Sample records for inverted stepanov method

  1. Integrate-and-fire models with an almost periodic input function

    NASA Astrophysics Data System (ADS)

    Kasprzak, Piotr; Nawrocki, Adam; Signerska-Rynkowska, Justyna

    2018-02-01

    We investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic inputs have uniformly almost periodic displacements. We also show that in the case of μ-almost periodic drives it may happen that the displacement map is uniformly continuous, but is not μ-almost periodic (and thus cannot be Stepanov or uniformly almost periodic). By allowing discontinuous inputs, we extend some previous results, showing, for example, that the firing rate for the LIF models with Stepanov almost periodic input exists and is unique. This is a starting point for the investigation of the dynamics of almost-periodically driven integrate-and-fire systems.

  2. Lightcurves from the Archive: 1090 Sumida, 2284 San Juan, and 3493 Stepanov

    NASA Astrophysics Data System (ADS)

    Lang, Kim

    2017-01-01

    Three asteroids were observed briefly between other projects in 2015 March and April. The lightcurves of 1090 Sumida and 3493 Stepanov shows amplitudes of A = 0.30 and A = 0.95 mag. For 2284 San Juan, a synodic period of P = 9.18 h and amplitude of A = 0.69 mag were found.

  3. Evolution of the sapphire industry: Rubicon Technology and Gavish

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2009-05-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Stepanov in the Soviet Union published his sapphire growth method in 1959. Edge-Defined Film-Fed Growth (EFG), which is similar to the Stepanov method, was developed by H. Labelle in the U. S. in the 1960s and 1970s. The Heat Exchanger Method (HEM), invented by F. Schmid and D. Viechnicki in 1967 was commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) proposed by Kh. S. Bagdasorov in the Soviet Union in the 1960s was further developed at the Institute for Single Crystals in Ukraine. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s and 1980s. At the Institute for Single Crystals in Ukraine, E. Dobrovinskaya characterized Verneuil, Czochralsky, Bagdasarov, and GOI sapphire. In 1995, she emigrated to the United States and joined S&R Rubicon, founded near Chicago by R. Mogilevsky initially to import sapphire and ruby. Mogilevsky began producing sapphire by the Kyropoulos method in 1999. In 2000 the company name was changed to Rubicon Technology. Today, Dobrovinskaya is Chief Scientist and Rubicon produces high quality Kyropoulos sapphire substrates for solid-state lighting. In 1995, H. Branover of Ben Gurion University and a sole investor founded Gavish, which is Hebrew for "crystal." They invited another veteran of the Ukrainian Institute for Single Crystals, V. Pishchik, to become Chief Scientist. Under Pishchik's technical leadership and J. Sragowicz's business leadership, Gavish now makes finished products for the semiconductor and medical industries from HDSM, Stepanov, and Kyropoulos sapphire.

  4. USSR Report, Chemistry

    DTIC Science & Technology

    1987-03-24

    dienylphosphonic acids, under the conditions of 17 Kucherov’s reaction, results in the formation of esters of phenylpropan - 2 - onylphosphinic acid...No 10, Oct 86) 2 Laser-Luminescent Determination of Uranium in Natural Waters by Concentration on Titanium Hydroxide and by Using...Sodium Polysilicate (S.A. Nikitina, A.V. Stepanov; RADIOKHIMIYA, No 5, Sep-Oct 86) i 2 BIOCHEMISTRY Preparation of Highly Tritiated

  5. Basic Materials for Electromagnetic Field Standards

    DTIC Science & Technology

    2003-03-04

    Stepanov. “Problem of population electromagnetic safety”. In- ternational Medical Congress “New technologies in medicine. National and interna- tional...Rubtcova N.B. Harmonization options EMF standards: proposals of Russian national committee on non-ionazing radiation protection (RNCNIRP). 3rd...international and national EMF standards of different countries as well as to evaluate the population health danger of electromag- netic fields of

  6. Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.

    1983-04-01

    In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.

  7. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  8. Methods to Determine Recommended Feeder-Wide Advanced Inverter Settings for Improving Distribution System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.

    This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.

  9. Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Shi, Yanjun

    A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less

  10. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)

    DTIC Science & Technology

    2014-09-01

    8520−8524. (14) Jiang, Z.; Xu, M.; Li, F.; Yu, Y. J. Am. Chem. Soc. 2013, 135, 16446−16453. (15) White, T. J.; Tabiryan, N. V .; Serak, S. V .; Hrozhyk, U...A.; Tondiglia, V . P.; Koerner, H.; Vaia, R. A.; Bunning, T. J. Soft Matter 2008, 4, 1796−1798. (16) Lee, K. M.; Wang, D. H.; Koerner, H.; Vaia, R. A...Bershtein, V . A.; Egorov, V . M.; Podolsky, A. F.; Stepanov, V . A. J. Polym. Sci., Polym. Lett. Ed. 1985, 23, 371−377. (34) Bershtein, V . A.; Rydjov

  11. Self-similar magnetohydrodynamic model for direct current discharge fireball experiments

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.

    2006-11-01

    Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].

  12. Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter

    NASA Astrophysics Data System (ADS)

    Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang

    2018-05-01

    In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.

  13. On the Origin of Pulsations of Sub-THz Emission from Solar Flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.; Kaufmann, P.

    2014-08-01

    We propose a model to explain fast pulsations in sub-THz emission from solar flares. The model is based on the approach of a flaring loop as an equivalent electric circuit and explains the pulse-repetition rate, the high-quality factor, Q≥103, low modulation depth, pulse synchronism at different frequencies, and the dependence of the pulse-repetition rate on the emission flux, observed by Kaufmann et al. ( Astrophys. J. 697, 420, 2009). We solved the nonlinear equation for electric current oscillations using a Van der Pol method and found the steady-state value for the amplitude of the current oscillations. Using the pulse rate variation during the flare on 4 November 2003, we found a decrease of the electric current from 1.7×1012 A in the flare maximum to 4×1010 A just after the burst. Our model is consistent with the plasma mechanism of sub-THz emission suggested recently by Zaitsev, Stepanov, and Melnikov ( Astron. Lett. 39, 650, 2013).

  14. Fault-tolerant three-level inverter

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  15. Control method for peak power delivery with limited DC-bus voltage

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  16. Evaluation of a high power inverter for potential space applications

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Lanier, J. R., Jr.

    1976-01-01

    The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.

  17. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    PubMed

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  18. Photovoltaic system with improved DC connections and method of making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott

    A micro-inverter assembly includes a housing having an opening formed in a bottom surface thereof, and a direct current (DC)-to-alternating current (AC) micro-inverter disposed within the housing at a position adjacent to the opening. The micro-inverter assembly further includes a micro-inverter DC connector electrically coupled to the DC-to-AC micro-inverter and positioned within the opening of the housing, the micro-inverter DC connector having a plurality of exposed electrical contacts.

  19. Parameters Design of Series Resonant Inverter Circuit

    NASA Astrophysics Data System (ADS)

    Qi, Xingkun; Peng, Yonglong; Li, Yabin

    This paper analyzes the main circuit structure of series resonant inverter, and designs the components parameters of the main circuit.That provides a theoretical method for the design of series resonant inverter.

  20. Design consideration of resonance inverters with electro-technological application

    NASA Astrophysics Data System (ADS)

    Hinov, Nikolay

    2017-12-01

    This study presents design consideration of resonance inverters with electro-technological application. The presented methodology was achieved as a result of investigations and analyses of different types and working regimes of resonance inverters, made by the author. Are considered schemes of resonant inverters without inverse diodes. The first harmonic method is used in the analysis and design. This method for the case of inverters with electro-technological application gives very good accuracy. This does not require the use of a complex and heavy mathematical apparatus. The proposed methodology is easy to use and is suitable for use in training students in power electronics. Authenticity of achieved results is confirmed by simulating and physical prototypes research work.

  1. Analysis to Inform CA Grid Integration Rules for PV: Final Report on Inverter Settings for Transmission and Distribution System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeff; Rylander, Matthew; Boemer, Jens

    The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less

  2. A Method of Maximum Power Control in Single-phase Utility Interactive Photovoltaic Generation System by using PWM Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Neba, Yasuhiko

    This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.

  3. Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter.

    PubMed

    Wang, Tianzhen; Qi, Jie; Xu, Hao; Wang, Yide; Liu, Lei; Gao, Diju

    2016-01-01

    Thanks to reduced switch stress, high quality of load wave, easy packaging and good extensibility, the cascaded H-bridge multilevel inverter is widely used in wind power system. To guarantee stable operation of system, a new fault diagnosis method, based on Fast Fourier Transform (FFT), Relative Principle Component Analysis (RPCA) and Support Vector Machine (SVM), is proposed for H-bridge multilevel inverter. To avoid the influence of load variation on fault diagnosis, the output voltages of the inverter is chosen as the fault characteristic signals. To shorten the time of diagnosis and improve the diagnostic accuracy, the main features of the fault characteristic signals are extracted by FFT. To further reduce the training time of SVM, the feature vector is reduced based on RPCA that can get a lower dimensional feature space. The fault classifier is constructed via SVM. An experimental prototype of the inverter is built to test the proposed method. Compared to other fault diagnosis methods, the experimental results demonstrate the high accuracy and efficiency of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Understanding and managing the effects of battery charger and inverter aging

    NASA Astrophysics Data System (ADS)

    Gunther, W.; Aggarwal, S.

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized.

  5. System and method for regulating resonant inverters

    DOEpatents

    Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  6. Status and Needs of Power Electronics for Photovoltaic Inverters

    NASA Astrophysics Data System (ADS)

    Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.

    2002-06-01

    Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.

  7. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  8. New Modulation Method and Control Strategies for Power Electronics Inverters

    NASA Astrophysics Data System (ADS)

    Aleenejad, Mohsen

    The DC to AC power Converters (so-called Inverters) are widely used in industrial applications. The MLIs are becoming increasingly popular in industrial apparatus aimed at medium to high power conversion applications. In comparison to the conventional inverters, they feature superior characteristics such as lower total harmonic distortion (THD), higher efficiency, and lower switching voltage stress. Nevertheless, the superior characteristics come at the price of a more complex topology with an increased number of power electronic switches. The increased number of power electronics switches results in more complicated control strategies for the inverter. Moreover, as the number of power electronic switches increases, the chances of fault occurrence of the switches increases, and thus the inverter's reliability decreases. Due to the extreme monetary ramifications of the interruption of operation in commercial and industrial applications, high reliability for power inverters utilized in these sectors is critical. As a result, developing simple control strategies for normal and fault-tolerant operation of MLIs has always been an interesting topic for researchers in related areas. The purpose of this dissertation is to develop new control and fault-tolerant strategies for the multilevel power inverter. For the normal operation of the inverter, a new high switching frequency technique is developed. The proposed method extends the utilization of the dc link voltage while minimizing the dv/dt of the switches. In the event of a fault, the line voltages of the faulty inverters are unbalanced and cannot be applied to the 3-phase loads. For the faulty condition of the inverter, three novel fault-tolerant techniques are developed. The proposed fault-tolerant strategies generate balanced line voltages without bypassing any healthy and operative inverter element, makes better use of the inverter capacity and generates higher output voltage. These strategies exploit the advantages of the Selective Harmonic Elimination (SHE) and Space Vector Modulation (SVM) methods in conjunction with a slightly modified Fundamental Phase Shift Compensation (FPSC) technique to generate balanced voltages and manipulate voltage harmonics at the same time. The proposed strategies are applicable to several classes of MLIs with three or more voltage levels.

  9. Comparison of Virtual Oscillator and Droop Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Dhople, Sairaj

    Virtual oscillator control and droop control are two techniques that can be used to ensure synchronization and power sharing of parallel inverters in islanded operation. VOC relies on the implementation of non-linear Van der Pol oscillator equations in the control system of the inverter, acting upon the time-domain instantaneous inverter current and terminal voltage. On the other hand, DC explicitly computes active and reactive power produced by the inverter and relies on limited bandwidth low-pass filters. Even though both methods can be engineered to produce the same steady-state characteristics, their dynamic performances are significantly different. This paper presents analytical andmore » experimental results that aim to compare both methods. It is shown that VOC is inherently faster and enables minimizing the circulating currents. The results are verified using three 120V, 1kW inverters.« less

  10. Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi

    2017-06-01

    This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.

  11. Inverted File Compression through Document Identifier Reassignment.

    ERIC Educational Resources Information Center

    Shieh, Wann-Yun; Chen, Tien-Fu; Shann, Jean Jyh-Jiun; Chung, Chung-Ping

    2003-01-01

    Discusses the use of inverted files in information retrieval systems and proposes a document identifier reassignment method to reduce the average gap values in an inverted file. Highlights include the d-gap technique; document similarity; heuristic algorithms; file compression; and performance evaluation from a simulation environment. (LRW)

  12. The inverted Batman incision: a new incision in transcolumellar incision for open rhinoplasty.

    PubMed

    Nakanishi, Yuji; Nagasao, Tomohisa; Shimizu, Yusuke; Miyamoto, Junpei; Fukuta, Keizo; Kishi, Kazuo

    2013-12-01

    Columellar and nostril shapes often present irregularity after transcolumellar incision for open rhinoplasty, because of the contracture of the incised wound. The present study introduces a new technique to prevent this complication, and verifies its efficacy in improving cosmetic appearance. In our new method, a zig-zag incision with three small triangular flaps is made on the columella and in the pericolumellar regions of the bilateral nostril rims. Since the shape of the incision resembles the contour of an inverted "batman", we term our new method the "Inverted Batman" incision. To verify the effectiveness of the Inverted Batman incision, aesthetic evaluation was conducted for 21 patients operated on using the conventional transcolumellar incision (Conventional Group) and 19 patients operated on using the Inverted Batman incision (Inverted Batman Group). The evaluation was performed by three plastic surgeons, using a four-grade scale to assess three separate items: symmetry of bilateral soft triangles, symmetry of bilateral margins of the columella, and evenness of the columellar surface. The scores of the two groups for these three items were compared using a non-parametric test (Mann-Whitney U-test). With all three items, the Inverted Batman group patients present higher scores than Conventional Group patients. The Inverted Batman incision is effective in preserving the correct anatomical structure of the columella, soft triangle, and nostril rims. Hence, we recommend the Inverted Batman incision as a useful technique for open rhinoplasty.

  13. Dead-time optimisation with reducing voltage distortion for nine-switch inverter

    NASA Astrophysics Data System (ADS)

    Alizadeh Pahlavani, Mohamadreza; Sanatgar Hasankiadeh, Meisam; Bali Lashak, Aref

    2018-03-01

    Nine-switch inverter with two sets of three-phase outputs is an improved topology proposed in place of the 12-switch back-to-back converters and has therefore attracted much attention in recent years. This inverter can be used with two conventional pulse width modulation approaches: different frequency and the constant frequency. One disadvantage of using this modulation method is the possibility of short-circuits in the legs (shoot-through), which decreases the reliability of converter and system. This paper presents a new modulation technique, in which switching pulses of nine-switch inverter are produced by not only the original carrier signals but also through two auxiliary carrier signals. In this method, adjustable three-phase voltages are produced in the inverter's terminals, and so there is no possibility of any shoot-through in the inverter's legs. The suggested reliable modulation approach does not rely on any information about the load polarity, as switching is performed by a simple and reliable algorithm. The result is the considerably better waveform quality of the output voltages in comparison with other methods. To verify the analysis, an experimental platform based on DSP is built. The simulation and experimental results are given to demonstrate the effectiveness and feasibility of this new approach.

  14. Lower Side Switching Modification of SHEPWM for Single H-Bridge Unipolar Inverter

    NASA Astrophysics Data System (ADS)

    Aihsan, M. Z.

    2018-03-01

    Selective Harmonic Elimination Pulse Width Modulation (SHEPWM) is a famous fundamental frequency method for both single stage H-bridge inverter and cascaded multilevel inverters. The main function of SHEPWM is to eliminate the selective lower order of odd harmonic such 3rd, 5th 7th and 9th of the output voltage of the inverter but maintain the fundamental component. In this paper, the 5kHz of the unipolar SHEPWM switching scheme of the inverter is developed and later will be compared to the modified SHEPWM switching scheme. The performance of this inverter is measured through the final total harmonic distortion (THD), the efficiency of the whole system and the natural shape of the output after LC filter.

  15. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  16. Nuclear fuel pellet sintering boat unloading apparatus and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huggins, T.B.; Widener, W.H.; Klapper, K.K.

    1990-05-22

    This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engagingmore » the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site.« less

  17. Mathematical model for the dc-ac inverter for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1987-01-01

    The reader is informed of what was done for the mathematical modeling of the dc-ac inverter for the Space Shuttle. The mathematical modeling of the dc-ac inverter is an essential element in the modeling of the electrical power distribution system of the Space Shuttle. The electrical power distribution system which is present on the Space Shuttle is made up to 3 strings each having a fuel cell which provides dc to those systems which require dc, and the inverters which convert the dc to ac for those elements which require ac. The inverters are units which are 2 wire structures for the main dc inputs and 2 wire structures for the ac output. When 3 are connected together a 4 wire wye connection results on the ac side. The method of modeling is performed by using a Least Squares curve fitting method. A computer program is presented for implementation of the model along with graphs and tables to demonstrate the accuracy of the model.

  18. College Instructors' Experiences Transitioning to Inverted Classroom Instruction

    ERIC Educational Resources Information Center

    Brown, Glenda Maria

    2017-01-01

    Lecture methods in higher education continue to be the most often used form of lesson delivery, although they seem to be less effective in promoting adult students' learning and engagement. Many higher education instructors have incorporated inverted classroom (IC) methods to increase student engagement and learning. The purpose of this…

  19. Performance modeling and valuation of snow-covered PV systems: examination of a simplified approach to decrease forecasting error.

    PubMed

    Bosman, Lisa B; Darling, Seth B

    2018-06-01

    The advent of modern solar energy technologies can improve the costs of energy consumption on a global, national, and regional level, ultimately spanning stakeholders from governmental entities to utility companies, corporations, and residential homeowners. For those stakeholders experiencing the four seasons, accurately accounting for snow-related energy losses is important for effectively predicting photovoltaic performance energy generation and valuation. This paper provides an examination of a new, simplified approach to decrease snow-related forecasting error, in comparison to current solar energy performance models. A new method is proposed to allow model designers, and ultimately users, the opportunity to better understand the return on investment for solar energy systems located in snowy environments. The new method is validated using two different sets of solar energy systems located near Green Bay, WI, USA: a 3.0-kW micro inverter system and a 13.2-kW central inverter system. Both systems were unobstructed, facing south, and set at a tilt of 26.56°. Data were collected beginning in May 2014 (micro inverter system) and October 2014 (central inverter system), through January 2018. In comparison to reference industry standard solar energy prediction applications (PVWatts and PVsyst), the new method results in lower mean absolute percent errors per kilowatt hour of 0.039 and 0.055%, respectively, for the micro inverter system and central inverter system. The statistical analysis provides support for incorporating this new method into freely available, online, up-to-date prediction applications, such as PVWatts and PVsyst.

  20. Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Andy

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.« less

  1. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less

  3. Cosmology and the neutrino mass ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannestad, Steen; Schwetz, Thomas, E-mail: sth@phys.au.dk, E-mail: schwetz@kit.edu

    We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological datamore » is combined with data from oscillation experiments the odds reduce to about 3:2. For an exclusion of the inverted ordering from cosmology at more than 95% CL, an accuracy of better than 0.02 eV is needed for the sum. We demonstrate that such a value could be reached with planned observations of large scale structure by analysing artificial mock data for a EUCLID-like survey.« less

  4. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  5. Comparative Study of Fault Diagnostic Methods in Voltage Source Inverter Fed Three Phase Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Dhumale, R. B.; Lokhande, S. D.

    2017-05-01

    Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.

  6. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  7. Relationships among classes of self-oscillating transistor parallel inverters. [for power conditioning applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1975-01-01

    It recently has been shown in the literature that many dc-to-square-wave parallel inverters which are widely used in power-conditioning applications can be grouped into one of two families. Each family is characterized by an equivalent RLC network. Based on this approach, a classification procedure is presented for self-oscillating parallel inverters which makes evident natural relationships which exist between various inverter configurations. By utilizing concepts from the basic theory of negative resistance oscillators and the principle of duality as applied to nonlinear networks, a chain of relationships is established which enables a methodical transfer of knowledge gained about one family of inverters to any of the other families in the classification array.

  8. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, W.; Keller, J.; Grider, D.

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recoverymore » charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.« less

  9. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  10. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy

    PubMed Central

    Ohuchida, Kenoki; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    Background We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. Methods We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). Results We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Conclusions Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG. PMID:28616606

  11. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    NASA Astrophysics Data System (ADS)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  12. Tuning the control system of a nonlinear inverted pendulum by means of the new method of Lyapunov exponents estimation

    NASA Astrophysics Data System (ADS)

    Balcerzak, Marek; Dąbrowski, Artur; Pikunov, Danylo

    2018-01-01

    This paper presents a practical application of a new, simplified method of Lyapunov exponents estimation. The method has been applied to optimization of a real, nonlinear inverted pendulum system. Authors presented how the algorithm of the Largest Lyapunov Exponent (LLE) estimation can be applied to evaluate control systems performance. The new LLE-based control performance index has been proposed. Equations of the inverted pendulum system of the fourth order have been found. The nonlinear friction of the regulation object has been identified by means of the nonlinear least squares method. Three different friction models have been tested: linear, cubic and Coulomb model. The Differential Evolution (DE) algorithm has been used to search for the best set of parameters of the general linear regulator. This work proves that proposed method is efficient and results in faster perturbation rejection, especially when disturbances are significant.

  13. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy.

    PubMed

    Ohuchida, Kenoki; Nagai, Eishi; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG.

  14. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  15. Minimizing Gravity Sag of a Large Mirror with an Inverted Hindle-Mount

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    A method of minimizing the optical distortion from gravity sag on a suspended large autocollimating flat mirror has been devised. This method consists of an inverted nine-point Hindle-Mount. A conventional Hindle-mount is located underneath a sky-viewing mirror and is primarily under compression loads from the weight of the mirror. It is not suitable for the situation where the mirror is viewing the ground, since a mirror would tend to fall out of the mount when in an inverted position. The inverted Hindle-Mount design consists of bonded joints on the backside of the mirror that allow the mirror to be held or suspended above an object to be viewed. This ability is useful in optical setups such as a calibration test where a flat mirror is located above a telescope so that the telescope may view a known optic.

  16. Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin-Yao; Zhang, Wei

    This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources (DERs) in island microgrids. We show that under bounded load uncertainties, the proposed control method can steer the microgrid to a desired steady state with synchronized inverter frequency across the network and proportional sharing of both active and reactive powers among the inverters. We also show that such convergence can be achieved while respecting constraints on voltage magnitude and branch angle differences. The controller is robust under various contingency scenarios, including loss of communication links and failures of DERs. The proposed controller is applicable to lossymore » mesh microgrids with heterogeneous R/X distribution lines and reasonable parameter variations. Simulations based on various microgrid operation scenarios are also provided to show the effectiveness of the proposed control method.« less

  17. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  18. Applying the min-projection strategy to improve the transient performance of the three-phase grid-connected inverter.

    PubMed

    Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad

    2014-07-01

    Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Absolute Geostrophic Velocity Inverted from World Ocean Atlas 2013 (WOAV13) with the P-Vector Method

    DTIC Science & Technology

    2015-11-01

    The WOAV13 dataset comprises 3D global gridded climatological fields of absolute geostrophic velocity inverted...from World Ocean Atlas-2013 (WOA13) temperature and salinity fields using the P-vector method. It provides a climatological velocity field that is... climatology Dataset Identifier: gov.noaa.nodc:0121576 Creator: NOAP Lab, Department of Oceanography, Naval Postgraduate School, Monterey, CA Title

  20. Distortion and regulation characterization of a Mapham inverter

    NASA Technical Reports Server (NTRS)

    Sundberg, Richard C.; Brush, Andrew S.; Button, Robert M.; Patterson, Alexander G.

    1989-01-01

    Output-voltage total harmonic distortion (THD) of a 20-kHz, 6-kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f(s)/f(r), using the EASY5 Engineering Analysis System. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f(s)/f(r) is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output-voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different from the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped.

  1. Distortion and regulation characterization of a Mapham inverter

    NASA Technical Reports Server (NTRS)

    Sundberg, Richard C.; Brush, Andrew S.; Button, Robert M.; Patterson, Alexander G.

    1989-01-01

    Output voltage Total Harmonic Distortion (THD) of a 20kHz, 6kVA Mapham resonant inverter is characterized as a function of its switching-to-resonant frequency ratio, f sub s/f sub r, using the EASY5 engineering analysis system. EASY5 circuit simulation results are compared with hardware test results to verify the accuracy of the simulations. The effects of load on the THD versus f sub s/f sub r ratio is investigated for resistive, leading, and lagging power factor load impedances. The effect of the series output capacitor on the Mapham inverter output voltage distortion and inherent load regulation is characterized under loads of various power factors and magnitudes. An optimum series capacitor value which improves the inherent load regulation to better than 3 percent is identified. The optimum series capacitor value is different than the value predicted from a modeled frequency domain analysis. An explanation is proposed which takes into account the conduction overlap in the inductor pairs during steady-state inverter operation, which decreases the effective inductance of a Mapham inverter. A fault protection and current limit method is discussed which allows the Mapham inverter to operate into a short circuit, even when the inverter resonant circuit becomes overdamped.

