Science.gov

Sample records for inverter designed dc

  1. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  2. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  3. Design of a ZVS PWM inverter for a brushless DC motor in an EMA application

    NASA Technical Reports Server (NTRS)

    Bell, J. Brett; Nelms, R. M.; Shepherd, Michael T.

    1993-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently investigating the use of electromechanical actuators for use in space transportation applications such as Thrust Vector Control (TVC). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 Vdc. This paper will discuss the design and implementation of a zero-voltage-switched PWM (Pulse Width Modulation) inverter which operates from a 270 Vdc source at currents up to 100 A.

  4. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  5. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  6. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  7. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  8. Efficient/reliable dc-to-dc inverter circuit

    NASA Technical Reports Server (NTRS)

    Pasciutti, E. R.

    1970-01-01

    Feedback loop, which contains an inductor in series with a saturable reactor, is added to a standard inverter circuit to permit the inverter power transistors to be switched in a controlled and efficient manner. This inverter is applicable where the power source has either high or low impedance properties.

  9. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    NASA Astrophysics Data System (ADS)

    Kabalan, Mahmoud

    study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.

  10. DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Du, Zhong; Chiasson, John N

    2009-01-01

    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

  11. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    NASA Astrophysics Data System (ADS)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  12. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  13. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    SciTech Connect

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.

  14. Efficiency consideration of DC link soft-switching inverters for motor drive applications

    SciTech Connect

    Lai, J.S.; Young, R.W.; McKeever, J.W.

    1994-12-31

    This paper critically evaluates efficiency of soft switching inverters including an actively clamped resonant dc link inverter and a clamped-mode resonant pole inverter. An analytical approach to evaluating efficiency of the clamped-mode soft switching inverter has been developed. The evaluation results are compared with that of the standard pulse-width-modulation (PWM) inverter. A 50-kW induction motor is used as the variable load, and the inverter efficiency is evaluated under different speed and torque conditions. The clamped-mode soft-switching inverter, although eliminating the switching loss, shows poor efficiency over the entire load range. Under low load conditions, the efficiency profile is even worse. The actively clamped resonant dc link inverter shows highest efficiency over the entire speed and torque range. However, its energy saving over the standard PWM inverter is marginal under full load or high speed conditions.

  15. DC-to-AC inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Ebersole, T. J.; Andrews, R. E.

    1975-01-01

    Failure detection technique is based upon input-output ratios, which is independent of inverter loading. Since inverter has fixed relationship between V-in/V-out and I-in/I-out, failure detection criteria are based on this ratio, which is simply inverter transformer turns ratio, K, equal to primary turns divided by secondary turns.

  16. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter.

    PubMed

    Abächerli, Roger; Isaksen, Jonas; Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10(-8) LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling.

  17. Adaptive Selective Harmonic Minimization Based on ANNs for Cascade Multilevel Inverters With Varying DC Sources

    SciTech Connect

    Filho, Faete; Maia, Helder Z; Mateus, Tiago Henrique D; Ozpineci, Burak; Tolbert, Leon M; Pinto, Joao Onofre P

    2013-01-01

    A new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.

  18. Mathematical model for the dc-ac inverter for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1987-01-01

    The reader is informed of what was done for the mathematical modeling of the dc-ac inverter for the Space Shuttle. The mathematical modeling of the dc-ac inverter is an essential element in the modeling of the electrical power distribution system of the Space Shuttle. The electrical power distribution system which is present on the Space Shuttle is made up to 3 strings each having a fuel cell which provides dc to those systems which require dc, and the inverters which convert the dc to ac for those elements which require ac. The inverters are units which are 2 wire structures for the main dc inputs and 2 wire structures for the ac output. When 3 are connected together a 4 wire wye connection results on the ac side. The method of modeling is performed by using a Least Squares curve fitting method. A computer program is presented for implementation of the model along with graphs and tables to demonstrate the accuracy of the model.

  19. Designing dc Inductors With Airgaps

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.

    1986-01-01

    Optimal parameters obtained designing near saturation point. New iterative procedure aids design of dc inductors with airgaps in cores. For given core area and length, technique gives design having specified inductance and peak flux density in core, using minimum required copper weight. Executed rapidly on programmable, hand-held calculator. Applications include lightweight inductors for aircraft electronics.

  20. Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase?

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Caminiti, Ruggero

    2005-08-01

    Using synchrotron small angle X-ray scattering and energy dispersive X-ray diffraction, we have found that cationic liposomes made of the monovalent cationic lipid, 3-[ N-( N, N-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral lipid dioleoylphosphatidylethanolamine (DOPE) condense DNA molecules forming complexes (DC-Chol/DOPE-DNA) which are not assembled in an inverted hexagonal structure as recently reported, but, conversely, form a well-ordered lamellar liquid-crystalline phase with distinct regimes of DNA packing density.

  1. Nonlinear analysis of a family of LC tuned inverters. [dc to square wave circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.

  2. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  3. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  4. DC Magnetics Measurement System Design

    NASA Technical Reports Server (NTRS)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  5. Relationships among classes of self-oscillating transistor parallel inverters. [dc to square wave converter circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1974-01-01

    A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.

  6. Design and material selection for inverter transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    Report is announced which studied magnetic properties of candidate materials for use in spacecraft transformers, static inverters, converters, and transformer-rectifier power supplies. Included are material characteristics for available alloy compositions in tabular form, including: trade names, saturated flux density, dc coercive force, loop squareness, material density, and watts per pound at 3 KHz.

  7. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application

    NASA Astrophysics Data System (ADS)

    Neyamadpour, Ahmad; Taib, Samsudin; Wan Abdullah, W. A. T.

    2009-11-01

    MATLAB is a high-level matrix/array language with control flow statements and functions. MATLAB has several useful toolboxes to solve complex problems in various fields of science, such as geophysics. In geophysics, the inversion of 2D DC resistivity imaging data is complex due to its non-linearity, especially for high resistivity contrast regions. In this paper, we investigate the applicability of MATLAB to design, train and test a newly developed artificial neural network in inverting 2D DC resistivity imaging data. We used resilient propagation to train the network. The model used to produce synthetic data is a homogeneous medium of 100 Ω m resistivity with an embedded anomalous body of 1000 Ω m. The location of the anomalous body was moved to different positions within the homogeneous model mesh elements. The synthetic data were generated using a finite element forward modeling code by means of the RES2DMOD. The network was trained using 21 datasets and tested on another 16 synthetic datasets, as well as on real field data. In field data acquisition, the cable covers 120 m between the first and the last take-out, with a 3 m x-spacing. Three different electrode spacings were measured, which gave a dataset of 330 data points. The interpreted result shows that the trained network was able to invert 2D electrical resistivity imaging data obtained by a Wenner-Schlumberger configuration rapidly and accurately.

  8. Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control

    SciTech Connect

    Lawler, J.S.

    2000-06-23

    The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at high speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.

  9. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  10. Design of single phase inverter using microcontroller assisted by data processing applications software

    NASA Astrophysics Data System (ADS)

    Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.

    2015-12-01

    Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).

  11. Modular AC Nano-Grid with Four-Quadrant Micro-Inverters and High-Efficiency DC-DC Conversion

    NASA Astrophysics Data System (ADS)

    Poshtkouhi, Shahab

    A significant portion of the population in developing countries live in remote communities, where the power infrastructure and the required capital investment to set up local grids do not exist. This is due to the fuel shipment and utilization costs required for fossil fuel based generators, which are traditionally used in these local grids, as well as high upfront costs associated with the centralized Energy Storage Systems (ESS). This dissertation targets modular AC nano-grids for these remote communities developed at minimal capital cost, where the generators are replaced with multiple inverters, connected to either Photovoltaic (PV) or battery modules, which can be gradually added to the nano-grid. A distributed droop-based control architecture is presented for the PV and battery Micro-Inverters (MIV) in order to achieve frequency and voltage stability, as well as active and reactive power sharing. The nano-grid voltage is regulated collectively in either one of four operational regions. Effective load sharing and transient handling are demonstrated experimentally by forming a nano-grid which consists of two custom 500 W MIVs. The MIVs forming the nano-grid have to meet certain requirements. A two-stage MIV architecture and control scheme with four-quadrant power-flow between the nano-grid, the PV/battery and optional short-term storage is presented. The short-term storage is realized using high energy-density Lithium-Ion Capacitor (LIC) technology. A real-time power smoothing algorithm utilizing LIC modules is developed and tested, while the performance of the 100 W MIV is experimentally verified under closed-loop dynamic conditions. Two main limitations of the DAB topology, as the core of the MIV architecture's dc-dc stage, are addressed: 1) This topology demonstrates poor efficiency and limited regulation accuracy at low power. These are improved by introducing a modified topology to operate the DAB in Flyback mode, achieving up to an 8% increase in

  12. Design and Construction of Low Cost High Voltage dc Power Supply for Constant Power Operation

    NASA Astrophysics Data System (ADS)

    Kumar, N. S.; Jayasankar, V.

    2013-06-01

    Pulsed load applications like laser based systems need high voltage dc power supplies with better regulation characteristics. This paper presents the design, construction and testing of dc power supply with 1 kV output at 300 W power level. The designed converter has half bridge switched mode power supply (SMPS) configuration with 20 kHz switching. The paper covers the design of half bridge inverter, closed loop control, High frequency transformer and other related electronics. The designed power supply incorporates a low cost OPAMP based feedback controller which is designed using small signal modelling of the converter. The designed converter was constructed and found to work satisfactorily as per the specifications.

  13. The analysis and design of brushless D.C. motors

    NASA Astrophysics Data System (ADS)

    Benarous, Maamar

    In modern computer systems electrical drives are used to rotate hard discs. These motors require special torque- speed characteristics. The speed of the hard disc must be constant in order for the unit to function correctly. One type of drive, which is used for hard discs is the brushless-DC-motor. This machine has permanent magnet excitation and a polyphase armature winding. It therefore takes the form of a synchronous machine, and in order to be brushless the armature winding is stationary and the excitation rotates. To run at adjustable speed a variable frequency supply is required. In the brushless D.C form the inverter output is phase locked to the rotor position, it is therefore electro-magnetically similar to the D.C machine where fixed brushes determine the frequency and phase of the current in the armature winding. In order to perform the phase lock action signals measuring the rotor position are needed. In one form of machine Hall effect probes detect the position of the rotor poles, in a second given that the rotor is in motion the induced back emf is used. Experimentally it is convenient to replace these magnet systems with a photo- transistor and rotating shutter system and this was the approach used in this thesis. The objective of this research is to investigate different aspects of this motor. The generation, measurement, and placement of signals is described and illustrated, and the design and construction of an inverter supply circuit is described. Both 2D and 3D finite element analysis is used in order to find the machine parameters as well as cogging torque analysis, using the concept of permanent magnet magnetisation characteristics. It is shown that the cogging can be reduced for certain types of magnetisation. The finite element analysis is taken further by connecting the drive circuit needed to run the machine into the finite element mesh, the machine parameters are defined using this method. The close agreement between the simulation and

  14. A Novel Inductor-less DC-AC Cascaded H-bridge Multilevel Boost Inverter for Electric/Hybrid Electric Vehicle Applications

    SciTech Connect

    Du, Zhong; Ozpineci, Burak; Tolbert, Leon M; Chiasson, John N

    2007-01-01

    This paper presents an inductorless cascaded H- bridge multilevel boost inverter for EV and HEV applications. Currently available power inverter systems for HEVs use a DC- DC boost converter to boost the battery voltage for a traditional 3-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. An inductorless cascaded H-bridge multilevel boost inverter for EV and HEV applications is proposed in this paper. Traditionally, each H-bridge needs a DC power supply. The proposed inductorless cascaded H-bridge multilevel boost inverter uses a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the DC power source. Fundamental switching scheme is used to do modulation control and to produce a 5-level phase voltage. Experiments show that the proposed inductorless DC-AC cascaded H-bridge multilevel boost inverter can output a boosted AC voltage.

  15. Toroidal transformer design program with application to inverter circuitry

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1972-01-01

    Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.

  16. Mixed mode oscillations in presence of inverted fireball in an excitable DC glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Mitra, Vramori; Prakash, N. Hari; Solomon, Infant; Megalingam, Mariammal; Sekar Iyengar, A. N.; Marwan, Norbert; Kurths, Jürgen; Sarma, Arun; Sarma, Bornali

    2017-02-01

    The typical phenomena of mixed mode oscillations and their associated nonlinear behaviors have been investigated in collisionless magnetized plasma oscillations in a DC glow discharge plasma system. Plasma is produced between a cylindrical mesh grid and a constricted anode. A spherical mesh grid of 80% optical transparency is kept inside a cylindrical grid to produce an inverted fireball. Three Langmuir probes are kept in the ambient plasma to measure the floating potential fluctuations at different positions of the chamber. It has been observed that under certain conditions of discharge voltages and magnetic fields, the mixed mode oscillation phenomena (MMOs) appears, and it shows a sequential alteration with the variation of the magnetic fields and probe positions. Low frequency instability has been observed consistently in various experimental conditions. The mechanisms of the low frequency instabilities along with the origin of the MMOs have been qualitatively explained. Extensive linear and nonlinear analysis using techniques such as fast Fourier transform, recurrence quantification analysis, and the well-known statistical computing, skewness, and kurtosis are carried out to explore the complex dynamics of the MMO appearing in the plasma oscillations under various discharge conditions and external magnetic fields.

  17. A vented inverted fuel assembly design for an SFR

    SciTech Connect

    Vitillo, F.; Todreas, N. E.; Driscoll, M. J.

