nanodevices.
2010-09-01
lithospheric velocity structure for a wide variety of tectonic regions throughout Eurasia and the Middle East. We expect the regionalized models will improve...constructed by combining the 1D joint inversion models within each tectonic region and validated through regional waveform modeling. The velocity models thus...important differences in lithospheric structure between the cratonic regions of Eastern Europe and the tectonic regions of Western Europe and the
New type of transformerless high efficiency inverter
NASA Astrophysics Data System (ADS)
Naaijer, G. J.
Inverter architectures are presented which allow economical ac/dc switching for solar cell array and battery power use in domestic and industrial applications. The efficiencies of currently available inverters are examined and compared with a new 2.2 kW transformerless stepped wave inverter. The inverter has low no-load losses, amounting to 200 Wh/24 hr, and features voltage steps occurring 15-30 times/sine wave period. An example is provided for an array/battery/inverter assembly with the inverter control electronics activating or disconnecting the battery subassemblies based on the total number of activated subassemblies in relation to a reference sinewave, and the need to average the battery subassembly discharge rates. A total harmonic distortion of 6 percent was observed, and the system is noted to be usable as a battery charger.
NASA Astrophysics Data System (ADS)
Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji
We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.
NASA Astrophysics Data System (ADS)
Jana, Suman; Biswas, Pabitra Kumar; Das, Upama
2018-04-01
The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.
Chapter 11.2: Inverters, Power Optimizers, and Microinverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Christopher A
Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less
Control of standing balance while using constructions stilts: comparison of expert and novice users.
Noble, Jeremy W; Singer, Jonathan C; Prentice, Stephen D
2016-01-01
This study examined the control of standing balance while wearing construction stilts. Motion capture data were collected from nine expert stilt users and nine novices. Three standing conditions were analysed: ground, 60 cm stilts and an elevated platform. Each task was also performed with the head extended as a vestibular perturbation. Both expert and novice groups exhibited lower displacement of the whole body centre of mass and centre of pressure on construction stilts. Differences between the groups were only noted in the elevated condition with no stilts, where the expert group had lower levels of medial-lateral displacement of the centre of pressure. The postural manipulation revealed that the expert group had superior balance to the novice group. Conditions where stilts were worn showed lower levels of correspondence to the inverted pendulum model. Under normal conditions, both expert and novice groups were able to control their balance while wearing construction stilts. This work investigated the effects of experience on the control of balance while using construction stilts. Under normal conditions, expert and novice stilt users were able to control their balance while wearing construction stilts. Differences between the expert and novice users were revealed when the balance task was made more difficult, with the experts showing superior balance in these situations.
NASA Astrophysics Data System (ADS)
Li, Qi; Akihiro, Kijima
2007-01-01
The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber (1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats (13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (<20 repeats) were most abundant, accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatellite isolation in other abalone species.
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs.
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-09-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3' end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. © 2017 Morita et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
The Transposable Element Mariner Mediates Germline Transformation in Drosophila Melanogaster
Lidholm, D. A.; Lohe, A. R.; Hartl, D. L.
1993-01-01
A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects. PMID:8394264
The expanding universe of transposon technologies for gene and cell engineering.
Ivics, Zoltán; Izsvák, Zsuzsanna
2010-12-07
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.
Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru
2016-10-01
Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.
DOT National Transportation Integrated Search
2005-10-01
Trenchless technology offers methods by which underground utilities may be installed without damage to overlying pavement, if proper precautions are observed. In the past ten years, repeated improvements in technology, materials, and methods have adv...
Multi-Lagrangians for integrable systems
NASA Astrophysics Data System (ADS)
Nutku, Y.; Pavlov, M. V.
2002-03-01
We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
NASA Astrophysics Data System (ADS)
Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei
2016-01-01
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).
NASA Astrophysics Data System (ADS)
Umarov, Sabir; Tsallis, Constantino
2016-10-01
In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.
A new type of single-phase five-level inverter
NASA Astrophysics Data System (ADS)
Xu, Zhi; Li, Shengnan; Qin, Risheng; Zhao, Yanhang
2017-11-01
At present, Neutral Point Clamped (NPC) multilevel inverter is widely applied in new energy field. However, it has some disadvantages including low utilization rate of direct current (DC) voltage source and the unbalance of neutral potential. Therefore, a new single-phase five level inverter is proposed in this paper. It has two stage structure, the former stage is equivalent to three level DC/DC converter, and the back stage uses H bridge to realize inverter. Compared with the original central clamp type inverter, the new five level inverter can improve the utilization of DC voltage, and realize the neutral point potential balance with hysteresis comparator.
NASA Astrophysics Data System (ADS)
Gu, Fei; Brouwer, Jack; Samuelsen, Scott
2013-09-01
Recent advances in inverter technology have enabled ancillary services such as volt/VAR regulation, SCADA communications, and active power filtering. Smart inverters can not only provide real power, but can be controlled to use excess capacity to provide reactive power compensation, power flow control, and active power filtering without supplementary inverter hardware. A transient level inverter model based on the Solectria 7700 inverter is developed and used to assess these control strategies using field data from an existing branch circuit containing two Amonix 68kW CPV-7700 systems installed at the University of California, Irvine.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1974-01-01
A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
NASA Astrophysics Data System (ADS)
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
A Single-Phase Embedded Z-Source DC-AC Inverter
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
Zuardi, Antonio W; Rodrigues, Natália P; Silva, Angélica L; Bernardo, Sandra A; Hallak, Jaime E C; Guimarães, Francisco S; Crippa, José A S
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase.