  2. An evaluation of teaching methods in the introductory physics classroom

    NASA Astrophysics Data System (ADS)

    Savage, Lauren Michelle Williams

    The introductory physics mechanics course at the University of North Carolina at Charlotte has a history of relatively high DFW rates. In 2011, the course was redesigned from the traditional lecture format to the inverted classroom format (flipped). This format inverts the classroom by introducing material in a video assigned as homework while the instructor conducts problem solving activities and guides discussions during the regular meetings. This format focuses on student-centered learning and is more interactive and engaging. To evaluate the effectiveness of the new method, final exam data over the past 10 years was mined and the pass rates examined. A normalization condition was developed to evaluate semesters equally. The two teaching methods were compared using a grade distribution across multiple semesters. Students in the inverted class outperformed those in the traditional class: "A"s increased by 22% and "B"s increased by 38%. The final exam pass rate increased by 12% under the inverted classroom approach. The same analysis was used to compare the written and online final exam formats. Surprisingly, no students scored "A"s on the online final. However, the percent of "B"s increased by 136%. Combining documented best practices from a literature review with personal observations of student performance and attitudes from first hand classroom experience as a teaching assistant in both teaching methods, reasons are given to support the continued use of the inverted classroom approach as well as the online final. Finally, specific recommendations are given to improve the course structure where weaknesses have been identified.

  3. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  4. Method and system for controlling a permanent magnet machine during fault conditions

    DOEpatents

    Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.

    2004-05-25

    Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.

  5. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  6. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  7. Power Hardware-in-the-Loop Testing of Multiple Photovoltaic Inverters' Volt-Var Control with Real-Time Grid Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson

    2016-12-12

    Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending onmore » volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.« less

  8. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    NASA Astrophysics Data System (ADS)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.

  9. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman

    2016-11-01

    Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. A PWM Controller of a Full Bridge Single-Phase Synchronous Inverter for Micro-Grid System

    NASA Astrophysics Data System (ADS)

    Rahman, Tawfikur; Motakabber, S. M. A.; Ibrahimy, M. I.; Raghib, Aliza ‘Aini Binti Md Ralib@ Md

    2017-12-01

    Nowadays, microgrid system technology is becoming popular for small area power management systems. It is essential to be less harmonic-distortion and high efficiency of the inverter for microgrid applications. Pulse width modulation (PWM) controller is a conventional switching control technique which is suitable to use in the microgrid connected power inverter system. The control method and algorithm of this technique are challenging, and different approaches are required to avoid the complexity for a customized solution of the microgrid application. This paper proposes a comparative analysis of different controller and their operational methods. A PWM controller is used to reduce the ripple voltage noise while a continuous current mode provides a small output ripple which gives steady-state error as zero on fundamental and cutoff frequency. To reduce the ripple current, higher frequency harmonic distortion, switching loss and phase noise, LC low pass filter is used on either side of input and output terminals. The proposed inverter is designed by MATLAB 2016a simulation software. A balanced load resistance (RL = 20.5 Ω) of star configuration and a dual input DC voltage of ± 35V are considered. In this design, the circuit parameters, the fundamental frequency of 50 Hz, the PWM duty cycle of 95%, the cutoff frequency of the switching controller of 33 kHz are considered. The inverter in this paper exhibits THD of 0.44% and overall efficiency approximately of 98%. The proposed inverter is expected to be suitable for microgrid applications.

  11. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  12. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  13. Developments in a methodology for the design of engineered invert traps in combined sewer systems.

    PubMed

    Buxton, A; Tait, S; Stovin, V; Saul, A

    2002-01-01

    Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model.

  14. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    PubMed

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  15. Power conversion apparatus and method

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  16. Inverts permittivity and conductivity with structural constraint in GPR FWI based on truncated Newton method

    NASA Astrophysics Data System (ADS)

    Ren, Qianci

    2018-04-01

    Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.

  17. A Phenomenological Study of Undergraduate Instructors Using the Inverted or Flipped Classroom Model

    ERIC Educational Resources Information Center

    Brown, Anna F.

    2012-01-01

    The changing educational needs of undergraduate students have not been addressed with a corresponding development of instructional methods in higher education classrooms. This study used a phenomenological approach to investigate a classroom-based instructional model called the "inverted" or "flipped" classroom. The flipped…

  18. Improved silver staining of nucleolar organiser regions in paraffin wax sections using an inverted incubation technique.

    PubMed Central

    Coghill, G; Grant, A; Orrell, J M; Jankowski, J; Evans, A T

    1990-01-01

    A new simple modification to the silver staining of nucleolar organiser regions (AgNORs) was devised which, by performing the incubation with the slide inverted, results in minimal undesirable background staining, a persistent problem. Inverted incubation is facilitated by the use of a commercially available plastic coverplate. This technique has several additional advantages over other published staining protocols. In particular, the method is straightforward, fast, and maintains a high degree of contrast between the background and the AgNORs. Images PMID:1702451

  19. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  20. Does human papilloma virus play a role in sinonasal inverted papilloma?

    PubMed

    Govindaraj, Satish; Wang, Hailun

    2014-02-01

    Inverted papillomas are a benign sinonasal tumor with a propensity for recurrence and malignant transformation. Although many investigations have been made into the nature of this disease, its etiology and causes for malignant transformation have yet to be fully elucidated. It is the authors' objective to present a review on management of the disease and evaluate the present relationship between human papilloma virus (HPV) and inverted papilloma. A causal relationship between HPV and the pathogenesis and progression of inverted papilloma has been posited since the 1980s. Although widely varied HPV detection rates have been reported, recent studies have noted a substantial increase in both recurrence and malignant transformation in HPV-infected inverted papillomas. However, exact cellular mechanisms by which infection leads to subsequent recurrence and development of carcinoma have yet to be elucidated. Evidence exists suggesting that HPV infection plays a role in the progression of inverted papilloma and confers an increased risk for recurrence and malignant transformation. PCR is the preferred detection method, and fresh or frozen specimens are the ideal source of tissue for evaluation. Although multiple studies have detected an association between HPV and inverted papilloma (both recurrent and malignant transformation), further studies are necessary to elucidate the underlying molecular pathways before an association can be changed to causation.

  1. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  2. [Activities of Colorado University

    NASA Technical Reports Server (NTRS)

    Snow, Theodore P.; Bierbaum, Veronica

    2003-01-01

    During the report period we completed several studies and embarked on a new set of laboratory experiments. We also hired a new post-doctoral Research Associate, Momir Stepanovic, who has gradually assumed leadership in the laboratory work. The other person involved has been graduate student Brian Eichelberger, who will complete his Ph.D. based on this work by late spring of this year. We have also continued to collaborate with our previous postdoctoral Research Associate, Valery Le Page, through a consulting arrangement. In the following sections we summarize work that has been completed and either in print, in press, or in final stages of preparation for publication; current work being carried out in the laboratory; and plans for the coming year. Work completed in 2002: 1. Modeling the physical and chemical states of PAHs in the diffuse interstellar medium. 2. Hydrogenation and charge states of polycyclic aromatic hydrocarbons in diffuse clouds. 3. Laboratory studies of chemical reactions involving carbon chain anions.

  3. On pseudo-spectral time discretizations in summation-by-parts form

    NASA Astrophysics Data System (ADS)

    Ruggiu, Andrea A.; Nordström, Jan

    2018-05-01

    Fully-implicit discrete formulations in summation-by-parts form for initial-boundary value problems must be invertible in order to provide well functioning procedures. We prove that, under mild assumptions, pseudo-spectral collocation methods for the time derivative lead to invertible discrete systems when energy-stable spatial discretizations are used.

  4. Helping Learners to Orient to the Inverted or Flipped Language Classroom: Mediation via Informational Video

    ERIC Educational Resources Information Center

    Moranski, Kara; Henery, Ashlie

    2017-01-01

    Inverted ("flipped") pedagogical models are rapidly increasing in prevalence within language education. These models are particularly relevant for language learning given that they promote learner agency and encourage the use of artifacts to mediate cognition. However, the specific methods used in these models are often not anticipated…

  5. Compression of Index Term Dictionary in an Inverted-File-Oriented Database: Some Effective Algorithms.

    ERIC Educational Resources Information Center

    Wisniewski, Janusz L.

    1986-01-01

    Discussion of a new method of index term dictionary compression in an inverted-file-oriented database highlights a technique of word coding, which generates short fixed-length codes obtained from the index terms themselves by analysis of monogram and bigram statistical distributions. Substantial savings in communication channel utilization are…

  6. Study of liquid crystal space groups using controlled tilting with cryogenic transmission electron microscopy.

    PubMed

    Sagalowicz, Laurent; Acquistapace, Simone; Watzke, Heribert J; Michel, Martin

    2007-11-20

    We developed a method that enables differentiation between liquid crystalline-phase particles corresponding to different space groups. It consists of controlled tilting of the specimen to observe different orientations of the same particle using cryogenic transmission electron microscopy. This leads to the visualization of lattice planes (or reflections) that are present for a given structure and absent for the other one(s) and that give information on liquid crystalline structures and their space groups. In particular, we show that we can unambiguously distinguish among particles having the inverted micellar cubic (space group Fd(3)m, 227), the inverted bicontinuous gyroid (space group Ia(3)d, 230), the inverted bicontinuous diamond (space group Pn(3)m, 224), and the inverted bicontinuous primitive cubic structure (space group Im(3)m, 229).

  7. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digitalmore » testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.« less

  8. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less

  9. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.

  10. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    PubMed Central

    Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej

    2014-01-01

    High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing. PMID:25313492

  11. An in situ evaluation of TOPEX/Poseidon altimetric measurements versus meaurements made by moorings and inverted echo sounders for sea surface height

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The classical method of observing the sea surface height has been to make shipboard measurements of the vertical - density profile, and then calculating the surface height relative to a deeper reference surface. Two methods (a moored vertical string of instruments and an inverted echo sounder) were subsequently developed to obtain longer time in situ measurements. The first of these can be thought of as an extension of the discrete bottle hydrocast while the second integrates acoustically over the water column. One purpose of this note is to compare the result when coincidental observations are made by these two methods. This was done at two sites in the western tropical Pacific. Two inverted echo sounders were deployed alongside two enhanced TOGA-COARE moorings to be used in an in situ evaluation of TOPEX/Poseidon altimetric measurements of sea surface height. The mooring and inverted echo sounder data reproduced one another, at low frequency, with a correlation of 0.93 and 0.95 and the altimeter correlated with each of the above values ranging from 0.84 to 0.94. It is concluded that the altimetric measurements are statistically equivalent to the in situ measurements in the area of study.

  12. Single bus star connected reluctance drive and method

    DOEpatents

    Fahimi, Babak; Shamsi, Pourya

    2016-05-10

    A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.

  13. Grid Simulation and Power Hardware-in-the-Loop | Grid Modernization | NREL

    Science.gov Websites

    used PHIL to investigate the effects of advanced solar PV inverters on Hawaii's grid. A variety of PV Evaluating the Performance of Methods for Coordinated Control of Distributed Residential PV/Energy Storage photovoltaics (PV)-battery energy storage inverter control applied across an electric distribution system

  14. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    NASA Astrophysics Data System (ADS)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.

  15. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  16. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    PubMed

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  17. Breaking Barriers to Low-Cost Modular Inverter Production & Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan Borowy; Leo Casey; Jerry Foshage

    2005-05-31

    The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less

  18. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    PubMed Central

    Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-01-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707

  19. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    NASA Astrophysics Data System (ADS)

    Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  20. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags.

    PubMed

    Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  1. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme

    NASA Astrophysics Data System (ADS)

    Tian, Yu-Kun; Zhou, Hui; Chen, Han-Ming; Zou, Ya-Ming; Guan, Shou-Jun

    2013-12-01

    Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.

  2. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    NASA Astrophysics Data System (ADS)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Brian; Huque, Aminul; Rogers, Lindsey

    In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less

  4. Recurrent inverted papilloma of paranasal sinus presenting as acute proptosis.

    PubMed

    Prabhakar, S K; Bharathi, M B; Singhal, Anuj Kumar

    2016-01-01

    Objective. To describe the course of events that followed from the time of the diagnosis to the management of a rare case of recurrent inverted papilloma presenting as an acute proptosis. Methods. A seventy-year-old diabetic female patient presented with a painful left eye proptosis for 15 days. She had a history of resection of inverted papilloma of paranasal sinus followed by radiotherapy for eight years before. The examination revealed a 23 mm proptosis, with restricted ocular movements, corneal oedema, funnel shaped anterior chamber, and total retinal detachment with a complete visual loss. The lobulated fixed hard mass was palpable circumferentially but more in the inferior orbital compartment. The transconjunctival incisional biopsy showed features of highly undifferentiated cytology. The lid sparing exenteration was done under general anesthesia with cosmetic reconstruction. Results. Immunohistochemistry of exenterated mass was doubtfully suggestive of a small cell tumor. However, histopathology confirmed features of rhabdomyosarcoma. Conclusion. The present case study revealed rhabdomyosarcoma cytology presenting as an association-inverted papilloma. Abbreviations : IP = Inverted papilloma, PNS = Paranasal sinus, SCC = Squamous cell carcinoma, IOP = Intraocular pressure, CT = Computed tomography.

  5. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  6. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  7. Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram

    2013-01-01

    The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less

  8. Control system and method for a universal power conditioning system

    DOEpatents

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  9. One-step Maskless Fabrication and Optical Characterization of Silicon Surfaces with Antireflective Properties and a White Color Appearance

    PubMed Central

    Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.

    2016-01-01

    We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703

  10. Method and apparatus for controlling a microturbine

    DOEpatents

    Garces, Luis Jose; Cardinal, Mark Edward; Sinha, Gautam; Dame, Mark Edward

    2005-08-02

    An apparatus for controlling a microturbine, the apparatus including: a rectifier adapted for converting at least one generated voltage from the microturbine to a DC link voltage; an inverter adapted for converting the DC link voltage to at least one inverter output voltage, the at least one inverter output voltage being electrically coupled to an external power bus; a starter drive adapted for converting at least one starter input voltage to at least one starter output voltage, the at least one starter input voltage being electrically coupled to the external power bus, the at least one starter output voltage being electrically coupled to the microturbine.

  11. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  12. A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Lokanath, Sumanth; Williams, Paul

    Data indicate that the inverter is the element of the photovoltaic plant that has the highest number of service calls and the greatest operation and maintenance cost burden. This paper describes the projects and relevant background needed in developing design qualification standards that would serve to establish a minimum level of reliability, along with a review of photovoltaic inverter quality and safety standards, most of which are in their infancy. We compare stresses and levels for accelerated testing of inverters proposed in the standard drafts, and those proposed by manufacturers and purchasers of inverters. We also review bases for themore » methods, stress types, and stress levels for durability testing of key inverter components. Many of the test protocols appear to need more comprehensive inclusion of stress factors existing in the natural environment such as wind driven rain, dust, and grid disturbances. Further understanding of how temperature, humidity ingress, and voltage bias affect the inverters and their components is also required. We provide data indicating inconsistent quality of the inverters and the durability of components leading to greater cost for the photovoltaic plant operator. Accordingly, the recommendation for data collection within quality standards for obtaining cost of ownership metrics is made. Design validation testing using realistic operation, environmental, and connection conditions, including under end-use field conditions with feedback for continuous improvement is recommended for inclusion within a quality standard.« less

  13. A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols

    DOE PAGES

    Hacke, Peter; Lokanath, Sumanth; Williams, Paul; ...

    2017-10-10

    Data indicate that the inverter is the element of the photovoltaic plant that has the highest number of service calls and the greatest operation and maintenance cost burden. This paper describes the projects and relevant background needed in developing design qualification standards that would serve to establish a minimum level of reliability, along with a review of photovoltaic inverter quality and safety standards, most of which are in their infancy. We compare stresses and levels for accelerated testing of inverters proposed in the standard drafts, and those proposed by manufacturers and purchasers of inverters. We also review bases for themore » methods, stress types, and stress levels for durability testing of key inverter components. Many of the test protocols appear to need more comprehensive inclusion of stress factors existing in the natural environment such as wind driven rain, dust, and grid disturbances. Further understanding of how temperature, humidity ingress, and voltage bias affect the inverters and their components is also required. We provide data indicating inconsistent quality of the inverters and the durability of components leading to greater cost for the photovoltaic plant operator. Accordingly, the recommendation for data collection within quality standards for obtaining cost of ownership metrics is made. Design validation testing using realistic operation, environmental, and connection conditions, including under end-use field conditions with feedback for continuous improvement is recommended for inclusion within a quality standard.« less

  14. Synthesizing Virtual Oscillators to Control Islanded Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged modelsmore » reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.« less

  15. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Nelson, Austin; Miller, Brian

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less

  16. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter

    PubMed Central

    Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060

  17. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  18. Utilizing zero-sequence switchings for reversible converters

    DOEpatents

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-12-14

    A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.

  19. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  20. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups.

    PubMed

    Kelly, J Daniel; Petisco, Cristina; Downey, Gerard

    2006-08-23

    A collection of authentic artisanal Irish honeys (n = 580) and certain of these honeys adulterated by fully inverted beet syrup (n = 280), high-fructose corn syrup (n = 160), partial invert cane syrup (n = 120), dextrose syrup (n = 160), and beet sucrose (n = 120) was assembled. All samples were adjusted to 70 degrees Bx and scanned in the midinfrared region (800-4000 cm(-1)) by attenuated total reflectance sample accessory. By use of soft independent modeling of class analogy (SIMCA) and partial least-squares (PLS) classification, authentic honey and honey adulterated by beet sucrose, dextrose syrups, and partial invert corn syrup could be identified with correct classification rates of 96.2%, 97.5%, 95.8%, and 91.7%, respectively. This combination of spectroscopic technique and chemometric methods was not able to unambiguously detect adulteration by high-fructose corn syrup or fully inverted beet syrup.

  1. A new method of Curie depth evaluation from magnetic data: Theory

    NASA Technical Reports Server (NTRS)

    Won, I. J. (Principal Investigator)

    1981-01-01

    An approach to estimating the Curie point isotherm uses the classical Gauss method inverting a system of nonlinear equations. The method, slightly modified by a differential correction technique, directly inverts filtered Magsat data to calculate the crustal structure above the Curie depth, which is modeled as a magnetized layer of varying thickness and susceptibility. Since the depth below the layer is assumed to be nonmagnetic, the bottom of the layer is interpreted as the Curie depth. The method, once fully developed, tested, and compared with previous work by others, is to be applied to a portion of the eastern U.S. when sufficient Magsat data are accumulated for the region.

  2. Performance analysis of cascaded h-bridge multilevel inverter using mixed switching frequency with various dc-link voltages

    NASA Astrophysics Data System (ADS)

    Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono

    2016-01-01

    Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.

  3. The Study of Phase-shift Super-Frequency Induction Heating Power Supply

    NASA Astrophysics Data System (ADS)

    Qi, Hairun; Peng, Yonglong; Li, Yabin

    This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis

  4. Electrical motor/generator drive apparatus and method

    DOEpatents

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  5. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.

  6. Simulation and control of a 20 kHz spacecraft power system

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.

    1988-01-01

    A detailed computer representation of four Mapham inverters connected in a series, parallel arrangement has been implemented. System performance is illustrated by computer traces for the four Mapham inverters connected to a Litz cable with parallel resistance and dc receiver loads at the receiving end of the transmission cable. Methods of voltage control and load sharing between the inverters are demonstrated. Also, the detailed computer representation is used to design and to demonstrate the advantages of a feed-forward voltage control strategy. It is illustrated that with a computer simulation of this type, the performance and control of spacecraft power systems may be investigated with relative ease and facility.

  7. Inverted Nipple Correction with Selective Dissection of Lactiferous Ducts Using an Operative Microscope and a Traction Technique.

    PubMed

    Sowa, Yoshihiro; Itsukage, Sizu; Morita, Daiki; Numajiri, Toshiaki

    2017-10-01

    An inverted nipple is a common congenital condition in young women that may cause breastfeeding difficulty, psychological distress, repeated inflammation, and loss of sensation. Various surgical techniques have been reported for correction of inverted nipples, and all have advantages and disadvantages. Here, we report a new technique for correction of an inverted nipple using an operative microscope and traction that results in low recurrence and preserves lactation function and sensation. Between January 2010 and January 2013, we treated eight inverted nipples in seven patients with selective lactiferous duct dissection using an operative microscope. An opposite Z-plasty was added at the junction of the nipple and areola. Postoperatively, traction was applied through an apparatus made from a rubber gasket attached to a sterile syringe. Patients were followed up for 15-48 months. Adequate projection was achieved in all patients, and there was no wound dehiscence or complications such as infection. Three patients had successful pregnancies and subsequent breastfeeding that was not adversely affected by the treatment. There was no loss of sensation in any patient during the postoperative period. Our technique for treating an inverted nipple is effective and preserves lactation function and nipple sensation. The method maintains traction for a longer period, which we believe increases the success rate of the surgery for correction of severely inverted nipples. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. Approximate non-linear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-03-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.

  9. Approximate nonlinear multiparameter inversion for multicomponent single and double P-wave scattering in isotropic elastic media

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Mao, Weijian

    2018-07-01

    An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.

  10. Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control

    NASA Astrophysics Data System (ADS)

    Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum

    2018-02-01

    This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.

  11. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  12. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  13. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less

  14. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  15. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%

    NASA Astrophysics Data System (ADS)

    Xu, Xiuwen; Ma, Chunqing; Cheng, Yuanhang; Xie, Yue-Min; Yi, Xueping; Gautam, Bhoj; Chen, Shengmei; Li, Ho-Wa; Lee, Chun-Sing; So, Franky; Tsang, Sai-Wing

    2017-08-01

    Non-wetting hole transport materials (HTMs) have great potential in facilitating large-sized perovskite crystal growth and enhancing device stability by opposing moisture ingress, However, the severe non-wetting issue limits the wide application of these materials in low-temperature solution-processed inverted planar perovskite solar cells (PVSCs), and corresponding devices are rarely reported. Here, a facile ultraviolet-ozone (UVO) modification method is demonstrated to overcome this issue. By carefully controlling the UVO modification time, the surface wettability of poly-TPD can be tuned without affecting the bulk properties of the film, hence perovskite films with desired grain size and excellent coverage can be deposited via a one-step spin-coating method. Benefiting from the high-quality perovskite, well-matched energy level alignment and hydrophobic property of poly-TPD, the resulting PVSCs show a champion power conversion efficiency of 18.19% with significantly enhanced stability as compared to the PEDOT:PSS counterparts. Moreover, the UVO modification approach also demonstrates its validity when being extended to other hydrophobic HTMs. This work not only provides a general strategy to broaden the selection pool of HTMs for solution-processed inverted planar PVSCs, but also may triggers the exploration of more advanced strategies to make non-wetting HTMs applicable in solution-processed inverted planar PVSCs.

  16. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  17. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  18. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  19. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

  20. An extension to the Chahine method of inverting the radiative transfer equation. [application to ozone distribution in atmosphere

    NASA Technical Reports Server (NTRS)

    Twomey, S.; Herman, B.; Rabinoff, R.

    1977-01-01

    An extension of the Chahine relaxation method (1970) for inverting the radiative transfer equation is presented. This method is superior to the original method in that it takes into account in a realistic manner the shape of the kernel function, and its extension to nonlinear systems is much more straightforward. A comparison of the new method with a matrix method due to Twomey (1965), in a problem involving inference of vertical distribution of ozone from spectroscopic measurements in the near ultraviolet, indicates that in this situation this method is stable with errors in the input data up to 4%, whereas the matrix method breaks down at these levels. The problem of non-uniqueness of the solution, which is a property of the system of equations rather than of any particular algorithm for solving them, remains, although it takes on slightly different forms for the two algorithms.

  1. High-Frequency Switching Transients and Power Loss Estimation in Electric Drive Systems that Utilize Wide-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Fulani, Olatunji T.

    Development of electric drive systems for transportation and industrial applications is rapidly seeing the use of wide-bandgap (WBG) based power semiconductor devices. These devices, such as SiC MOSFETs, enable high switching frequencies and are becoming the preferred choice in inverters because of their lower switching losses and higher allowable operating temperatures. Due to the much shorter turn-on and turn-off times and correspondingly larger output voltage edge rates, traditional models and methods previously used to estimate inverter and motor power losses, based upon a triangular power loss waveform, are no longer justifiable from a physical perspective. In this thesis, more appropriate models and a power loss calculation approach are described with the goal of more accurately estimating the power losses in WBG-based electric drive systems. Sine-triangle modulation with third harmonic injection is used to control the switching of the inverter. The motor and inverter models are implemented using Simulink and computer studies are shown illustrating the application of the new approach.

  2. A grid-connected single-phase photovoltaic micro inverter

    NASA Astrophysics Data System (ADS)

    Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.

    2017-11-01

    In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.

  3. Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.

    This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less

  4. Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters

    DOE PAGES

    Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.; ...