    2012-07-01

    The inverted geometry (fuel outside coolant tubes) has been previously investigated at MIT for application in gas-cooled fast reactors and pressurized water-cooled thermal reactors. Venting has also been studied for conventional fuel pins and was employed for those in the Dounreay Fast Reactor. In the present work the inverted fuel approach was adopted because it allows high fuel volume fraction, reduction of the coolant void reactivity, neutron leakage and enrichment, as well as lower pressure drop for the same channel length because grids and wire wraps are no longer necessary. Furthermore most results also apply to venting of conventional fuel pins. Physical and chemical behavior of volatile fission products in sodium was investigated to determine the maximum activity inventory which would eventually be released into the primary sodium. Results of this analysis show that the most troublesome radionuclides in terms of propensity to escape from the venting system are noble gases ({sup 85}Kr and {sup 133}Xe), and cesium ({sup 134}Cs and {sup 137}Cs). A final vented inverted fuel assembly design is proposed which meets all the design goals which have been set. Additionally purification systems were devised to reduce radionuclide activity of the coolant and the cover gas to tolerable levels. It is concluded that vented inverted (or vented conventional pin) fuel is a feasible concept and has sufficiently promising advantages - increasing fuel volume fraction to 50% and core outlet temperature by 20 deg. C, hence incrementing plant thermal efficiency by about 1% - to warrant serious consideration for future SFR designs. (authors)

  18. Design of a three-phase, 15-kilovolt-ampere static inverter for motor-starting a Brayton space power system

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Birchenough, A. G.

    1971-01-01

    The design of a three-phase, 400-Hz, 15-kVA static inverter for motor-starting the 2- to 15-kWe Brayton electrical space power system is described. The inverter operates from a nominal 56-V dc source to provide a 28-V, rms, quasi-square-wave output. The inverter is capable of supplying a 200-A peak current. Integrated circuitry is used to generate the three-phase, 400-Hz reference signals. Performance data for a drive stage that improves switching speed and provides efficient operation over a range of output current and drive supply voltage are presented. A transformerless, transistor output stage is used.

  19. An enhanced Z-source inverter topology-based permanent magnet brushless DC motor drive speed control

    NASA Astrophysics Data System (ADS)

    Geno Peter, P.; Rajaram, M.

    2015-08-01

    In this paper, an enhanced Z-source inverter (ZSI) is introduced for controlling the speed of permanent magnet brushless DC motor (PMBLDCM) drive. It is the extension of the conventional ZSI and the elements used in the circuit are the same as those of the conventional ZSI, except that the position of Inverter Bridge and diode would be exchanged from the classical circuit diagram. This exchanged circuit avoids the startup path of the inrush current and hence reduces the inrush current and improves the motor efficiency. Different modes of enhanced ZSI are studied with PMBLDCM. The voltage polarity of Z-source capacitors in the proposed circuit is the same as that of the input voltage polarity. Furthermore, to get the same voltage boost, the capacitor voltage stress is reduced to a significant extent. The speed control capability of the proposed brushless DC motor drive is compared with that of the conventional ZSI. The proposed ZSI is implemented in MATLAB/Simulink working platform and the output performance is evaluated. Also, the performance of voltage ratio is analysed both by simulation and mathematical models. All these analyses are known to express the innovative features of the proposed system.

  20. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  1. Nongrounded Common-Mode Equivalent Circuit for Brushless DC Motor Driven by PWM Inverter

    NASA Astrophysics Data System (ADS)

    Maetani, Tatsuo; Isomura, Yoshinori; Watanabe, Akihiko; Iimori, Kenichi; Morimoto, Shigeo

    This paper describes nongrounded common-mode equivalent circuit for a motor driven by a voltage-source PWM inverter. When the capacitance of the rotor was small, the phenomenon that polarity of the common mode voltage and shaft voltage reversed was observed. In order to model this phenomenon, the bridge type equivalent circuit is proposed. It is verified with the calculation and experiment that shaft voltage values and polarity are accurately calculated with the proposed equivalent circuit.

  2. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  3. Technology of Performance Improvement Brushless DC Motors and Inverter for Air conditioning

    NASA Astrophysics Data System (ADS)

    Baba, Kazuhiko; Matsuoka, Atsushi; Shinomoto, Yosuke; Arisawa, Koichi

    High efficiency motors are demanded because of the viewpoint of environmental preservation. It is necessary to develop the technology of the energy conservation that can be achieved at low cost so that we may expand high efficiency motors onto the world. In this paper, the current status of the brushless DC motors and invertors to satisfy high efficiency, small size, high power and low cost is reviewed.

  4. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    PubMed

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  5. Design of a Multiple-Input SC DC-DC Converter Realizing Long Battery Runtime

    NASA Astrophysics Data System (ADS)

    Eguchi, Kei; Pongswatd, Sawai; Julsereewong, Amphawan; Tirasesth, Kitti; Sasaki, Hirofumi; Inoue, Takahiro

    A multiple-input switched-capacitor DC-DC converter which can realize long battery runtime is proposed in this letter. Unlike conventional converters for a back-lighting application, the proposed converter drives some LEDs by converting energy from solar cells. Furthermore, the proposed converter can charge a lithium battery when an output load is light. The validity of circuit design is confirmed by theoretical analyses, simulations, and experiments.

  6. CO2 Network Design for Washington DC/Baltimore

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, I.; Prasad, K.; Ghosh, S.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion method to quantify sources of Greenhouse Gas (GHG) emissions in the urban areas of Washington DC and Baltimore at approximately 1km2 resolutions. The aim of this project is to help establish reliable measurement methods for quantifying and validating GHG emissions independently of the inventory methods typically used to guide mitigation efforts. Since inversion methods depend on atmospheric observations of GHG, deploying a suitable network of ground-based measurement stations is a fundamental step in estimating emissions from the perspective of the atmosphere with reasonable levels of uncertainty. The purpose of this work is to design a tower based network of measurement stations that can reduce the uncertainty in emissions by 50% in the central areas of DC and Baltimore. To this end, the Weather Research and Forecasting Model (WRF-ARW) was used along with the Stochastic Time-Inverted Lagrangian Transport model (STILT) to derive the sensitivity of hypothetical observations to surface emissions (footprints) for the months of February and July 2013. An iterative selection algorithm, based on k-means clustering method, was applied in order to minimize the similarities between the temporal response of each site and maximize the urban contribution. Afterwards, a synthetic inversion Kalman Filter was used to evaluate the performances of the observing system based on the merit of the retrieval over time and the amount of a priori uncertainty reduced by the network. We present the performances of various measurement networks that consist of different number of towers and where the location of these towers vary. Results show that too compact networks lose spatial coverage whilst too spread networks lose capabilities of constraining uncertainties in the fluxes. In addition, we explore the possibility of using a very high density network of low-cost, low-accuracy sensors characterized by larger uncertainties and

  7. A New Control Method of a Resonant Switched-Capacitor Converter and the Application for Balancing of the Split DC Voltages in a Multilevel Inverter

    NASA Astrophysics Data System (ADS)

    Sano, Kenichiro; Fujita, Hideaki

    This paper proposes a new voltage-balancing circuit for the split dc voltages in a diode-clamped five-level inverter. The proposed circuit is based on a resonant switched-capacitor converter (RSCC), which consists of two half-bridge inverters, a resonant inductor and a resonant capacitor. A new phase-shift control of the RSCC is proposed to improve voltage balancing performance. Theoretical analysis reveals the rating of the RSCC and stored energy in the resonant inductor. Experimental results confirm the reduction of the inductor to one tenth in volume as compared to a conventional voltage-balancing circuit based on buck-boost topology. Moreover, the proposed phase-shift control has demonstrated that it is possible to eliminate the voltage deviation between the dc capacitors.

  8. Integrated Inverter And Battery Charger

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  9. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    SciTech Connect

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    2016-02-01

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems related to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.

  10. High voltage studies of inverted-geometry ceramic insulators for a 350 kV DC polarized electron gun

    DOE PAGES

    Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.

    2016-02-01

    Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency “capture” section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems relatedmore » to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. In conclusion, electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator.« less

  11. Design and field performance of the KENETECH photovoltaic inverter system

    SciTech Connect

    Behnke, M.R.

    1995-11-01

    KENETECH Windpower has recently adapted the power conversion technology developed for the company`s variable speed wind turbine to grid-connected photovoltaic applications. KENETECH PV inverter systems are now in successful operation at the Sacramento Municipal Utility District`s (SMUD) Hedge Substation and the PVUSA-Davis site, with additional systems scheduled to be placed into service by the end of 1995 at SMUD, the New York Power Authority, Xerox Corporation`s Clean Air Now project, and the Georgia Tech Aquatic Center. The features of the inverter are described.

  12. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Urban design of Washington, DC. 910.13 Section 910.13 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington,...

  13. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Urban design of Washington, DC. 910.13 Section 910.13 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington,...

  14. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Urban design of Washington, DC. 910.13 Section 910.13 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington,...

  15. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Urban design of Washington, DC. 910.13 Section 910.13 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington,...

  16. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Urban design of Washington, DC. 910.13 Section 910.13 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington,...

  17. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

  18. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  19. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    NASA Astrophysics Data System (ADS)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  20. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  1. User's manual: Computer-aided design programs for inductor-energy-storage dc-to-dc electronic power converters

    NASA Technical Reports Server (NTRS)

    Huffman, S.

    1977-01-01

    Detailed instructions on the use of two computer-aided-design programs for designing the energy storage inductor for single winding and two winding dc to dc converters are provided. Step by step procedures are given to illustrate the formatting of user input data. The procedures are illustrated by eight sample design problems which include the user input and the computer program output.

  2. Design of piezoelectric transformer for DC/DC converter with stochastic optimization method

    NASA Astrophysics Data System (ADS)

    Vasic, Dejan; Vido, Lionel

    2016-04-01

    Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.

  3. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  4. Mass penalties in dc HPG design

    NASA Astrophysics Data System (ADS)

    Challita, Antonios; Bauer, David P.

    1989-01-01

    The authors developed theoretical mass and size models of iron-core HPGs (homopolar generators). They then analyzed the sensitivity of the size and mass of the HPG's to variations in HPG performance requirements, and key independent design parameters. The mass and size of the HPG was found to depend strongly on (1) the output voltage and current requirements, (2) the slip ring velocity, (3) the current density of the current collectors and the slip ring (axially), and (4) the collectors' brush and actuation system volume.

  5. DESIGN OF A DC/RF PHOTOELECTRON GUN.

    SciTech Connect

    YU,D.NEWSHAM,Y.SMIRONOV,A.YU,J.SMEDLEY,J.SRINIVASAN RAU,T.LEWELLEN,J.ZHOLENTS,A.

    2003-05-12

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short ({approx}1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field ({approx} 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ({le} 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made.

  6. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  7. Table-aided design of the energy-storage reactor in dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Owen, H. A., Jr.

    1975-01-01

    A new procedure for the selection of magnetic cores for use in energy-storage dc-to-dc power converters which eliminates the need for an automated computer search algorithm and stored data file is presented. The converter configurations included in the procedure are the three commonly encountered single-winding converters for voltage step-up, for current step-up and for voltage step-up/current step-up, and for the two-winding converter for voltage step-up/current step-up. For each converter configuration, three types of controllers are considered - constant-frequency, constant on-time and constant off-time. Using concepts developed from analyses of these converters by considering the transfer of energy by means of an energy-storage inductor or transformer, a special table of parameters calculated from magnetic core data is constructed and leads to a considerably simplified design procedure.

  8. The design and fabrication of an inverted IR optical trap

    NASA Astrophysics Data System (ADS)

    Zhu, Tianchun; Feng, Xiuzhou; Fang, Jianxing

    2005-02-01

    Optical tweezers offer the unique ability to manipulate particles dispersed in a liquid medium without any mechanical contact. It can trap, move and position a wide variety of living cells and sub-cellular particles. The nature of the technique has led to its predominant use in the fields of medicine and microbiology. On the other hand, different biomedical experiments require the traps with different structures and characteristics. Commercial optical tweezers are very expensive and they can"t meet the demands of some special experiments. In this paper, the authors describe a detailed recipe for fabrication of an inverted optical trap. The system uses a single mode laser with the wavelength of 1064 nm so as not to damage the living organisms. The system has a platform whose temperature is tunable at a range of 20-40°C and can be stabilized by a controller. The system is also has a video device. The significant advantage of the system is low cost and easy to be operated. It especially fits the labs that are short of fund but interested in the application of optical trap in research of living cells. By means of the system, the authors do the experiments on control over the neuronal growth successfully.

  9. Radiation effects in power converters: Design of a radiation hardened integrated switching DC/DC converter

    NASA Astrophysics Data System (ADS)

    Adell, Philippe

    . This design is the first radiation-hardened DC/DC power converter in this power range that integrates the switch, controller, and rectifier. The design has been fabricated, simulated and tested.

  10. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  11. Optimal brushless DC motor design using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.

    2010-11-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  12. Next Generation Inverter

    SciTech Connect

    Zhao, Zilai; Gough, Charles

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  13. Energy-Saving Inverter

    NASA Technical Reports Server (NTRS)

    Rippel, W. E.; Edwards, D. B.

    1984-01-01

    Commutation by field-effect transistor allows more efficient operation. High voltage field-effect transistor (FET) controls silicon controlled rectifiers (SCR's). Circuit requires only one capacitor and one inductor in commutation circuit: simpler, more efficient, and more economical than conventional inverters. Adaptable to dc-to-dc converters.