Zuardi, Antonio W.; Rodrigues, Natália P.; Silva, Angélica L.; Bernardo, Sandra A.; Hallak, Jaime E. C.; Guimarães, Francisco S.; Crippa, José A. S.
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase. PMID:28553229
Feczko, Eric; Shulman, Gordon L.; Petersen, Steven E.; Pruett, John R.
2014-01-01
Findings from diverse subfields of vision research suggest a potential link between high-level aspects of face perception and concentric form-from-structure perception. To explore this relationship, typical adults performed two adaptation experiments and two masking experiments to test whether concentric, but not nonconcentric, Glass patterns (a type of form-from-structure stimulus) utilize a processing mechanism shared by face perception. For the adaptation experiments, subjects were presented with an adaptor for 5 or 20 s, prior to discriminating a target. In the masking experiments, subjects saw a mask, then a target, and then a second mask. Measures of discriminability and bias were derived and repeated measures analysis of variance tested for pattern-specific masking and adaptation effects. Results from Experiment 1 show no Glass pattern-specific effect of adaptation to faces; results from Experiment 2 show concentric Glass pattern masking, but not adaptation, may impair upright/inverted face discrimination; results from Experiment 3 show concentric and radial Glass pattern masking impaired subsequent upright/inverted face discrimination more than translational Glass pattern masking; and results from Experiment 4 show concentric and radial Glass pattern masking impaired subsequent face gender discrimination more than translational Glass pattern masking. Taken together, these findings demonstrate interactions between concentric form-from-structure and face processing, suggesting a possible common processing pathway. PMID:24563526
Zhang, Huibin; Susanto, Teodorus T.; Wan, Yue
2016-01-01
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems. PMID:27035967
Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F
2005-06-01
To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.
Study of structural change in volcanic and geothermal areas using seismic tomography
NASA Astrophysics Data System (ADS)
Mhana, Najwa; Foulger, Gillian; Julian, Bruce; peirce, Christine
2014-05-01
Long Valley caldera is a large silicic volcano. It has been in a state of volcanic and seismic unrest since 1978. Farther escalation of this unrest could pose a threat to the 5,000 residents and the tens of thousands of tourists who visit the area. We have studied the crustal structure beneath 28 km X 16 km area using seismic tomography. We performed tomographic inversions for the years 2009 and 2010 with a view to differencing it with the 1997 result to look for structural changes with time and whether repeat tomography is a capable of determining the changes in structure in volcanic and geothermal reservoirs. Thus, it might provide a useful tool to monitoring physical changes in volcanoes and exploited geothermal reservoirs. Up to 600 earthquakes, selected from the best-quality events, were used for the inversion. The inversions were performed using program simulps12 [Thurber, 1983]. Our initial results show that changes in both V p and V s were consistent with the migration of CO2 into the upper 2 km or so. Our ongoing work will also invert pairs of years simultaneously using a new program, tomo4d [Julian and Foulger, 2010]. This program inverts for the differences in structure between two epochs so it can provide a more reliable measure of structural change than simply differencing the results of individual years.
Zhang, Huibin; Susanto, Teodorus T; Wan, Yue; Chen, Swaine L
2016-04-12
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Zhao, Qifeng; Hu, Xingti
2013-09-01
Postoperative pulmonary hypertensive crisis (PHC) caused by an inverted left atrial appendage (ILAA) is a rare complication following cardiac surgery. We present a case of 23 day-old male infant who developed postoperative PHC attacks after undergoing cardiopulmonary bypass (CPB) surgery for repair of the coactation of aorta. A hyperechogenic left atrial mass was detected via bedside transthoracic echocardiography (TTE), which was identified as an ILAA and corrected following repeat surgery. In this case, both the negative pressure in vent catheter and the long left atrial appendage (LAA) with a narrow base led to an irreversible ILAA. As in this neonate, ILAA had significant influence on the left atrial volume and caused PHC since the ILAA was located on the mitral valve orifice and interfered with the blood flow through the valve. Therefore, we recommend that the vent catheter should be turned off before removing to avoid this potential complication. Additionally, LAA should be carefully inspected after CPB surgery, and intra-operative and post-operative transoesophageal echocardiography (TEE) should be performed to detect ILAA intraoperatively so as to avoid the reoperation. When an ILAA is diagnosed postoperatively, whether conservative treatment or surgery will depend on the balance of benefit and risk for a particular patient. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Cheng, Liang; Davidson, Darrell D; Wang, Mingsheng; Lopez-Beltran, Antonio; Montironi, Rodolfo; Wang, Lisha; Tan, Puay-Hoon; MacLennan, Gregory T; Williamson, Sean R; Zhang, Shaobo
2016-07-01
To understand more clearly the genetic ontogeny of inverted papilloma of urinary bladder, we analysed telomerase reverse transcriptase (TERT) promoter mutation status in a group of 26 inverted papillomas in comparison with the mutation status of urothelial carcinoma with inverted growth (26 cases), conventional urothelial carcinoma (36 Ta non-invasive urothelial carcinoma, 35 T2 invasive urothelial carcinoma) and cystitis glandularis (25 cases). TERT promoter mutations in inverted papilloma, urothelial carcinoma with inverted growth, urothelial carcinoma and cystitis glandularis were found in 15% (four of 26), 58% (15 of 26), 63% (45 of 71) and 0% (none of 25), respectively. C228T mutations were the predominant mutations (97%) found in bladder tumours, while C250T aberrations occurred in approximately 3% of bladder tumours. In the inverted papilloma group, TERT mutation occurred predominantly in female patients (P = 0.006). Among urothelial carcinomas, TERT promoter mutation status did not correlate with gender, histological grade or pathological stage. TERT promoter mutations were found in 15% of inverted papillomas. Our data suggest that there is a subpopulation of inverted papilloma that shares a carcinogenetic pathway with urothelial carcinoma with inverted growth and conventional urothelial carcinomas. Caution is warranted in exploring TERT promoter mutation status as a screening or adjunct diagnostic test for bladder cancer. © 2015 John Wiley & Sons Ltd.