    2017-12-22

    This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less

  5. Modeling, Analysis, and Impedance Design of Battery Energy Stored Single-Phase Quasi-Z Source Photovoltaic Inverter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The battery energy stored quasi-Z-source (BES-qZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. However, the second harmonic (2 ) power ripple will degrade the system's performance and affect the system's design. An accurate model to analyze the 2 ripple is very important. The existing models did not consider the battery, and with the assumption L1=L2 and C1=C2, which causes the non-optimized design for the impedance parameters of qZS network. This paper proposes a comprehensive model for single-phase BES-qZS-PV inverter system, where the battery is considered and without any restrictionmore » of L1, L2, C1, and C2. A BES-qZS impedance design method based on the built model is proposed to mitigate the 2 ripple. Simulation and experimental results verify the proposed 2 ripple model and design method.« less

  6. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  7. Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D

    2013-01-01

    A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different valuesmore » at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.« less

  8. Uncovering Droop Control Laws Embedded Within the Nonlinear Dynamics of Van der Pol Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.

    This paper examines the dynamics of power-electronic inverters in islanded microgrids that are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling time-domain alternative to ubiquitous droop control methods which presume the existence of a quasistationary sinusoidal steady state and operate on phasor quantities. We present two main results in this paper. First, by leveraging the method of periodic averaging, we demonstrate that droop laws are intrinsically embedded within a slower time scale in the nonlinear dynamics of Van der Pol oscillators. Second,more » we establish the global convergence of amplitude and phase dynamics in a resistive network interconnecting inverters controlled as Van der Pol oscillators. Furthermore, under a set of nonrestrictive decoupling approximations, we derive sufficient conditions for local exponential stability of desirable equilibria of the linearized amplitude and phase dynamics.« less

  9. Autonomous Decentralized Control of Supply and Demand by Inverter Based Distributed Generations in Isolated Microgrid

    NASA Astrophysics Data System (ADS)

    Shiki, Akira; Yokoyama, Akihiko; Baba, Jyunpei; Takano, Tomihiro; Gouda, Takahiro; Izui, Yoshio

    Recently, because of the environmental burden mitigation, energy conservations, energy security, and cost reductions, distributed generations are attracting our strong attention. These distributed generations (DGs) have been already installed to the distribution system, and much more DGs will be expected to be connected in the future. On the other hand, a new concept called “Microgrid” which is a small power supply network consisting of only DGs was proposed and some prototype projects are ongoing in Japan. The purpose of this paper is to develop the three-phase instantaneous valued digital simulator of microgrid consisting of a lot of inverter based DGs and to develop a supply and demand control method in isolated microgrid. First, microgrid is modeled using MATLAB/SIMULINK. We develop models of three-phase instantaneous valued inverter type CVCF generator, PQ specified generator, PV specified generator, PQ specified load as storage battery, photovoltaic generation, fuel cell and inverter load respectively. Then we propose an autonomous decentralized control method of supply and demand in isolated microgrid where storage batteries, fuel cells, photovoltaic generations and loads are connected. It is proposed here that the system frequency is used as a means to control DG output. By changing the frequency of the storage battery due to unbalance of supply and demand, all inverter based DGs detect the frequency fluctuation and change their own outputs. Finally, a new frequency control method in autonomous decentralized control of supply and demand is proposed. Though the frequency is used to transmit the information on the supply and demand unbalance to DGs, after the frequency plays the role, the frequency finally has to return to a standard value. To return the frequency to the standard value, the characteristic curve of the fuel cell is shifted in parallel. This control is carried out corresponding to the fluctuation of the load. The simulation shows that the frequency can be controlled well and has been made clear the effectiveness of the frequency control system.

  10. Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F. (Inventor); Krasowski, Michael J. (Inventor)

    2016-01-01

    Embodiments of the present invention describe an apparatus including an oscillator, a ramp generator, and an inverter. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator is configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time, a measurement of a current and a voltage of the solar cell is performed. During the high time, a measurement of a current of a shorted cell and a voltage reference is performed.

  11. Electronic Document Management Using Inverted Files System

    NASA Astrophysics Data System (ADS)

    Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon

    2014-03-01

    The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  12. Inversion of parameters for semiarid regions by a neural network

    NASA Technical Reports Server (NTRS)

    Zurk, Lisa M.; Davis, Daniel; Njoku, Eni G.; Tsang, Leung; Hwang, Jenq-Neng

    1992-01-01

    Microwave brightness temperatures obtained from a passive radiative transfer model are inverted through use of a neural network. The model is applicable to semiarid regions and produces dual-polarized brightness temperatures for 6.6-, 10.7-, and 37-GHz frequencies. A range of temperatures is generated by varying three geophysical parameters over acceptable ranges: soil moisture, vegetation moisture, and soil temperature. A multilayered perceptron (MLP) neural network is trained with a subset of the generated temperatures, and the remaining temperatures are inverted using a backpropagation method. Several synthetic terrains are devised and inverted by the network under local constraints. All the inversions show good agreement with the original geophysical parameters, falling within 5 percent of the actual value of the parameter range.

  13. Adjoint-tomography for a Local Surface Structure: Methodology and a Blind Test

    NASA Astrophysics Data System (ADS)

    Kubina, Filip; Michlik, Filip; Moczo, Peter; Kristek, Jozef; Stripajova, Svetlana

    2017-04-01

    We have developed a multiscale full-waveform adjoint-tomography method for local surface sedimentary structures with complicated interference wavefields. The local surface sedimentary basins and valleys are often responsible for anomalous earthquake ground motions and corresponding damage in earthquakes. In many cases only relatively small number of records of a few local earthquakes is available for a site of interest. Consequently, prediction of earthquake ground motion at the site has to include numerical modeling for a realistic model of the local structure. Though limited, the information about the local structure encoded in the records is important and irreplaceable. It is therefore reasonable to have a method capable of using the limited information in records for improving a model of the local structure. A local surface structure and its interference wavefield require a specific multiscale approach. In order to verify our inversion method, we performed a blind test. We obtained synthetic seismograms at 8 receivers for 2 local sources, complete description of the sources, positions of the receivers and material parameters of the bedrock. We considered the simplest possible starting model - a homogeneous halfspace made of the bedrock. Using our inversion method we obtained an inverted model. Given the starting model, synthetic seismograms simulated for the inverted model are surprisingly close to the synthetic seismograms simulated for the true structure in the target frequency range up to 4.5 Hz. We quantify the level of agreement between the true and inverted seismograms using the L2 and time-frequency misfits, and, more importantly for earthquake-engineering applications, also using the goodness-of-fit criteria based on the earthquake-engineering characteristics of earthquake ground motion. We also verified the inverted model for other source-receiver configurations not used in the inversion.

  14. Highly efficient organic solar cells with improved vertical donor-acceptor compositional gradient via an inverted off-center spinning method

    DOE PAGES

    Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...

    2015-12-02

    A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.

  15. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    NASA Astrophysics Data System (ADS)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica nanoparticles strongly differing in polarity. AIP modified silica nanoparticles are able to adsolubilize molecules of poorly water-soluble 2-naphthol into the adsorbed polymer layer. The adsolubilization ability of adsorbed invertible macromolecules makes AIP-modified silica nanoparticles potentially useful in wastewater treatment or biomedical applications. Finally, the invertible micellar assemblies were used as functional additives to improve the appearance of electrospun silicon wires based on cyclohexasilane, a liquid silicon precursor. AIP-assisted fabrication of silicon wires from the liquid cyclohexasilane precursor has potential as a scalable method for developing electronic functional materials.

  16. Speeding Up Chemical Searches Using the Inverted Index: the Convergence of Chemoinformatics and Text Search Methods

    PubMed Central

    Nasr, Ramzi; Vernica, Rares; Li, Chen; Baldi, Pierre

    2012-01-01

    In ligand-based screening, retrosynthesis, and other chemoinformatics applications, one of-ten seeks to search large databases of molecules in order to retrieve molecules that are similar to a given query. With the expanding size of molecular databases, the efficiency and scalability of data structures and algorithms for chemical searches are becoming increasingly important. Remarkably, both the chemoinformatics and information retrieval communities have converged on similar solutions whereby molecules or documents are represented by binary vectors, or fingerprints, indexing their substructures such as labeled paths for molecules and n-grams for text, with the same Jaccard-Tanimoto similarity measure. As a result, similarity search methods from one field can be adapted to the other. Here we adapt recent, state-of-the-art, inverted index methods from information retrieval to speed up similarity searches in chemoinformatics. Our results show a several-fold speed-up improvement over previous methods for both thresh-old searches and top-K searches. We also provide a mathematical analysis that allows one to predict the level of pruning achieved by the inverted index approach, and validate the quality of these predictions through simulation experiments. All results can be replicated using data freely downloadable from http://cdb.ics.uci.edu/. PMID:22462644

  17. Inverted Resistance Measurements as a Method for Characterizing the Bulk and Surface Conductivities of Three-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Eo, Y. S.; Sun, K.; Kurdak, ć.; Kim, D.-J.; Fisk, Z.

    2018-04-01

    We introduce a resistance measurement method that is useful in characterizing materials with both surface and bulk conduction, such as three-dimensional topological insulators. The transport geometry for this resistance measurement configuration consists of one current lead as a closed loop that fully encloses the other current lead on the surface, and two voltage leads that are both placed outside the loop. We show that, in the limit where the transport is dominated by the surface conductivity of the material, the four-terminal resistance measured from such a transport geometry is proportional to σb/σs2, where σb and σs are the bulk and surface conductivities of the material, respectively. We call this type of measurement inverted resistance measurement, as the resistance scales inversely with the bulk resistivity. We discuss possible implementations of this method by performing numerical calculations on different geometries and introduce strategies to extract the bulk and surface conductivities. We also demonstrate inverted resistance measurements on SmB6 , a topological Kondo insulator, using both single-sided and coaxially aligned double-sided Corbino disk transport geometries. Using this method, we are able to measure the bulk conductivity, even at low temperatures, where the bulk conduction is much smaller than the surface conduction in this material.

  18. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer.

    PubMed

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-19

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PSS) as the hole transport material (HTM), the hydrophilicity of the PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PSS layer, indicating that CuOx could be a promising HTM for replacing PSS in inverted planar heterojunction perovskite solar cells.

  19. Power supply of autonomous systems using solar modules

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Zotov, L. G.; Mekhtiev, A. D.; Yugai, V. V.; Tatkeeva, G. G.

    2015-04-01

    The article shows the methods of constructing autonomous decentralized energy systems from solar modules. It shows the operation of up DC inverter. It demonstrates the effectiveness of DC inverters with varying structure. The system has high efficiency and low level of conductive impulse noise and at the same time the system is practically feasible. Electrical processes have been analyzed to determine the characteristics of operating modes of the main circuit elements. Recommendations on using the converters have been given.

  20. Comparison of two Galerkin quadrature methods

    DOE PAGES

    Morel, Jim E.; Warsa, James; Franke, Brian C.; ...

    2017-02-21

    Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less

  1. Comparison of two Galerkin quadrature methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, Jim E.; Warsa, James; Franke, Brian C.

    Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less

  2. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  3. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  4. A versatile cis-acting inverter module for synthetic translational switches.

    PubMed

    Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide

    2013-01-01

    Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.

  5. New power sharing control for inverter-dominated microgrid based on impedance match concept.

    PubMed

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method.

  6. FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters

    PubMed Central

    Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852

  7. Evidence for large inversion polymorphisms in the human genome from HapMap data

    PubMed Central

    Bansal, Vikas; Bashir, Ali; Bafna, Vineet

    2007-01-01

    Knowledge about structural variation in the human genome has grown tremendously in the past few years. However, inversions represent a class of structural variation that remains difficult to detect. We present a statistical method to identify large inversion polymorphisms using unusual Linkage Disequilibrium (LD) patterns from high-density SNP data. The method is designed to detect chromosomal segments that are inverted (in a majority of the chromosomes) in a population with respect to the reference human genome sequence. We demonstrate the power of this method to detect such inversion polymorphisms through simulations done using the HapMap data. Application of this method to the data from the first phase of the International HapMap project resulted in 176 candidate inversions ranging from 200 kb to several megabases in length. Our predicted inversions include an 800-kb polymorphic inversion at 7p22, a 1.1-Mb inversion at 16p12, and a novel 1.2-Mb inversion on chromosome 10 that is supported by the presence of two discordant fosmids. Analysis of the genomic sequence around inversion breakpoints showed that 11 predicted inversions are flanked by pairs of highly homologous repeats in the inverted orientation. In addition, for three candidate inversions, the inverted orientation is represented in the Celera genome assembly. Although the power of our method to detect inversions is restricted because of inherently noisy LD patterns in population data, inversions predicted by our method represent strong candidates for experimental validation and analysis. PMID:17185644

  8. Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2012-01-01

    Some embodiments of the present invention describe an apparatus that includes an oscillator, a ramp generator, and an inverter. The apparatus includes an oscillator, an inverter, and a ramp generator. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time of the waveform, a measurement of a current and a voltage of the solar cell is performed as the current and voltage of the solar cell are transmitted through a first channel and to a second channel. During the high time of the waveform, a measurement of a current of a shorted cell and a voltage reference is performed as the current of the shorted cell and the voltage reference are transmitted through the first channel and the second channel.

  9. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  10. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm.

    PubMed

    Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen

    2012-08-30

    Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  12. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE PAGES

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon; ...

    2018-01-11

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  13. Robust sliding mode control applied to double Inverted pendulum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  14. System and method for single-phase, single-stage grid-interactive inverter

    DOEpatents

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  15. Dust Tolerant Connectors

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P. (Inventor); Lewis, Mark E. (Inventor); Bastin, Gary L. (Inventor); Branch, Matthew C. (Inventor); Carlson, Jeffrey W. (Inventor); Dokos, Adam G. (Inventor); Murtland, Kevin A. (Inventor); Nugent, Matthew W. (Inventor); Tamasy, Gabor J. (Inventor); Townsend, III, Ivan I. (Inventor)

    2016-01-01

    Methods and systems may provide for debris exclusion and removal apparatuses for connectors which have inverting end caps with a multi-axis lever configuration, inverting end caps with enlarged handle and/or side rail configurations, rotating end cap configurations, poppet valve configurations, O-ring configurations, filament barrier configurations, retractable cover configurations, clamshell end cap configurations, or any combination thereof. Apparatuses may also provide for an intelligent electrical connector system capable of detecting damage to or faults within a plurality of conductors and then rerouting the energy through a non-damaged spare conductor.

  16. Efficient Broadband Terahertz Radiation Detectors Based on Bolometers with a Thin Metal Absorber

    NASA Astrophysics Data System (ADS)

    Dem'yanenko, M. A.

    2018-01-01

    The matrix method has been used to calculate the coefficients of absorption of terahertz radiation in conventional (with radiation incident from vacuum adjacent to the bolometer) and inverted (with radiation incident from the substrate on which the bolometer was fabricated) bolometric structures. Near-unity absorption coefficients were obtained when an additional cavity in the form of a gap between the bolometer and the input or output window was introduced. Conventional bolometers then became narrowband, while inverted-type devices remained broadband.

  17. Energy and pitch angle-dispersed auroral electrons suggesting a time-variable, inverted-V potential structure

    NASA Astrophysics Data System (ADS)

    Arnoldy, R. L.; Lynch, K. A.; Austin, J. B.; Kintner, P. M.

    1999-10-01

    High temporal resolution electron detectors aboard the PHAZE II rocket flight have shown that the energy-dispersed, field-aligned bursts (FABs) are time coincident with pitch angle-dispersed electrons having energies at the maximum voltage of the inverted-V potential. This modulation of the energetic inverted-V electrons is superimposed upon an energy-diffused background resulting in a peak-to-valley ratio of ~2 for the pitch angle-dispersed electrons. Since the characteristic energy of the FABs, the order of an eV, is considerably less than that of the plasma sheet electrons (the order of a keV) presumably falling through the inverted-V potential to create the discrete aurora, the modulation mechanism has to be independent of the electron temperature. The mechanism must accelerate the cold electrons over a range of energies from the inverted-V energy down to a few tens of eV. It must do this at the same time it is creating a population of hot, pitch angle-dispersed electrons at the inverted-V energy. Both the energy dispersion of the FABs and the pitch angle dispersion of the inverted-V electrons can be used to determine a source height assuming both populations start from the same source region at the same time. These calculations give source heights between 3500 and 5300 km for various events and disagreement between the two methods the order of 20%, which is within the rather substantial error limits of both calculations. A simple mechanism of providing a common start time for both populations of electrons would be a turning on/off of a spatially limited (vertically), inverted-V potential. The energy-dispersed FABs can be reconstructed at rocket altitudes if one assumes that cold electrons are accelerated to an energy determined by how much of the inverted-V potential they fall through when it is turned on. Similarly, the pitch angle-dispersed, inverted-V electrons can be modeled at rocket altitudes if one assumes that the plasma sheet electrons falling through the entire potential drop all start to do so at the same time when the potential is turned on. The FABs seem to fluctuate at either ~10 Hz or near 100 Hz. An important constraint of the on/off mechanism is whether cold electrons (1 eV) can fill the inverted-V volume during the off cycle. The maximum vertical height of the 10 kV potential region for the 10 Hz events would be the order of 100 and 10 km for the 100 Hz events. To get 10 kV, these heights require parallel electric fields of 0.1 and 1 V/m respectively for the 10 and 100 Hz events assuming that the filling is along B from below the inverted-V potential. Alternative mechanisms are also discussed in the light of the data presented.

  18. Overload protection system for power inverter

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  19. Relationship between field-aligned currents and inverted-V parallel potential drops observed at midaltitudes

    NASA Astrophysics Data System (ADS)

    Sakanoi, T.; Fukunishi, H.; Mukai, T.

    1995-10-01

    The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are about 5-10 times larger than those at the center. (3) By comparing KCJΦ with KTN, KCJΦ is found to be about 2-20 times larger than KTN. These results suggest that low-energy electrons such as trapped electrons, secondary and back-scattered electrons, and ionospheric electrons significantly contribute to upward field-aligned currents in the inverted-V region. It is therefore inferred that non adiabatic pitch angle scattering processes play an important role in the inverted-V region. .

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jih-Sheng

    This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and outputmore » current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; Smith, Benjamin

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. The method used back-solves for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the micro-inverter ac production data. When the derived values of DNI and DHI were then used to model the performance of other PV systems, the annual mean bias deviations were within +/- 4%, and only 1% greater than when the PV performance was modeled using high quality irradiance measurements. An uncertainty analysis showsmore » the method better suited for modeling PV performance than using satellite-based global horizontal irradiance.« less

  2. Gas tube-switched high voltage DC power converter

    DOEpatents

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  3. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  4. Distribution system model calibration with big data from AMI and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  5. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  6. New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept

    PubMed Central

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method. PMID:24453910

  7. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  8. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase.

    PubMed

    Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.

  9. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  10. Conventional vs  invert-grayscale X-ray for diagnosis of pneumothorax in the emergency setting.

    PubMed

    Musalar, Ekrem; Ekinci, Salih; Ünek, Orkun; Arş, Eda; Eren, Hakan Şevki; Gürses, Bengi; Aktaş, Can

    2017-09-01

    Pneumothorax is a pathologic condition in which air is accumulated between the visceral and parietal pleura. After clinical suspicion, in order to diagnose the severity of the condition, imaging is necessary. By using the help of Picture Archiving and Communication Systems (PACS) direct conventional X-rays are converted to gray-scale and this has become a preferred method among many physicians. Our study design was a case-control study with cross-over design study. Posterior-anterior chest X-rays of patients were evaluated for pneumothorax by 10 expert physicians with at least 3years of experience and who have used inverted gray-scale posterior anterior chest X-ray for diagnosing pneumothorax. The study included posterior anterior chest X-ray images of 268 patients of which 106 were diagnosed with spontaneous pneumothorax and 162 patients used as a control group. The sensitivity of Digital-conventional X-rays was found to be higher than that of inverted gray-scale images (95% CI (2,08-5,04), p<0,01). There was no statistically significant difference between the gold standard and digital-conventional images (95% CI (0,45-2,17), p=0,20), while the evaluations of the gray-scale images were found to be less sensitive for diagnosis (95% CI (3,16-5,67) p<0,01). Inverted gray-scale imaging is not a superior imaging modality over digital-conventional X-ray for the diagnosis of pneumothorax. Prospective studies should be performed where diagnostic potency of inverted gray-scale radiograms is tested against gold standard chest CT. Further research should compare inverted grayscale to lung ultrasound to assess them as alternatives prior to CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2000-06-23

    The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at highmore » speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.« less

  12. Linking actions and objects: Context-specific learning of novel weight priors.

    PubMed

    Trewartha, Kevin M; Flanagan, J Randall

    2017-06-01

    Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Purba, Victor; Jafarpour, Saber

    Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less

  14. Operating temperatures of open-rack installed photovoltaic inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Wang, L.; Kurtz, S.

    This paper presents a model for evaluating the heat-sink and component temperatures of open-rack installed photovoltaic inverters. These temperatures can be used for predicting inverter reliability. Inverter heat-sink temperatures were measured for inverters connected to three grid-connected PV (photovoltaic) test systems in Golden, Colorado, US. A model is proposed for calculating the inverter heat-sink temperature based on the ambient temperature, the ratio of the consumed power to the rated power of the inverter, and the measured wind speed. To verify and study this model, more than one year of inverter DC/AC power, irradiance, wind speed, and heat sink temperature risemore » data were collected and analyzed. The model is shown to be accurate in predicting average inverter temperatures, but will require further refinement for prediction of transient temperatures.« less

  15. Pseudothermalization in driven-dissipative non-Markovian open quantum systems

    NASA Astrophysics Data System (ADS)

    Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo

    2018-03-01

    We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.

  16. Some Consequences of a Time Dependent Speed of Light

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2007-06-01

    For reasons connected with both cosmology (the flatness and horizon problems) and atomic physics (n-body Dirac equation, etc.), various proposals have been made to modify general or special relativity(SR) to accommodate a cosmologically decreasing light speed [J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003)]. Two such theories, projective SR [S.N. Manida, gr-qc/9905046; S. S. Stepanov, physics/9909009 and Phys. Rev. D, 62, 023507 (2000)] and symmetric SR [F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005)] adapt special relativity to in different ways to an expanding, hyperbolically curved position space and predict time-dependences of c within reach of measurement but differing by a factor of two. Both theories bring in a new constant λ-1=σ=c^2H0-1. As Magueijo points, out the role of c in physics and cosmology is so profound that many deep changes must follow if is not absolutely invariant in space and time. In particular, symmetric SR brings a new light to the Dirac large-number relationship between the constants of gravitation and atomic physics.

  17. Functional Role of the Front and Back Legs During a Track Start with Special Reference to an Inverted Pendulum Model in College Swimmers.

    PubMed

    Ikeda, Yusuke; Ichikawa, Hiroshi; Nara, Rio; Baba, Yasuhiro; Shimoyama, Yoshimitsu; Kubo, Yasuyuki

    2016-10-01

    This study investigated factors that determine the velocity of the center of mass (CM) and flight distance from a track start to devise effective technical and physical training methods. Nine male and 5 female competitive swimmers participated in this study. Kinematics and ground reaction forces of the front and back legs were recorded using a video camera and force plates. The track start was modeled as an inverted pendulum system including a compliant leg, connecting the CM and front edge of the starting block. The increase in the horizontal velocity of the CM immediately after the start signal was closely correlated with the rotational component of the inverted pendulum. This rotational component at hands-off was significantly correlated with the average vertical force of the back plate from the start signal to hands-off (r = .967, P < .001). The flight distance / height was significantly correlated with the average vertical force of the front plate from the back foot-off to front foot-off (r = .783, P < .01). The results indicate that the legs on the starting block in the track start play a different role in the behavior of the inverted pendulum.

  18. Predictor-based control for an inverted pendulum subject to networked time delay.

    PubMed

    Ghommam, J; Mnif, F

    2017-03-01

    The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL

    PubMed Central

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-01-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091

  20. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.

    PubMed

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-06-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

  1. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov Websites

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  2. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  3. Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Purba, Victor; Jafarpour, Saber

    Given that next-generation infrastructures will contain large numbers of grid-connected inverters and these interfaces will be satisfying a growing fraction of system load, it is imperative to analyze the impacts of power electronics on such systems. However, since each inverter model has a relatively large number of dynamic states, it would be impractical to execute complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the pointmore » of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loop for grid synchronization. We outline a structure-preserving reduced-order inverter model for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. That is, we show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as an individual inverter in the paralleled system. Numerical simulations validate the reduced-order models.« less

  4. Comparative study of SiC- and Si-based photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  5. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    PubMed Central

    Litzov, Ivan; Brabec, Christoph J.

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423

  6. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  7. Implementation of Push Recovery Strategy Using Triple Linear Inverted Pendulum Model in “T-FloW” Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.

    2018-04-01

    Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.

  8. A study of tensile residual strength of composite laminates under different patch-repaired series

    NASA Astrophysics Data System (ADS)

    Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.

    2017-09-01

    The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.

  9. Research on LLCL Filtering Grid - Connected inverter under the Control of PFI

    NASA Astrophysics Data System (ADS)

    Li, Ren-qing; Zong, Ke-yong; Wang, Yan-ping; Li, Yang; Zhang, Jing

    2018-03-01

    This passage puts forward a kind of LLCL inverter which is based on the proportional feedback integral(PFI) control so as so satisfy the request of the grid-current outputed by the renewable energy generation system. The passage builds the topological graph of grid-connected inverter and makes an analysis of principle of linear superposition aims to reveal the essence of the problem of steady-state error that exists in proportional integral control. We use LLCL filter and the method of passive damping to solve the problem of resonant peak. We make simulation of the grid system with the software named MATLAB/Simulink. The result shows that the grid current enters steady state quickly and in the same time, which has the identical phase and frequency of grid-voltage. The harmonic content in grid current satisfies the request of grid standard.