  14. Optimal design of inverted truncated pyramid with Fresnel lens for concentrated photovoltaic Units

    NASA Astrophysics Data System (ADS)

    El-Yahyaoui, S.; El Himer, S.; Mechaqrane, A.; Ahaitouf, A.

    2017-03-01

    The aim of the presented work was to determine the optimum parameters of inverter truncated rectangular pyramid with Fresnel lenses. The use of secondary optical element (SOE) in a concentrated photovoltaic system can be effective in redirecting the sun light into the solar cell, increasing the concentration as well as improving the energy uniformity on the solar cell Ray tracing technique was used to simulate the optical characteristics of the CPV unit with various design parameters of the component. Finally, a typical concentrator was designed by using three possible materials, the Fused Silica, the BK7 and the PMMA.

  15. A design procedure for the phase-controlled parallel-loaded resonant inverter

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1989-01-01

    High-frequency-link power conversion and distribution based on a resonant inverter (RI) has been recently proposed. The design of several topologies is reviewed, and a simple approximate design procedure is developed for the phase-controlled parallel-loaded RI. This design procedure seeks to ensure the benefits of resonant conversion and is verified by data from a laboratory 2.5 kVA, 20-kHz converter. A simple phasor analysis is introduced as a useful approximation for design purposes. The load is considered to be a linear impedance (or an ac current sink). The design procedure is verified using a 2.5-kVA 20-kHz RI. Also obtained are predictable worst-case ratings for each component of the resonant tank circuit and the inverter switches. For a given load VA requirement, below-resonance operation is found to result in a significantly lower tank VA requirement. Under transient conditions such as load short-circuit, a reversal of the expected commutation sequence is possible.

  16. Inverter communications using output signal

    DOEpatents

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  17. PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)

    SciTech Connect

    West, R.

    2004-04-01

    The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

  18. Status and Needs of Power Electronics for Photovoltaic Inverters

    SciTech Connect

    QIN, YU CHIN; MOHAN, NED; WEST, RICK; BONN, RUSSELL H.

    2002-06-01

    Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals. DOE investments in power electronics are intended to address the reliability and cost of power electronics. This report details the progress of power electronics, identifies technologies that are in current use, and explores new approaches that can provide significant improvements in inverter reliability while leading to lower cost. A key element to improved inverter design is the systems approach to design. This approach includes a list of requirements for the product being designed and a preliminary requirements document is a part of this report. Finally, the design will be for a universal inverter that can be applied to several technologies. The objective of a universal inverter is to increase the quantity being manufactured so that mass-manufacturing techniques can be applied. The report includes the requirements and recommended design approaches for a new inverter with a ten-year mean time to first failure (MTFF) and with lower cost. This development will constitute a ''leap

  19. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  20. Design and Quasi-Equilibrium Analysis of a Distributed Frequency-Restoration Controller for Inverter-Based Microgrids

    SciTech Connect

    Ainsworth, Nathan G; Grijalva, Prof. Santiago

    2013-01-01

    This paper discusses a proposed frequency restoration controller which operates as an outer loop to frequency droop for voltage-source inverters. By quasi-equilibrium analysis, we show that the proposed controller is able to provide arbitrarily small steady-state frequency error while maintaing power sharing between inverters without need for communication or centralized control. We derive rate of convergence, discuss design considerations (including a fundamental trade-off that must be made in design), present a design procedure to meet a maximum frequency error requirement, and show simulation results verifying our analysis and design method. The proposed controller will allow flexible plug-and-play inverter-based networks to meet a specified maximum frequency error requirement.

  1. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  2. A Design Methodology for Switched-Capacitor DC-DC Converters

    DTIC Science & Technology

    2009-05-21

    was simulated in a 65 nm process. One curve shows the bottom-plate parasitic if the well is tied to a DC potential above the substrate, such that the...182 A.4.3 Discrete-Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 A.4.4 Dynamics Simulation ...5.4 Double-bound hysteresis feedback for the PicoCube application . . . . . . . 89 5.5 Lower-bound hysteretic feedback controller

  3. Three-phase inverter for small high speed motors

    NASA Technical Reports Server (NTRS)

    Mccormick, John A.; Valenzuela, Javier A.

    1991-01-01

    A high-frequency three-phase inverter is being developed to drive a miniature centrifugal compressor which is a key component in a long-life space-borne cryocooler. The inverter is a unique transformer-coupled design, tailored to the low-voltage high-current characteristic of the compressor's induction motor. The design and performance demonstration of a breadboard model of the inverter are described. The cryocooler uses a reverse-Brayton cycle with turbomachines to provide 5 watt of cooling at 70 K. The design target for input power to the compressor motor is 175 watts. Line-to-neutral phase voltage waveforms to be supplied by the inverter have an amplitude of 15 volt-rms at a frequency of 8 kHz. DC power at 28 volt is supplied to the inverter. The breadboard inverter was tested with a preliminary development model of the compressor. It drove the compressor over a range of operating conditions encompassing frequencies of 5 to 9 kHz at powers of 56 to 437 watt. Inverter efficiencies, calculated from experimentally verified loss models, ranged from 89 to 95 percent over the tests. The design target on efficiency is 90 percent. The inverter was demonstrated to supply starting current adequate to overcome the starting friction of the compressor's self-acting gas bearings by a safe margin.

  4. Integral inverter/battery charger for use in electric vehicles

    NASA Technical Reports Server (NTRS)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  5. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  6. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.

    1981-11-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  7. PEBB Feedback Control Low Library. Volume 1: Three-Phase Inverter Control Algorithms

    DTIC Science & Technology

    1999-01-01

    ship propulsion electrical loads are powered from a common set of prime movers. Presently, the current generation of PEBB-like devices include high-power, fast-switching, high-bandwidth dc-dc converters and dc-ac inverters. This report summarized the algorithms required to control a conventional three-phase inverter. First, implementation issues regarding the Sine-Triangle Pulse-Width-Modulation and Space-Vector Modulation are presented with an emphasis placed on digital realizations. Then, two current control schemes are documented via analysis, design example, and

  8. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  9. User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1980-01-01

    A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.

  10. Product design for energy reduction in concurrent engineering: An Inverted Pyramid Approach

    NASA Astrophysics Data System (ADS)

    Alkadi, Nasr M.

    on product, process, and system design parameters. In depth evaluation to how the design and manufacturing normally happen in concurrent engineering provided a framework to develop energy system levels in machining within the concurrent engineering environment using the method of "Inverted Pyramid Approach", (IPA). The IPA features varying levels of output energy based information depending on the input design parameters that is available during each stage (level) of the product design. The experimental work, the in-depth evaluation of design and manufacturing in CE, and the developed energy system levels in machining provided a solid base for the development of the model for the design for energy reduction in CE. The model was used to analyze an example part where 12 evolving designs were thoroughly reviewed to investigate the sensitivity of energy to design parameters in machining. The model allowed product design teams to address manufacturing energy concerns early during the design stage. As a result, ranges for energy sensitive design parameters impacting product manufacturing energy consumption were found in earlier levels. As designer proceeds to deeper levels in the model, this range tightens and results in significant energy reductions.

  11. Inverting the Linear Algebra Classroom

    ERIC Educational Resources Information Center

    Talbert, Robert

    2014-01-01

    The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…

  12. Effective switching frequency multiplier inverter

    DOEpatents

    Su, Gui-Jia; Peng, Fang Z.

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  13. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters.

  14. Design of improved integrated thin-film planar dc SQUID gradiometers

    SciTech Connect

    Ketchen, M.B.

    1985-12-01

    Key issues in the design of improved first and second derivative, thin-film, planar dc SQUID gradiometers are discussed. The introduction of a planar coupling scheme to optimally couple the planar dc SQUID to the gradiometer pickup loops leads to significantly increased sensitivity as well as elimination of the sensitivity differences between series and parallel gradiometer loop configurations. Two-hole and figure-8 SQUID designs are presented which are consistent with intrinsic gradiometer balance < or approx. =10/sup -4/ against uniform field changes. Straightforward calculations together with data from existing low-noise SQUIDs suggest improvements in gradient sensitivity on the order of 10/sup 2/ over existing planar gradiometers.

  15. Simulation of push-pull inverter using wide bandgap devices

    NASA Astrophysics Data System (ADS)

    Al-badri, Mustafa; Matin, Mohammed A.

    2016-09-01

    This paper discusses the use of wide bandgap devices (SiC-MOSFET) in the design of a push-pull inverter which provides inexpensive low power dc-ac inverters. The parameters used were 1200V SiC MOSFET(C2M0040120D) made by power company ROHM. This modeling was created using parameters that were provided from a device datasheet. The spice model is provided by this company to study the effect of adding this component on push-pull inverter ordinary circuit and compared results between SiC MOSFET and silicon MOSFET (IRFP260M). The results focused on Vout and Vmos stability as well as on output power and MOSFET power loss because it is a very crucial aspect on DC-AC inverter design. These results are done using the National Instrument simulation program (Multisim 14). It was found that power loss is better in the 12 and 15 vdc inverter. The Vout in the SIC MOSFET circuit shows more stability in the high current low resistance load in comparison to the Silicon MOSFET circuit and this will improve the overall performance of the circuit.

  16. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  17. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  18. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  19. Design and use of brushless dc motor without detent torque

    NASA Astrophysics Data System (ADS)

    Wavre, N.

    1990-03-01

    Two applications of motors which cannot accept a residual detent torque due to the rotor magnets are presented. The first application concerns the joint mechanism of the Synchronous Meteorological Satellite/HERA project. The brushless torque motor drives a reversible harmonic drive with a high gear ratio of 500. The motor is designed to produce a stall torque of 3.0 Nm with a total imput power of 30 W for a total weight of 1.5 kg, with a no load speed of 500 rpm. The second application concerns the driving mechanism of an infrared sensor. The need to take all geometrical and magnetic parameters into consideration in designing space mechanisms is stressed.

  20. Can natural proteins designed with 'inverted' peptide sequences adopt native-like protein folds?

    PubMed

    Sridhar, Settu; Guruprasad, Kunchur

    2014-01-01

    We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to 'swap' certain short peptide sequences in naturally occurring proteins with their corresponding 'inverted' peptides and generate 'artificial' proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5-12 and 18 amino acid residues. Our analysis illustrates with examples that such 'artificial' proteins may be generated by identifying peptides with 'similar structural environment' and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides.

  1. A novel approach to periodic event-triggered control: Design and application to the inverted pendulum.

    PubMed

    Aranda-Escolástico, Ernesto; Guinaldo, María; Gordillo, Francisco; Dormido, Sebastián

    2016-11-01

    In this paper, periodic event-triggered controllers are proposed for the rotary inverted pendulum. The control strategy is divided in two steps: swing-up and stabilization. In both cases, the system is sampled periodically but the control actions are only computed at certain instances of time (based on events), which are a subset of the sampling times. For the stabilization control, the asymptotic stability is guaranteed applying the Lyapunov-Razumikhin theorem for systems with delays. This result is applicable to general linear systems and not only to the inverted pendulum. For the swing-up control, a trigger function is provided from the derivative of the Lyapunov function for the swing-up control law. Experimental results show a significant improvement with respect to periodic control in the number of control actions.

  2. Design of mine-used DC carrier telephone based on STM32

    NASA Astrophysics Data System (ADS)

    Chen, Goufan; Zhou, Hui; Zhan, Minhua; Wang, Jian

    2016-01-01

    Abide by the design principles of mine intrinsically safe circuit, according to the need of underground communication in coal mine, the paper proposed a design scheme of DC carrier telephone which can dial. The design circuit of the telephone is introduced in detail. The telephone's voice signals are generated by the microphone. After enlarged then the voice signals are modulated to frequency signals by LM567 chip. The frequency signals are coupled by transformer and then transmitted by 12V DC power supply line to the other voice terminals. In the voice terminal the signals are demodulated by LM567 demodulation circuit and enlarged by LM386, then, the amplified audio signals are output from a speaker. The dialing circuit is designed based on the STM32 MCU. The dial information is transmitted to the other telephone terminals by CAN bus. The measured distance calls is greater than 2000m, volume is larger than 85dB, good results.

  3. Auxiliary resonant DC tank converter

    DOEpatents

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  4. Modeling, Analysis, and Impedance Design of Battery Energy Stored Single-Phase Quasi-Z Source Photovoltaic Inverter System

    SciTech Connect

    Xue, Yaosuo

    2016-01-01

    The battery energy stored quasi-Z-source (BES-qZS) based photovoltaic (PV) power generation system combines advantages of the qZS inverter and the battery energy storage system. However, the second harmonic (2 ) power ripple will degrade the system's performance and affect the system's design. An accurate model to analyze the 2 ripple is very important. The existing models did not consider the battery, and with the assumption L1=L2 and C1=C2, which causes the non-optimized design for the impedance parameters of qZS network. This paper proposes a comprehensive model for single-phase BES-qZS-PV inverter system, where the battery is considered and without any restriction of L1, L2, C1, and C2. A BES-qZS impedance design method based on the built model is proposed to mitigate the 2 ripple. Simulation and experimental results verify the proposed 2 ripple model and design method.