Etiological role of human papillomavirus infection for inverted papilloma of the bladder.
Shigehara, Kazuyoshi; Sasagawa, Toshiyuki; Doorbar, John; Kawaguchi, Shohei; Kobori, Yoshitomo; Nakashima, Takao; Shimamura, Masayoshi; Maeda, Yuji; Miyagi, Tohru; Kitagawa, Yasuhide; Kadono, Yoshifumi; Konaka, Hiroyuki; Mizokami, Atsushi; Koh, Eitetsu; Namiki, Mikio
2011-02-01
The status of human papillomavirus (HPV) infection in urothelial inverted papilloma was examined in the present study. Formalin-fixed and paraffin-embedded tissues from eight cases of inverted papilloma of the bladder were studied. The presence of HPV-DNA was examined by modified GP5/6+PCR using archival tissue sections by microdissection. HPV genotype was determined with a Hybri-Max HPV genotyping kit. Immunohistochemical analysis for p16-INK4a, mcm7, HPV-E4, and L1, and in situ hybridization for the HPV genome were performed. HPV was detected in seven of eight cases (87.5%) of inverted papilloma. Three cases were diagnosed as inverted papilloma with atypia, while the remaining five were typical cases. HPV-18 was detected in two cases, including one inverted papilloma with atypia, and HPV-16 was detected in four cases, including one inverted papilloma with atypia. Multiple HPV type infection was detected in one typical case and one atypical case. High-risk HPV was present in all HPV-positive cases. Cellular proteins, p16-INK4a and mcm7, which are surrogate markers for HPV-E7 expression, were detected in all HPV-positive cases, and their levels were higher in inverted papilloma with atypia than in typical cases. In contrast, HPV-E4 and L1, which are markers for HPV propagation, were observed in some parts of the typical inverted papilloma tissue. High-risk HPV infection may be one of the causes of urothelial inverted papilloma, and inverted papilloma with atypia may have malignant potential. 2010 Wiley-Liss, Inc.
Improved Performance via the Inverted Classroom
ERIC Educational Resources Information Center
Weinstein, Randy D.
2015-01-01
This study examined student performance in an inverted thermodynamics course (lectures provided by video outside of class) compared to a traditional lecture class. Students in the inverted class performed better on their exams. Students in the bottom third of the inverted course showed the greatest improvement. These bottom third students had a C…
Inverting the Linear Algebra Classroom
ERIC Educational Resources Information Center
Talbert, Robert
2014-01-01
The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…
Efficient/reliable dc-to-dc inverter circuit
NASA Technical Reports Server (NTRS)
Pasciutti, E. R.
1970-01-01
Feedback loop, which contains an inductor in series with a saturable reactor, is added to a standard inverter circuit to permit the inverter power transistors to be switched in a controlled and efficient manner. This inverter is applicable where the power source has either high or low impedance properties.
NASA Technical Reports Server (NTRS)
Mclyman, C. W.
1983-01-01
Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing the Same; Notice of... States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., and the sale within the United States after importation of CCFL inverter circuits and products...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson; Nelson, Austin; Miller, Brian
As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less
Circumferentially oversewn inverted stapled anastomosis.
Karam, Charbel; Lord, Sally; Gett, Rohan; Meagher, Alan P
2018-04-01
Leak rates of over 5% following anastomoses between the ileum and colon continue to be reported in large series and are associated with substantial morbidity and with mortality rates of 10-20%. In 1994, we began performing circumferentially oversewn inverted stapled anastomoses in patients undergoing ileo-colic anastomoses or ileostomy closure. It has become increasingly apparent that this method is associated with a low risk of leakage, which we should report. The anastomotic technique described was used in all patients undergoing ileo-colic anastomosis or closure of ileostomy by surgeon 1 (1994-2015) and in all ileo-colic anastomoses by surgeon 2 (2007-2015). All patients had a widely patent anastomosis constructed by two firings of a linear cutting stapler, as previously described. Additionally, the entire staple line was carefully oversewn with interrupted, inverting 4/0 polydioxanone sutures. Anastomotic leak was defined as a patient requiring re-operation or radiological drainage. One thousand and twelve patients underwent ileo-colic anastomosis and 685 patients underwent closure of ileostomy by surgeon 1, and 165 patients underwent ileo-colic anastomosis by surgeon 2. None of the 1862 patients required re-operation or radiological drainage for a leak (event rate 0%, 95% confidence interval 0-0.2%). However, there were three possible contained leaks treated successfully conservatively. The time taken to perform the actual anastomosis was measured in the last 30 ileo-colic resections. The median time was 42 min. While this method may well be too slow to gain widespread adoption, we hope this report encourages increased research into finding techniques with similar low leak rates. © 2016 Royal Australasian College of Surgeons.
In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats.
Figura, Grzegorz; Koscianska, Edyta; Krzyzosiak, Wlodzimierz J
2015-08-11
Polyglutamine diseases, including Huntington's disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases. We used the SLIP (Synthesis of Long Iterative Polynucleotide) method to generate plasmids expressing long CAG repeats (forming a hairpin structure), CAA-interrupted CAG repeats (forming multiple unstable hairpins) or pure CAA repeats (not forming any secondary structure). We successfully modified the original SLIP protocol to generate repeats of desired length starting from constructs containing short repeat tracts. We demonstrated that the SLIP method is a time- and cost-effective approach to manipulate the lengths of expanded repeat sequences.