  10. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces.

    PubMed

    Litzov, Ivan; Brabec, Christoph J

    2013-12-10

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.

  11. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    PubMed Central

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  12. Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators

    NASA Technical Reports Server (NTRS)

    Fantini, Jay A.

    1998-01-01

    Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.

  13. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous solution of inverted or...

  14. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  15. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  16. Quantitative Analysis of the Lamellarity of Giant Liposomes Prepared by the Inverted Emulsion Method

    PubMed Central

    Chiba, Masataka; Miyazaki, Makito; Ishiwata, Shin’ichi

    2014-01-01

    The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models. PMID:25028876

  17. Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    NASA Technical Reports Server (NTRS)

    Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.

    1989-01-01

    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some sample results are compared to data obtained from testing hardware inverters.

  18. Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters

    NASA Technical Reports Server (NTRS)

    Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.

    1989-01-01

    The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters.

  19. Status and Needs of Power Electronics for Photovoltaic Inverters: Summary Document

    NASA Astrophysics Data System (ADS)

    West, R.; Mauch, K.; Qin, Y. C.; Mohan, N.; Bonn, R.

    2002-05-01

    Photovoltaic inverters are the most mature of any DER inverter, and their mean time to first failure (MTFF) is about five years. This is an unacceptable MTFF and will inhibit the rapid expansion of PV. With all DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. The increasing need for all of these technologies to have a reliable inverter provides a unique opportunity to address these needs with focused R&D development projects. The requirements for these inverters are so similar that modular designs with universal features are obviously the best solution for a 'next generation' inverter. A 'next generation' inverter will have improved performance, higher reliability, and improved profitability. Sandia National Laboratories has estimated that the development of a 'next generation' inverter could require approximately 20 man-years of work over an 18- to 24-month time frame, and that a government-industry partnership will greatly improve the chances of success.

  20. Single phase inverter for a three phase power generation and distribution system

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  1. An SCR inverter with an integral battery charger for electric vehicles

    NASA Technical Reports Server (NTRS)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  2. Computer-implemented method and apparatus for autonomous position determination using magnetic field data

    NASA Technical Reports Server (NTRS)

    Ketchum, Eleanor A. (Inventor)

    2000-01-01

    A computer-implemented method and apparatus for determining position of a vehicle within 100 km autonomously from magnetic field measurements and attitude data without a priori knowledge of position. An inverted dipole solution of two possible position solutions for each measurement of magnetic field data are deterministically calculated by a program controlled processor solving the inverted first order spherical harmonic representation of the geomagnetic field for two unit position vectors 180 degrees apart and a vehicle distance from the center of the earth. Correction schemes such as a successive substitutions and a Newton-Raphson method are applied to each dipole. The two position solutions for each measurement are saved separately. Velocity vectors for the position solutions are calculated so that a total energy difference for each of the two resultant position paths is computed. The position path with the smaller absolute total energy difference is chosen as the true position path of the vehicle.

  3. Intelligent control for PMSM based on online PSO considering parameters change

    NASA Astrophysics Data System (ADS)

    Song, Zhengqiang; Yang, Huiling

    2018-03-01

    A novel online particle swarm optimization method is proposed to design speed and current controllers of vector controlled interior permanent magnet synchronous motor drives considering stator resistance variation. In the proposed drive system, the space vector modulation technique is employed to generate the switching signals for a two-level voltage-source inverter. The nonlinearity of the inverter is also taken into account due to the dead-time, threshold and voltage drop of the switching devices in order to simulate the system in the practical condition. Speed and PI current controller gains are optimized with PSO online, and the fitness function is changed according to the system dynamic and steady states. The proposed optimization algorithm is compared with conventional PI control method in the condition of step speed change and stator resistance variation, showing that the proposed online optimization method has better robustness and dynamic characteristics compared with conventional PI controller design.

  4. [Research on the measurement of flue-dust concentration in Vis, IR spectral region].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin

    2008-10-01

    In the measurement of flue-dust concentration based on the transmission method, the dependent model algorithm was used to invert the flue-dust concentration in the visible, infrared and visible-infrared spectral regions respectively. By the analysis and comparison of the accuracy, linearity and sensitivity of the inversion flue-dust concentration, the optimal spectral region was determined. Meanwhile, the influence of the water droplet with different size distribution and volume concentration was simulated, and a method was proposed which has advantages of simplicity, rapidity, and suitability for on line measurement. Simulation experiments illustrate that the flue-dust concentration can be inverted very well in the visible-infrared spectral region, and it is feasible to use the ratio of the constrained light extinction method to overcome the influence of water droplet. The inverse results all remain satisfactory when 2% stochastic noise is added to the value of the light extinction.

  5. Microgrid and Inverter Control and Simulator Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule producesmore » movies of wind data with a web interface.« less

  6. Design and Implementation of nine level multilevel Inverter

    NASA Astrophysics Data System (ADS)

    Dhineshkumar, K.; Subramani, C.

    2018-04-01

    In this paper the solar based boost converter integrated Nine level multilevel inverter presented. It uses 7 switches to produce nine level output stepped waveform. The aim of the work to produce 9 level wave form using solar and boost converter. The conventional inverter has multiple sources and has 16 switches are required and also more number of voltage sources required. The proposed inverter required single solar panel and reduced number of switches and integrated boost converter which increase the input voltage of the inverter. The proposed inverter simulated and compared with R load using Mat lab and prototype model experimentally verified. The proposed inverter can be used in n number of solar applications.

  7. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan

    Synchronous machines have traditionally acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, with the increased integration of distributed renewable resources and energy-storage technologies, there is a need to systematically acknowledge the dynamics of power-electronics inverters - the primary energy-conversion interface in such systems - in all aspects of modeling, analysis, and control of the bulk power network. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. The inverter model is formulatedmore » such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less

  8. Identification of polymorphic inversions from genotypes

    PubMed Central

    2012-01-01

    Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by independent experimental methods in ten (9+1) individuals [3,4]. We provide efficient implementations of both genotype and haplotype methods as a unified R package inveRsion. PMID:22321652

  9. Hemispheric specialization and the perception of emotion: evidence from right-handers and from inverted and non-inverted left-handers.

    PubMed

    Reuter-Lorenz, P A; Givis, R P; Moscovitch, M

    1983-01-01

    Right-handers and inverted and non-inverted left-handers viewed emotional expressions in one hemifield and, simultaneously, a neutral expression of the same poser in the other hemifield. Subjects were required to identify the side containing the affective face. Happy faces with open (i.e. salient) and closed mouth smiles and sad faces were used as stimuli. For right-handers and inverters reaction time was faster to right hemifield presentations for happy faces and to left hemifield presentations for sad faces. Non-inverters showed the reverse pattern. The saliency of the happy expressions had no effect on the magnitude and direction of asymmetry for any group. The data support the hypothesis of differential hemispheric specialization for positive and negative emotion and demonstrate opposite patterns of asymmetry in affect perception for inverted and non-inverted left-handers.

  10. Method and apparatus for low power analog-to-digital conversion

    DOEpatents

    De Geronimo, Gianluigi; Nambiar, Neena

    2013-10-01

    A method and apparatus for analog-to-digital conversion. An Analog-to-Digital Converter (ADC) includes M ADC.sub.j, j=1, 2, . . . , M. Each ADC.sub.j comprises a number of cells each of which comprises a first switch, a second switch, a current sink and an inverter. An inverter of a cell in an ADC.sub.j changes state in response to a current associate with an input signal of the ADC.sub.j exceeding a threshold, thus switching on the next cell. Each ADC.sub.j is enabled to perform analog-to-digital conversion on a residual current of a previous ADC.sub.j-1 after the previous ADC.sub.j-1 has completed its analog-to-digital conversion and has been disabled.

  11. Electrical system using phase-shifted carrier signals and related operating methods

    DOEpatents

    Welchko, Brian A; Campbell, Jeremy B

    2012-09-18

    An automotive drive system and methods for making the same are provided. The system includes a three-phase motor and an inverter module. The three-phase motor includes a first set of windings each having a first magnetic polarity; and a second set of windings each having a second magnetic polarity that is opposite the first magnetic polarity. The first set of windings being electrically isolated from the second set of windings. The inverter module includes a first set of phase legs and a second set of phase legs. Each one of the first set of phase legs is coupled to a corresponding phase of the first set of windings, and each one of the second set of phase legs is coupled to a corresponding phase of the second set of windings.

  12. Laser action by optically depumping lower states

    DOEpatents

    Krupke, William F.

    1977-01-01

    A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  13. Single-Chip Microcomputer Control Of The PWM Inverter

    NASA Astrophysics Data System (ADS)

    Morimoto, Masayuki; Sato, Shinji; Sumito, Kiyotaka; Oshitani, Katsumi

    1987-10-01

    A single-chip microcomputer-based con-troller for a pulsewidth modulated 1.7 KVA inverter of an airconditioner is presented. The PWM pattern generation and the system control of the airconditioner are achieved by software of the 8-bit single-chip micro-computer. The single-chip microcomputer has the disadvantages of low processing speed and small memory capacity which can be overcome by the magnetic flux control method. The PWM pattern is generated every 90 psec. The memory capacity of the PWM look-up table is less than 2 kbytes. The simple and reliable control is realized by the software-based implementation.

  14. Aternating current photovoltaic building block

    DOEpatents

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  15. Naturally Inspired Firefly Controller For Stabilization Of Double Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Srikanth, Kavirayani; Nagesh, Gundavarapu

    2015-12-01

    A double inverted pendulum plant as an established model that is analyzed as part of this work was tested under the influence of time delay, where the controller was fine tuned using a firefly algorithm taking into considering the fitness function of variation of the cart position and to minimize the cart position displacement and still stabilize it effectively. The naturally inspired algorithm which imitates the fireflies definitely is an energy efficient method owing to the inherent logic of the way the fireflies respond collectively and has shown that critical time delays makes the system healthy.

  16. Laser action by optically depumping lower states

    DOEpatents

    Krupke, W.F.

    1975-11-26

    A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  17. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  18. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  19. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    PubMed

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A "two-objective, one-area" procedure in absorption microphotometry and its application using an inverted microscope.

    PubMed

    Chaubal, K A

    1988-08-01

    A 'two-objective, one-area' method and related equations are suggested to measure absorbance of microscopic stained objects. In such work, the measuring field invariably includes an image of the object and some clear area surrounding the image. The total intensity in the two areas is measured photometrically, using two different objectives, and substituted in the equation for absorbance. The equation is independent of the term representing intensity from the clear area and hence the error in the measurement of absorbance is reduced. The limitations of the 'two-objective, one-area' method are discussed and its pragmatic operation described with an experimental setup involving an inverted microscope. The method permits measurement of intensity in a part of a stained cell while the rest of the cell remains in the field of view. The method is applied to measure absorbance in Giemsa stained ascites cells and Feulgen stained liver and Human Amnion cells.

  1. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  2. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  3. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  4. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  5. Impacts of Inverter-Based Advanced Grid Support Functions on Islanding Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Anderson; Miller, Brian

    A long-standing requirement for inverters paired with distributed energy resources is that they are required to disconnect from the electrical power system (EPS) when an electrical island is formed. In recent years, advanced grid support controls have been developed for inverters to provide voltage and frequency support by integrating functions such as voltage and frequency ride-through, volt-VAr control, and frequency-Watt control. With these new capabilities integrated into the inverter, additional examination is needed to determine how voltage and frequency support will impact pre-existing inverter functions like island detection. This paper inspects how advanced inverter functions will impact its ability tomore » detect the formation of an electrical island. Results are presented for the unintentional islanding laboratory tests of three common residential-scale photovoltaic inverters performing various combinations of grid support functions. For the inverters tested, grid support functions prolonged island disconnection times slightly; however, it was found that in all scenarios the inverters disconnected well within two seconds, the limit imposed by IEEE Std 1547-2003.« less

  6. Schneiderian papillomas: Comparative review of exophytic, oncocytic, and inverted types

    PubMed Central

    Vira, Darshni; Suh, Jeffrey D.; Bhuta, Sunita; Wang, Marilene B.

    2013-01-01

    Background: Sinonasal papillomas are benign epithelial neoplasms arising from Schneiderian mucosa. The three subtypes, exophytic, oncocytic, and inverted (inverted papilloma [IP]), should be distinguished from one another histopathologically. This study (1) highlights the histopathological and clinical differences between the Schneiderian papilloma subtypes and (2) identifies clinical features that potentially predict papilloma subtypes. Methods: A retrospective review was performed of patients with Schneiderian papillomas over an 11-year period. Results: Seventy patients with sinonasal papillomas who underwent sinus surgery were identified. There were 50 (71%) male and 20 (29%) female subjects diagnosed at an average age of 53 years (range, 13–80 years). Exophytic (n = 25), oncocytic (n = 9), and IP (n = 37) were identified. IP was associated with transformation into squamous cell carcinoma in three (8%) cases and dysplasia in three (8%) cases. Neither oncocytic nor exophytic subtypes were associated with dysplasia or malignancy. On multivariate analysis of potential predictors of papilloma subtype, history of chronic rhinosinusitis (CRS) and location of papilloma were significantly associated with papilloma subtype. Using classification and regression tree model, papilloma subtypes can be predicted based on presence or absence of CRS and papilloma location with nominal 82.4% accuracy. Conclusion: The inverted and exophytic type are the most common sinonasal papillomas, with the inverted type having an 8% rate of malignant transformation in this study. In contrast, the oncocytic type was not associated with dysplasia or malignancy in our series despite reports in the literature indicating malignant potential. History of CRS and papilloma location can provide clues to the histological subtype, which is important for surgical planning and patient counseling. PMID:23883810

  7. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  8. Traveltime inversion and error analysis for layered anisotropy

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhou, Hua-wei

    2011-02-01

    While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.

  9. Integral inverter/battery charger for use in electric vehicles

    NASA Technical Reports Server (NTRS)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  10. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    PubMed

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  11. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters

    PubMed Central

    Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362

  12. Toward an optimal solver for time-spectral fluid-dynamic and aeroelastic solutions on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Mundis, Nathan L.; Mavriplis, Dimitri J.

    2017-09-01

    The time-spectral method applied to the Euler and coupled aeroelastic equations theoretically offers significant computational savings for purely periodic problems when compared to standard time-implicit methods. However, attaining superior efficiency with time-spectral methods over traditional time-implicit methods hinges on the ability rapidly to solve the large non-linear system resulting from time-spectral discretizations which become larger and stiffer as more time instances are employed or the period of the flow becomes especially short (i.e. the maximum resolvable wave-number increases). In order to increase the efficiency of these solvers, and to improve robustness, particularly for large numbers of time instances, the Generalized Minimal Residual Method (GMRES) is used to solve the implicit linear system over all coupled time instances. The use of GMRES as the linear solver makes time-spectral methods more robust, allows them to be applied to a far greater subset of time-accurate problems, including those with a broad range of harmonic content, and vastly improves the efficiency of time-spectral methods. In previous work, a wave-number independent preconditioner that mitigates the increased stiffness of the time-spectral method when applied to problems with large resolvable wave numbers has been developed. This preconditioner, however, directly inverts a large matrix whose size increases in proportion to the number of time instances. As a result, the computational time of this method scales as the cube of the number of time instances. In the present work, this preconditioner has been reworked to take advantage of an approximate-factorization approach that effectively decouples the spatial and temporal systems. Once decoupled, the time-spectral matrix can be inverted in frequency space, where it has entries only on the main diagonal and therefore can be inverted quite efficiently. This new GMRES/preconditioner combination is shown to be over an order of magnitude more efficient than the previous wave-number independent preconditioner for problems with large numbers of time instances and/or large reduced frequencies.

  13. Photovoltaic Impact Assessment of Smart Inverter Volt-VAR Control on Distribution System Conservation Voltage Reduction and Power Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta

    This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology tomore » implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.« less

  14. [Inverted meiosis and its place in the evolution of sexual reproduction pathways].

    PubMed

    Bogdanov, Yu F

    2016-05-01

    Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.

  15. New type of transformerless high efficiency inverter

    NASA Astrophysics Data System (ADS)

    Naaijer, G. J.

    Inverter architectures are presented which allow economical ac/dc switching for solar cell array and battery power use in domestic and industrial applications. The efficiencies of currently available inverters are examined and compared with a new 2.2 kW transformerless stepped wave inverter. The inverter has low no-load losses, amounting to 200 Wh/24 hr, and features voltage steps occurring 15-30 times/sine wave period. An example is provided for an array/battery/inverter assembly with the inverter control electronics activating or disconnecting the battery subassemblies based on the total number of activated subassemblies in relation to a reference sinewave, and the need to average the battery subassembly discharge rates. A total harmonic distortion of 6 percent was observed, and the system is noted to be usable as a battery charger.

  16. Contrast source inversion (CSI) method to cross-hole radio-imaging (RIM) data - Part 2: A complex synthetic example and a case study

    NASA Astrophysics Data System (ADS)

    Li, Yongxing; Smith, Richard S.

    2018-03-01

    We present two examples of using the contrast source inversion (CSI) method to invert synthetic radio-imaging (RIM) data and field data. The synthetic model has two isolated conductors (one perfect conductor and one moderate conductor) embedded in a layered background. After inversion, we can identify the two conductors on the inverted image. The shape of the perfect conductor is better resolved than the shape of the moderate conductor. The inverted conductivity values of the two conductors are approximately the same, which demonstrates that the conductivity values cannot be correctly interpreted from the CSI results. The boundaries and the tilts of the upper and the lower conductive layers on the background can also be inferred from the results, but the centre parts of conductive layers in the inversion results are more conductive than the parts close to the boreholes. We used the straight-ray tomographic imaging method and the CSI method to invert the RIM field data collected using the FARA system between two boreholes in a mining area in Sudbury, Canada. The RIM data include the amplitude and the phase data collected using three frequencies: 312.5 kHz, 625 kHz and 1250 kHz. The data close to the ground surface have high amplitude values and complicated phase fluctuations, which are inferred to be contaminated by the reflected or refracted electromagnetic (EM) fields from the ground surface, and are removed for all frequencies. Higher-frequency EM waves attenuate more quickly in the subsurface environment, and the locations where the measurements are dominated by noise are also removed. When the data are interpreted with the straight-ray method, the images differ substantially for different frequencies. In addition, there are some unexpected features in the images, which are difficult to interpret. Compared with the straight-ray imaging results, the inversion results with the CSI method are more consistent for different frequencies. On the basis of what we learnt from the synthetic study, we interpret that there is one resistive layer across the middle of the borehole plane and two more conductive areas above and below this layer. Though there are some limitations in the study, such as large transmitter steps and the precise amplitudes and dipole moments being unknown, we conclude that the CSI method provides more interpretable images compared with the straight-ray method.

  17. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    NASA Astrophysics Data System (ADS)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  18. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    NASA Astrophysics Data System (ADS)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  19. Chapter 11.2: Inverters, Power Optimizers, and Microinverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Christopher A

    Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less

  20. Microseismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-07-01

    At the heart of microseismic event measurements is the task to estimate the location of the source microseismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional microseismic source locating methods require, in many cases, manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, FWI of microseismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modelled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers are calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  1. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  2. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

  3. Fabrication of Optimized Superconducting Phase Inverters Based on Superconductor-Ferromagnet-Superconductor pi π -Junctions

    NASA Astrophysics Data System (ADS)

    Bolginov, V. V.; Rossolenko, A. N.; Shkarin, A. B.; Oboznov, V. A.; Ryazanov, V. V.

    2018-03-01

    We have implemented a trilayer technological approach to fabricate Nb-Cu_{0.47} Ni_{0.53}-Nb superconducting phase inverters (π -junctions) with enhanced critical current. Within this technique, all three layers of the superconductor-ferromagnet-superconductor junction deposited in a single vacuum cycle that have allowed us to obtain π -junctions with critical current density up to 20 kA/cm^2. The value achieved is a factor of 10 higher than for the step-by-step method used in earlier works. Our additional experiments have shown that this difference is related to a bilayered CuNi/Cu barrier used in the case of the step-by-step technique and interlayer diffusion at the CuNi/Cu interface. We show that the interlayer diffusion can be utilized for fine tuning of the 0{-}π transition temperature of already fabricated junctions. The results obtained open new opportunities for the CuNi-based phase inverters in digital and quantum Josephson electronics.

  4. Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells.

    PubMed

    Cui, Jin; Chen, Cheng; Han, Junbo; Cao, Kun; Zhang, Wenjun; Shen, Yan; Wang, Mingkui

    2016-03-01

    This work reports on incorporation of spectrally tuned gold/silica (Au/SiO 2 ) core/shell nanospheres and nanorods into the inverted perovskite solar cells (PVSC). The band gap of hybrid lead halide iodide (CH 3 NH 3 PbI 3 ) can be gradually increased by replacing iodide with increasing amounts of bromide, which can not only offer an appreciate solar radiation window for the surface plasmon resonance effect utilization, but also potentially result in a large open circuit voltage. The introduction of localized surface plasmons in CH 3 NH 3 PbI 2.85 Br 0.15 -based photovoltaic system, which occur in response to electromagnetic radiation, has shown dramatic enhancement of exciton dissociation. The synchronized improvement in photovoltage and photocurrent leads to an inverted CH 3 NH 3 PbI 2.85 Br 0.15 planar PVSC device with power conversion efficiency of 13.7%. The spectral response characterization, time resolved photoluminescence, and transient photovoltage decay measurements highlight the efficient and simple method for perovskite devices.

  5. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  6. Well pattern optimization in a low permeability sandstone reservoir: a case study from Erlian Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Fu, Lixia; Yan, Aihua; Guo, Fajun; Wu, Cong; Chen, Hong; Wang, Xinying; Lu, Ming

    2018-02-01

    Study on optimization of development well patterns is the core content of oilfield development and is a prerequisite for rational and effective development of oilfield. The study on well pattern optimization mainly includes types of well patterns and density of well patterns. This paper takes the Aer-3 fault block as an example. Firstly, models were built for diamond-shaped inverted 9-spot patterns, rectangular 5-spot patterns, square inverted 9-spot patterns and inverted 7-spot patterns under the same well pattern density to correlate the effect of different well patterns on development; secondly, comprehensive analysis was conducted to well pattern density in terms of economy and technology using such methods as oil reservoir engineering, numerical simulation, economic limits and economic rationality. Finally, the development mode of vertical well + horizontal well was presented according to the characteristics of oil reservoirs in some well blocks, which has realized efficient development of this fault block.

  7. Real-time imaging of nitric oxide production in living cells with 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence by invert fluorescence microscope.

    PubMed

    Huang, Ke-Jing; Wang, Hong; Ma, Ming; Zhang, Xian; Zhang, Hua-Shan

    2007-02-01

    Although the importance of nitric oxide (NO) as a signalling molecule in many biological processes is becoming increasingly evident, many proposed and potential biological functions of NO still remain unclear. Bioimaging is a good technique to visualize observation of nitric oxide in biological samples. In this report, a fluorescent probe, 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence (TMDCDABODIPY), has been first applied to real-time image NO produced in PC12 cells, Sf9 cells and human vascular endothelial cells at the presence of l-arginine with inverted fluorescence microscope. NO production in the cells is successfully captured and imaged with fine temporal and spatial resolution. The results prove that the probe combined with inverted fluorescence microscope can be developed into a sensitive and selective method for further study of NO release from cells.

  8. Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells.

    PubMed

    Jeon, Il; Yoon, Jungjin; Ahn, Namyoung; Atwa, Mohamed; Delacou, Clement; Anisimov, Anton; Kauppinen, Esko I; Choi, Mansoo; Maruyama, Shigeo; Matsuo, Yutaka

    2017-11-02

    Transparent carbon electrodes, carbon nanotubes, and graphene were used as the bottom electrode in flexible inverted perovskite solar cells. Their photovoltaic performance and mechanical resilience were compared and analyzed using various techniques. Whereas a conventional inverted perovskite solar cells using indium tin oxide showed a power conversion efficiency of 17.8%, the carbon nanotube- and graphene-based cells showed efficiencies of 12.8% and 14.2%, respectively. An established MoO 3 doping was used for  carbon electrode-based devices. The difference in the photovoltaic performance between the carbon nanotube- and graphene-based cells was due to the difference in morphology and transmittance. Raman spectroscopy, and cyclic flexural testing revealed that the graphene-based cells were more susceptible to strain than the carbon nanotube-based cells, though the difference was marginal. Overall, despite higher performance, the transfer step for graphene has lower reproducibility. Thus, the development of better graphene transfer methods would help maximize the current capacity of graphene-based cells.