  5. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  6. Design of Dual band Modified Inverted F-Antenna for Military and Intelligent Transportation System (ITS) Applications by Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Hossain, Robiul; Karmokar, Debabrata Kumar

    2012-11-01

    A design of single feed Dual Band Modified Inverted F-Antenna (IFA) operating at 4.45 GHz (4.4-4.7GHz) and 5.9 GHz (5.850-5.925 GHz) has been proposed in this paper. The design is initiated by trial and error method of Numerical Analysis and method of moments (MoMís) in Numerical Electromagnetic code (NEC) is used to design, simulate and analyze this antenna. The results exhibit a proper operation of the antenna in terms of return loss, bandwidth, efficiency, VSWR, and gain at both bands. Proposed antenna is designed to achieve multi-serving purposes. Military applications and applications in the Intelligent Transportation Systems (ITS) are the most important applications within the above mentioned frequency bands respectively. The simulated results including performance parameters of antenna are presented and all are acceptable for the standard antennas.

  7. Fault-tolerant three-level inverter

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  8. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  9. Approaches to Suppressing Shaft Voltage in Brushless DC Motor Driven by PWM Inverter Based on Ungrounded Common-Mode Equivalent Circuit

    NASA Astrophysics Data System (ADS)

    Maetani, Tatsuo; Isomura, Yoshinori; Watanabe, Akihiko; Iimori, Kenichi; Morimoto, Shigeo

    This paper describes an ungrounded common-mode equivalent circuit for a motor driven by a voltage-source PWM inverter. When the capacitance of the rotor was is small, the reversal of the polarities of the common-mode voltage and shaft voltage is observed. In order to model this reversal, a bridge-type equivalent circuit is proposed. On the basis of calculations and experiment, it is found the values and polarity of the shaft voltage can be are accurately determined with the proposed equivalent circuit. Furthermore, the capacitance value of the insulated rotor required to make the shaft voltage equal to or less than the dielectric breakdown voltage of the bearing grease is obtained.

  10. DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures

    SciTech Connect

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram

    2011-07-01

    Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.

  11. Fatigue and fail-safe design features of the DC-10 airplane

    NASA Technical Reports Server (NTRS)

    Stone, M. E.

    1972-01-01

    The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.

  12. Design and Testing of D.C. Conduction Pump for Sodium Cooled Fast Reactor

    SciTech Connect

    Nashine, B.K.; Dash, S.K.; Gurumurthy, K.; Rajan, M.; Vaidyanathan, G.

    2006-07-01

    DC Conduction pump immersed in sodium forms a part of Failed Fuel Location Module (FFLM) of 500 MWe Fast Breeder Reactor (PFBR) currently under construction. FFLM housed in control plug of the reactor, is used to locate the failed fuel sub-assembly due to clad rupture in the fuel pin. The DC conduction pump sucks the sodium from the top of fuel sub-assemblies through the selector valve and pumps the sodium to hold up for detecting the presence of delayed neutrons. Presence of delayed neutron is the indication of failure in the sampled fuel sub-assembly. The DC Conduction Pump was chosen because of its low voltage operation (2 V) where argon/alumina ceramic can provide required electrical insulation even at operating temperature of 560 deg. C without much complication on the manufacturing front. Sampling of sodium from top of different sub-assemblies is achieved by operation of selector valve in-conjunction with the drive motor. FFLM requires the pump to be immersed in sodium pool at {approx} 560 deg. C located above the fuel sub-assemblies in the reactor. The Pump of 0.36 m{sup 3}/h capacity and developing 1.45 Kg/ cm{sup 2} pressure was designed, manufactured and tested. The DC Conduction Pump has a stainless steel duct filled with liquid sodium, which is to be pumped. The stainless steel duct is kept in magnetic field obtained by means of electromagnet. The electromagnet is made of soft iron and the coil made of copper conductor surrounds the yoke portion of electromagnet. The external DC source of 2000 Amps, 2 Volt is used to send current through sodium placed in the stainless steel duct and the same current is sent through copper coil of electromagnet for producing required magneto motive force, which in turn produces required magnetic field. The interaction of current in sodium (placed in stainless steel duct) and magnetic field produced by the electromagnet in the duct region produces pumping force in the sodium. Electromagnet, copper coil, stainless steel

  13. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  14. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  15. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  16. Integrated Inverter For Driving Multiple Electric Machines

    DOEpatents

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  17. Intrinsic Hardware Evolution for the Design and Reconfiguration of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.

  18. Genetic algorithm based design optimization of a permanent magnet brushless dc motor

    NASA Astrophysics Data System (ADS)

    Upadhyay, P. R.; Rajagopal, K. R.

    2005-05-01

    Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.

  19. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  20. Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor

    NASA Astrophysics Data System (ADS)

    Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng

    Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.

  1. Simulations for preliminary design of a multi-cathode DC electron gun for eRHIC

    SciTech Connect

    Wu, Q.; Ben-Zvi, I.; Chang, X.; Skaritka, J.

    2010-05-23

    The proposed electron ion collider, eRHIC, requires a large average polarized electron current of 50 mA, which is more than 20 times higher than the present experimental output of a single, highly polarized electron source, based on cesiated super-lattice GaAs. To meet eRHIC's requirement for current, we designed a multicathode DC electron gun for injection. The twenty-four GaAs cathodes emit electrons in sequence, then are combined on axis by a rotating field (or 'funnelled'). In addition to its ultra-high vacuum requirements, the multicathode DC electron gun will place high demand on the electric field symmetry, the magnetic field shielding, and on preventing arcing. In this paper, we discuss our results from a 3D simulation of the latest model for this gun. The findings will guide the actual design in future. Their preliminary design of a multi-cathode electron source for eRHIC demonstrated tolerable fields and reasonable results in both field and particle simulations.

  2. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  3. Improved DC Gun and Insulator Assembly

    SciTech Connect

    Neubauer, Michael

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  4. Electronically commutated dc motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Maslowski, E. A.

    1981-01-01

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  5. Electronically commutated dc motors for electric vehicles

    NASA Astrophysics Data System (ADS)

    Maslowski, E. A.

    A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.

  6. New type of transformerless high efficiency inverter

    NASA Astrophysics Data System (ADS)

    Naaijer, G. J.

    Inverter architectures are presented which allow economical ac/dc switching for solar cell array and battery power use in domestic and industrial applications. The efficiencies of currently available inverters are examined and compared with a new 2.2 kW transformerless stepped wave inverter. The inverter has low no-load losses, amounting to 200 Wh/24 hr, and features voltage steps occurring 15-30 times/sine wave period. An example is provided for an array/battery/inverter assembly with the inverter control electronics activating or disconnecting the battery subassemblies based on the total number of activated subassemblies in relation to a reference sinewave, and the need to average the battery subassembly discharge rates. A total harmonic distortion of 6 percent was observed, and the system is noted to be usable as a battery charger.

  7. Microgrid and Inverter Control and Simulator Software

    SciTech Connect

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.

  8. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    SciTech Connect

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  9. [Inverted nipples].

    PubMed

    Saltvig, Iselin; Sjøstrand, Helle; Oldenburg, Mette Holmqvist; Matzen, Steen Henrik

    2016-10-17

    Inverted nipples is an anatomical variation which can be uni- or bilateral, congenital or acquired. The degree of inversion can vary from slight to severe. Treatment can be surgical or non-surgical and should depend on the degree of functional problems. Non-surgical treatment can be beneficial, does not risk affecting sensibility, spares the lactiferous ducts, and therefore does not risk any interference with breast-feeding. Surgical options should only be considered when non-surgical treatment is insufficient.

  10. Nonlinear analysis of a family of LC tuned inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1975-01-01

    Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.

  11. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  12. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  13. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    SciTech Connect

    Oku, Takeo Matsumoto, Taisuke; Ohishi, Yuya; Hiramatsu, Koichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2016-02-01

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  14. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    NASA Astrophysics Data System (ADS)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  15. Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests

    NASA Technical Reports Server (NTRS)

    Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.

    1976-01-01

    Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.

  16. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  17. DC-9 flight demonstration program with refanned JT8D engines. Volume 2: Design and construction

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nacelle configuration selected for the DC-9 had a 1595.6 mm Refan length inlet and an 1811.8 mm exhaust duct. The inlet had 1234.4 mm of acoustic treatment and the tailpipe had 1305.5 mm of equivalent length acoustic treatment. The pylon was reduced in width from 425.5 mm to 204.5 mm. Fuselage frames and titanium skin panels in the area of the pylon were reinforced or replaced to support the higher loads and engine thrust. Experimental type tooling, fabrication and assembly were used on all hardware. The design is considered certifiable and representative of the hardware that would be built as retrofit kits.

  18. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    NASA Astrophysics Data System (ADS)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  19. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  20. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  1. Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters

    NASA Astrophysics Data System (ADS)

    Schaefer, John F.

    An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.

  2. Power inverters

    SciTech Connect

    Miller, David H; Korich, Mark D; Smith, Gregory S

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  3. Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design.

    PubMed

    Kim, In Soo; Cao, Duyen H; Buchholz, D Bruce; Emery, Jonathan D; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G; Martinson, Alex B F

    2016-12-14

    Despite rapid advances in conversion efficiency (>22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 °C) by integrating an ultrathin amorphous oxide electron extraction layer via atomic layer deposition (ALD). These unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

  4. Operating temperatures of open-rack installed photovoltaic inverters

    SciTech Connect

    Zhang, Z.; Wang, L.; Kurtz, S.; Wu, J.; Quan, P.; Sorensen, R.; Liu, S.; Bai, J. B.; Zhu, Z. W.

    2016-11-01

    This paper presents a model for evaluating the heat-sink and component temperatures of open-rack installed photovoltaic inverters. These temperatures can be used for predicting inverter reliability. Inverter heat-sink temperatures were measured for inverters connected to three grid-connected PV (photovoltaic) test systems in Golden, Colorado, US. A model is proposed for calculating the inverter heat-sink temperature based on the ambient temperature, the ratio of the consumed power to the rated power of the inverter, and the measured wind speed. To verify and study this model, more than one year of inverter DC/AC power, irradiance, wind speed, and heat sink temperature rise data were collected and analyzed. The model is shown to be accurate in predicting average inverter temperatures, but will require further refinement for prediction of transient temperatures.

  5. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    PubMed

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage.

  6. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  7. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    DTIC Science & Technology

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  8. Dual Mode Inverter Control Test Verification

    SciTech Connect

    Bailey, J.M.

    2001-04-25

    Permanent Magnet Motors with either sinusoidal back emf (permanent magnet synchronous motor [PMSM]) or trapezoidal back emf (brushless dc motor [BDCM]) do not have the ability to alter the air gap flux density (field weakening). Since the back emf increases with speed, the system must be designed to operate with the voltage obtained at its highest speed. Oak Ridge National Laboratory's (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) has developed a dual mode inverter controller (DMIC) that overcomes this disadvantage. This report summarizes the results of tests to verify its operation. The standard PEEMRC 75 kW hard-switched inverter was modified to implement the field weakening procedure (silicon controlled rectifier enabled phase advance). A 49.5 hp motor rated at 2800 rpm was derated to a base of 400 rpm and 7.5 hp. The load developed by a Kahn Industries hydraulic dynamometer, was measured with a MCRT9-02TS Himmelstein and Company torque meter. At the base conditions a current of 212 amperes produced the 7.5 hp. Tests were run at 400, 1215, and 2424 rpm. In each run, the current was no greater than 214 amperes. The horsepower obtained in the three runs were 7.5, 9.3, and 8.12. These results verified the basic operation of the DMIC in producing a Constant Power Speed Ratios (CPSR) of six.

  9. Design and development of DC high current sensor using Hall-Effect method

    NASA Astrophysics Data System (ADS)

    Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made

    2016-02-01

    This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.

  10. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  11. Pulse width modulation inverter with battery charger

    NASA Technical Reports Server (NTRS)

    Slicker, James M. (Inventor)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  12. Pulse width modulation inverter with battery charger

    DOEpatents

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  13. Power inverter implementing phase skipping control

    DOEpatents

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  14. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-01

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  15. Design and wind tunnel tests of winglets on a DC-10 wing

    NASA Technical Reports Server (NTRS)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  16. Design of direct drive robot using indigenously developed d.c. torque motors

    NASA Astrophysics Data System (ADS)

    Athani, Vithal V.

    The range of high-performance torque motors, which were indigenously developed for use in multistage satellite launch vehicles, is described. The main features that set dc torque motors apart from dc servomotors are: high peak torque, power, and current over short periods of operation, low speed of operation, obviating the need for gearing, high torque/inertia and torque/weight ratios, and high figure of merit = torque/sq rt watt ratio. The dc torque motors are eminently suited to high-performance applications requiring high torque at low speed of operation, such as aircraft and missile control surface actuation, control of multistage satellite launch vehicles, certain computer peripherals like magnetic tape transports and hard disk drives, and robotics, CNC systems, and machine tool control.

  17. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  18. ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN

    SciTech Connect

    P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

    2010-05-01

    Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

  19. Design and realization of assessment software for DC-bias of transformers

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Liu, Lian-guang; Yuan, Zhong-chen

    2013-03-01

    The transformer working at the rated state will partically be saturated, and its mangetic current will be distorted accompanying with various of harmonic, increasing reactive power demand and some other affilicated phenomenon, which will threaten the safe operation of power grid. This paper establishes a transformer saturation circuit model of DCbias under duality principle basing on J-A theory which can reflect the hysteresis characteristics of iron core, and develops an software can assess the effects of transformer DC-bias using hybrid programming technology of C#.net and MATLAB with the microsoft.net platform. This software is able to simulate the mangnetizing current of different structures and assess the Saturation Level of transformers and the influnces of affilicated phenomenon accroding to the parameter of transformers and the DC equivalent voltage. It provides an effective method to assess the influnces of transformers caused by magnetic storm disaster and the earthing current of the HVDC project.

  20. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells.