Inverter communications using output signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Patrick L.
Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter
NASA Astrophysics Data System (ADS)
Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang
2018-05-01
In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.
Iterative dictionary construction for compression of large DNA data sets.
Kuruppu, Shanika; Beresford-Smith, Bryan; Conway, Thomas; Zobel, Justin
2012-01-01
Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes of data involved, mean that these long-range repetitions are not detected. An order-insensitive, disk-based dictionary construction method can detect this repeated content and use it to compress collections of sequences. We explore a dictionary construction method that improves repeat identification in large DNA data sets. Our adaptation, COMRAD, of an existing disk-based method identifies exact repeated content in collections of sequences with similarities within and across the set of input sequences. COMRAD compresses the data over multiple passes, which is an expensive process, but allows COMRAD to compress large data sets within reasonable time and space. COMRAD allows for random access to individual sequences and subsequences without decompressing the whole data set. COMRAD has no competitor in terms of the size of data sets that it can compress (extending to many hundreds of gigabytes) and, even for smaller data sets, the results are competitive compared to alternatives; as an example, 39 S. cerevisiae genomes compressed to 0.25 bits per base.
High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.
Sen, Mrinal; Das, Mukul K
2015-11-01
In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755 μm ×15 μm, which ensures integration compatibility with the matured silicon industry.
Control method for peak power delivery with limited DC-bus voltage
Edwards, John; Xu, Longya; Bhargava, Brij B.
2006-09-05
A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.
Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens
Silby, Mark W; Cerdeño-Tárraga, Ana M; Vernikos, Georgios S; Giddens, Stephen R; Jackson, Robert W; Preston, Gail M; Zhang, Xue-Xian; Moon, Christina D; Gehrig, Stefanie M; Godfrey, Scott AC; Knight, Christopher G; Malone, Jacob G; Robinson, Zena; Spiers, Andrew J; Harris, Simon; Challis, Gregory L; Yaxley, Alice M; Harris, David; Seeger, Kathy; Murphy, Lee; Rutter, Simon; Squares, Rob; Quail, Michael A; Saunders, Elizabeth; Mavromatis, Konstantinos; Brettin, Thomas S; Bentley, Stephen D; Hothersall, Joanne; Stephens, Elton; Thomas, Christopher M; Parkhill, Julian; Levy, Stuart B; Rainey, Paul B; Thomson, Nicholas R
2009-01-01
Background Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. Results Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. Conclusions P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome. PMID:19432983
Mobile Inverted Constructivism: Education of Interaction Technology in Social Media
ERIC Educational Resources Information Center
Chai, Jia-Xiang; Fan, Kuo-Kuang
2016-01-01
The combination of social media and invert teaching is a new path to inverting interation technology education and reconstructing the curriculum of context. In this paper, based on the theory of constructivism learning, a model named Mobile Inverted Constructivism (MIC) is provided. Moreover, in view of the functional quality of social media in…
21 CFR 184.1859 - Invert sugar.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...
21 CFR 184.1859 - Invert sugar.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...
21 CFR 184.1859 - Invert sugar.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...
21 CFR 184.1859 - Invert sugar.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...
DC-to-AC inverter ratio failure detector
NASA Technical Reports Server (NTRS)
Ebersole, T. J.; Andrews, R. E.
1975-01-01
Failure detection technique is based upon input-output ratios, which is independent of inverter loading. Since inverter has fixed relationship between V-in/V-out and I-in/I-out, failure detection criteria are based on this ratio, which is simply inverter transformer turns ratio, K, equal to primary turns divided by secondary turns.
Background Model for the Majorana Demonstrator
NASA Astrophysics Data System (ADS)
Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
Selective positioning and integration of individual single-walled carbon nanotubes.
Jiao, Liying; Xian, Xiaojun; Wu, Zhongyun; Zhang, Jin; Liu, Zhongfan
2009-01-01
We present a general selective positioning and integration technique for fabricating single-walled carbon nanotube (SWNT) circuits with preselected individual SWNTs as building blocks by utilizing poly(methyl methacrylate) (PMMA) thin film as a macroscopically handlable mediator. The transparency and marker-replicating capability of PMMA mediator allow the selective placement of chirality-specific nanotubes onto predesigned patterned surfaces with a resolution of ca. 1 mum. This technique is compatible with multiple operations and p-n conversion by chemical doping, which enables the construction of complex and logic circuits. As demonstrations of building SWNTs circuits, we fabricated a field effect inverter, a 2 x 2 all-SWNT crossbar field effect transistor (FET), and flexible FETs on plastic with this technique. This selective positioning approach can also be extended to construct purpose-directed architecture with various nanoscale building blocks.
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan
From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator,more » three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less
NASA Astrophysics Data System (ADS)
Zaki, Abdallah S.; Pain, Colin F.; Edgett, Kenneth S.; Giegengack, Robert
2018-07-01
Inverted relief landforms occur in numerous regions on Mars, ranging in age from Noachian to more recent Amazonian periods (<3.0 Ga). A better understanding of the conditions in which inverted fluvial channel features on Earth form, and the geologic records they preserve in arid settings, can yield insights into the development of inverted landforms on Mars. Inverted channel landforms in the Western Desert of Egypt are well represented across an area of ∼27,000 km2. We investigated inverted channel features at seven sites using remotely-sensed data, field observations, and lab analysis. Inverted channel features in the Western Desert record fluvial environments of differing scales and ages. They developed mainly via inversion of cemented valley floor sediment, but there is a possibility that inverted fluvial landforms in the Dakhla Depression might have been buried, lithified, and exhumed. A few examples, in the southeastern part of the Western Desert, record, instead, a resistance to erosion caused by surface armouring of uncemented valley floor sediment. We show that the grain-size distribution for investigated and reviewed inverted channels is highly variable, with boulders that are commonly 0.35 - 1 m in size; large particles provide high porosity that influences the cementation mechanism. The studied inverted channel sediments are mainly cemented with ferricrete, calcrete, gypcrete, and silcrete. Inverted channels are valuable for the reconstruction of paleoclimate cycles or episodes on Earth and Mars; observations from the Western Desert, when offered as analogs, add to the growing list of Earth examples that provide suites of observables relevant to reconstruction of paleoenvironmental conditions on Mars.