  9. Time-delayed behaviors of transient four-wave mixing signal intensity in inverted semiconductor with carrier-injection pumping

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Gao, Shen; Xiang, Bowen

    2016-01-01

    An analytical expression of transient four-wave mixing (TFWM) in inverted semiconductor with carrier-injection pumping was derived from both the density matrix equation and the complex stochastic stationary statistical method of incoherent light. Numerical analysis showed that the TFWM decayed decay is towards the limit of extreme homogeneous and inhomogeneous broadenings in atoms and the decaying time is inversely proportional to half the power of the net carrier densities for a low carrier-density injection and other high carrier-density injection, while it obeys an usual exponential decay with other decaying time that is inversely proportional to half the power of the net carrier density or it obeys an unusual exponential decay with the decaying time that is inversely proportional to a third power of the net carrier density for a moderate carrier-density injection. The results can be applied to studying ultrafast carrier dephasing in the inverted semiconductors such as semiconductor laser amplifier and semiconductor optical amplifier.

  10. A new type of single-phase five-level inverter

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Li, Shengnan; Qin, Risheng; Zhao, Yanhang

    2017-11-01

    At present, Neutral Point Clamped (NPC) multilevel inverter is widely applied in new energy field. However, it has some disadvantages including low utilization rate of direct current (DC) voltage source and the unbalance of neutral potential. Therefore, a new single-phase five level inverter is proposed in this paper. It has two stage structure, the former stage is equivalent to three level DC/DC converter, and the back stage uses H bridge to realize inverter. Compared with the original central clamp type inverter, the new five level inverter can improve the utilization of DC voltage, and realize the neutral point potential balance with hysteresis comparator.

  11. A study on the impact of high penetration distributed generation inverters on grid operation and stability

    NASA Astrophysics Data System (ADS)

    Gu, Fei; Brouwer, Jack; Samuelsen, Scott

    2013-09-01

    Recent advances in inverter technology have enabled ancillary services such as volt/VAR regulation, SCADA communications, and active power filtering. Smart inverters can not only provide real power, but can be controlled to use excess capacity to provide reactive power compensation, power flow control, and active power filtering without supplementary inverter hardware. A transient level inverter model based on the Solectria 7700 inverter is developed and used to assess these control strategies using field data from an existing branch circuit containing two Amonix 68kW CPV-7700 systems installed at the University of California, Irvine.

  12. Nonlinear analysis of a family of LC tuned inverters. [dc to square wave circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.

  13. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    NASA Astrophysics Data System (ADS)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  14. A Single-Phase Embedded Z-Source DC-AC Inverter

    PubMed Central

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  15. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  16. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Yi; Zhu Yihua; Yang Xiaoling

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allowsmore » one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.« less

  17. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    PubMed Central

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  18. Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network

    NASA Astrophysics Data System (ADS)

    Raj, Nithin; Jagadanand, G.; George, Saly

    2018-04-01

    The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.

  19. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  20. Telomerase reverse transcriptase (TERT) promoter mutation analysis of benign, malignant and reactive urothelial lesions reveals a subpopulation of inverted papilloma with immortalizing genetic change.

    PubMed

    Cheng, Liang; Davidson, Darrell D; Wang, Mingsheng; Lopez-Beltran, Antonio; Montironi, Rodolfo; Wang, Lisha; Tan, Puay-Hoon; MacLennan, Gregory T; Williamson, Sean R; Zhang, Shaobo

    2016-07-01

    To understand more clearly the genetic ontogeny of inverted papilloma of urinary bladder, we analysed telomerase reverse transcriptase (TERT) promoter mutation status in a group of 26 inverted papillomas in comparison with the mutation status of urothelial carcinoma with inverted growth (26 cases), conventional urothelial carcinoma (36 Ta non-invasive urothelial carcinoma, 35 T2 invasive urothelial carcinoma) and cystitis glandularis (25 cases). TERT promoter mutations in inverted papilloma, urothelial carcinoma with inverted growth, urothelial carcinoma and cystitis glandularis were found in 15% (four of 26), 58% (15 of 26), 63% (45 of 71) and 0% (none of 25), respectively. C228T mutations were the predominant mutations (97%) found in bladder tumours, while C250T aberrations occurred in approximately 3% of bladder tumours. In the inverted papilloma group, TERT mutation occurred predominantly in female patients (P = 0.006). Among urothelial carcinomas, TERT promoter mutation status did not correlate with gender, histological grade or pathological stage. TERT promoter mutations were found in 15% of inverted papillomas. Our data suggest that there is a subpopulation of inverted papilloma that shares a carcinogenetic pathway with urothelial carcinoma with inverted growth and conventional urothelial carcinomas. Caution is warranted in exploring TERT promoter mutation status as a screening or adjunct diagnostic test for bladder cancer. © 2015 John Wiley & Sons Ltd.

  1. Etiological role of human papillomavirus infection for inverted papilloma of the bladder.

    PubMed

    Shigehara, Kazuyoshi; Sasagawa, Toshiyuki; Doorbar, John; Kawaguchi, Shohei; Kobori, Yoshitomo; Nakashima, Takao; Shimamura, Masayoshi; Maeda, Yuji; Miyagi, Tohru; Kitagawa, Yasuhide; Kadono, Yoshifumi; Konaka, Hiroyuki; Mizokami, Atsushi; Koh, Eitetsu; Namiki, Mikio

    2011-02-01

    The status of human papillomavirus (HPV) infection in urothelial inverted papilloma was examined in the present study. Formalin-fixed and paraffin-embedded tissues from eight cases of inverted papilloma of the bladder were studied. The presence of HPV-DNA was examined by modified GP5/6+PCR using archival tissue sections by microdissection. HPV genotype was determined with a Hybri-Max HPV genotyping kit. Immunohistochemical analysis for p16-INK4a, mcm7, HPV-E4, and L1, and in situ hybridization for the HPV genome were performed. HPV was detected in seven of eight cases (87.5%) of inverted papilloma. Three cases were diagnosed as inverted papilloma with atypia, while the remaining five were typical cases. HPV-18 was detected in two cases, including one inverted papilloma with atypia, and HPV-16 was detected in four cases, including one inverted papilloma with atypia. Multiple HPV type infection was detected in one typical case and one atypical case. High-risk HPV was present in all HPV-positive cases. Cellular proteins, p16-INK4a and mcm7, which are surrogate markers for HPV-E7 expression, were detected in all HPV-positive cases, and their levels were higher in inverted papilloma with atypia than in typical cases. In contrast, HPV-E4 and L1, which are markers for HPV propagation, were observed in some parts of the typical inverted papilloma tissue. High-risk HPV infection may be one of the causes of urothelial inverted papilloma, and inverted papilloma with atypia may have malignant potential. 2010 Wiley-Liss, Inc.

  2. Improved Performance via the Inverted Classroom

    ERIC Educational Resources Information Center

    Weinstein, Randy D.

    2015-01-01

    This study examined student performance in an inverted thermodynamics course (lectures provided by video outside of class) compared to a traditional lecture class. Students in the inverted class performed better on their exams. Students in the bottom third of the inverted course showed the greatest improvement. These bottom third students had a C…

  3. Inverting the Linear Algebra Classroom

    ERIC Educational Resources Information Center

    Talbert, Robert

    2014-01-01

    The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…

  4. Efficient/reliable dc-to-dc inverter circuit

    NASA Technical Reports Server (NTRS)

    Pasciutti, E. R.

    1970-01-01

    Feedback loop, which contains an inductor in series with a saturable reactor, is added to a standard inverter circuit to permit the inverter power transistors to be switched in a controlled and efficient manner. This inverter is applicable where the power source has either high or low impedance properties.

  5. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  6. 75 FR 36119 - In the Matter of Certain Cold Cathode Fluorescent Lamp (“CCFL”) Inverter Circuits and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing the Same; Notice of... States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., and the sale within the United States after importation of CCFL inverter circuits and products...

  7. Chemical vapor infiltration using microwave energy

    DOEpatents

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  8. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Inverter communications using output signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Patrick L.

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  10. Over/Undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation.

    PubMed

    Yingram, Manop; Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < -24.39% could determine anti-islanding condition within 0.04 s; -24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of -24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.

  11. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Power Regulation and Droop Mode Control Method for a Stand-Alone Load Fed from a PV-Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Khayamy, Mehdy; Ojo, Olorunfemi

    2015-04-01

    A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.

  13. Characterization of the Ecosole HCPV tracker and single module inverter

    NASA Astrophysics Data System (ADS)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  14. Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou

    2015-02-01

    We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.

  15. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.

    2015-06-24

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  16. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammoud, A. N.

    1990-01-01

    The use of a multiple pulse testing technique to determine the electrical characteristics of large megawatt-level power systems for aerospace missions is proposed. An innovative test method based on the multiple pulse technique is demonstrated on a 2-kW Mapham inverter. The concept of this technique shows that characterization of large power systems under electrical equilibrium at rated power can be accomplished without large costly power supplies. The heat generation that occurs in systems when tested in a continuous mode is eliminated. The results indicate that there is a good agreement between this testing technique and that of steady state testing.

  17. Nanocrystal-based complementary inverters constructed on flexible plastic substrates.

    PubMed

    Jang, Jaewon; Cho, Kyoungah; Yun, Junggwon; Kim, Sangsig

    2013-05-01

    We demonstrate a nanocrystal (NC)-based complementary inverter constructed on a flexible plastic substrate. The NC-based complementary inverter consists of n-type HgSe NC- and p-type HgTe NC-based thin-film transistors (TFTs). Solid films on a plastic substrate obtained from HgSe and HgTe nanocrystals by thermal transformation are utilized as the n- and p-channel layers in these TFTs, respectively. The electrical properties of these component TFTs on unstrained and strained substrates are characterized and the performance of the inverter on the flexible substrate is investigated. The inverter on the unstrained substrate exhibits a logic gain of about 8, a logic swing of 90%, and a noise margin of 2.0 V. The characteristics of the inverter are changed under tensile and compressive strains, but not very significantly. Moreover, a comparison of the electrical characteristics of the n- and p-channel TFTs and the inverter is made in this paper.

  18. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  19. Mobile Inverted Constructivism: Education of Interaction Technology in Social Media

    ERIC Educational Resources Information Center

    Chai, Jia-Xiang; Fan, Kuo-Kuang

    2016-01-01

    The combination of social media and invert teaching is a new path to inverting interation technology education and reconstructing the curriculum of context. In this paper, based on the theory of constructivism learning, a model named Mobile Inverted Constructivism (MIC) is provided. Moreover, in view of the functional quality of social media in…

  20. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  1. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  2. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  3. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  4. DC-to-AC inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Ebersole, T. J.; Andrews, R. E.

    1975-01-01

    Failure detection technique is based upon input-output ratios, which is independent of inverter loading. Since inverter has fixed relationship between V-in/V-out and I-in/I-out, failure detection criteria are based on this ratio, which is simply inverter transformer turns ratio, K, equal to primary turns divided by secondary turns.

  5. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less

  6. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator,more » three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less

  7. Inverted stream channels in the Western Desert of Egypt: Synergistic remote, field observations and laboratory analysis on Earth with applications to Mars

    NASA Astrophysics Data System (ADS)

    Zaki, Abdallah S.; Pain, Colin F.; Edgett, Kenneth S.; Giegengack, Robert

    2018-07-01

    Inverted relief landforms occur in numerous regions on Mars, ranging in age from Noachian to more recent Amazonian periods (<3.0 Ga). A better understanding of the conditions in which inverted fluvial channel features on Earth form, and the geologic records they preserve in arid settings, can yield insights into the development of inverted landforms on Mars. Inverted channel landforms in the Western Desert of Egypt are well represented across an area of ∼27,000 km2. We investigated inverted channel features at seven sites using remotely-sensed data, field observations, and lab analysis. Inverted channel features in the Western Desert record fluvial environments of differing scales and ages. They developed mainly via inversion of cemented valley floor sediment, but there is a possibility that inverted fluvial landforms in the Dakhla Depression might have been buried, lithified, and exhumed. A few examples, in the southeastern part of the Western Desert, record, instead, a resistance to erosion caused by surface armouring of uncemented valley floor sediment. We show that the grain-size distribution for investigated and reviewed inverted channels is highly variable, with boulders that are commonly 0.35 - 1 m in size; large particles provide high porosity that influences the cementation mechanism. The studied inverted channel sediments are mainly cemented with ferricrete, calcrete, gypcrete, and silcrete. Inverted channels are valuable for the reconstruction of paleoclimate cycles or episodes on Earth and Mars; observations from the Western Desert, when offered as analogs, add to the growing list of Earth examples that provide suites of observables relevant to reconstruction of paleoenvironmental conditions on Mars.

  8. Number word structure in first and second language influences arithmetic skills

    PubMed Central

    Prior, Anat; Katz, Michal; Mahajna, Islam; Rubinsten, Orly

    2015-01-01

    Languages differ in how they represent numerical information, and specifically whether the verbal notation of numbers follows the same order as the symbolic notation (in non-inverted languages, e.g., Hebrew, “25, twenty-five”) or whether the two notations diverge (in inverted languages, e.g., Arabic, “25, five-and-twenty”). We examined how the structure of number–words affects how arithmetic operations are processed by bilingual speakers of an inverted and a non-inverted language. We examined Arabic–Hebrew bilinguals’ performance in the first language, L1 (inverted) and in the second language, L2 (non-inverted). Their performance was compared to that of Hebrew L1 speakers, who do not speak an inverted language. Participants judged the accuracy of addition problems presented aurally in L1, aurally in L2 or in visual symbolic notation. Problems were presented such that they matched or did not match the structure of number words in the language. Arabic–Hebrew bilinguals demonstrated both flexibility in processing and adaptation to the language of aural–verbal presentation – they were more accurate for the inverted order of presentation in Arabic, but more accurate for non-inverted order of presentation in Hebrew, thus exhibiting the same pattern found for native Hebrew speakers. In addition, whereas native Hebrew speakers preferred the non-inverted order in visual symbolic presentation as well, the Arabic–Hebrew bilinguals showed enhanced flexibility, without a significant preference for one order over the other, in either speed or accuracy. These findings suggest that arithmetic processing is sensitive to the linguistic representations of number words. Moreover, bilinguals exposed to inverted and non-inverted languages showed influence of both systems, and enhanced flexibility in processing. Thus, the L1 does not seem to have exclusive power in shaping numerical mental representations, but rather the system remains open to influences from a later learned L2. PMID:25852591

  9. Evidence that human papillomavirus causes inverted papilloma is sparse.

    PubMed

    Justice, Jeb M; Davis, Kern M; Saenz, Daniel A; Lanza, Donald C

    2014-12-01

    Controversy exists regarding the pathogenesis of inverted papilloma as it relates to the involvement of human papillomavirus (HPV). The purpose of this report is to describe the prevalence of HPV in nondysplastic, "early inverted papilloma" and to summarize HPV detection rates in the general population and in other HPV related neoplasia. This case series report characterizes consecutive inverted papilloma patients from January 2005 to August 2012 with regard to smoking history, dysplasia, and HPV detection rates. Presence or absence of low/high risk HPV was determined by standardized in situ hybridization DNA probes. Medline literature review was performed to determine the prevalence of HPV in inverted papilloma without moderate or severe dysplasia. Thirty-six consecutive patients were identified with an average age of 63.6 (range, 40-84) years; gender: 23 men, 13 women. More than half (55%) were active or former smokers (14% active and 41% former). High/low risk HPV was present in 1 in 36 (2.7%) patients and 1 in 36 (2.7%) had mild dysplasia. In the literature review: (1) HPV was detected in 16.4% of inverted papilloma without dysplasia; (2) oral cavity HPV detection was 4.2% to 11.4% in the normal population; and (3) HPV was normally detected in 85% to 95% of HPV-related neoplasia. Given histological features of inverted papilloma and comparatively low detection rates of HPV in inverted papilloma without dysplasia (2.7%), as well as the summary of the world literature, HPV is not related to the initial pathogenesis of inverted papilloma or inverted papilloma's tendency to persist or recur. It is postulated that since inverted papilloma is more an inflammatory polyp, it is susceptible to secondary HPV infection because of its metaplasia. Tobacco and other causes of respiratory epithelium remodeling are more plausible explanations for the initial tissue transformation to inverted papilloma. © 2014 ARS-AAOA, LLC.

  10. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification

    PubMed Central

    Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.

    2015-01-01

    DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution. PMID:26700858

  11. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    PubMed

    Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K

    2015-12-01

    DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.

  12. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  13. Comparison of Virtual Oscillator and Droop Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit

    Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactivemore » power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.« less

  14. Optical absorption enhancement by inserting ZnO optical spacer in plasmonic organic solar cells

    NASA Astrophysics Data System (ADS)

    N'Konou, Kekeli; Torchio, Philippe

    2018-01-01

    Optical absorption enhancement (AE) using coupled optical spacer and plasmonic effects in standard and inverted organic solar cells (OSCs) are demonstrated using the finite-difference time-domain numerical method. The influence of an added zinc oxide (ZnO) optical spacer layer inserted below the active layer in standard architecture is first theoretically investigated while the influence of varying the ZnO cathodic buffer layer thickness in inverted design is studied on AE. Then, the embedding of a square periodic array of core-shell silver-silica nanospheres (Ag@SiO2 NSs) at different positions in standard and inverted OSCs is performed while AE and short-circuit current density (Jsc) are calculated. As a result of previous combined effects, the optimized standard plasmonic OSCs present 15% and 79.45% enhancement in J over the reference with and without ZnO optical spacer layer, respectively, and a 16% increase of AE when Ag@SiO2 NSs are placed on top of the PEDOT:PSS layer. Compared to the inverted OSC reference, the plasmonic OSCs present 26% and 27% enhancement in J and AE, respectively, when the Ag@SiO2 NSs are located on top of the ZnO layer. Furthermore, the spatial position of these NSs in such OSCs is a key parameter for increasing light absorption via enhanced electromagnetic field distribution.

  15. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    1996-01-01

    The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.

  16. Magnetic anomalies in east Pacific using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A. (Principal Investigator)

    1983-01-01

    Methods for solving problems encountered in separating the core field from the crustal field are summarized as well as those methods developed for inverting total magnetic field data to obtain source functions for oceanic areas. Accounting for magnetization contrasts and the magnetization values measured in rocks of marine origin are also discussed.

  17. Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters

    NASA Astrophysics Data System (ADS)

    Vasumathi, B.; Moorthi, S.

    2011-11-01

    In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.

  18. Ultrastrong light fields (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 October 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    On 29 October 2014, the scientific session "Super strong light fields" of the Physical Sciences Division (PSD), Russian Academy of Sciences (RAS), was held at the conference hall of the Lebedev Physical Institute, RAS.The agenda of the session announced on the website http://www.gpad.ac.ru of the PSD RAS contains the reports: (1) Bychenkov V Yu (Lebedev Physical Institute, RAS, Moscow) "Laser acceleration of ions: New results and prospects for applications"; (2) Kostyukov I Yu (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Plasma methods for electron acceleration: the state of the art and outlook"; (3) Zheltikov A M (Lomonosov Moscow State University, Moscow) "Nonlinear optics of mid-IR ultrashort pulses"; (4) Narozhnyi N B, Fedotov A M (Moscow Engineering Physics Institute, Nuclear Research University, Moscow) "Quantum electrodynamics cascades in intense laser fields."Papers written on the basis of oral presentations 1-4 are published below. • Laser acceleration of ions: recent results and prospects for applications, V Yu Bychenkov, A V Brantov, E A Govras, V F Kovalev Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 71-81 • Plasma-based methods for electron acceleration: current status and prospects, I Yu Kostyukov, A M Pukhov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 81-88 • Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields, A V Mitrofanov, D A Sidorov-Biryukov, A A Voronin, A Pugžlys, G Andriukaitis, E A Stepanov, S Ališauskas, T Flöri, A B Fedotov, V Ya Panchenko, A Baltuška, A M Zheltikov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 89-94 • Quantum-electrodynamic cascades in intense laser fields, N B Narozhny, A M Fedotov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 95-102

  19. High-resolution microendoscope imaging of inverted papilloma and normal sinonasal mucosa: evaluation of interobserver concordance.

    PubMed

    Parasher, Arjun K; Kidwai, Sarah M; Schorn, Victor J; Goljo, Erden; Weinberg, Alan D; Richards-Kortum, Rebecca; Sikora, Andrew G; Iloreta, Alfred Marc; Govindaraj, Satish; Miles, Brett A

    2015-12-01

    High-resolution microendoscopy (HRME) enables real-time imaging of epithelial tissue. The utility of this novel imaging modality for inverted papilloma has not been previously described. This study examines the ability of otolaryngologists to differentiate between images of inverted papilloma and normal sinonasal mucosa obtained with a HRME. Inverted papilloma and normal sinonasal mucosa specimens were stained with a contrast agent, proflavine. HRME images were subsequently captured. Histopathological diagnosis was obtained for each sample. Quality-controlled images were used to assemble a training set. After reviewing the training images, 6 otolaryngologists without prior HRME experience reviewed and classified test images. Five samples of inverted papilloma and 2 normal sinonasal mucosa samples were collected. Four representative images from each specimen were used for the 28-image test set. The mean accuracy among all reviewers was 89.9% (95% confidence interval [CI], 84.3% to 94.0%). The sensitivity to correctly identify inverted papilloma was 86.7% (95% CI, 79.2% to 92.2%), and the specificity was 92.9% (95% CI, 89.0% to 100.0%). The Fleiss kappa interrater reliability score was 0.80 (95% CI, 0.70 to 0.89). Inverted papilloma and normal sinonasal mucosa have distinct HRME imaging characteristics. Otolaryngologists can be successfully trained to distinguish between inverted papilloma and normal sinonasal mucosa. HRME is a feasible tool for identification of inverted papilloma. By conducting future in vivo trials, HRME potentially may enable real-time surgical margin determination during surgical excision of inverted papilloma. © 2015 ARS-AAOA, LLC.

  20. Micro-seismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  1. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  2. Sinonasal inverted papilloma: From diagnosis to treatment.

    PubMed

    Lisan, Q; Laccourreye, O; Bonfils, P

    2016-11-01

    Inverted papilloma is a rare sinonasal tumor that mainly occurs in adults during the 5th decade. Three characteristics make this tumor very different from other sinonasal tumors: a relatively strong potential for local destruction, high rate of recurrence, and a risk of carcinomatous evolution. Etiology remains little understood, but an association with human papilloma virus has been reported in up to 40% of cases, raising the suspicions of implication in the pathogenesis of inverted papilloma. Treatment of choice is surgery, by endonasal endoscopic or external approach, depending on extension and tumoral characteristics. Follow-up is critical, to diagnose local relapse, which is often early but may also be late. The seriousness of this pathology lies in its association with carcinoma, which may be diagnosed at the outset or at recurrence during follow-up. It is important to diagnose recurrence to enable early treatment, especially in case of associated carcinoma or malignancy. A comprehensive review of the international literature was performed on PubMed and Embase, using the following search-terms: "sinonasal" [All Fields] AND ("papilloma, inverted" [MeSH Terms] OR ("papilloma" [All Fields] AND "inverted" [All Fields]) OR "inverted papilloma" [All Fields] OR ("inverted" [All Fields] AND "papilloma" [All Fields])). We reviewed all articles referring to sinonasal inverted papilloma published up to January 2015. The present article updates the state of knowledge regarding sinonasal inverted papilloma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Design and development of high performance solar photovoltaic inverter with advanced modulation techniques to improve power quality

    NASA Astrophysics Data System (ADS)

    Alexander Stonier, Albert

    2017-02-01

    In addition to the focus towards growing demand on electrical energy due to the increase in population, industries, consumer loads, etc., the need for improving the quality of electrical power also needs to be considered. The design and development of solar photovoltaic (PV) inverter with reduced harmonic distortions is proposed. Unlike the conventional solar PV inverters, the proposed inverter provides the advantages of reduced harmonic distortions thereby intend towards the improvement in power quality. This inverter comprises of multiple stages which provides the required 230VRMS, 50 Hz in spite of variations in solar PV due to temperature and irradiance. The reduction of harmonics is governed by applying proper switching sequences required for the inverter switches. The detailed analysis is carried out by employing different switching techniques and observing its performance. With a separate mathematical model for a solar PV, simulations are performed in MATLAB software. To show the advantage of the system proposed, a 3 kWp photovoltaic plant coupled with multilevel inverter is demonstrated in hardware. The novelty resides in the design of a single chip controller which can provide the switching sequence based on the requirement and application. As per the results obtained, the solar-fed multistage inverter improves the quality of power which makes this inverter suitable for both stand-alone and grid-connected systems.

  4. The Google High Power Density Inverter Prize: Innovation in PV Inverter Power Density: Cooperative Research and Development Final Report, CRADA Number: CRD-14-568

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake

    Google is encouraging development of advanced photovoltaic inverters with high power density by holding a public competition and offering a prize for the best performing high power developed. NREL will perform the performance and validation for all inverters entered into the competition and provide results to Google.

  5. Technologies for converter topologies

    DOEpatents

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  6. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  7. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  8. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  9. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  10. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  11. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agamy, Mohammed

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less

  12. Design and Implementation of 13 Levels Multilevel Inverter for Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Subramani, C.; Dhineshkumar, K.; Palanivel, P.