    PubMed

    Ramachandran, Mohanraj; Dimberg, Anna; Essand, Magnus

    2017-02-28

    Cell therapy is an advanced form of cancer immunotherapy that has had remarkable clinical progress in the past decade in the search for cure of cancer. Most success has been achieved for chimeric antigen receptor (CAR) T-cells where CAR T-cells targeting CD19 show very high complete response rates for patients with refractory acute B-cell acute lymphoblastic leukemia (ALL) and are close to approval for this indication. CD19 CAR T-cells are also effective against B-cell chronic lymphoblastic leukemia (CLL) and B-cell lymphomas. Although encouraging, CAR T-cells have not yet proven clinically effective for solid tumors. This is mainly due to the lack of specific and homogenously expressed targets to direct the T-cells against and a hostile immunosuppressive tumor microenvironment in solid tumors. Cancer vaccines based on dendritic cells (DC) are also making progress although clinical efficacy is still lacking. The likelihood of success is however increasing now when individual tumors can be sequences and patient-specific neoepitopes identified. Neoepitopes and/or neoantigens can then be included in patient-based DC vaccines. This review discusses recent advancements of DC vaccines and CAR T-cells with emphasis on the cancer-immunity cycle, and current efforts to design novel cell therapies.

  1. Development and Demonstration of Smart grid inverters for High-Penetration PV Applications

    SciTech Connect

    Roose, Leon; Liang, Nathan; Noma, Edwin; Tran, Thai; Matsuura, Marc

    2014-10-31

    The objective of this Smart Grid Inverter (SGI) project is to implement, on operating utility distribution feeders with “very high” penetration of rooftop PV, enhanced capability smart inverters to achieve improved operational performance, control and visibility. This is accomplished by creating, deploying, and evaluating new smart inverters using integrated inverter management control software (IMCS) and standards-based communications systems. Detailed distribution modeling is also employed to aid in development of inverter control algorithms/settings. The project will test various inverter control strategies in two project deployment locations – Maui, Hawai’i and Maryland/Washington D.C.

  2. System and method for single-phase, single-stage grid-interactive inverter

    DOEpatents

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  3. Design and characterization of the DC acceleration and transport system required for the FOM 1 MW free electron maser experiment

    SciTech Connect

    Caplan, M.; Urbanus, W.H.; Geer, C. van der

    1995-12-31

    A Free Electron Maser (FEM) has been constructed and is soon to be tested at the FOM Institute (Rijnhuizen) Netherlands with the goal of producing 1 MW long pulse to CW microwave output in the range 130 GHz to 250 GHz. The design uses a DC beam system in a depressed collector configuration in order to make the overall wall plug efficiency 50%. The high voltage ({approximately} 2 MeV) power supply provides only the body interception current ({approximately} 30 mA) while the 12 amp beam current is supplied by the 100-200 keV collector supplies. Some of the design features to ensure low interception current, which is critical to long pulse (CW) operation are: (1) DC beam in-line transport and acceleration system, (2) emittance conserving solenoid focusing system, (3) halo suppression techniques at cathode edge, and (4) very low beam fill factor (<20%). A relativistic version of the Herman Optical theory developed for microwave tubes is used to determine current distribution functions everywhere along the beam from the electron gun, through the DC accelerator and transport system to the wiggler. This theory takes into account thermals far out on the gaussian tail which translates into beam current far outside the ideal beam edge. This theory is applied to the FOM beam line design to predict a series of beam envelope contours containing various percentages of total beam current up to 99.9%. Predictions of body interception current due to finite emittance (effective temperature) are presented and compared with measured experimental results.

  4. Electrical Characterization of 4H-SiC JFET Wafer: DC Parameter Variations for Extreme Temperature IC Design

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.

    2014-01-01

    This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.

  5. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  6. Development of a rotary power transformer and inverter drive for spacecraft

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Bridgeforth, A. O.

    1983-01-01

    Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.

  7. The effects of compressor speed and electronic expansion valve opening on the optimum design of inverter heat pump at various heating loads

    SciTech Connect

    Hwang, Y.; Kim, Y.; Park, J.; Kim, C.

    1999-07-01

    The experiments to design the optimum operation point of an inverter heat pump were performed by varying compressor speed and expansion valve opening for various heating loads. At the indoor temperatures of {minus}5 {approximately} 15C and outdoor temperatures of {minus}10 {approximately} 25 C, the compressor driving frequencies were varied 10 {approximately} 120 Hz and 80 {approximately} 200 pulse for the expansion valve opening while the speed of the indoor and outdoor fans were fixed. From the results of this study, the optimum combination of compressor driving frequency and expansion valve opening were found to exist if indoor and outdoor temperatures are settled though the operation point is changed by the preferable factor among capacity, comfort and power saving.

  8. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  9. The design of an energy harvesting device for prolonging the working time of DC equipment

    NASA Astrophysics Data System (ADS)

    Wen, Yayuan; Deng, Huaxia; Zhang, Jin; Yu, Liandong

    2016-01-01

    Energy harvesting (EH) derives from the idea of converting the ambient energy into electric energy, which can solve the problem of DC supply for some electronic equipment. PZT is a typical piezoelectric material of inorganic, which has been developed as EH devices to transfer ambient vibration energy into electric energy. However, these PZT devices require relatively violent excitation, and easy to be fatigue fracture under the resonance condition. In this paper, PVDF, which is a kind of soft piezoelectric polymer, is adopted for developing transducer. The PVDF devices are flexible and have longer life time than PZT devices under the harmonic environment. The EH researches are mainly focused on the development of energy transfer efficiency either by the mechanical structure of transducer or the improvement of circuit. However, the practicality and stability of the EH devices are important in the practical engineering applications. In this paper, a charge amplifier is introduced in the circuit in order to guarantee the stability of the battery charging under small ambient vibration conditions. The model of the mechanical structure of PVDF and the electric performance of circuit are developed. The experimental results and simulation show that the stability of battery charging is improved and the working time of DC equipment is prolonged.

  10. High-Density EMI Filter Design for DC-Fed Motor Drives

    SciTech Connect

    Lai, Rixin; Maillet, Yoann; Wang, Shuo; Wang, Fei; Burgos, Rolando; Boroyevich, Dushan

    2010-01-01

    This paper presents strategies to reduce both differential-mode (DM) and common-mode (CM) noise using a passive filter in a dc-fed motor drive. The paper concentrates on the type of grounding and the components to optimize filter size and performance. Grounding schemes, material comparison between ferrite and nanocrystalline cores, and a new integrated filter structure are presented. The integrated structure maximizes the core window area and increases the leakage inductance by integrating both CM and DM inductances onto one core. Small-signal and large-signal experiments validate the structure, showing it to have reduced filter size and good filtering performance when compared with standard filters at both low and high frequencies.

  11. Design of DC-contact RF MEMS switch with temperature stability

    SciTech Connect

    Sun, Junfeng; Li, Zhiqun; Zhu, Jian; Yu, Yuanwei; Jiang, Lili

    2015-04-15

    In order to improve the temperature stability of DC-contact RF MEMS switch, a thermal buckle-beam structure is implemented. The stability of the switch pull-in voltage versus temperature is not only improved, but also the impact of stress and stress gradient on the drive voltage is suppressed. Test results show that the switch pull-in voltage is less sensitive to temperature between -20 °C and 100 °C. The variable rate of pull-in voltage to temperature is about -120 mV/°C. The RF performance of the switch is stable, and the isolation is almost independent of temperature. After being annealed at 280 °C for 12 hours, our switch samples, which are suitable for packaging, have less than 1.5% change in the rate of pull-in voltage.

  12. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  13. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    ERIC Educational Resources Information Center

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  14. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  15. Inverted organic photosensitive devices

    DOEpatents

    Forrest, Stephen R.; Bailey-Salzman, Rhonda F.

    2016-12-06

    The present disclosure relates to organic photosensitive optoelectronic devices grown in an inverted manner. An inverted organic photosensitive optoelectronic device of the present disclosure comprises a reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode on top of the donor-acceptor heterojunction.

  16. User’s Reference Manual: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA).

    DTIC Science & Technology

    1980-12-01

    methodology. The analysis procedure considers overturn- ing, sliding, and bearing pressure, relative to the soil immediately adjacent to the wall...equilibrium methods. (e) Limiting value of the overturning stalbi lity resultant ratio . (f) Reinforced concrete design parameters. (g) Specification...combination of Values inside user-defined ranges of base width, bottom of tow elevation, base slope, and key length, for a given stem ratio or toe width

  17. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  18. SCM Handbooks for dc-to-dc Converters

    NASA Technical Reports Server (NTRS)

    Lee, F.; Mohmoud, M.; Yu, Y.

    1984-01-01

    Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.

  19. Solid state d.c. power controller design philosophies and their evaluation.

    NASA Technical Reports Server (NTRS)

    Maus, L. G.; Williams, D. E.

    1972-01-01

    Evaluation of remote power controllers (RPC), which has enhanced knowledge of the capabilities of various design philosophies and has indicated certain limitations that RPC's exhibit. Additionally, this activity has clearly emphasized that certain RPC design parameters merit further consideration in development. The major design parameters to be analyzed in more detail are the rates of change of the rise and fall times of the output current. The major reason why transient voltages and currents should be reduced is the minimization of the reverse collector-to-emitter voltage. The requirement for higher bus voltage coupled with the present problem of improving the efficiency of power control points out the urgent need for improvement and advancement of higher current, voltage, and gain power semiconductors.

  20. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations.

  1. A dc model for power switching transistors suitable for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; George, R. T., Jr.; Owen, H. A.; Wilson, T. G.

    1979-01-01

    A model for bipolar junction power switching transistors whose parameters can be readily obtained by the circuit design engineer, and which can be conveniently incorporated into standard computer-based circuit analysis programs is presented. This formulation results from measurements which may be made with standard laboratory equipment. Measurement procedures, as well as a comparison between actual and computed results, are presented.

  2. Comparative study of SiC- and Si-based photovoltaic inverters

    NASA Astrophysics Data System (ADS)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  3. Semiconductor Laser Diodes and the Design of a D.C. Powered Laser Diode Drive Unit

    DTIC Science & Technology

    1988-06-01

    the design of a laser diode modulation circuit is the determination of the input imped- ence and equivalent circuit of the laser diode and packag- ing...current source with a high internal impedance as compared to the input imped- ance of the laser. [Ref. l:p. 33] Summarizing the above, laser diodes...switches. The modula- tion circuitry is connected in parallel with the laser diode and provides a modulated input to the laser diode superim- posed onto

  4. Improved inverted Stepanov apparatus

    NASA Technical Reports Server (NTRS)

    Berkman, S.; Temple, H. E.

    1979-01-01

    Modifications in inverted Stepanov process improve heat transfer and energy efficiency in growing silicon ribbon crystals. Using system, silicon is directly heated by induction, minimizing heat transfer and contamination problems.

  5. Reliable inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  6. Medicare Auctions: A Case Study of Market Design in Washington, DC

    NASA Astrophysics Data System (ADS)

    Cramton, Peter

    One sensible way to reduce healthcare costs is to harness market forces, where practical, to nurture competition and innovation. Lower prices and improved services should follow. However, the switch to market pricing is not an easy one. Medicare's experience with medical supplies illustrates the challenges and offers some important lessons. The key lesson is that government programs can benefit from introducing market methods, but doing so requires good market design - something that may not come naturally to the implementing agency, especially in light of political forces and organizational inertia.

  7. The application of standardized control and interface circuits to three dc to dc power converters.

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  8. Design of Super-Paramagnetic Core-Shell Nanoparticles for Enhanced Performance of Inverted Polymer Solar Cells.

    PubMed

    Jaramillo, Johny; Boudouris, Bryan W; Barrero, César A; Jaramillo, Franklin

    2015-11-18

    tangible pathway toward the development of enhanced design schemes for inorganic nanoparticles such that magnetic and energy control pathways can be tailored for flexible electronic applications.

  9. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  10. Design of power electronics for TVC and EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-11-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  11. Design of a hairpin polyamide, ZT65B, for targeting the inverted CCAAT box (ICB) site in the multidrug resistant (MDR1) gene.