The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform
Lin, Miaomiao; Qi, Xiujuan; Chen, Jinyong; Sun, Leiming; Zhong, Yunpeng; Fang, Jinbao; Hu, Chungen
2018-01-01
Actinidia arguta is the most basal species in a phylogenetically and economically important genus in the family Actinidiaceae. To better understand the molecular basis of the Actinidia arguta chloroplast (cp), we sequenced the complete cp genome from A. arguta using Illumina and PacBio RS II sequencing technologies. The cp genome from A. arguta was 157,611 bp in length and composed of a pair of 24,232 bp inverted repeats (IRs) separated by a 20,463 bp small single copy region (SSC) and an 88,684 bp large single copy region (LSC). Overall, the cp genome contained 113 unique genes. The cp genomes from A. arguta and three other Actinidia species from GenBank were subjected to a comparative analysis. Indel mutation events and high frequencies of base substitution were identified, and the accD and ycf2 genes showed a high degree of variation within Actinidia. Forty-seven simple sequence repeats (SSRs) and 155 repetitive structures were identified, further demonstrating the rapid evolution in Actinidia. The cp genome analysis and the identification of variable loci provide vital information for understanding the evolution and function of the chloroplast and for characterizing Actinidia population genetics. PMID:29795601
Sudianto, Edi; Wu, Chung-Shien; Lin, Ching-Ping; Chaw, Shu-Miaw
2016-01-01
Phylogeny of the ten Pinaceous genera has long been contentious. Plastid genomes (plastomes) provide an opportunity to resolve this problem because they contain rich evolutionary information. To comprehend the plastid phylogenomics of all ten Pinaceous genera, we sequenced the plastomes of two previously unavailable genera, Pseudolarix amabilis (122,234 bp) and Tsuga chinensis (120,859 bp). Both plastomes share similar gene repertoire and order. Here for the first time we report a unique insertion of tandem repeats in accD of T. chinensis. From the 65 plastid protein-coding genes common to all Pinaceous genera, we re-examined the phylogenetic relationship among all Pinaceous genera. Our two phylogenetic trees are congruent in an identical tree topology, with the five genera of the Abietoideae subfamily constituting a monophyletic clade separate from the other three subfamilies: Pinoideae, Piceoideae, and Laricoideae. The five genera of Abietoideae were grouped into two sister clades consisting of (1) Cedrus alone and (2) two sister subclades of Pseudolarix—Tsuga and Abies—Keteleeria, with the former uniquely losing the gene psaM and the latter specifically excluding the 3 psbA from the residual inverted repeat. PMID:27352945
Segmented and "equivalent" representation of the cable equation.
Andrietti, F; Bernardini, G
1984-11-01
The linear cable theory has been applied to a modular structure consisting of n repeating units each composed of two subunits with different values of resistance and capacitance. For n going to infinity, i.e., for infinite cables, we have derived analytically the Laplace transform of the solution by making use of a difference method and we have inverted it by means of a numerical procedure. The results have been compared with those obtained by the direct application of the cable equation to a simplified nonmodular model with "equivalent" electrical parameters. The implication of our work in the analysis of the time and space course of the potential of real fibers has been discussed. In particular, we have shown that the simplified ("equivalent") model is a very good representation of the segmented model for the nodal regions of myelinated fibers in a steady situation and in every condition for muscle fibers. An approximate solution for the steady potential of myelinated fibers has been derived for both nodal and internodal regions. The applications of our work to other cases dealing with repeating structures, such as earthworm giant fibers, have been discussed and our results have been compared with other attempts to solve similar problems.
The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.
Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook
2015-07-20
Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.
Ait-Arkoub, Zaïna; Voujon, Delphine; Deback, Claire; Abrao, Emiliana P.; Agut, Henri; Boutolleau, David
2013-01-01
The complete 154-kbp linear double-stranded genomic DNA sequence of herpes simplex virus 2 (HSV-2), consisting of two extended regions of unique sequences bounded by a pair of inverted repeat elements, was published in 1998 and since then has been widely employed in a wide range of studies. Throughout the HSV-2 genome are scattered 150 microsatellites (also referred to as short tandem repeats) of 1- to 6-nucleotide motifs, mainly distributed in noncoding regions. Microsatellites are considered reliable markers for genetic mapping to differentiate herpesvirus strains, as shown for cytomegalovirus and HSV-1. The aim of this work was to characterize 12 polymorphic microsatellites within the HSV-2 genome by use of 3 multiplex PCR assays in combination with length polymorphism analysis for the rapid genetic differentiation of 56 HSV-2 clinical isolates and 2 HSV-2 laboratory strains (gHSV-2 and MS). This new system was applied to a specific new HSV-2 variant recently identified in HIV-1-infected patients originating from West Africa. Our results confirm that microsatellite polymorphism analysis is an accurate tool for studying the epidemiology of HSV-2 infections. PMID:23966512
Häring, Monika; Peng, Xu; Brügger, Kim; Rachel, Reinhard; Stetter, Karl O; Garrett, Roger A; Prangishvili, David
2004-06-01
A novel virus, termed Pyrobaculum spherical virus (PSV), is described that infects anaerobic hyperthermophilic archaea of the genera Pyrobaculum and Thermoproteus. Spherical enveloped virions, about 100 nm in diameter, contain a major multimeric 33-kDa protein and host-derived lipids. A viral envelope encases a superhelical nucleoprotein core containing linear double-stranded DNA. The PSV infection cycle does not cause lysis of host cells. The viral genome was sequenced and contains 28337 bp. The genome is unique for known archaeal viruses in that none of the genes, including that encoding the major structural protein, show any significant sequence matches to genes in public sequence databases. Exceptionally for an archaeal double-stranded DNA virus, almost all the recognizable genes are located on one DNA strand. The ends of the genome consist of 190-bp inverted repeats that contain multiple copies of short direct repeats. The two DNA strands are probably covalently linked at their termini. On the basis of the unusual morphological and genomic properties of this DNA virus, we propose to assign PSV to a new viral family, the Globuloviridae.