    2018-04-01

    This paper approaches the appearing and modernization of S-Type PV based 13- level multilevel inverter with less quantity of switch. The current S-Type Multi level inverter contains more number of switches and voltage sources. Multilevel level inverter is a be understandable among the most gainful power converters for high power application and present day applications with reduced switches. The fundamental good arrangement of the 13-level multilevel inverter is to get ventured voltage from a couple of levels of DC voltages.. The controller gives actual way day and age to switches through driver circuit using PWM methodology. The execution assessment of proposed multilevel inverter is checked using MATLAB/Simulink. This is the outstanding among other techniquem appeared differently in relation to all other existing system

  13. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    PubMed Central

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  14. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    PubMed

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  15. High performance static latches with complete single event upset immunity

    DOEpatents

    Corbett, Wayne T.; Weaver, Harry T.

    1994-01-01

    An asymmetric response latch providing immunity to single event upset without loss of speed. The latch has cross-coupled inverters having a hardened logic state and a soft state, wherein the logic state of the first inverter can only be changed when the voltage on the coupling node of that inverter is low and the logic state of the second inverter can only be changed when the coupling of that inverter is high. One of more of the asymmetric response latches may be configured into a memory cell having complete immunity, which protects information rather than logic states.

  16. Relationships among classes of self-oscillating transistor parallel inverters. [dc to square wave converter circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1974-01-01

    A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.

  17. Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data

    USGS Publications Warehouse

    Sun, Jin; Kelbert, Anna; Egbert, G.D.

    2015-01-01

    Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.

  18. Gas cooled traction drive inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  19. Gas cooled traction drive inverter

    DOEpatents

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  20. Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2013-12-01

    In this Letter, we propose an all-optical circuit for a cascadable and integrable logic inverter based on stimulated Raman scattering. A maximum product criteria for noise margin is taken to analyze the cascadability of the inverter. Variation of noise margin for different model parameters is also studied. Finally, the time domain response of the inverter is analyzed for different widths of input pulses.

  1. Test Protocols for Advanced Inverter Interoperability Functions – Main Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  2. Test Protocols for Advanced Inverter Interoperability Functions - Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  3. Rupture process of the 2016 Mw 7.8 Ecuador earthquake from joint inversion of InSAR data and teleseismic P waveforms

    NASA Astrophysics Data System (ADS)

    Yi, Lei; Xu, Caijun; Wen, Yangmao; Zhang, Xu; Jiang, Guoyan

    2018-01-01

    The 2016 Ecuador earthquake ruptured the Ecuador-Colombia subduction interface where several historic megathrust earthquakes had occurred. In order to determine a detailed rupture model, Interferometric Synthetic Aperture Radar (InSAR) images and teleseismic data sets were objectively weighted by using a modified Akaika's Bayesian Information Criterion (ABIC) method to jointly invert for the rupture process of the earthquake. In modeling the rupture process, a constrained waveform length method, unlike the traditional subjective selected waveform length method, was used since the lengths of inverted waveforms were strictly constrained by the rupture velocity and rise time (the slip duration time). The optimal rupture velocity and rise time of the earthquake were estimated from grid search, which were determined to be 2.0 km/s and 20 s, respectively. The inverted model shows that the event is dominated by thrust movement and the released moment is 5.75 × 1020 Nm (Mw 7.77). The slip distribution extends southward along the Ecuador coast line in an elongated stripe at a depth between 10 and 25 km. The slip model is composed of two asperities and slipped over 4 m. The source time function is approximate 80 s that separated into two segments corresponding to the two asperities. The small magnitude of the slip occurred in the updip section of the fault plane resulted in small tsunami waves that were verified by observations near the coast. We suggest a possible situation that the rupture zone of the 2016 earthquake is likely not overlapped with that of the 1942 earthquake.

  4. A comparative study on assessment procedures and metric properties of two scoring systems of the Coma Recovery Scale-Revised items: standard and modified scores.

    PubMed

    Sattin, Davide; Lovaglio, Piergiorgio; Brenna, Greta; Covelli, Venusia; Rossi Sebastiano, Davide; Duran, Dunja; Minati, Ludovico; Giovannetti, Ambra Mara; Rosazza, Cristina; Bersano, Anna; Nigri, Anna; Ferraro, Stefania; Leonardi, Matilde

    2017-09-01

    The study compared the metric characteristics (discriminant capacity and factorial structure) of two different methods for scoring the items of the Coma Recovery Scale-Revised and it analysed scale scores collected using the standard assessment procedure and a new proposed method. Cross sectional design/methodological study. Inpatient, neurological unit. A total of 153 patients with disorders of consciousness were consecutively enrolled between 2011 and 2013. All patients were assessed with the Coma Recovery Scale-Revised using standard (rater 1) and inverted (rater 2) procedures. Coma Recovery Scale-Revised score, number of cognitive and reflex behaviours and diagnosis. Regarding patient assessment, rater 1 using standard and rater 2 using inverted procedures obtained the same best scores for each subscale of the Coma Recovery Scale-Revised for all patients, so no clinical (and statistical) difference was found between the two procedures. In 11 patients (7.7%), rater 2 noted that some Coma Recovery Scale-Revised codified behavioural responses were not found during assessment, although higher response categories were present. A total of 51 (36%) patients presented the same Coma Recovery Scale-Revised scores of 7 or 8 using a standard score, whereas no overlap was found using the modified score. Unidimensionality was confirmed for both score systems. The Coma Recovery Scale Modified Score showed a higher discriminant capacity than the standard score and a monofactorial structure was also supported. The inverted assessment procedure could be a useful evaluation method for the assessment of patients with disorder of consciousness diagnosis.

  5. Biped Robot Gait Planning Based on 3D Linear Inverted Pendulum Model

    NASA Astrophysics Data System (ADS)

    Yu, Guochen; Zhang, Jiapeng; Bo, Wu

    2018-01-01

    In order to optimize the biped robot’s gait, the biped robot’s walking motion is simplify to the 3D linear inverted pendulum motion mode. The Center of Mass (CoM) locus is determined from the relationship between CoM and the Zero Moment Point (ZMP) locus. The ZMP locus is planned in advance. Then, the forward gait and lateral gait are simplified as connecting rod structure. Swing leg trajectory using B-spline interpolation. And the stability of the walking process is discussed in conjunction with the ZMP equation. Finally the system simulation is carried out under the given conditions to verify the validity of the proposed planning method.

  6. The Radon cumulative distribution transform and its application to image classification

    PubMed Central

    Kolouri, Soheil; Park, Se Rim; Rohde, Gustavo K.

    2016-01-01

    Invertible image representation methods (transforms) are routinely employed as low-level image processing operations based on which feature extraction and recognition algorithms are developed. Most transforms in current use (e.g. Fourier, Wavelet, etc.) are linear transforms, and, by themselves, are unable to substantially simplify the representation of image classes for classification. Here we describe a nonlinear, invertible, low-level image processing transform based on combining the well known Radon transform for image data, and the 1D Cumulative Distribution Transform proposed earlier. We describe a few of the properties of this new transform, and with both theoretical and experimental results show that it can often render certain problems linearly separable in transform space. PMID:26685245

  7. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    PubMed

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  8. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    PubMed Central

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  9. Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach

    NASA Astrophysics Data System (ADS)

    Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan

    2005-12-01

    Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.

  10. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  11. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer A.; Chambers, Don P.; Cheng, Minkang

    2018-01-01

    A least squares inversion of satellite laser ranging (SLR) data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE) and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5×5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time series suggests that on a 20-year time frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate may be reasonable.

  12. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  13. Face-Evoked Steady-State Visual Potentials: Effects of Presentation Rate and Face Inversion

    PubMed Central

    Gruss, L. Forest; Wieser, Matthias J.; Schweinberger, Stefan R.; Keil, Andreas

    2012-01-01

    Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n = 21, n = 18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion. PMID:23205009

  14. A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Sedki, Amor; André, Nicolas; Kilchytska, Valéria; Gérard, Pierre; Ali, Zeeshan; Udrea, Florin; Flandre, Denis

    2018-01-01

    In this paper, we study the recovery of onmembrane semiconductor components, such as N-type Field-Effect Transistors (FETs) available in two different channel widths and a Complementary Metal-Oxide-Semiconductor (CMOS) inverter, after the exposure to high dose of proton radiation. Due to the ionizing effect, the electrical characteristics of the components established remarkable shifts, where the threshold voltages showed an average shift of -480 mV and -280 mV respectively for 6 μm and 24 μm N-channel transistors, likewise the inversion point of the inverter showed an important shift of -690 mV. The recovery concept is based mainly on a micro-hotplate, fabricated with backside MEMS micromachining structure and a Silicon-On-Insulator (SOI) technology, ensuring rapid, low power and in situ annealing technique, this method proved its reliability in recent works. Annealing the N-channel transistors and the inverter for 16 min with a temperature of the heater up to 385 °C, guaranteed a partial recovery of the semiconductor based components with a maximum power consumption of 66 mW.

  15. Using Diffraction Tomography to Estimate Marine Animal Size

    NASA Astrophysics Data System (ADS)

    Jaffe, J. S.; Roberts, P.

    In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape

  16. Estimated power quality for line commutated photovoltaic residential system

    NASA Astrophysics Data System (ADS)

    McNeill, B. W.; Mirza, M. A.

    1983-10-01

    A residential photovoltaic system using a line commutated inverter is modeled using a single diode model for the solar cells and a four switch model for the inverter. The model predicts power factor and total harmonic distortion as a function of solar radiation, array voltage, inverter output voltage, and inverter filter capacitor and inductor size. The model was run using parameter values appropriate for the John F. Long PV System and the predicted results compared well with measured results from the system. The model shows that improvements in total harmonic distortion are made at the expense of the power factor. The harmonic distortion is least when the inverter is operating at just continuous conduction. The total harmonic distortion can be kept to less than 0.17 all day if a variable inductor is used in the inverter's input filters.

  17. Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kang, Tae-Woon; Noh, Yong-Jin; Yun, Jin-Mun; Yang, Si-Young; Yang, Yong-Eon; Lee, Hae-Seong; Na, Seok-In

    2015-06-01

    This study examined the effects of chemically converted graphene (CCG) materials as a metal electrode interfacial modifier on device-performances of inverted organic photovoltaic cells (OPVs). As CCG materials for interfacial layers, a conventional graphene oxide (GO) and reduced graphene oxide (rGO) were prepared, and their functions on OPV-performances were compared. The inverted OPVs with CCG materials showed all improved cell-efficiencies compared with the OPVs with no metal/bulk-heterojunction (BHJ) interlayers. In particular, the inverted OPVs with reduction form of GO showed better device-performances than those with GO and better device-stability than poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-based inverted solar cells, showing that the rGO can be more desirable as a metal/BHJ interfacial material for fabricating inverted-configuration OPVs.

  18. Regulation of the Output Voltage of an Inverter in Case of Load Variation

    NASA Astrophysics Data System (ADS)

    Diouri, Omar; Errahimi, Fatima; Es-Sbai, Najia

    2018-05-01

    In a DC/AC photovoltaic application, the stability of the output voltage of the inverter plays a very important role in the electrical systems. Such a photovoltaic system is constituted by an inverter, which makes it possible to convert the continuous energy to the alternative energy used in systems which operate under a voltage of 230V. The output of this inverter can be connected to a single load or more, at which time a second load is added in parallel with the first load. In this case, it proves a voltage drop at the output of the inverter. This problem influences the proper functioning of the electrical loads. Therefore, our contribution is to give a solution to this by compensating this voltage drop using a boost converter at the input of the inverter. This boost converter will play the role of the compensator that will provide the necessary voltage to the inverter in order to increase the voltage across the loads. But the use of this boost without controlling it is not enough because it generates a voltage that depends on the duty cycle of the control signal. To stabilize the output voltage of the inverter, we used a Proportional, Integral, and Derivative control (PID), which makes it possible to generate the necessary control signal for the voltage boost in order to have a good regulation of the output voltage of the inverter. Finally, we have solved the problem of the voltage drop even though there is loads variation.

  19. Middle School Science Notes

    ERIC Educational Resources Information Center

    School Science Review, 1977

    1977-01-01

    Includes methods for using harmonographs in demonstrating motion of pendulums, constructing an electrostatic "bell," inverting mirror images, demonstrating the corrosion rate of steel, demonstrating expansion, studying rate of reaction between magnesium and hydrochloric acid, using matchboxes in science for containers, problem boxes, building…

  20. Over/Undervoltage and Undervoltage Shift of Hybrid Islanding Detection Method of Distributed Generation

    PubMed Central

    Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < −24.39% could determine anti-islanding condition within 0.04 s; −24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of −24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  1. Distance descending ordering method: An O(n) algorithm for inverting the mass matrix in simulation of macromolecules with long branches

    NASA Astrophysics Data System (ADS)

    Xu, Xiankun; Li, Peiwen

    2017-11-01

    Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.

  2. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  3. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  4. New model of inverting substation for DC traction with regenerative braking system

    NASA Astrophysics Data System (ADS)

    Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris

    2017-08-01

    This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.

  5. Flipping the Graduate Qualitative Research Methods Classroom: Did It Lead to Flipped Learning?

    ERIC Educational Resources Information Center

    Earley, Mark

    2016-01-01

    The flipped, or inverted, classroom has gained popularity in a variety of fields and at a variety of educational levels, from K-12 through higher education. This paper describes the author's positive experience flipping a graduate qualitative research methods classroom. After a review of the current literature on flipped classrooms in higher…

  6. Flipping an Agricultural Education Teaching Methods Course

    ERIC Educational Resources Information Center

    Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica M.; Roberts, T. Grady; Stedman, Nicole L. P.

    2014-01-01

    Flipping or inverting a course is a relatively new approach to structuring a course. Using this method, the lectures traditionally delivered during regularly scheduled class time are converted to a media for delivery online, often in the form of videos. Learners are expected to view the online lectures prior to class. Then in turn, in-class time…

  7. Multiple output power supply circuit for an ion engine with shared upper inverter

    NASA Technical Reports Server (NTRS)

    Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)

    2001-01-01

    A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.

  8. High performance static latches with complete single event upset immunity

    DOEpatents

    Corbett, W.T.; Weaver, H.T.

    1994-04-26

    An asymmetric response latch providing immunity to single event upset without loss of speed is described. The latch has cross-coupled inverters having a hardened logic state and a soft state, wherein the logic state of the first inverter can only be changed when the voltage on the coupling node of that inverter is low and the logic state of the second inverter can only be changed when the coupling of that inverter is high. One of more of the asymmetric response latches may be configured into a memory cell having complete immunity, which protects information rather than logic states. 5 figures.

  9. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  10. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  11. Plume Characterization of Busek 600W Hall Thruster

    DTIC Science & Technology

    2012-03-09

    probe was used to examine the thruster plume current density while the ion species fractions were determined by the ExB probe. The inverted pendulum ...25 A. Inverted Pendulum ...Diagnostic Equipment .....................................................................................45 A. Inverted Pendulum

  12. Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael

    This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less

  13. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Martin, Gregory D; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and its effect on abnormalmore » grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.« less

  14. Modeling and analysis of energy quantization effects on single electron inverter performance

    NASA Astrophysics Data System (ADS)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  15. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  16. Inverted schneiderian papilloma of the supraglottis: Case report.

    PubMed

    Saddawi-Konefka, Robert; Hariri, Nosaibah; Shabaik, Ahmed; Weissbrod, Philip A

    2017-12-01

    Inverted schneiderian papillomas are rare benign tumors, most often arising from the sinonasal mucosa. We describe a case of a 59-year-old female with an inverted papilloma of the supraglottis. This is the first reported case of a supraglottic-presenting inverted papilloma. Although rare, this case demonstrates that these tumors should be considered during workup of supraglottic laryngeal masses. Laryngoscope, 127:2830-2832, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Modular inverter system

    DOEpatents

    Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed

    2017-08-01

    A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.

  18. 3'-UTR-located inverted Alu repeats facilitate mRNA translational repression and stress granule accumulation

    PubMed Central

    Fitzpatrick, Terry; Huang, Sui

    2012-01-01

    Alu repeats within human genes may potentially alter gene expression. Here, we show that 3′-UTR-located inverted Alu repeats significantly reduce expression of an AcGFP reporter gene. Mutational analysis demonstrates that the secondary structure, but not the primary nucleotide sequence, of the inverted Alu repeats is critical for repression. The expression levels and nucleocytoplasmic distribution of reporter mRNAs with or without 3′-UTR inverted Alu repeats are similar; suggesting that reporter gene repression is not due to changes in mRNA levels or mRNA nuclear sequestration. Instead, reporter gene mRNAs harboring 3′-UTR inverted Alu repeats accumulate in cytoplasmic stress granules. These findings may suggest a novel mechanism whereby 3′-UTR-located inverted Alu repeats regulate human gene expression through sequestration of mRNAs within stress granules. PMID:22688648

  19. Analysis and modeling of a family of two-transistor parallel inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1973-01-01

    A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.

  20. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  1. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part I: Theory and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less

  2. Influences of device structures on microstructure-correlated photovoltaic characteristics of organic solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chiao; Yang, Cheng-Chi; Tseng, Po-Tsung; Chou, Wei-Yang; Cheng, Horng-Long

    2017-02-01

    Photovoltaic characteristics of organic solar cells (OSCs) are correlated with microstructural qualities of active layers (ALs). Numerous efforts focused on improving process conditions of ALs to attain effective microstructures to achieve high-efficiency OSCs. Aside from AL process conditions, layer properties under AL can also influence microstructural qualities of AL. In this study, we adopted poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61-butyric acid methyl ester (PCBM) mixture as AL, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as hole extraction layer, and branched polyethyleneimine (BPEI) as electron extraction layer to prepare OSCs with different device structures, that is, normal type (PEDOT:PSS/P3HT:PCBM/BPEI) and inverted type (BPEI/P3HT:PCBM/PEDOT:PSS) structures. We discovered that although devices have similar layer components, they have different photovoltaic characteristics. Inverted devices demonstrated higher power conversion efficiency than normal devices. Various methods, including absorption spectroscopy and microscopy, were used to study AL microstructures of different devices. We observed that P3HT crystallites grown on BPEI had longer vertical size and shorter horizontal size compared with those grown on PEDOT:PSS; these properties could result from larger interfacial tension of P3HT with BPEI than with PEDOT:PSS. Observed shape of P3HT crystallites in inverted devices facilitated efficient charge transport to electrodes and suppressed current leakage. As a result, inverted devices generated improved photovoltaic performance.

  3. Square-Wave Model for a Pendulum with Oscillating Suspension

    ERIC Educational Resources Information Center

    Yorke, Ellen D.

    1978-01-01

    Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)

  4. The underside of the cerebral cortex: layer V/VI spiny inverted neurons

    PubMed Central

    Mendizabal-Zubiaga, Juan L; Reblet, Concepcion; Bueno-Lopez, Jose L

    2007-01-01

    This paper presents an account of past and current research on spiny inverted neurons – alternatively also known as ‘inverted pyramidal neurons’– in rats, rabbits and cats. In our laboratory, we have studied these cells with a battery of techniques suited for light and electron microscopy, including Nissl staining, Golgi impregnation, dye intracellular filling and axon retrograde track-tracing. Our results show that spiny inverted neurons make up less than 8.5 and 5.5% of all cortical neurons in the primary and secondary rabbit visual cortex, respectively. Infragranular spiny inverted neurons constitute 15 and 8.5% of infragranular neurons in the same animal and areas. Spiny inverted neurons congregate at layers V–VI in all studied species. Studies have also revealed that spiny inverted neurons are excitatory neurons which furnish axons for various cortico-cortical, cortico-claustral and cortico-striatal projections, but not for non-telencephalic centres such as the lateral and medial geniculate nuclei, the colliculi or the pons. As a group, each subset of inverted cells contributing to a given projection is located below the pyramidal neurons whose axons furnish the same centre. Spiny inverted neurons are particularly conspicuous as a source of the backward cortico-cortical projection to primary visual cortex and from this to the claustrum. Indeed, they constitute up to 82% of the infragranular cells that furnish these projections. Spiny inverted neurons may be classified into three subtypes according to the point of origin of the axon on the cell: the somatic basal pole which faces the cortical outer surface, the somatic flank and the reverse apical dendrite. As seen with electron microscopy, the axon initial segments of these subtypes are distinct from one another, not only in length and thickness, but also in the number of received synaptic boutons. All of these anatomical features together may support a synaptic-input integration which is peculiar to spiny inverted neurons. In this way, two differently qualified streams of axonal output may coexist in a projection which arises from a particular infragranular point within a given cortical area; one stream would be furnished by the typical pyramidal neurons, whereas spiny inverted neurons would constitute the other source of distinct information flow. PMID:17635629

  5. Integrating More Solar with Smart Inverters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson F; Giraldez Miner, Julieta I; Symko-Davies, Martha

    In Hawai'i, the relatively high cost of electricity costs coupled with various incentives have made it cost-effective to install solar photovoltaics (PV) on residential homes and larger central-station PV plants. On some of the islands, PV has reached over 50% of the installed generation capacity base. To make sure these inverter-based PV plants can maintain stable and safe operations, new smart inverter functionality is being evaluated and demonstrated at significant scale across the islands This paper describes research conducted to validate high PV penetration scenarios with smart inverters and recent progress on the use of these advanced inverter grid supportmore » functions in actual power grids in Hawai'i.« less

  6. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  7. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  8. High efficiency H6 single-phase transformerless grid-tied PV inverter with proposed modulation for reactive power generation

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2017-08-01

    Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.

  9. Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Alaas, Zuhair

    This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing.

  10. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Clinical and radiological evaluation of inverse impaction of supernumerary teeth

    PubMed Central

    Kurklu, Esma; Gencay, Koray; Ak, Gulsum

    2013-01-01

    Objective: To describe the clinical and radiological features of children with inverted supernumerary teeth. Study Design: Thirty eight patients with inverted supernumerary teeth (ST) were enrolled in this descriptive and restrospective study. Data from patient records including age, gender, status of dentition, number of ST, number of ST in inverted position, coexistence of ST in inverted and normal direction of eruption, location, orientation, morphology, clinical complications, management and radiography were assessed during 3-years period. Results: Thirty eight patients with a mean age of 9.10±1.97 years (range:6-13) and a strong male preponderance of 3.7:1 (male:30, female:8) had a total of 69 ST, of which 41 were in inverted position. Thirty five patients had one (92.1%) inverted tooth, whereas 3 patients had two inverted teeth per case (7.9%). All cases were located in the maxilla. Midline was the most frequent site for the single inverted supernumerary tooth in 18 (47.4%) patients, followed equally by the right and left premaxillary region in 10 patients each (26.3%). Regarding morphology, 30 patients had conical (78.9%) and 8 (21.1%) had incisiform ST. No tuberculate shaped ST was detected. There was no statistically significant difference between number of inverted teeth and delayed tooth eruption, diastema, local malocclusion, palatinal swelling (p>0.05). There was no statistically significant difference between complications and age (p>0.05). Surgical removal at the time of diagnosis with subsequent follow-up during completion of permanent dentition was the treatment approach in all cases. Conclusions: Thorough clinical examination followed by a comprehensive radiographic screening is the crucial determinant of an accurate diagnosis of an impacted ST. Early diagnosis and timely management are key factors to prevent or minimize the complications, which may influence function and esthetics of the teeth and even psychological condition of the growing child. Key words:Supernumerary tooth, impaction, inverted. PMID:23722132

  12. Method of making cascaded die mountings with springs-loaded contact-bond options

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Adams, Donald J [Knoxville, TN; Su, Gui-Jia [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN

    2007-06-19

    A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

  13. Effective g-factors of carriers in inverted InAs/GaSb bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Xiaoyang; Collaborative Innovation Center of Quantum Matter, Beijing 100871; Sullivan, Gerard

    2016-01-04

    We perform tilt-field transport experiment on inverted InAs/GaSb, which hosts quantum spin Hall insulator. By means of coincidence method, Landau level (LL) spectra of electron and hole carriers are systematically studied at different carrier densities tuned by gate voltages. When Fermi level stays in the conduction band, we observe LL crossing and anti-crossing behaviors at odd and even filling factors, respectively, with a corresponding g-factor of 11.5. It remains nearly constant for varying filling factors and electron densities. On the contrary, for GaSb holes, only a small Zeeman splitting is observed even at large tilt angles, indicating a g-factor ofmore » less than 3.« less

  14. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  15. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  16. Numerical simulations of heat transfer distribution of a two-pass square channel with V-rib turbulator and bleed holes

    NASA Astrophysics Data System (ADS)

    Kumar, Sourabh; Amano, R. S.; Lucci, Jose Martinez

    2013-08-01

    The blade tip region in gas turbine encounters high thermal loads due to temperature difference and hence efforts for high durability and safe operations are essential. Improved and robust methods of cooling are required to downgrade heat transfer rate to turbine blades. The blade tip regions, which are exposed to high gas flow, suffers high local thermal load which are due to external tip leakage. Jet impingement, pin cooling etc. are techniques used for cooling blades. A more usual way is to use serpentine passage with 180-degree turn. In this study, numerical simulation of heat transfer distribution of a two-pass square channel with rib turbulators and bleed holes were done. Periodical rib turbulators and bleed holes were used in the channel. The ribs arrangement were 60 degree V rib, 60 degree inverted V ribs, combination of 60 degree V rib at inlet and 60 inverted V rib at outlet section and combination of Inverted V at inlet and V rib at the outlet. The results were numerically computed using Fluent with Reynolds number of 12,500 and 28,500. Turbulence models used for computations were k-ω-SST and RSM. Temperature based and shear stress based techniques were used for heat transfer distribution prediction. The results for 60 degree V rib, 60 degree inverted V ribs were compared with the experimental results for validation of the results obtained. Detailed distribution shows distinctive peaks in heat transfer around bleed holes and rib turbulator. Comparisons of the overall performance of the models with different orientation of rib turbulator are presented. It is found that due to the combination of 60 degree inverted V rib in inlet and 60 V rib in outlet with bleed holes provides better heat treatment. It is suggested that the use of rib turbulator with bleed holes provides suitable for augmenting blade cooling to achieve an optimal balance between thermal and mechanical design requirements.