    PubMed

    Buchmueller, Karen L; Taherbhai, Zarmeen; Howard, Cameron M; Bailey, Suzanna L; Nguyen, Binh; O'Hare, Caroline; Hochhauser, Daniel; Hartley, John A; Wilson, W David; Lee, Moses

    2005-12-01

    A novel hairpin polyamide, ZT65B, containing a 3-methylpicolinate moiety was designed to target the inverted CCAAT box (ICB) of the human multidrug resistance 1 gene (MDR1) promoter. Binding of nuclear factor-Y (NF-Y) to the ICB site upregulates MDR1 gene expression and is, therefore, a good target for anticancer therapeutic agents. However, it is important to distinguish amongst different promoter ICB sites so that only specific genes will be affected. All ICB sites have the same sequence but they differ in the sequence of the flanking base pairs, which can be exploited in the design of sequence-specific polyamides. To test this hypothesis, ten ICB-containing DNA hairpins were designed with different flanking base pairs; the sequences ICBa and ICBb were similar to the 3'-ICB site of MDR1 (TGGCT). Thermal-denaturation studies showed that ZT65B effectively targeted ICBa and ICBb (DeltaTM=6.5 and 7.0 degrees C) in preference to the other DNA hairpins (<3.5 degrees C), with the exception of ICBc (5.0 degrees C). DNase I-footprinting assays were carried out with the topoisomerase IIalpha-promoter sequence, which contains five ICB sites; of these, ICB1 and ICB5 are similar to the ICB site of MDR1. ZT65B was found to selectively bind ICB1 and ICB5; footprints were not observed with ICB2, ICB3, or ICB4. A strong, positive induced ligand band at 325 nm in CD studies confirmed that ZT65B binds in the DNA minor groove. The selectivity of ZT65B binding to hairpins that contained the MDR1 ICB site compared to one that did not (ICBd) was confirmed by surface-plasmon studies, and equilibrium constants of 5x10(6)-1x10(7) and 4.6x10(5) M-1 were obtained with ICB1, ICB5,and ICB2 respectively. ZT65B and the previously published JH37 (J. A. Henry, et al. Biochemistry 2004, 43, 12 249-12 257) serve as prototypes for the design of novel polyamides. These can be used to specifically target the subset of ubiquitous gene elements known as ICBs, and thereby affect the expression of one or

  12. DC-to-DC switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  13. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    SciTech Connect

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  14. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  15. Dynamic performance and control of a static var generator using cascade multilevel inverters

    SciTech Connect

    Peng, Fang Zheng; Lai, Jih-Sheng

    1996-10-01

    A cascade multilevel inverter is proposed for static VAR shifting, compensation/generation applications. The new cascade M-level inverter consists of (M-1)/2 single-phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle. It can eliminate the need for transformers in multipulse inverters. A prototype static VAR generator (SVG) system using 11- level cascade inverter (21-level line-to-line voltage waveform) has been built. The output voltage waveform is equivalent to that of a 60- pulse inverter. This paper focuses on dynamic performance of the cascade inverter based SVG system. Control schemes are proposed to achieve a fast response which is impossible for a conventional static VAR compensator (SVC). Analytical, simulated and experimental results show the superiority of the proposed SVG system.

  16. Design and development of a low pumping capacity, compact dc-discharge-excited cw HF chemical laser

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, P.; Tsikrikas, G. N.; Kollia, Z.; Androulakis, J.; Serafetinides, Alexander A.

    1999-05-01

    The design and development of a compact, low cost, subsonic cw HF chemical laser with expected output power of the order of approximately 100 mWatts that requires less than 5 lt/s pumping capacity is presented. A theoretical estimation of the minimum pumping capacity required in order to obtain an output power of 100 mWatts is given. The laser operates with a He/SF6/H2/O2 gas mixture at an overall pressure of 4 - 8 mbar. A dc electric discharge is used for the SF6 dissociation. In order to operate at such low gas flow rates the mixing channel dimensions were reduced down to a cross section of 0.2 cm height by 13 cm width. Hydrogen is transversely injected into the flow through approximately 285 holes of 0.03 cm diameter. This low cost compact laser system is suitable for a wide range of experimental requiring mid-infrared cw laser radiation such as laser-tissue interactions and environmental studies.

  17. Design of Linear DC Motor Two-degree-of-freedom Positioning System using Model Reference type Sliding Mode Controller

    NASA Astrophysics Data System (ADS)

    Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki

    One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.

  18. 76 FR 13543 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: Deliver to Mail... stabilizer is similar in design and loading to that of the Model DC-9-81 (MD-81), DC- 9-82 (MD-82),...

  19. Inverted flat plate solar collector. Final report

    SciTech Connect

    Brown, M.A.

    1981-08-26

    Construction and testing of an inverted flat plate solar collector are described. Heat transfer and economic analysis were performed to optimize the collector design. The newly designed collector was tested against two other flat plate collectors and the results and comparison of efficiencies are presented. (BCS)

  20. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

    PubMed

    Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

    2016-09-01

    This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations.

  1. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  2. Development and performance of pulse-width-modulated static inverter and converter modules

    NASA Technical Reports Server (NTRS)

    Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.

    1971-01-01

    Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.

  3. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  4. Analysis of self-oscillating dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burger, P.

    1974-01-01

    The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.

  5. Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands

    SciTech Connect

    Hoke, Andy

    2016-08-16

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.

  6. Advanced Inverter Technology.

    DTIC Science & Technology

    1984-07-01

    necessary (both essential and nonduplicate), and to develop an architecture that can be used with all three existing topologies (half bridge dc-dc...V13, and V23 is La bulated : Pliase Volta geb V(iJ) el e2 V12 High el e2 V12 Low el e.3 V13 High el e3 V13 Low e2 -3 V23 high e2 e3 V23 Low

  7. FET commutated current-FED inverter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1983-01-01

    A shunt switch comprised of a field-effect transistor (Q.sub.1) is employed to commutate a current-fed inverter (10) using thyristors (SCR1, SCR2) or bijunction transistors (Q.sub.2, Q.sub.3) in a full bridge (1, 2, 3, 4) or half bridge (5, 6) and transformer (T.sub.1) configuration. In the case of thyristors, a tapped inverter (12) is employed to couple the inverter to a dc source to back bias the thyristors during commutation. Alternatively, a commutation power supply (20) may be employed for that purpse. Diodes (D.sub.1, D.sub.2) in series with some voltage dropping element (resistor R.sub.12 or resistors R.sub.1, R.sub.2 or Zener diodes D.sub.4, D.sub.5) are connected in parallel with the thyristors in the half bridge and transformer configuration to assure sharing the back bias voltage. A clamp circuit comprised of a winding (18) negatively coupled to the inductor and a diode (D.sub.3) return stored energy from the inductor to the power supply for efficient operation with buck or boost mode.

  8. Inverter Matrix for the Clementine Mission

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Tardio, G.; Soli, G. A.

    1994-01-01

    An inverter matrix test circuit was designed for the Clementine space mission and is built into the RRELAX (Radiation and Reliability Assurance Experiment). The objective is to develop a circuit that will allow the evaluation of the CMOS FETs using a lean data set in the noisy spacecraft environment.

  9. Two-Stage Series-Resonant Inverter

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.

  10. "In Situ" Generation of Compressed Inverted Files.

    ERIC Educational Resources Information Center

    Moffat, Alistair; Bell, Timothy A. H.

    1995-01-01

    Discussion of index construction for large text collections highlights a new indexing algorithm designed to create large compressed inverted indexes "in situ." Topics include a computational model, inversion, index compression, merging, experimental test results, effect on retrieval performance, memory restrictions, and dynamic…

  11. Inverting the Transition-to-Proof Classroom

    ERIC Educational Resources Information Center

    Talbert, Robert

    2015-01-01

    In this paper, we examine the benefits of employing an inverted or "flipped" class design in a Transition-to-Proof course for second-year mathematics majors. The issues concomitant with such courses, particularly student acquisition of "sociomathematical norms" and self-regulated learning strategies, are discussed along with…

  12. Nipple Retractor to Correct Inverted Nipples.

    PubMed

    Long, Xiao; Zhao, Ru

    2011-12-01

    BACKGROUND: Inverted nipples are a common problem and a challenging clinical condition to repair. Multiple methods have been reported to correct inverted nipples, most of which will destroy breastfeeding function. PATIENTS AND METHODS: We have designed a simple nipple retractor to correct inverted nipples. A total of 53 patients with 95 inverted nipples underwent an operation in which the nipples were retracted into a normal position and fixated with the nipple retractor and wires under local anesthesia. Nipple retractors were to be worn for 6 months. Postoperatively, the patients were invited to follow-up on the 1st day, the 7th day, after 1 month, 3 months and 6 months, and yearly thereafter. Wire adjustments were performed as needed. Mean follow-up was 11.9 months (range 8-18 months). RESULTS: Improvement occurred in all patients and was sustained in all cases throughout the follow-up period. The total complication rate was 5.26% (5/95). The main complications included depigmentation (2.11%, 2/95), areolar ulcer (2.11%, 2/95), and wire dislocation (1.05%, 1/95). CONCLUSION: The nipple retractor is a simple tool with which severely inverted nipples can be successfully corrected with a low complication rate. Close follow-up and careful postoperative care are important to avoid complications.

  13. A CSMP Commutation Model for Design Study of a Brushless DC Motor Power Conditioner for a Cruise Missile Fin Control Actuator.

    DTIC Science & Technology

    1985-06-01

    RD-R159 55 A CSMP COMMUTTION MODEL FOR DESIGN STUDY OF R 1/2 1) RIL’ 5 BRUSHLESS DC MOTOR POWER C..(U) NAYAL POSTGRADUATESCHOOL MONTEREY CA P N...34,". ".".’. ", "- ", " ,-, .. ?-.-.’ ’"•" I.. NAVAL POSTGRADUATE SCHOOL Monterey, California In In TIZR’f- TE - U-,1 0 7 2$ 5 THESIS A CSMP COMMUTATION MODEL FOR DESIGN...CT BEFERENCES o............ . 102 BIBLICGRAPHY .. . .... . .. . . . . . . ... 104 INITIAL DISTRIBUTION lIST .. .. . . . . . . . . . .. 105 * 5 S

  14. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated.

  15. First experimental results from DC/DC and AC/DC plasma-based power transformers

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Gibson, William; Nebel, Richard

    2016-10-01

    A plasma-based power transformer has been built and operated in both DC/DC and AC/DC mode. The proprietary Tibbar Plasma Technologies, Inc. transformer design consists of two cylindrically symmetric helical primary electrodes surrounding a low temperature plasma within which a secondary axial current is generated. Initial experimental results have compared well with simulations and moderate conversion efficiencies have been observed. A new proprietary device is currently being constructed that will utilize 3-phase 480 VAC input to achieve higher conversion efficiency and output power. A description of the apparatus and several potential applications will be presented along with preliminary experimental data demonstrating the DC/DC and AC/DC conversion processes. Work performed under ARPA-E contract DE-AR0000677.

  16. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  17. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  18. Inverted organic photosensitive device

    DOEpatents

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  19. EMPLACEMENT DRIFT INVERT-LOW STEEL EVALUATION

    SciTech Connect

    M. E. Taylor and D. H. Tang

    2000-09-29

    and pallet beam width. Testing is also required to determine the bearing capacity of the tuff materials. Analysis of the all-ballast invert shows that the waste package/pallet assembly, as currently designed, can be supported by the compacted crushed tuff. The drip shield and related backfill loads cannot be supported by the compacted crushed tuff because of the narrow base angle that currently supports the drip shield. Increasing the width of the base angle of the drip shield will better distribute the drip shield and backfill load to the compacted crushed tuff. Testing is required to determine the bearing capacity of the tuff materials. Emplacement/retrieval equipment will also require analysis and development to be compatible with the all-ballast invert.

  20. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    SciTech Connect

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs.

  1. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    SciTech Connect

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1987-01-01

    A dc negative hydrogen and/or deuterium ion source is needed to produce high-power, high-energy neutral beams for alpha diagnostics and current drive applications in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radiofrequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions efficiently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summarized. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs.

  2. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  3. Molecular solid-state inverter-converter system

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1973-01-01

    A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.

  4. Greening America's Capitals - Washington, DC

    EPA Pesticide Factsheets

    This Greening America's Capitals report describes design options for the Anacostia Metro station in Washington, DC, that could help people feel safer and more comfortable walking to and from the station.

  5. Coherent Noise Rejection in a Three-Phase Power Inverter

    DTIC Science & Technology

    2011-06-01

    DC value that has the same amplitude as the sine wave. The power inverter uses an optimal form of pulse-width modulation ( PWM ), called space vector...subtracted from the control input to compensate for the disturbance. 14. SUBJECT TERMS Pulse Width Modulation ( PWM ), Linear Quadratic Regulator (LQR...uses an optimal form of pulse-width modulation ( PWM ), called space vector modulation, which causes the harmonic noise. In order to reject the

  6. Evaluation of a high power inverter for potential space applications

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Lanier, J. R., Jr.

    1976-01-01

    The ADM-006 inverter discussed utilizes a unique method of using power switching circuits to produce three-phase low harmonic content voltages without any significant filtering. This method is referred to as the power center approach to inverter design and is explained briefly. The results are presented of tests performed by MSFC to evaluate inverter performance, especially when required to provide power to nonlinear loads such as half or full wave rectified loads with capacitive filtering. Test preocedures and results are described. These tests show that the power center inverter essentially met or exceeded all of claims excluding voltage regulation (3.9 percent versus specified 3.3 percent) and would be a good candidate for high power inverter applications such as may be found on Space Station, Spacelab, etc.

  7. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    SciTech Connect

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2016-07-01

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules for cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.

  8. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  9. Gas cooled traction drive inverter

    SciTech Connect

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  10. Gas cooled traction drive inverter

    SciTech Connect

    Chinthavali, Madhu Sudhan

    2016-04-19

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  11. Analysis and performance of paralleling circuits for modular inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1972-01-01

    As part of a modular inverter-converter development program, control techniques were developed to provide load sharing among paralleled inverters or converters. An analysis of the requirements of paralleling circuits and a discussion of the circuits developed and their performance are included in this report. The current sharing was within 5.6 percent of rated-load current for the ac modules and 7.4 percent for the dc modules for an initial output voltage unbalance of 5 volts.

  12. Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency.

    PubMed

    Ghanbarian, Mohammad Mehdi; Nayeripour, Majid; Rajaei, Amirhossein; Mansouri, Mohammad Mahdi

    2016-03-01

    As the output power of a microgrid with renewable energy sources should be regulated based on the grid conditions, using robust controllers to share and balance the power in order to regulate the voltage and frequency of microgrid is critical. Therefore a proper control system is necessary for updating the reference signals and determining the proportion of each inverter in the microgrid control. This paper proposes a new adaptive method which is robust while the conditions are changing. This controller is based on a modified sliding mode controller which provides adapting conditions in linear and nonlinear loads. The performance of the proposed method is validated by representing the simulation results and experimental lab results.