Number word structure in first and second language influences arithmetic skills
Prior, Anat; Katz, Michal; Mahajna, Islam; Rubinsten, Orly
2015-01-01
Languages differ in how they represent numerical information, and specifically whether the verbal notation of numbers follows the same order as the symbolic notation (in non-inverted languages, e.g., Hebrew, “25, twenty-five”) or whether the two notations diverge (in inverted languages, e.g., Arabic, “25, five-and-twenty”). We examined how the structure of number–words affects how arithmetic operations are processed by bilingual speakers of an inverted and a non-inverted language. We examined Arabic–Hebrew bilinguals’ performance in the first language, L1 (inverted) and in the second language, L2 (non-inverted). Their performance was compared to that of Hebrew L1 speakers, who do not speak an inverted language. Participants judged the accuracy of addition problems presented aurally in L1, aurally in L2 or in visual symbolic notation. Problems were presented such that they matched or did not match the structure of number words in the language. Arabic–Hebrew bilinguals demonstrated both flexibility in processing and adaptation to the language of aural–verbal presentation – they were more accurate for the inverted order of presentation in Arabic, but more accurate for non-inverted order of presentation in Hebrew, thus exhibiting the same pattern found for native Hebrew speakers. In addition, whereas native Hebrew speakers preferred the non-inverted order in visual symbolic presentation as well, the Arabic–Hebrew bilinguals showed enhanced flexibility, without a significant preference for one order over the other, in either speed or accuracy. These findings suggest that arithmetic processing is sensitive to the linguistic representations of number words. Moreover, bilinguals exposed to inverted and non-inverted languages showed influence of both systems, and enhanced flexibility in processing. Thus, the L1 does not seem to have exclusive power in shaping numerical mental representations, but rather the system remains open to influences from a later learned L2. PMID:25852591
Evidence that human papillomavirus causes inverted papilloma is sparse.
Justice, Jeb M; Davis, Kern M; Saenz, Daniel A; Lanza, Donald C
2014-12-01
Controversy exists regarding the pathogenesis of inverted papilloma as it relates to the involvement of human papillomavirus (HPV). The purpose of this report is to describe the prevalence of HPV in nondysplastic, "early inverted papilloma" and to summarize HPV detection rates in the general population and in other HPV related neoplasia. This case series report characterizes consecutive inverted papilloma patients from January 2005 to August 2012 with regard to smoking history, dysplasia, and HPV detection rates. Presence or absence of low/high risk HPV was determined by standardized in situ hybridization DNA probes. Medline literature review was performed to determine the prevalence of HPV in inverted papilloma without moderate or severe dysplasia. Thirty-six consecutive patients were identified with an average age of 63.6 (range, 40-84) years; gender: 23 men, 13 women. More than half (55%) were active or former smokers (14% active and 41% former). High/low risk HPV was present in 1 in 36 (2.7%) patients and 1 in 36 (2.7%) had mild dysplasia. In the literature review: (1) HPV was detected in 16.4% of inverted papilloma without dysplasia; (2) oral cavity HPV detection was 4.2% to 11.4% in the normal population; and (3) HPV was normally detected in 85% to 95% of HPV-related neoplasia. Given histological features of inverted papilloma and comparatively low detection rates of HPV in inverted papilloma without dysplasia (2.7%), as well as the summary of the world literature, HPV is not related to the initial pathogenesis of inverted papilloma or inverted papilloma's tendency to persist or recur. It is postulated that since inverted papilloma is more an inflammatory polyp, it is susceptible to secondary HPV infection because of its metaplasia. Tobacco and other causes of respiratory epithelium remodeling are more plausible explanations for the initial tissue transformation to inverted papilloma. © 2014 ARS-AAOA, LLC.
Sonobe, Yoshifumi; Ghadge, Ghanashyam; Masaki, Katsuhisa; Sendoel, Ataman; Fuchs, Elaine; Roos, Raymond P
2018-08-01
Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G 4 C 2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G 4 C 2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle. Copyright © 2018 Elsevier Inc. All rights reserved.
Stable plastid transformation in Scoparia dulcis L.
Muralikrishna, Narra; Srinivas, Kota; Kumar, Kalva Bharath; Sadanandam, Abbagani
2016-10-01
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR / t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.
The complete chloroplast genome of Sinopodophyllum hexandrum Ying (Berberidaceae).