  17. Comparison of Solid State Inverters for AC Induction Motor Traction Propulsion Systems

    DOT National Transportation Integrated Search

    1980-12-01

    This report is one of a series concerned with the application of ac machines as traction motors for railroad motive power. It presents results of a laboratory evaluation and computer analysis of different inverter systems. Three inverter systems, sin...

  18. NREL, Duke Energy Explore Smart Inverters for Grid Stability | Energy

    Science.gov Websites

    Stability NREL, Duke Energy Explore Smart Inverters for Grid Stability NREL is working with Duke Energy and Alstom Grid to explore ways that smart inverters can increase grid stability. Using data from Duke Energy

  19. Realization of PLC to the Variable Frequency Speed Regulation System of Mine Local Ventilator based on RS-485 Communication

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Li, Jian; Yun, Yichong

    2018-03-01

    The article first introduces the merits of serial communication in the PLC to the variable frequency speed regulation system of mine local ventilator, and then sets up a hardware application development platform of PLC and inverter based on RS-485 communication technology, next presents communication initialization of the PLC and Inverter. Finally according to the control requirements, PLC send run operation & monitoring instruction to Inverter, realizes the serial communication control between the PLC and Inverter.

  20. Ru(II)-based metallosurfactant forming inverted aggregates.

    PubMed

    Domínguez-Gutiérrez, David; Surtchev, Marko; Eiser, Erika; Elsevier, Cornelis J

    2006-02-01

    Knowing the advantages of incorporating a transition metal into interfaces, we report on the first inverted aggregates formed using metallosurfactants. The metallosurfactant possesses four long linear tails that account for the shielding of the polar headgroup in apolar solvents. The nature of the so-formed aggregates changes dramatically from inverted vesicles (toluene) to inverted micelles (hexane). The size of the aggregates was determined using dynamic light scattering. Atomic force microscopy allowed us to study the dry structure of the vesicles on a glass surface.

  1. A PWM transistor inverter for an ac electric vehicle drive

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1981-01-01

    A prototype system consisting of closely integrated motor, inverter, and transaxle has been built in order to demonstrate the feasibility of a three-phase ac transistorized inverter for electric vehicle applications. The microprocessor-controlled inverter employs monolithic power transistors to drive an oil-cooled, three-phase induction traction motor at a peak output power of 30 kW from a 144 V battery pack. Transistor safe switching requirements are discussed, and a circuit is presented for recovering trapped snubber inductor energy at transistor turn-off.

  2. Evaluation of quasi-square wave inverter as a power source for induction motors

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.

    1977-01-01

    The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

  3. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  4. An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions.

    PubMed

    Tolks, Daniel; Schäfer, Christine; Raupach, Tobias; Kruse, Leona; Sarikas, Antonio; Gerhardt-Szép, Susanne; Kllauer, Gertrud; Lemos, Martin; Fischer, Martin R; Eichner, Barbara; Sostmann, Kai; Hege, Inga

    2016-01-01

    In describing the inverted classroom model (ICM), the following paper is meant to provide an introduction to the subject matter and to serve as a practical guide for those wishing to employ its methods in basic and advanced medical training and education. The ICM is a blended-learning method in which a self-directed learning phase (individual phase) precedes the classroom-instruction phase. During the online phase, factual knowledge is imparted that serves as a basis for the classroom phase. The classroom phase should subsequently be used to assimilate and implement the previously gained knowledge. In contrast, traditional course concepts impart factual knowledge in lectures, for example, or in other face-to-face teaching formats and are followed by the students' self-instruction in order to assimilate this knowledge. The goal of the ICM is the shift from passive learning to accelerated learning in order to foster learning at cognitively demanding levels such as analysis, synthesis and evaluation. The concurrent increase in production and use of screencasts and educational videos, the Open Educational Resources "movement" and the widespread use of Massive Open Online Courses (MOOCS) have contributed to the increased dissemination of the inverted-classroom method. The intention of the present paper is to provide an introduction to the subject matter and simultaneously to offer a short overview of important projects and research results in the field of medical education and other health professions. Furthermore, an outline is given of the advantages and disadvantages of the model as well as its potential benefit to the future of medical education and training.

  5. Initialising reservoir models for history matching using pre-production 3D seismic data: constraining methods and uncertainties

    NASA Astrophysics Data System (ADS)

    Niri, Mohammad Emami; Lumley, David E.

    2017-10-01

    Integration of 3D and time-lapse 4D seismic data into reservoir modelling and history matching processes poses a significant challenge due to the frequent mismatch between the initial reservoir model, the true reservoir geology, and the pre-production (baseline) seismic data. A fundamental step of a reservoir characterisation and performance study is the preconditioning of the initial reservoir model to equally honour both the geological knowledge and seismic data. In this paper we analyse the issues that have a significant impact on the (mis)match of the initial reservoir model with well logs and inverted 3D seismic data. These issues include the constraining methods for reservoir lithofacies modelling, the sensitivity of the results to the presence of realistic resolution and noise in the seismic data, the geostatistical modelling parameters, and the uncertainties associated with quantitative incorporation of inverted seismic data in reservoir lithofacies modelling. We demonstrate that in a geostatistical lithofacies simulation process, seismic constraining methods based on seismic litho-probability curves and seismic litho-probability cubes yield the best match to the reference model, even when realistic resolution and noise is included in the dataset. In addition, our analyses show that quantitative incorporation of inverted 3D seismic data in static reservoir modelling carries a range of uncertainties and should be cautiously applied in order to minimise the risk of misinterpretation. These uncertainties are due to the limited vertical resolution of the seismic data compared to the scale of the geological heterogeneities, the fundamental instability of the inverse problem, and the non-unique elastic properties of different lithofacies types.

  6. An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions

    PubMed Central

    Tolks, Daniel; Schäfer, Christine; Raupach, Tobias; Kruse, Leona; Sarikas, Antonio; Gerhardt-Szép, Susanne; Kllauer, Gertrud; Lemos, Martin; Fischer, Martin R.; Eichner, Barbara; Sostmann, Kai; Hege, Inga

    2016-01-01

    In describing the inverted classroom model (ICM), the following paper is meant to provide an introduction to the subject matter and to serve as a practical guide for those wishing to employ its methods in basic and advanced medical training and education. The ICM is a blended-learning method in which a self-directed learning phase (individual phase) precedes the classroom-instruction phase. During the online phase, factual knowledge is imparted that serves as a basis for the classroom phase. The classroom phase should subsequently be used to assimilate and implement the previously gained knowledge. In contrast, traditional course concepts impart factual knowledge in lectures, for example, or in other face-to-face teaching formats and are followed by the students’ self-instruction in order to assimilate this knowledge. The goal of the ICM is the shift from passive learning to accelerated learning in order to foster learning at cognitively demanding levels such as analysis, synthesis and evaluation. The concurrent increase in production and use of screencasts and educational videos, the Open Educational Resources “movement” and the widespread use of Massive Open Online Courses (MOOCS) have contributed to the increased dissemination of the inverted-classroom method. The intention of the present paper is to provide an introduction to the subject matter and simultaneously to offer a short overview of important projects and research results in the field of medical education and other health professions. Furthermore, an outline is given of the advantages and disadvantages of the model as well as its potential benefit to the future of medical education and training. PMID:27275511

  7. Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.

    2010-12-01

    Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.

  8. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, D. H.; Lau, Y. Y.; Greening, G.

    2015-08-15

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property inmore » the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.« less

  9. Triple inverter pierce oscillator circuit suitable for CMOS

    DOEpatents

    Wessendorf,; Kurt, O [Albuquerque, NM

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  10. Performance model for grid-connected photovoltaic inverters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyson, William Earl; Galbraith, Gary M.; King, David L.

    2007-09-01

    This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less

  11. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  12. 2015 Inverter Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    Utility PV Inverters-Ron Vidano, Advanced Energy Module Level Power Electronics-Jack Flicker (Chair ), Sandia National Laboratories Standardization and Reliability Testing of Module-Level Power Electronics Failure Modes in Inverters-Diganta Das, CALCE Corrosion of Electronics-Rob Sorensen, Sandia National

  13. Inverted organic photosensitive devices

    DOEpatents

    Forrest, Stephen R.; Bailey-Salzman, Rhonda F.

    2016-12-06

    The present disclosure relates to organic photosensitive optoelectronic devices grown in an inverted manner. An inverted organic photosensitive optoelectronic device of the present disclosure comprises a reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode on top of the donor-acceptor heterojunction.

  14. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  15. Endoscopic surgical management of sinonasal inverted papilloma extending to frontal sinuses.

    PubMed

    Takahashi, Yukiko; Shoji, Fumi; Katori, Yukio; Hidaka, Hiroshi; Noguchi, Naoya; Abe, Yasuhiro; Kakuta, Risako Kakuta; Suzuki, Takahiro; Suzuki, Yusuke; Ohta, Nobuo; Kakehata, Seiji; Okamoto, Yoshitaka

    2016-11-10

    Sinonasal inverted papilloma has been traditionally managed with external surgical approaches. Advances in imaging guidance systems, surgical instrumentation, and intraoperative multi-visualization have led to a gradual shift from external approaches to endoscopic surgery. However, for anatomical and technical reasons, endoscopic surgery of sinonasal inverted papilloma extending to the frontal sinuses is still challenging. Here, we present our experience in endoscopic surgical management of sinonasal inverted papilloma extending to one or both frontal sinuses. We present 10 cases of sinonasal inverted papilloma extending to the frontal sinuses and successfully removed by endoscopic median drainage (Draf III procedure) under endoscopic guidance without any additional external approach. The whole cavity of the frontal sinuses was easily inspected at the end of the surgical procedure. No early or late complications were observed. No recurrence was identified after an average follow-up period of 39.5 months. Use of an endoscopic median drainage approach to manage sinonasal inverted papilloma extending to one or both frontal sinuses is feasible and seems effective.

  16. The organization of repeating units in mitochondrial DNA from yeast petite mutants.

    PubMed

    Bos, J L; Heyting, C; Van der Horst, G; Borst, P

    1980-04-01

    We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.

  17. The influences of load mass changing on inverted pendulum stability based on simulation study

    NASA Astrophysics Data System (ADS)

    Pangaribuan, Timbang; Nasruddin, M. N.; Marlianto, Eddy; Sigiro, Mula

    2017-09-01

    An inverted pendulum has nonlinear dynamic, so it is not easy to do in analysis to see its behavior. From many observations which have been made, there are two things that need to be added on the perfection of inverted pendulum. Firstly, when the pendulum has a large mass, and the second when the pendulum is given a load mass much larger than mass of the inverted pendulum. There are some question, first, how big the load mass can be given so that the movement of the inverted pendulum stay stable is. Second, how weight the changes and moves of load mass which can be given. For all the changes, it hopes the inverted pendulum is stay stable. Finally, the final result is still expected to be as stable, it must need conclude what kind of controller is capable of carrying such a mass burden, and how large the mass load limit can be given.

  18. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive globalmore » information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.« less

  19. A Drive Method for Small Inductance PM Motor Under No-Load Condition

    NASA Astrophysics Data System (ADS)

    Tanaka, Daisuke; Ohishi, Kiyoshi

    The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.

  20. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  1. Implementation of a Precast Inverted T-Beam System in Virginia: Part I : Laboratory Investigations

    DOT National Transportation Integrated Search

    2017-10-01

    The inverted T-beam system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams with a cast-in-place concrete topping. This bridge system is not expected to...

  2. Effect of Anisotropy on Shape Measurement Accuracy of Silicon Wafer Using Three-Point-Support Inverting Method

    NASA Astrophysics Data System (ADS)

    Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori

    This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.

  3. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  4. BAC Modification through Serial or Simultaneous Use of CRE/Lox Technology

    PubMed Central

    Parrish, Mark; Unruh, Jay; Krumlauf, Robb

    2011-01-01

    Bacterial Artificial Chromosomes (BACs) are vital tools in mouse genomic analyses because of their ability to propagate large inserts. The size of these constructs, however, prevents the use of conventional molecular biology techniques for modification and manipulation. Techniques such as recombineering and Cre/Lox methodologies have thus become heavily relied upon for such purposes. In this work, we investigate the applicability of Lox variant sites for serial and/or simultaneous manipulations of BACs. We show that Lox spacer mutants are very specific, and inverted repeat variants reduce Lox reaction rates through reducing the affinity of Cre for the site, while retaining some functionality. Employing these methods, we produced serial modifications encompassing four independent changes which generated a mouse HoxB BAC with fluorescent reporter proteins inserted into four adjacent Hox genes. We also generated specific, simultaneous deletions using combinations of spacer variants and inverted repeat variants. These techniques will facilitate BAC manipulations and open a new repertoire of methods for BAC and genome manipulation. PMID:21197414

  5. An extended basis inexact shift-invert Lanczos for the efficient solution of large-scale generalized eigenproblems

    NASA Astrophysics Data System (ADS)

    Rewieński, M.; Lamecki, A.; Mrozowski, M.

    2013-09-01

    This paper proposes a technique, based on the Inexact Shift-Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented results of numerical experiments confirm the technique can be effectively applied to challenging, large-scale problems characterized by very dense spectra, such as resonant cavities with spatial dimensions which are large with respect to wavelengths of the resonating electromagnetic fields. It is also shown that the proposed scheme based on inexact linear solves delivers superior performance, as compared to methods which rely on exact linear solves, indicating tremendous potential of the 'inexact solve' concept. Finally, the scheme which generates an extended projection basis is found to provide a cost-efficient alternative to classical deflation schemes when several eigenvalues are computed.

  6. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE PAGES

    Zhang, Hong; Zapol, Peter; Dixon, David A.; ...

    2015-11-17

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  7. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Zapol, Peter; Dixon, David A.

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  8. Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems

    DOE PAGES

    Marion, Bill; Smith, Benjamin

    2017-03-27

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less

  9. Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; Smith, Benjamin

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less

  10. Inversion of time-domain induced polarization data based on time-lapse concept

    NASA Astrophysics Data System (ADS)

    Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon

    2018-05-01

    Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.

  11. Study on Effects of The Shape of Cavitator on Supercavitation Flow Field Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Dang, Jianjun; Yao, Zhong

    2018-03-01

    The cavitator is the key part of the nose of the vehicle to induce the formation of supercavity, which has an important influence in the cavity formation rate, cavity shape and cavity stability. To study the influence of the shape on the supercavitation flew field characteristics, the cavity characteristics and the resistance characteristics of different shapes of cavitator under different working conditions are obtained by combining technical methods of numerical simulation and experimental research in water tunnel. The simulation results are contrast and analyzed with the test results. The analysis results show that : in terms of the cavity size, the inverted-conic cavitator can form the biggest cavity size, followed by the disk cavitator, and the truncated-conic cavitator is the least; in terms of the cavity formation speed, the inverted-conic cavitator has the fastest cavity formation speed, then is the truncated-conic cavitator, and the disk cavitator is the least; in terms of the drag characteristic, the truncated-conic cavitator has the maximum coefficient, disk cavitator is the next, the inverted-conic cavitator is the minimal. The research conclusion can provide reference and basis for the head shape design of supercavitating underwater ordnance and the design of hydrodynamic layout.

  12. Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.

    PubMed

    Shaheen, Anjuman; Rajpoot, Kashif

    2015-08-01

    Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  14. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  15. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  16. Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Pezeshki, Atiye; Ali Raza, Syed Raza; Choi, Kyunghee; Min, Sung-Wook; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2014-05-27

    We demonstrate a hybrid inverter-type nanodevice composed of a MoS2 nanoflake field-effect transistor (FET) and ZnO nanowire Schottky diode on one substrate, aiming at a one-dimensional (1D)-two-dimensional (2D) hybrid integrated electronic circuit with multifunctional capacities of low power consumption, high gain, and photodetection. In the present work, we used a nanotransfer printing method using polydimethylsiloxane for the fabrication of patterned bottom-gate MoS2 nanoflake FETs, so that they could be placed near the ZnO nanowire Schottky diodes that were initially fabricated. The ZnO nanowire Schottky diode and MoS2 FET worked respectively as load and driver for a logic inverter, which exhibits a high voltage gain of ∼50 at a supply voltage of 5 V and also shows a low power consumption of less than 50 nW. Moreover, our inverter effectively operates as a photoinverter, detecting visible photons, since MoS2 FETs appear very photosensitive, while the serially connected ZnO nanowire Schottky diode was blind to visible light. Our 1D-2D hybrid nanoinverter would be quite promising for both logic and photosensing applications due to its performance and simple device configuration as well.

  17. Experimental Test Of Whether Electrostatically Charged Micro-organisms And Their Spores Contribute To The Onset Of Arcs Across Vacuum Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,; Grisham, Larry R.

    2014-02-24

    Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparingmore » cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance« less

  18. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    DTIC Science & Technology

    2016-06-01

    13 Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels ....................15 Figure 7. Solar Sunny Boy Inverter...16 Figure 8. Wind Turbine Inverters...1. Comparison of Energy Storage. Adapted from [16], [18], [19]. ................10 Table 2. DC Operating Voltage of Wind Turbine Inverters

  19. Fast Grid Frequency Support from Distributed Inverter-Based Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson F

    This presentation summarizes power hardware-in-the-loop testing performed to evaluate the ability of distributed inverter-coupled generation to support grid frequency on the fastest time scales. The research found that distributed PV inverters and other DERs can effectively support the grid on sub-second time scales.

  20. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  1. Inverted Signature Trees and Text Searching on CD-ROMs.

    ERIC Educational Resources Information Center

    Cooper, Lorraine K. D.; Tharp, Alan L.

    1989-01-01

    Explores the new storage technology of optical data disks and introduces a data structure, the inverted signature tree, for storing data on optical data disks for efficient text searching. The inverted signature tree approach is compared to the use of text signatures and the B+ tree. (22 references) (Author/CLB)

  2. 77 FR 51946 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... 400Hz Fixed Frequency System has been attributed to a failure of one or two static inverters, which resulted in the loss of the remaining inverters. The loss of systems serviced by the four fixed frequency... the wiring modification to untie the 400Hz inverters and additional Airworthiness Limitation tasks...

  3. Ground Fault Overvoltage With Inverter-Interfaced Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropp, Michael; Hoke, Anderson; Chakraborty, Sudipta

    Ground Fault Overvoltage can occur in situations in which a four-wire distribution circuit is energized by an ungrounded voltage source during a single phase to ground fault. The phenomenon is well-documented with ungrounded synchronous machines, but there is considerable discussion about whether inverters cause this phenomenon, and consequently whether inverters require effective grounding. This paper examines the overvoltages that can be supported by inverters during single phase to ground faults via theory, simulation and experiment, identifies the relevant physical mechanisms, quantifies expected levels of overvoltage, and makes recommendations for optimal mitigation.

  4. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  5. Static Characteristics of the Ferroelectric Transistor Inverter

    NASA Technical Reports Server (NTRS)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  6. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Nagarajan, Adarsh; Prabakar, Kumar

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distributionmore » feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.« less

  7. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  8. SU8 inverted-rib waveguide Bragg grating filter.

    PubMed

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2013-08-01

    A polymeric SU8 inverted-rib waveguide Bragg grating filter fabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in that a composite hard-polydimethysiloxane/polydimethysiloxane stamp is used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times without degradation. Using this stamp and inverter-rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified. The experiment result shows an attenuation dip in the transmission spectra, with a value of -7 dBm at 1550 nm for a grating with a period of 0.492 μm on an inverted-rib waveguide with 6.6 μm width and 4 μm height.

  9. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  10. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  11. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    PubMed

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  12. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.

    PubMed

    Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng

    2015-09-30

    Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.

  13. Common Head and Neck Cases in Our Consultation Referrals: Diagnostic Dilemmas in Inverted Papilloma

    PubMed Central

    2009-01-01

    Papillomas of the nose and paranasal sinuses comprise three morphologically distinct variants—everted papilloma, inverted papilloma and cylindric cell papilloma in descending order of frequency. Recurrence of everted papilloma is unusual and malignant change does not occur. However, inverted papilloma is associated with multiple recurrences and malignant change. The histology of low grade squamous cell carcinoma of the nose may mimic that of inverted papilloma and low grade squamous cell carcinoma may coexist with inverted papilloma and be present in the same biopsy material. There is a high index of suspicion of concomitant malignancy in the presence of severe atypia or hyperkeratosis. Columnar cell papillomas are also associated with an increased risk of malignancy but the rarity of these lesions makes accurate assessment of malignant potential difficult. The most common diagnostic dilemma for pathologists referring cases for second opinion is the recognition of low grade malignancy versus benign inverted papilloma at presentation and in lesions which recur. Recent studies have addressed the requirement for histological parameters to predict the clinical course of these lesions and new molecular markers are being applied to tissue diagnosis. The early recognition and treatment of malignancy associated with inverted papilloma is key to decreased morbidity and improved patient survival and forms the basis of this discussion. PMID:20596982

  14. Internal Limiting Membrane Flap Techniques for the Repair of Large Macular Holes: a Short-Term Follow-up of Anatomical and Functional Outcomes.

    PubMed

    Guber, J; Lang, C; Valmaggia, C

    2017-04-01

    Background To evaluate the technique of inverted internal limiting membrane (ILM) flaps for the management of large macular holes and autologous ILM free flaps for non-closing macular holes. Patients and methods All macular holes were treated with pars plana vitrectomy and dual blue assisted ILM flap technique. The inverted ILM flap was created as a primary procedure for large macular holes (diameter > 400 µm). On the other hand, the free ILM flap technique was used as a secondary procedure for non-closing macular holes after failed initial standard procedure. SD-OCT images were taken to assess the anatomical outcome of surgery, while best corrected visual acuity (BCVA) was used to evaluate the functional outcome during a 2-month follow-up. Results All patients underwent successful planned manipulation of the ILM flap. In seven patients/eyes, an inverted ILM flap was created, in three patients/eyes a free ILM flap translocation was performed. All patients achieved complete anatomical closure. Partial microstructural reconstruction, demonstrated on SD-OCT as restoration of the external limiting membrane and the ellipsoid zone, was observed in some cases as early as one month after surgery. Functionally, in comparison to baseline, most of the patients showed improvements in BCVA of 1 to 2 lines at the first postoperative follow-up visit. Conclusions Inverted ILM flaps for large macular holes and free flaps for non-closing macular holes appear to be a safe and effective approach, with favourable short-term anatomical and functional results. Georg Thieme Verlag KG Stuttgart · New York.

  15. Flipped Classroom Instruction for Inclusive Learning

    ERIC Educational Resources Information Center

    Altemueller, Lisa; Lindquist, Cynthia

    2017-01-01

    The flipped classroom is a teaching methodology that has gained recognition in primary, secondary and higher education settings. The flipped classroom inverts traditional teaching methods, delivering lecture instruction outside class, and devoting class time to problem solving, with the teacher's role becoming that of a learning coach and…

  16. Fourth International Workshop on Grid Simulator Testing of Wind Turbine

    Science.gov Websites

    , United Kingdom Smart Reconfiguration and Protection in Advanced Electric Distribution Grids - Mayank Capabilities in Kinectrics - Nicolas Wrathall, Kinectrics, Canada Discussion Day 2: April 26, 2017 Advanced Grid Emulation Methods Advanced PHIL Interface for Multi-MW Scale Inverter Testing - Przemyslaw

  17. Iterative combination of national phenotype, genotype, pedigree, and foreign information

    USDA-ARS?s Scientific Manuscript database

    Single step methods can combine all sources of information into accurate rankings for animals with and without genotypes. Equations that require inverting the genomic relationship matrix G work well with limited numbers of animals, but equivalent models without inversion are needed as numbers increa...

  18. Data Compression in Full-Text Retrieval Systems.

    ERIC Educational Resources Information Center

    Bell, Timothy C.; And Others

    1993-01-01

    Describes compression methods for components of full-text systems such as text databases on CD-ROM. Topics discussed include storage media; structures for full-text retrieval, including indexes, inverted files, and bitmaps; compression tools; memory requirements during retrieval; and ranking and information retrieval. (Contains 53 references.)…

  19. Management Strategies for Skull Base Inverted Papilloma.

    PubMed

    Grayson, Jessica W; Khichi, Sunny S; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A

    2016-07-01

    Inverted papilloma attached to the ventral skull base presents a surgical dilemma because surgical removal of the bony pedicle is critical to decrease risk of recurrence. The objective of this study is to evaluate the effectiveness of endoscopic management of skull base inverted papilloma. Case series with planned data collection. Tertiary medical center. Patients with skull base inverted papilloma. Over 7 years, 49 patients with skull base inverted papilloma were referred for surgical resection. Demographics, operative technique, pathology, complications, recurrence, and postoperative follow-up were evaluated. Average age at presentation was 57 years. Twenty-six patients (53%) had prior attempts at resection elsewhere, and 5 had squamous cell carcinoma (SCCA) arising in an inverted papilloma. Six patients (12%) suffered major complications, including skull base osteomyelitis in 2 previously irradiated patients, cerebrospinal fluid leak with pneumocephalus (n = 1), meningitis (n = 1), invasive fungal sinusitis (n = 1), and cerebrovascular accident (n = 1). The mean disease-free interval was 29 months (range, 10-78 months). One patient with SCCA recurred in the nasopharynx (overall 2% recurrence rate). He is disease-free 3 years following endoscopic nasopharyngectomy. Three patients with SCCA had endoscopic resection of the skull base, while 1 subject with inverted papilloma pedicled on the superior orbital roof had an osteoplastic flap in conjunction with a Draf III procedure. All others received endoscopic resection. Removal of the bony pedicle resulted in excellent local control of skull base inverted papillomas. Our experience demonstrates that disease eradication with limited morbidity is attainable with this approach. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  20. Intrex Subject/Title Inverted-File Characteristics.