  13. Magnetic materials selection for static inverter and converter transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    A program to study magnetic materials is described for use in spacecraft transformers used in static inverters, converters, and transformer-rectifier supplies. Different magnetic alloys best suited for high-frequency and high-efficiency applications were comparatively investigated together with an investigation of each alloy's inherent characteristics. The materials evaluated were the magnetic alloys: (1) 50% Ni, 50% Fe; (2) 79% Ni, 17% Fe, 4% Mo; (3) 48% Ni, 52% Fe; (4) 78% Ni, 17% Fe, 5% Mo; and (5) 3% Si, 97% Fe. Investigations led to the design of a transformer with a very low residual flux. Tests were performed to determine the dc and ac magnetic properties at 2400 Hz using square-wave excitation. These tests were performed on uncut cores, which were then cut for comparison of the gapped and ungapped magnetic properties. When the data of many transformers in many configurations were compiled the optimum transformer was found to be that with the lowest residual flux and a small amount of air gap in the magnetic material. The data obtained from these tests are described, and the potential uses for the materials are discussed.

  14. Adaptable DC offset correction

    NASA Technical Reports Server (NTRS)

    Golusky, John M. (Inventor); Muldoon, Kelly P. (Inventor)

    2009-01-01

    Methods and systems for adaptable DC offset correction are provided. An exemplary adaptable DC offset correction system evaluates an incoming baseband signal to determine an appropriate DC offset removal scheme; removes a DC offset from the incoming baseband signal based on the appropriate DC offset scheme in response to the evaluated incoming baseband signal; and outputs a reduced DC baseband signal in response to the DC offset removed from the incoming baseband signal.

  15. Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter

    NASA Astrophysics Data System (ADS)

    Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid

    2016-08-01

    Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.

  16. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    SciTech Connect

    Hoke, Anderson; Nelson, Austin; Miller, Brian; Chakraborty, Sudipta; Bell, Frances; McCarty, Michael

    2016-07-01

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load

  17. Piezometer completion report for borehold cluster sites DC-19, DC-20 and DC-22

    SciTech Connect

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.; Veatch, M.D.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20 and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow. 21 refs., 6 figs., 14 tabs.

  18. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  19. A Medium-Voltage Motor Drive with a Modular Multilevel PWM Inverter Part I. Experimental Verification by a 400-V, 15-kW Downscaled Model

    NASA Astrophysics Data System (ADS)

    Hagiwara, Makoto; Nishimura, Kazutoshi; Akagi, Hirofumi

    This paper presents a medium-voltage motor drive with a three-phase modular multilevel PWM inverter and focuses on its control method and operating performance. This motor drive is particularly suitable for fans, blowers, pumps, and compressors, in which the load torque is proportional to the square of the rotating speed. Particular attention is paid to the dc-capacitor voltage fluctuation of each chopper-cell because it may affect the voltage rating of the power switching devices used. This paper describes the theoretical equations related to the amount of the voltage fluctuation. A downscaled model rated at 400V and 15kW is designed and built to confirm the validity and effectiveness of the nine-level (17-level in line-to-line) PWM inverter that is intended for use in medium-voltage motor drives to achieve energy savings.

  20. Breaking Barriers to Low-Cost Modular Inverter Production & Use

    SciTech Connect

    Bogdan Borowy; Leo Casey; Jerry Foshage; Steve Nichols; Jim Perkinson

    2005-05-31

    The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several types and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.

  1. Combination of DC Vaccine and Conventional Chemotherapeutics.

    PubMed

    Dong, Wei; Wei, Ran; Shen, Hongchang; Ni, Yang; Meng, Long; Du, Jiajun

    2016-01-01

    Recently mutual interactions of chemotherapy and immunotherapy have been widely accepted, and several synergistic mechanisms have been elucidated as well. Although much attention has focused on the combination of DC vaccine and chemotherapy, there are still many problems remaining to be resolved, including the optimal treatment schedule of the novel strategy. In this article, we methodically examined literature about the combination strategy of DC vaccine and conventional chemotherapy. Based on the published preclinical and clinical trials, treatment schedules of the combinational strategy can be classified as three modalities: chemotherapy with subsequent DC vaccine (post-DC therapy); DC vaccine followed by chemotherapy (pre-DC therapy); concurrent DC vaccine with chemotherapy (con-DC therapy).The safety and efficacy of this combinatorial immunotherapy strategy and its potential mechanisms are discussed. Although we could not draw conclusions on optimal treatment schedule, we summarize some tips which may be beneficial to trial design in the future.

  2. Analysis and modeling of a family of two-transistor parallel inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1973-01-01

    A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.

  3. Synthesizing Virtual Oscillators to Control Islanded Inverters

    SciTech Connect

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.; Dorfler, Florian; Dhople, Sairaj V.

    2016-08-01

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged models reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.

  4. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  5. Development of Voltage Regulation Plan by Composing Subsystem with the SFES for DC On-line Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Jung, S.; Lee, J. H.; Yoon, M.; Lee, H.; Jang, G.

    The study of the application process of the relatively small size 'Superconducting Flywheel Energy Storage (SFES)' system is conducted to regulate voltage fluctuation of the DC On-Line Electric Vehicle (OLEV) system, which is designed by using DC power system network. It is recommended to construct the power conversion system nearby the substation because the charging system is under the low voltage. But as the system is usually built around urban area and it makes hard to construct the subsystems at every station, voltage drop can occur in power supply inverter that is some distance from the substation. As the alternative of this issue, DC distribution system is recently introduced and has possibility to solve the above issue. In this paper, SFES is introduced to solve the voltage drop under the low voltage distribution system by using the concept of the proposed DC OLEV which results in building the longer distance power supply system. The simulation to design the SFES by using DC power flow analysis is carried out and it is verified in this paper.

  6. GaN Microwave DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any

  7. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The EMA systems proposed for future space transportation applications are high power systems operating at voltages up to 270 Vdc and at current levels on the order of hundreds of amperes. The position of the actuator is controlled by modulating the flow of energy from the source to an electric motor with an inverter. Hard-switching of the semiconductor devices in the inverter results in considerable device switching stresses and losses and in the generation of substantial amounts of EMI. Both of these can be reduced by employing zero-voltage-switching (ZVS) techniques in the inverter. This project has focused on the development of a ZVS inverter for the Marshall Space Center EMA prototypes, which utilize brushless dc motors to convert electrical energy to mechanical energy. An inverter which permitted zero-voltage switching and a quasi-PWM operation was selected for study and implementation. A waveshaping circuit is added to the front of a standard three-phase inverter to achieve the desired switching properties. This circuit causes the input voltage of the three-phase inverter to ring to zero where it is clamped for a short period of time. During this zero-voltage period, any of the semiconductor switches in the three-phase inverter are switched on or off at zero voltage resulting in a reduction in switching losses and EMI. The operation of this waveshaping circuit and its interaction with the three-phase inverter are described. The different circuit modes were analyzed using equivalent circuits. Based on this analysis, design relationships were developed for calculating component values for the circuit elements in the waveshaping circuit. Waveforms of various voltages and currents in the waveshaping circuit were plotted and used to determine the ratings of the semiconductors in the waveshaping circuit. The implementation of this inverter are described. Block diagrams for the overall control system and the waveshaping circuit control are presented and discussed

  8. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  9. Control method for peak power delivery with limited DC-bus voltage

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  10. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum.

  11. Improved current control makes inverters the power sources of choice

    SciTech Connect

    Yamamoto, H.; Harada, S.; Ueyama, T.

    1997-02-01

    It is now generally understood that by increasing the operating or switching frequency of a power source the size of the main transformer and main reactor can be shrunk. Thus, a 300-A DC welding power source weighing well under 100 lb can be produced. This makes the inverter power source an ideal choice for applications requiring equipment maneuverability. It is also generally understood that due to higher switching frequencies, a smoother output is obtained from inverter power sources. In the late 1980s, the company developed a new double-inverter power source by which inverted DC weld output is inverted back to AC weld output. This product was the first of its kind in the world. Again, the small compact size of this product was of great interest. Utilizing current waveform control, it was realized that fast response switching from electrode negative to electrode positive could be accurately controlled, offering benefits such as AC GTA welding with high-frequency start only, even at a low welding current. The primary benefit is the ability to limit the electrode positive half cycle to less than 5%. The electrode positive half cycle is responsible for tungsten erosion, which also creates the balling effect of a tungsten electrode. By limiting the electrode positive portion of the AC cycle to a very low level, a rather sharp point can be maintained on the tungsten, which creates a very concentrated, focused arc column. This ability provides excellent joint penetration in fillet welding of aluminum alloys, especially on thick plate. It also reduces the heat-affected zone in AC GTA welding of aluminum.

  12. Brushless DC Motors, Velocity and Position Control of the Brushless DC Motor.

    DTIC Science & Technology

    1986-06-01

    DC motor was designed using the Hall effect sensors. In addition, the position control of the brushless DC motor was developed using an optical encoder to sense angular position changes and a microprocessor to provide the desired position control. A Pittman 5111 wdg 1 brushless DC motor was used for this study. The design of the digital tachometer and pulse width modulator for velocity control and the design of the Z-80 based microprocessor controller and software design are described in

  13. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  14. Border Collision of Three-Phase Voltage-Source Inverter System with Interacting Loads

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Bin; Li, Yining; Wong, Siu-Chung; Liu, Xiangdong; Huang, Yuehui

    As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.

  15. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  16. Dual wound dc brush motor gearhead

    NASA Technical Reports Server (NTRS)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  17. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  18. Virtual Oscillator Control Maintains Grid Operations with High Inverter Penetrations

    SciTech Connect

    2016-06-01

    VOC makes each inverter behave electrically like a spring, 'bouncing back' to its normal operating range when disturbed. Coupling these inverters electronically could result in a new way to stabilize power grids. VOC has been demonstrated in a microgrid using several small inverters. In addition, five custom-designed inverters have been built and will be tested with grid simulations at NREL using power hardware-in-the-loop technology. VOC may provide a simple method to keep microgrids stable -- a topic of growing interest as resilience to energy disruptions gains prominence. VOC may also provide a means to transition power grids from today's inertia-dominated systems to systems that do not rely on rotating machinery.

  19. Triple inverter pierce oscillator circuit suitable for CMOS

    DOEpatents

    Wessendorf; Kurt O.

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  20. Inverter Ground Fault Overvoltage Testing

    SciTech Connect

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  1. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  2. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  3. Linear control of the flywheel inverted pendulum.

    PubMed

    Olivares, Manuel; Albertos, Pedro

    2014-09-01

    The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design.

  4. Modified Dual Three-Pulse Modulation technique for single-phase inverter topology

    NASA Astrophysics Data System (ADS)

    Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.

    2016-01-01

    In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.

  5. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  6. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous solution of inverted...

  7. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

    SciTech Connect

    Prasad Enjeti; J.W. Howze

    2003-12-01

    This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

  8. Inverter-based GTA welding machines improve fabrication

    SciTech Connect

    Sammons, M.

    2000-05-01

    While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA power sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.

  9. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  10. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  11. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  12. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  13. Active dc filter for HVDC systems

    SciTech Connect

    Zhang, W. ); Asplund, G.

    1994-01-01

    This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

  14. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  15. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  16. DC multi-infeed study. Final report

    SciTech Connect

    Szechtman, M.; Pilotto, L.A.S.; Ping, W.W.; Salgado, E.; Dias de Carvalho, A.R.C.; Long, W.F.; Alvarado, F.L.; DeMarco, C.L.; Canizares, C.A.; Wey, A.

    1994-12-01

    An HVdc multiconverter configuration results when more than one converter station is located within the same electrical region. Such a situation will be a natural consequence of the growing use of the HVdc technology. Relevant questions relating to multiconverter configurations have been analyzed in the scope of this research project. In particular, special emphasis has been devoted to the HVdc inverter multiinfeed schemes, since such a situation will be more commonly found in future applications and usually results in the most severe ac/dc interactions. The main purpose of this project is to present a general insight into the potential problems resulting from multiinfeed HVdc operation, using networks based on realistic power system configurations. Power system studies have been performed using several digital (Load-Flow, Transient Stability, Eigenvalue and EMTP programs) and analog (DC Simulator) tools in a complementary basis to investigate both low and high frequency interaction phenomena. The project was conducted to evaluate the technical aspects of the various ac/dc and dc/dc interactions. It addressed small signal stability, an overview of the entire system transient and dynamic stability, some aspects of the ac voltage stability problem and HVdc control stability including the effects of the VDCOL units and possible occurrence of commutation failures at inverter stations after recovery from faults. This report identifies the potential problems resulting from multiinfeed situations and proposes practical solutions. It also presents a survey on how the various HVdc system controllers can be coordinated to provide the interconnected ac system with an improved dynamic performance, a high level of operational flexibility and the maximization of the overall system loadability.

  17. Relationships among classes of self-oscillating transistor parallel inverters. [for power conditioning applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1975-01-01

    It recently has been shown in the literature that many dc-to-square-wave parallel inverters which are widely used in power-conditioning applications can be grouped into one of two families. Each family is characterized by an equivalent RLC network. Based on this approach, a classification procedure is presented for self-oscillating parallel inverters which makes evident natural relationships which exist between various inverter configurations. By utilizing concepts from the basic theory of negative resistance oscillators and the principle of duality as applied to nonlinear networks, a chain of relationships is established which enables a methodical transfer of knowledge gained about one family of inverters to any of the other families in the classification array.