Meng, Lihua; Liu, Ruijuan; Chen, Jianbing; Ding, Chenxu
2017-05-01
The complete nucleotide sequence of the Sinopodophyllum hexandrum Ying chloroplast genome (cpDNA) was determined based on next-generation sequencing technologies in this study. The genome was 157 203 bp in length, containing a pair of inverted repeat (IRa and IRb) regions of 25 960 bp, which were separated by a large single-copy (LSC) region of 87 065 bp and a small single-copy (SSC) region of 18 218 bp, respectively. The cpDNA contained 148 genes, including 96 protein-coding genes, 8 ribosomal RNA genes, and 44 tRNA genes. In these genes, eight harbored a single intron, and two (ycf3 and clpP) contained a couple of introns. The cpDNA AT content of S. hexandrum cpDNA is 61.5%.
The complete chloroplast genome of Sinopodophyllum hexandrum (Berberidaceae).
Li, Huie; Guo, Qiqiang
2016-07-01
The complete chloroplast (cp) genome of the Sinopodophyllum hexandrum (Berberidaceae) was determined in this study. The circular genome is 157,940 bp in size, and comprises a pair of inverted repeat (IR) regions of 26,077 bp each, a large single-copy (LSC) region of 86,460 bp and a small single-copy (SSC) region of 19,326 bp. The GC content of the whole cp genome was 38.5%. A total of 133 genes were identified, including 88 protein-coding genes, 37 tRNA genes and eight rRNA genes. The whole cp genome consists of 114 unique genes, and 19 genes are duplicated in the IR regions. The phylogenetic analysis revealed that S. hexandrum is closely related to Nandina domestica within the family Berberidaceae.
The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).
Choi, Kyoung Su; Park, SeonJoo
2016-09-01
The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.
Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus.
Ke, Z; Grossman, G L; Cornel, A J; Collins, F H
1996-10-01
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10-12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.
Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants
Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu
2004-01-01
Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
A simple technic for repeated collection of blood samples from mice.
Stoltz, D R; Bendall, R D
1975-06-01
A device for repeated collection of small blood samples from mice was constructed from a plastic syringe. Blood was collected into a 3.33 lambda capillary tube. Bleeding was stopped by a hemostat made from a rubber stopper. This technic allows easy collection of approximately 20 serial samples within an 8-hr period.
Barreda-Tarrazona, Iván; Jaramillo-Gutiérrez, Ainhoa; Pavan, Marina; Sabater-Grande, Gerardo
2017-01-01
Cooperative behavior is often assumed to depend on individuals' characteristics, such as altruism and reasoning ability. Evidence is mixed about what the precise impact of these characteristics is, as the subjects of study are generally randomly paired, generating a heterogeneous mix of the two characteristics. In this study we ex-ante create four different groups of subjects by factoring their higher or lower than the median scores in both altruism and reasoning ability. Then we use these groups in order to analyze the joint effect of the two characteristics on the individual choice of cooperating and on successful paired cooperation. Subjects belonging to each group play first 10 one-shot prisoner's dilemma (PD) games with ten random partners and then three consecutive 10-round repeated PD games with three random partners. In all games, we elicit players' beliefs regarding cooperation using an incentive compatible method. Individuals with high altruism are more optimistic about the cooperative behavior of the other player in the one-shot game. They also show higher individual cooperation and paired cooperation rates in the first repetitions of this game. Contrary to the one-shot PD games where high reasoning ability reduces the probability of playing cooperatively, the sign of the relationship is inverted in the first repeated PD game, showing that high reasoning ability individuals better adjust their behavior to the characteristics of the game they are playing. In this sense, the joint effect of reasoning ability and altruism is not linear, with reasoning ability counteracting the cooperative effect of altruism in the one-shot game and reinforcing it in the first repeated game. However, experience playing the repeated PD games takes over the two individual characteristics in explaining individual and paired cooperation. Thus, in a (PD) setting, altruism and reasoning ability significantly affect behavior in single encounters, while in repeated interactions individual and paired cooperation reach similarly high levels independently of these individual characteristics. PMID:28473787
Withey, Jeffrey H; DiRita, Victor J
2005-05-01
The Gram-negative bacterium Vibrio cholerae is the infectious agent responsible for the disease Asiatic cholera. The genes required for V. cholerae virulence, such as those encoding the cholera toxin (CT) and toxin-coregulated pilus (TCP), are controlled by a cascade of transcriptional activators. Ultimately, the direct transcriptional activator of the majority of V. cholerae virulence genes is the AraC/XylS family member ToxT protein, the expression of which is activated by the ToxR and TcpP proteins. Previous studies have identified the DNA sites to which ToxT binds upstream of the ctx operon, encoding CT, and the tcpA operon, encoding, among other products, the major subunit of the TCP. These known ToxT binding sites are seemingly dissimilar in sequence other than being A/T rich. Further results suggested that ctx and tcpA each has a pair of ToxT binding sites arranged in a direct repeat orientation upstream of the core promoter elements. In this work, using both transcriptional lacZ fusions and in vitro copper-phenanthroline footprinting experiments, we have identified the ToxT binding sites between the divergently transcribed acfA and acfD genes, which encode components of the accessory colonization factor required for efficient intestinal colonization by V. cholerae. Our results indicate that ToxT binds to a pair of DNA sites between acfA and acfD in an inverted repeat orientation. Moreover, a mutational analysis of the ToxT binding sites indicates that both binding sites are required by ToxT for transcriptional activation of both acfA and acfD. Using copper-phenanthroline footprinting to assess the occupancy of ToxT on DNA having mutations in one of these binding sites, we found that protection by ToxT of the unaltered binding site was not affected, whereas protection by ToxT of the mutant binding site was significantly reduced in the region of the mutations. The results of further footprinting experiments using DNA templates having +5 bp and +10 bp insertions between the two ToxT binding sites indicate that both binding sites are occupied by ToxT regardless of their positions relative to each other. Based on these results, we propose that ToxT binds independently to two DNA sites between acfA and acfD to activate transcription of both genes.