    ERIC Educational Resources Information Center

    Uemura, Syunsuke

    The characteristics of the Intrex subject/title inverted file are analyzed. Basic statistics of the inverted file are presented including various distributions of the index words and terms from which the file was derived, and statistics on stems, the file growth process, and redundancy measurements. A study of stems both with extremely high and…

  1. Next Generation Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zilai; Gough, Charles

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  2. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  3. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  4. Design of single phase inverter using microcontroller assisted by data processing applications software

    NASA Astrophysics Data System (ADS)

    Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.

    2015-12-01

    Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).

  5. Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

    NASA Astrophysics Data System (ADS)

    Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid

    2016-08-01

    Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

  6. Transnasal endoscopic medial maxillectomy in recurrent maxillary sinus inverted papilloma.

    PubMed

    Kamel, Reda H; Abdel Fattah, Ahmed F; Awad, Ayman G

    2014-12-01

    Maxillary sinus inverted papilloma entails medial maxillectomy and is associated with high incidence of recurrence. To study the impact of prior surgery on recurrence rate after transnasal endoscopic medial maxillectomy. Eighteen patients with primary and 33 with recurrent maxillary sinus inverted papilloma underwent transnasal endoscopic medial maxillectomy. Caldwell-Luc operation was the primary surgery in 12 patients, transnasal endoscopic resection in 20, and midfacial degloving technique in one. The follow-up period ranged between 2 to 19.5 years with an average of 8.8 years. Recurrence was detected in 8/51 maxillary sinus inverted papilloma patients (15.7 %), 1/18 of primary cases (5.5 %), 7/33 of recurrent cases (21.2 %); 3/20 of the transnasal endoscopic resection group (15%) and 4/12 of the Caldwell-Luc group (33.3%). Redo transnasal endoscopic medial maxillectomy was followed by a single recurrence in the Caldwell-Luc group (25%), and no recurrence in the other groups. Recurrence is more common in recurrent maxillary sinus inverted papilloma than primary lesions. Recurrent maxillary sinus inverted papilloma after Caldwell-Luc operation has higher incidence of recurrence than after transnasal endoscopic resection.

  7. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid conditionmore » response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.« less

  8. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Improving generalized inverted index lock wait times

    NASA Astrophysics Data System (ADS)

    Borodin, A.; Mirvoda, S.; Porshnev, S.; Ponomareva, O.

    2018-01-01

    Concurrent operations on tree like data structures is a cornerstone of any database system. Concurrent operations intended for improving read\\write performance and usually implemented via some way of locking. Deadlock-free methods of concurrency control are known as tree locking protocols. These protocols provide basic operations(verbs) and algorithm (ways of operation invocations) for applying it to any tree-like data structure. These algorithms operate on data, managed by storage engine which are very different among RDBMS implementations. In this paper, we discuss tree locking protocol implementation for General inverted index (Gin) applied to multiversion concurrency control (MVCC) storage engine inside PostgreSQL RDBMS. After that we introduce improvements to locking protocol and provide usage statistics about evaluation of our improvement in very high load environment in one of the world’s largest IT company.

  10. Adaptive control of space-based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.

  11. Bootstrap rolling window estimation approach to analysis of the Environment Kuznets Curve hypothesis: evidence from the USA.

    PubMed

    Aslan, Alper; Destek, Mehmet Akif; Okumus, Ilyas

    2018-01-01

    This study aims to examine the validity of inverted U-shaped Environmental Kuznets Curve by investigating the relationship between economic growth and environmental pollution for the period from 1966 to 2013 in the USA. Previous studies based on the assumption of parameter stability and obtained parameters do not change over the full sample. This study uses bootstrap rolling window estimation method to detect the possible changes in causal relations and also obtain the parameters for sub-sample periods. The results show that the parameter of economic growth has increasing trend in 1982-1996 sub-sample periods, and it has decreasing trend in 1996-2013 sub-sample periods. Therefore, the existence of inverted U-shaped Environmental Kuznets Curve is confirmed in the USA.

  12. Parsimonious surface wave interferometry

    NASA Astrophysics Data System (ADS)

    Li, Jing; Hanafy, Sherif; Schuster, Gerard T.

    2018-03-01

    To decrease the recording time of a 2-D seismic survey from a few days to one hour or less, we present a parsimonious surface wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs. Then, the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious WD (PWD) gives S-velocity tomograms that are comparable to those obtained from a conventional survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  13. Pre-stack full-waveform inversion of multichannel seismic data to retrieve thermohaline ocean structure. Application to the Gulf of Cadiz (SW Iberia).

    NASA Astrophysics Data System (ADS)

    Dagnino, Daniel; Jiménez Tejero, Clara-Estela; Meléndez, Adrià; Gras, Clàudia; Sallarès, Valentí; Ranero, César R.

    2016-04-01

    This work demonstrates the feasibility to retrieve high-resolution models of oceanic physical parameters by means of 2D adjoint-state full-waveform inversion (FWI). The proposed method is applied to pre-stack multi-channel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in the framework of the EU GO (Geophysical Oceanography) project in 2006. We first design and apply a specific data processing flow that allows reducing data noise without modifying trace amplitudes. This step is shown to be essential to obtain accurate results due to the low signal-to-noise ratio (SNR) of water layer reflections, which are typically three-to-four orders of magnitude weaker than those in solid earth. Second, we propose new techniques to improve the inversion results by reducing the artefacts appearing in the gradient and misfit as a consequence of the low SNR. We use a weight and filter operator to focus in the regions where the gradient is reliable. The source wavelet is then inverted together with the sound speed. We demonstrate the efficiency of the proposed method and inversion strategy retrieving a 2D sound speed model along a 50 km-long MCS profile collected in the Gulf of Cadiz during the GO experiment. In this region, the Mediterranean outflow entrains the Atlantic waters, creating a salinity complex thermohaline structure that can be measured by a difference in acoustic impedance. The inverted sound speed model have a resolution of 75m for the horizontal direction, which is two orders of magnitude better than the models obtained using conventional, probe-based oceanographic techniques. In a second step, temperature and salinity are derived from the sound speed by minimizing the difference between the inverted and the theoretical sound speed estimated using the thermodynamic equation of seawater (TEOS-10 software). To apply the TEOS-10 we first calculate a linear-fitting between temperature and salinity using regional data from the National Oceanic and Atmospheric Administration (NOAA) compilation. Pressure is calculated from latitude and depth. In the final step, salinity is calculated using the Temperature-Salinity relation and the previously estimated temperature. The comparison of the inverted temperature, salinity model with measures from XBT and CTD probes deployed simultaneously to the MCS data acquisition shows that the accuracy of the inverted models is ˜0.15°C for temperature and ˜0.1psu for salinity.

  14. Desert Talons: Historical Perspectives and Implications of Air Policing in the Middle East

    DTIC Science & Technology

    2009-04-01

    predominant role in support of a smaller ground force has historical precedent. During the 1920s, the Royal Air Forces (RAF) air control method adhered...the Royal Air Force’s (RAF) air control method adhered to the concepts of the inverted blockade, minimum force, precision targeting, and force...owing to its process of rapid communications, Air Methods are, in short, the reverse of the old punitive column. Our policy is one of prevention

  15. A peek into the history of sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2003-09-01

    After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near-net-shape sapphire domes was demonstrated by both the EFG and HEM methods in the 1980s under government contract, but neither method entered commercial production. Today, domes in the U.S. are made by "scooping" sapphire boules with diamond-impregnated cutting tools. Commercial markets for sapphire, especially in the semiconductor industry, are healthy and growing at the dawn of the 21st century.

  16. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  17. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  18. A biomechanical model of the craniomandibular complex and cervical spine based on the inverted pendulum.

    PubMed

    Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G

    1998-01-01

    The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.

  19. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  20. An Interesting Case of Oral Inverted Ductal Papilloma.

    PubMed

    Berridge, Natasha; Kumar, Mahesh

    2016-12-01

    Ductal papillomas are rare benign papillary tumours of the minor salivary glands. Previously they have been classified into three subtypes: inverted ductal papilloma (IDP), sialadenoma papilliferum and intraductal papilloma. The oral inverted ductal papilloma is the least common of these lesions, with 48 cases reported to date in a search of the English-language literature. We describe an interesting case of oral IDP and highlight the pertinent clinical and histopathological features. Importantly, unlike the histologically similar inverted papilloma (IP) of the nose and paranasal sinuses, oral IDP is a completely benign lesion and is not associated with malignant change. Clinical relevance: This case report aims to raise awareness of the lesion, oral inverted ductal papilloma (IDP). We outline the clinical features and unique histopathology of oral IDP so that clinicians may correctly diagnose such a lesion and implement appropriate treatment.

  1. A comparison of lidar inversion methods for cirrus applications

    NASA Technical Reports Server (NTRS)

    Elouragini, Salem; Flamant, Pierre H.

    1992-01-01

    Several methods for inverting the lidar equation are suggested as means to derive the cirrus optical properties (beta backscatter, alpha extinction coefficients, and delta optical depth) at one wavelength. The lidar equation can be inverted in a linear or logarithmic form; either solution assumes a linear relationship: beta = kappa(alpha), where kappa is the lidar ratio. A number of problems prevent us from calculating alpha (or beta) with a good accuracy. Some of these are as follows: (1) the multiple scattering effect (most authors neglect it); (2) an absolute calibration of the lidar system (difficult and sometimes not possible); (3) lack of accuracy on the lidar ratio k (taken as constant, but in fact it varies with range and cloud species); and (4) the determination of boundary condition for logarithmic solution which depends on signal to noise ration (SNR) at cloud top. An inversion in a linear form needs an absolute calibration of the system. In practice one uses molecular backscattering below the cloud to calibrate the system. This method is not permanent because the lower atmosphere turbidity is variable. For a logarithmic solution, a reference extinction coefficient (alpha(sub f)) at cloud top is required. Several methods to determine alpha(sub f) were suggested. We tested these methods at low SNR. This led us to propose two new methods referenced as S1 and S2.

  2. Special astronomical configurations, solar activity and deep degassing as a trigger of natural hazards

    NASA Astrophysics Data System (ADS)

    Natyaganov, Vladimir; Syvorotkin, Vladimir; Fedorov, Valeriy; Shopin, Sergey

    2016-04-01

    Extraordinary cases of tectonic events (strong earthquakes, volcano eruptions), mine explosions, typhoons, hurricanes, tornado outbreak sequences, ball lightnings, transient luminous events are analyzed in relation with special astronomical configurations, which are specific relative positions of the Sun, Earth, Moon and the closest planets of the Solar System (Venus, Mars and Jupiter) [1]. Usage of special astronomical coordinate systems give evidence not only of correlations but also of hidden causes-and-effect relations between the analyzed phenomena. The geocentric ecliptic latitude system is an example of such astronomical coordinate systems. It gives clear evidence of coherence between strong earthquakes and the maximal Moon declination from the plane of the ecliptic. Extraordinary cases of planet activity from the beginning of XX century till the present time are shown in the years of special astronomical configurations and abrupt increasing of solar activity. According to the empirical scheme of short-term earthquake prediction [3], geomagnetic disturbances are the triggers of earthquakes. Geomagnetic disturbances perform electromagnetic pumping (electromagnetic excitation) of the Earth's interior in the regions of intersections of seismomagnetic meridians with the plate boundaries as a result of electrothermal breakdowns in the heterogeneous medium of tectonic faults. This results in the local intensification of deep degassing [4], decreasing of shear strength of the medium that triggers earthquakes usually after 2 or 3 weeks (±2 days) after the geomagnetic disturbance. Examples of officially registered predictions of Kamchatka earthquakes with M7+ without missing events, including deep-focus earthquakes in the Okhotsk Sea since the year of 2002, are shown. It is discussed correlations and possible cause-and-effect relations between a different phenomena such as - dangerous natural hazardous events such as the record tornado outbreak sequences in the USA (May 2003, 400 tornadoes in 20 states and the 2011 Superb Outbreak in April 2011 (580 tornadoes), which corresponds to a third and about a half of the average annual number of tornadoes) - naturally-anthropogenic accidents with gas explosions in diggings and coal mines [4]; - special Moon phases (new moons and full moons); - local intensification of deep hydrogen-methane degassing; - extensive spatial anomalies of total ozone content in the stratosphere; - strong geomagnetic disturbances. The work was financially supported by the Ministry of Education and Science of the Russian Federation (in accordance with the requirements of the contract No. 14.577.21.0109, project UID RFMEFI57714X0109) References 1. V. M. Fedorov, Gravitational factors and astronomical chronology of geosphere processes [Gravitacionnye faktory i astronomicheskaja hronologija geosfernyh processov]. Moscow State University, Moscow, 2000. 368p. (In Russian) 2. V. L. Natyaganov, A. M. Nechaev, I. V. Stepanov, "Spatio-tempral relations of planet tectonic activity [Prostranstvenno-vremennye zakonomernosti tektonicheskoj aktivnosti planety]", Eurasian Union of Scientists, 2015, No. 3(12), Vol. 8. pp. 120-123. (In Russian) 3. L. N. Doda, V. L. Natyaganov, I. V. Stepanov, "An empirical scheme of short-term earthquake prediction," Doklady Earth Sciences, vol. 453, no.5, pp.551-557, Dec., 2013 4. V. L. Syvorotkin. Deep degassing and global catastrophes. Geoinformcentr. Moscow, 2002, 250 p. (In Russian)

  3. MRI-Based Texture Analysis to Differentiate Sinonasal Squamous Cell Carcinoma from Inverted Papilloma.

    PubMed

    Ramkumar, S; Ranjbar, S; Ning, S; Lal, D; Zwart, C M; Wood, C P; Weindling, S M; Wu, T; Mitchell, J R; Li, J; Hoxworth, J M

    2017-05-01

    Because sinonasal inverted papilloma can harbor squamous cell carcinoma, differentiating these tumors is relevant. The objectives of this study were to determine whether MR imaging-based texture analysis can accurately classify cases of noncoexistent squamous cell carcinoma and inverted papilloma and to compare this classification performance with neuroradiologists' review. Adult patients who had inverted papilloma or squamous cell carcinoma resected were eligible (coexistent inverted papilloma and squamous cell carcinoma were excluded). Inclusion required tumor size of >1.5 cm and preoperative MR imaging with axial T1, axial T2, and axial T1 postcontrast sequences. Five well-established texture analysis algorithms were applied to an ROI from the largest tumor cross-section. For a training dataset, machine-learning algorithms were used to identify the most accurate model, and performance was also evaluated in a validation dataset. On the basis of 3 separate blinded reviews of the ROI, isolated tumor, and entire images, 2 neuroradiologists predicted tumor type in consensus. The inverted papilloma ( n = 24) and squamous cell carcinoma ( n = 22) cohorts were matched for age and sex, while squamous cell carcinoma tumor volume was larger ( P = .001). The best classification model achieved similar accuracies for training (17 squamous cell carcinomas, 16 inverted papillomas) and validation (7 squamous cell carcinomas, 6 inverted papillomas) datasets of 90.9% and 84.6%, respectively ( P = .537). For the combined training and validation cohorts, the machine-learning accuracy (89.1%) was better than that of the neuroradiologists' ROI review (56.5%, P = .0004) but not significantly different from the neuroradiologists' review of the tumors (73.9%, P = .060) or entire images (87.0%, P = .748). MR imaging-based texture analysis has the potential to differentiate squamous cell carcinoma from inverted papilloma and may, in the future, provide incremental information to the neuroradiologist. © 2017 by American Journal of Neuroradiology.

  4. Clinical and radiological evaluation of inverse impaction of supernumerary teeth.

    PubMed

    Tuna, Elif-Bahar; Kurklu, Esma; Gencay, Koray; Ak, Gulsum

    2013-07-01

    To describe the clinical and radiological features of children with inverted supernumerary teeth. Thirty eight patients with inverted supernumerary teeth (ST) were enrolled in this descriptive and restrospective study. Data from patient records including age, gender, status of dentition, number of ST, number of ST in inverted position, coexistence of ST in inverted and normal direction of eruption, location, orientation, morphology, clinical complications, management and radiography were assessed during 3-years period. Thirty eight patients with a mean age of 9.10 ± 1.97 years (range:6-13) and a strong male preponderance of 3.7:1 (male:30, female:8) had a total of 69 ST, of which 41 were in inverted position. Thirty five patients had one (92.1%) inverted tooth, whereas 3 patients had two inverted teeth per case (7.9%). All cases were located in the maxilla. Midline was the most frequent site for the single inverted supernumerary tooth in 18 (47.4%) patients, followed equally by the right and left premaxillary region in 10 patients each (26.3%). Regarding morphology, 30 patients had conical (78.9%) and 8 (21.1%) had incisiform ST. No tuberculate shaped ST was detected. There was no statistically significant difference between number of inverted teeth and delayed tooth eruption, diastema, local malocclusion, palatinal swelling (p>0.05). There was no statistically significant difference between complications and age (p>0.05). Surgical removal at the time of diagnosis with subsequent follow-up during completion of permanent dentition was the treatment approach in all cases. Thorough clinical examination followed by a comprehensive radiographic screening is the crucial determinant of an accurate diagnosis of an impacted ST. Early diagnosis and timely management are key factors to prevent or minimize the complications, which may influence function and esthetics of the teeth and even psychological condition of the growing child.

  5. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    NASA Astrophysics Data System (ADS)

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-01

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  6. Silicon-controlled-rectifier square-wave inverter with protection against commutation failure

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1971-01-01

    The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.

  7. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    PubMed

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  8. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    PubMed

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advances in series resonant inverter technology and its effect on spacecraft employing electric propulsion

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1982-01-01

    The efficiency of transistorized Series Resonant Inverters (SRIs), which is higher than that of silicon-controlled rectifier alternatives, reduces spacecraft radiator requirements by 40% and may eliminate the need for heat pipes on 30-cm ion thruster systems. Recently developed 10- and 25-kW inverters have potential applications in gas thrusters, and represent the first spaceborne SRI designs for such power levels. Attention is given to the design and control system approaches employed in these inverter designs to improve efficiency and reduce weight, along with the impact of such improved parameters on electric propulsion systems.

  10. Inverting faces elicits sensitivity to race on the N170 component: a cross-cultural study.

    PubMed

    Vizioli, Luca; Foreman, Kay; Rousselet, Guillaume A; Caldara, Roberto

    2010-01-29

    Human beings are natural experts at processing faces, with some notable exceptions. Same-race faces are better recognized than other-race faces: the so-called other-race effect (ORE). Inverting faces impairs recognition more than for any other inverted visual object: the so-called face inversion effect (FIE). Interestingly, the FIE is stronger for same- compared to other-race faces. At the electrophysiological level, inverted faces elicit consistently delayed and often larger N170 compared to upright faces. However, whether the N170 component is sensitive to race is still a matter of ongoing debate. Here we investigated the N170 sensitivity to race in the framework of the FIE. We recorded EEG from Western Caucasian and East Asian observers while presented with Western Caucasian, East Asian and African American faces in upright and inverted orientations. To control for potential confounds in the EEG signal that might be evoked by the intrinsic and salient differences in the low-level properties of faces from different races, we normalized their amplitude-spectra, luminance and contrast. No differences on the N170 were observed for upright faces. Critically, inverted same-race faces lead to greater recognition impairment and elicited larger N170 amplitudes compared to inverted other-race faces. Our results indicate a finer-grained neural tuning for same-race faces at early stages of processing in both groups of observers.

  11. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle

    USDA-ARS?s Scientific Manuscript database

    Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...

  12. Efficient Single-Pass Index Construction for Text Databases.

    ERIC Educational Resources Information Center

    Heinz, Steffen; Zobel, Justin

    2003-01-01

    Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…

  13. Battle of the starches: Insoluble versus soluble at the refinery

    USDA-ARS?s Scientific Manuscript database

    A study using the USDA starch research method has been conducted to evaluate the effects of total, insoluble, and soluble starch on raw sugar filterability and viscosity in international carbonatation refineries. Raw sugar qualities, i.e., pol, color, % invert, ash, and dextran, were also studied in...

  14. Inverting papilloma of the sphenoid sinus: report of two cases.

    PubMed

    Nishio, S; Samoto, K; Takeshita, I; Matsumoto, K; Matsushima, T; Fukui, M

    2001-03-01

    Two patients with sphenoid sinus inverting papilloma who were treated either by transcranial or sublabial trans-septal approach are reported. Inverting papillomas arising from the sphenoid sinus are exceedingly rare. The clinical and neuro-imaging features, as well as surgical treatment, for sphenoid sinus tumours are also briefly discussed. Copyright 2001 Harcourt Publishers Ltd.

  15. Inverted Teaching: Applying a New Pedagogy to a University Organic Chemistry Class

    ERIC Educational Resources Information Center

    Christiansen, Michael A.

    2014-01-01

    Inverted teaching, not to be confused with hybrid learning, is a relatively new pedagogy in which lecture is shifted outside of class and traditional homework is done in class. Though some inverted teaching (IT) designs have been published in different fields, peer-reviewed reports in university chemistry remain quite rare. To that end, herein is…

  16. Reliable inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  17. Smart Inverter Control and Operation for Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.

  18. Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations.

    PubMed

    Marais, Willem J; Holz, Robert E; Hu, Yu Hen; Kuehn, Ralph E; Eloranta, Edwin E; Willett, Rebecca M

    2016-10-10

    Atmospheric lidar observations provide a unique capability to directly observe the vertical column of cloud and aerosol scattering properties. Detector and solar-background noise, however, hinder the ability of lidar systems to provide reliable backscatter and extinction cross-section estimates. Standard methods for solving this inverse problem are most effective with high signal-to-noise ratio observations that are only available at low resolution in uniform scenes. This paper describes a novel method for solving the inverse problem with high-resolution, lower signal-to-noise ratio observations that are effective in non-uniform scenes. The novelty is twofold. First, the inferences of the backscatter and extinction are applied to images, whereas current lidar algorithms only use the information content of single profiles. Hence, the latent spatial and temporal information in noisy images are utilized to infer the cross-sections. Second, the noise associated with photon-counting lidar observations can be modeled using a Poisson distribution, and state-of-the-art tools for solving Poisson inverse problems are adapted to the atmospheric lidar problem. It is demonstrated through photon-counting high spectral resolution lidar (HSRL) simulations that the proposed algorithm yields inverted backscatter and extinction cross-sections (per unit volume) with smaller mean squared error values at higher spatial and temporal resolutions, compared to the standard approach. Two case studies of real experimental data are also provided where the proposed algorithm is applied on HSRL observations and the inverted backscatter and extinction cross-sections are compared against the standard approach.

  19. Circumferentially oversewn inverted stapled anastomosis.

    PubMed

    Karam, Charbel; Lord, Sally; Gett, Rohan; Meagher, Alan P

    2018-04-01

    Leak rates of over 5% following anastomoses between the ileum and colon continue to be reported in large series and are associated with substantial morbidity and with mortality rates of 10-20%. In 1994, we began performing circumferentially oversewn inverted stapled anastomoses in patients undergoing ileo-colic anastomoses or ileostomy closure. It has become increasingly apparent that this method is associated with a low risk of leakage, which we should report. The anastomotic technique described was used in all patients undergoing ileo-colic anastomosis or closure of ileostomy by surgeon 1 (1994-2015) and in all ileo-colic anastomoses by surgeon 2 (2007-2015). All patients had a widely patent anastomosis constructed by two firings of a linear cutting stapler, as previously described. Additionally, the entire staple line was carefully oversewn with interrupted, inverting 4/0 polydioxanone sutures. Anastomotic leak was defined as a patient requiring re-operation or radiological drainage. One thousand and twelve patients underwent ileo-colic anastomosis and 685 patients underwent closure of ileostomy by surgeon 1, and 165 patients underwent ileo-colic anastomosis by surgeon 2. None of the 1862 patients required re-operation or radiological drainage for a leak (event rate 0%, 95% confidence interval 0-0.2%). However, there were three possible contained leaks treated successfully conservatively. The time taken to perform the actual anastomosis was measured in the last 30 ileo-colic resections. The median time was 42 min. While this method may well be too slow to gain widespread adoption, we hope this report encourages increased research into finding techniques with similar low leak rates. © 2016 Royal Australasian College of Surgeons.

  20. Intelligent voltage control strategy for three-phase UPS inverters with output LC filter

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.

    2015-08-01

    This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.

Top