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.; Shank, J. H.
1974-01-01
A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.
Lower Side Switching Modification of SHEPWM for Single H-Bridge Unipolar Inverter
NASA Astrophysics Data System (ADS)
Aihsan, M. Z.
2018-03-01
Selective Harmonic Elimination Pulse Width Modulation (SHEPWM) is a famous fundamental frequency method for both single stage H-bridge inverter and cascaded multilevel inverters. The main function of SHEPWM is to eliminate the selective lower order of odd harmonic such 3rd, 5th 7th and 9th of the output voltage of the inverter but maintain the fundamental component. In this paper, the 5kHz of the unipolar SHEPWM switching scheme of the inverter is developed and later will be compared to the modified SHEPWM switching scheme. The performance of this inverter is measured through the final total harmonic distortion (THD), the efficiency of the whole system and the natural shape of the output after LC filter.
Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying
2016-01-01
Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326
Role of bundle helices in a regulatory crosstalk in the trimeric betaine transporter BetP.
Gärtner, Rebecca M; Perez, Camilo; Koshy, Caroline; Ziegler, Christine
2011-12-02
The Na(+)-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na(+)-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Constructing Multiple-Choice Items to Measure Higher-Order Thinking
ERIC Educational Resources Information Center
Scully, Darina
2017-01-01
Across education, certification and licensure, there are repeated calls for the development of assessments that target "higher-order thinking," as opposed to mere recall of facts. A common assumption is that this necessitates the use of constructed response or essay-style test questions; however, empirical evidence suggests that this may…
Parasher, Arjun K; Kidwai, Sarah M; Schorn, Victor J; Goljo, Erden; Weinberg, Alan D; Richards-Kortum, Rebecca; Sikora, Andrew G; Iloreta, Alfred Marc; Govindaraj, Satish; Miles, Brett A
2015-12-01
High-resolution microendoscopy (HRME) enables real-time imaging of epithelial tissue. The utility of this novel imaging modality for inverted papilloma has not been previously described. This study examines the ability of otolaryngologists to differentiate between images of inverted papilloma and normal sinonasal mucosa obtained with a HRME. Inverted papilloma and normal sinonasal mucosa specimens were stained with a contrast agent, proflavine. HRME images were subsequently captured. Histopathological diagnosis was obtained for each sample. Quality-controlled images were used to assemble a training set. After reviewing the training images, 6 otolaryngologists without prior HRME experience reviewed and classified test images. Five samples of inverted papilloma and 2 normal sinonasal mucosa samples were collected. Four representative images from each specimen were used for the 28-image test set. The mean accuracy among all reviewers was 89.9% (95% confidence interval [CI], 84.3% to 94.0%). The sensitivity to correctly identify inverted papilloma was 86.7% (95% CI, 79.2% to 92.2%), and the specificity was 92.9% (95% CI, 89.0% to 100.0%). The Fleiss kappa interrater reliability score was 0.80 (95% CI, 0.70 to 0.89). Inverted papilloma and normal sinonasal mucosa have distinct HRME imaging characteristics. Otolaryngologists can be successfully trained to distinguish between inverted papilloma and normal sinonasal mucosa. HRME is a feasible tool for identification of inverted papilloma. By conducting future in vivo trials, HRME potentially may enable real-time surgical margin determination during surgical excision of inverted papilloma. © 2015 ARS-AAOA, LLC.
Sinonasal inverted papilloma: From diagnosis to treatment.
Lisan, Q; Laccourreye, O; Bonfils, P
2016-11-01
Inverted papilloma is a rare sinonasal tumor that mainly occurs in adults during the 5th decade. Three characteristics make this tumor very different from other sinonasal tumors: a relatively strong potential for local destruction, high rate of recurrence, and a risk of carcinomatous evolution. Etiology remains little understood, but an association with human papilloma virus has been reported in up to 40% of cases, raising the suspicions of implication in the pathogenesis of inverted papilloma. Treatment of choice is surgery, by endonasal endoscopic or external approach, depending on extension and tumoral characteristics. Follow-up is critical, to diagnose local relapse, which is often early but may also be late. The seriousness of this pathology lies in its association with carcinoma, which may be diagnosed at the outset or at recurrence during follow-up. It is important to diagnose recurrence to enable early treatment, especially in case of associated carcinoma or malignancy. A comprehensive review of the international literature was performed on PubMed and Embase, using the following search-terms: "sinonasal" [All Fields] AND ("papilloma, inverted" [MeSH Terms] OR ("papilloma" [All Fields] AND "inverted" [All Fields]) OR "inverted papilloma" [All Fields] OR ("inverted" [All Fields] AND "papilloma" [All Fields])). We reviewed all articles referring to sinonasal inverted papilloma published up to January 2015. The present article updates the state of knowledge regarding sinonasal inverted papilloma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Alexander Stonier, Albert
2017-02-01
In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake
Google is encouraging development of advanced photovoltaic inverters with high power density by holding a public competition and offering a prize for the best performing high power developed. NREL will perform the performance and validation for all inverters entered into the competition and provide results to Google.
Technologies for converter topologies
Zhou, Yan; Zhang, Haiyu
2017-02-28
In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.
Variable-frequency inverter controls torque, speed, and braking in ac induction motors
NASA Technical Reports Server (NTRS)
Nola, F. J.
1974-01-01
Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.
Understanding and managing the effects of battery charger and inverter aging
NASA Astrophysics Data System (ADS)
Gunther, W.; Aggarwal, S.
An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized.
NASA Astrophysics Data System (ADS)
Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji
2017-07-01
We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.