  18. Efficient dc-to-dc converter

    NASA Technical Reports Server (NTRS)

    Black, J. M.

    1978-01-01

    Circuit consists of chopper section which converts input dc to square wave, followed by bridge-rectifier stage. Chopper gives nearly-ideal switching characteristics, and bridge uses series of full-wave stages rather than less-efficient half-wave rectifiers found in previous circuits. Special features of full-wave circuit allow redundant components to be eliminated, lowering parts count. Circuit can also be adapted for use as dc-to-dc converter or as combination dc-and-ac source.

  19. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  20. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William; Wiles, Randy H

    2013-01-01

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous work that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.

  1. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  2. Static DC to DC Power Conditioning-Active Ripple Filter, 1 MHZ DC to DC Conversion, and Nonlinear Analysis. Ph.D. Thesis; [voltage regulation and conversion circuitry for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Sander, W. A., III

    1973-01-01

    Dc to dc static power conditioning systems on unmanned spacecraft have as their inputs highly fluctuating dc voltages which they condition to regulated dc voltages. These input voltages may be less than or greater than the desired regulated voltages. The design of two circuits which address specific problems in the design of these power conditioning systems and a nonlinear analysis of one of the circuits are discussed. The first circuit design is for a nondissipative active ripple filter which uses an operational amplifier to amplify and cancel the sensed ripple voltage. A dc to dc converter operating at a switching frequency of 1 MHz is the second circuit discussed. A nonlinear analysis of the type of dc to dc converter utilized in designing the 1 MHz converter is included.

  3. Accelerating development of advanced inverters :

    SciTech Connect

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  4. Commercial Of-The Shelf DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Denzinger, W.; Baumel, S.

    2011-10-01

    A commercial of-the-shelf (COTS) DC/DC converter for the supply of digital electronics on board of spacecraft has been developed with special emphasis on: *Low cost Readily available *Easy manufacturing *No use of ITAR listed EEE parts like rad-hard mosfets *Minimum number of rad-hard digital and analog IC's *Design tolerance against SEE by appropriate filtering The study was supported by the European Space Agency (ESA) under the contract number 21729/08/NL7LvH.

  5. Generation and Characterization of Magnetized Bunched Electron Beam from a DC High Voltage Photogun

    NASA Astrophysics Data System (ADS)

    Suleiman, Riad; Poelker, Matthew; Benesch, Jay; Hannon, Fay; Hernandez-Garcia, Carlos; Wang, Yan

    2016-03-01

    To maintain ion beam emittance and extend luminosity lifetime, the Jefferson Lab design of the Electron Ion Collider includes a bunched magnetized electron beam cooler as part of the Collider Ring. We are building a prototype magnetized gun using our newly commissioned 325 kV inverted-insulator DC high voltage photogun. This contribution describes planned measurements of beam magnetization as a function of bunch charge and average current, and laser beam size and magnetic field strength at the photocathode. Results will be compared to particle tracking code simulations. Photocathode lifetime at milli-ampere current will be compared to beam lifetime with no magnetization, to explore the impact of the magnetic field on photogun operation. Combined, these measurements and simulations will benchmark our design tools and provide insights on ways to optimize the electron cooler. This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177.

  6. Switching performance and efficiency investigation of GaN based DC-DC Buck converter for low voltage and high current applications

    NASA Astrophysics Data System (ADS)

    Alatawi, Khaled; Almasoudi, Fahad; Matin, Mohammad

    2016-09-01

    The Wide band-gap (WBG) materials "such as Silicon Carbide (SiC) and Gallium nitride (GaN)" based power switching devices provide higher performance capabilities compared to Si-based power switching devices. The wide band-gap materials based power switching devices outperform Si-based devices in many performance characteristics such as: low witching loss, low conduction loss, high switching frequencies, and high operation temperature. GaN based switching devices benefit a lot of applications such as: future electric vehicles and solar power inverters. In this paper, a DC-DC Buck converter based on GaN FET for low voltage and high current applications is designed and investigated. The converter is designed for stepping down a voltage of 48V to 12V with high switching frequency. The capability of the GaN FET based buck converter is studied and compared to equivalent SiC MOSFET and Si-based MOSFET buck converters. The analysis of switching losses and efficiency was performed to compare the performance capabilities of GaN FET, SiC MOSFET and Si-based MOSFET. The results showed that the overall switching losses of GaN FET are lower than that of SiC and Si-based power switching devices. Also, the performance capability of GaN devices with higher frequencies is studied. GaN devices with high frequencies will reduce the total size and the cost of the power converter. In Addition, the overall efficiency of the DC-DC Buck converter is higher with the GaN FET switching devices, which make it more suitable for low voltage and high current applications.

  7. Enhanced electrical property of Ni-doped CoOx hole transport layer for inverted perovskite solar cells.

    PubMed

    Huang, Aibin; Yu, Yu; Liu, Yan; Yang, Songwang; Lei, Lei; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-03-15

    Ultrathin Ni doped CoOx (Ni:CoOx) films were demonstrated by direct current (DC) co-sputtering at room temperature and employed as inorganic hole transport materials for inverted perovskite solar cells. P-type Ni2+ doping introduced in this work was designed to adjust the valence band position of CoOx to match the highest occupied molecular orbital of perovskite absorber material (CH3NH3PbI3), which would effectively inhibit recombination of photo-induced electrons and holes. Moreover, the hole extraction capacity would be further enhanced as a result of the appropriate Ni2+ doping, and hence the power conversion efficiency (PCE) of the devices increased from 3.68% to 9.60%. The optimized performance was also accompanied by decent stability as a result of its intrinsic stability and conductivity.

  8. Improving immunogenicity, efficacy and safety of vaccines through innovation in clinical assay development and trial design: the Phacilitate Vaccine Forum, Washington D.C. 2011.

    PubMed

    Moldovan, Ioana R; Tary-Lehmann, Magdalena

    2011-06-01

    The 9th Annual Vaccine Forum organized by Phacilitate in Washington D.C. 2011 brought together 50+ senior level speakers and over 400 participants representing all the key stakeholders concerning vaccines. The main focus of the meeting was to define priorities in the global vaccines sector from funding to manufacturing and evaluation of vaccine efficacy. A special session was devoted to improving immunogenicity, efficacy and safety of vaccines through innovation in clinical assay development and trial design. The current regulatory approach to clinical assay specification, validation and standardization that enable more direct comparisons of efficacy between trials was illustrated by the success in meningococcal vaccine development. The industry approach to validation strategies was exemplified by a new serologic test used on the diagnostic of pneumococcal pneumonia. The application of the Animal Rule to bridge clinical and non-clinical studies in botulism has allowed significant progress in developing one of the first vaccines to seek approval under the FDA Animal Efficacy Rule. An example of pushing the boundaries in the correlation of immunological responses and efficacy points was represented by a recent cell-based influenza vaccine for which the same correlates of protection apply as for the traditional, egg-based flue vaccine. In the field of HIV phase 2b studies are underway, based on promising results obtained with some vaccine candidates. The conclusion of this session was that creativity in vaccine design and evaluation is beneficial and can lead to innovative new vaccine designs as well as to validated assays to assess vaccine efficacy.

  9. DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter

    NASA Astrophysics Data System (ADS)

    Haubert, T.; Mindl, P.

    The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.

  10. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  11. Free-run Startup Techniques for Sensorless Drive Systems of Permanent Magnet Machine with Phase Current or DC-bus Current Detection

    NASA Astrophysics Data System (ADS)

    Toba, Akio; Sato, Michihiko-; Inatama, Shigeki; Fujita, Kouetsu

    Starting methods for the inverter that drives a permanent magnet machine with only current sensors, while the rotor is rotating, (“free-run startup techniques") are proposed. The proposed methods are based on whether current flows or does not when one switch of the inverter is turned on, which depends on the electrical angle of the emf and the reverse blocking function of the freewheeling diodes. The merit of the proposed methods is that the calculation to determine the rotor position is simple. The variety of the methods is with the types of current detection. Proposed are the methods not only for the phase current detection but also for the DC-bus line current detection that are utilized in low-cost drive systems. Theoretical analysis, design issues, and experimental verifications of the proposed methods are set forth.

  12. Solution processed organic microarray with inverted structure

    NASA Astrophysics Data System (ADS)

    Toglia, Patrick; Lewis, Jason; Lafalce, Evan; Jiang, Xiaomei

    2011-03-01

    We have fabricated inverted organic microarray using a novel solution-based technique. The array consists of 60 small (1 square mm) solar cells on a one inch by one inch glass substrate. The device utilizes photoactive materials such as a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Manipulation of active layer nanomorphology has been done by choice of solvents and annealing conditions. Detailed analysis of device physics including current voltage characteristics, external quantum efficiency and carrier recombinations will be presented and complimented by AFM images and glazing angle XRD of the active layer under different processing conditions. The procedure described here has the full potential for use in future fabrication of microarrays with single cell as small as 0.01 square mm for application in DC power supplies for electrostatic Microelectromechanical systems (MEMS) devices. This work was supported by New Energy Technology Inc. and Florida High Tech Corridor Matching Fund (FHT 09-18).

  13. Overload protection system for power inverter

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  14. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  15. Modified DSTATCOM Topology with Reduced DC Link Voltage for Reactive and Harmonic Power Compensation of Unbalanced Nonlinear Load in Distribution System

    NASA Astrophysics Data System (ADS)

    Geddada, Nagesh; Karanki, Srinivas B.; Mishra, Mahesh K.

    2014-06-01

    This paper proposes a modified four-leg distribution static compensator (DSTATCOM) topology for compensation of unbalanced and nonlinear loads in three-phase four-wire distribution system. DSTATCOM, connected in parallel to the load, supplies reactive and harmonic powers demanded by unbalanced nonlinear loads. In this proposed topology, the voltage source inverter (VSI) of DSTATCOM is connected to point of common coupling (point of interconnection of source, load, DSTATCOM) through interface inductor and series capacitance, unlike the conventional topology which consists of interface inductor alone. Load compensation with a lower value of input DC link voltage of VSI is possible in this modified topology compared to conventional topology. A comparative study on modified and conventional topologies in terms of voltage rating of inverter power switches, switching losses in VSI and power rating of input DC capacitor of VSI is presented. The detailed design aspects of DC link capacitor and interface series capacitor are also presented. The reference filter currents are generated using instantaneous symmetrical component theory and are tracked using hysteresis current control technique. A detailed simulation study is carried out, to compare the compensation performances of conventional, modified topologies using PSCAD simulator and experimental studies are done to validate the simulation results.

  16. Inverted Teaching: Applying a New Pedagogy to a University Organic Chemistry Class

    ERIC Educational Resources Information Center

    Christiansen, Michael A.

    2014-01-01

    Inverted teaching, not to be confused with hybrid learning, is a relatively new pedagogy in which lecture is shifted outside of class and traditional homework is done in class. Though some inverted teaching (IT) designs have been published in different fields, peer-reviewed reports in university chemistry remain quite rare. To that end, herein is…

  17. Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.

    PubMed

    Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min

    2012-07-25

    A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.

  18. Robust DC/DC converter control for polymer electrolyte membrane fuel cell application

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Xiong; Yu, Duck-Hyun; Chen, Shi-An; Kim, Young-Bae

    2014-09-01

    This study investigates a robust controller in regulating the pulse width modulation (PWM) of a DC/DC converter for a polymer electrolyte membrane fuel cell (PEMFC) application. A significant variation in the output voltage of a PEMFC depends on the power requirement and prevents a PEMFC from directly connecting to a subsequent power bus. DC/DC converters are utilized to step-up or step-down voltage to match the subsequent power bus voltage. In this study, a full dynamic model, which includes a PEMFC and boost and buck DC/DC converters, is developed under MATLAB/Simulink environment for control. A robust PWM duty ratio control for the converters is designed using time delay control (TDC). This control enables state variables to accurately follow the dynamics of a reference model using time-delayed information of plant input and output information within a few sampling periods. To prove the superiority of the TDC performance, traditional proportional-integral control (PIC) and model predictive control (MPC) are designed and implemented, and the simulation results are compared. The efficacies of TDC for the PEMFC-fed PWM DC/DC converters are validated through experimental test results using a 100 W PEMFC as well as boost and buck DC/DC converters.

  19. A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2011-01-01

    This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

  20. Piezometer completion report for borehole cluster sites DC-19, DC-20, and DC-22

    SciTech Connect

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.; Veatch, M.D.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20 and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow, Sentinel Gap flow top, Ginkgo flow top, Rocky Coulee flow top, Cohassett flow top and Umtanum flow top. The D-series piezometer monitors the Mabton interbed. The B-series pumping well was completed in the Priest Rapids interflow. 21 refs., 6 figs., 6 tabs.

  1. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an...

  2. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an...

  3. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an...

  4. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an...

  5. Single-electron differential-amplifier/inverter/non-inverter

    NASA Astrophysics Data System (ADS)

    Hung, K.-M.; Chen, C.-S.; Lin, T.-W.

    2006-07-01

    This work presents a single-electron differential amplifier (SEDA), inverter, and non-inverter based on the triple single-dopant quantum-dot (TSDQD) configuration, with new structures. The competition between the field-induced and confinement-related shifts in the wavefunction of the quantum dots yields a field-controllable spatial-displacement single-electron transistor. Deeper impurity levels in quantum dots promise a higher operating temperature and higher on/off current ratios. The I- V characteristics of the device, studied using the transfer Hamiltonian approach (THA), show that the ratio of on/off currents is >80 000 and the voltage gain is >4 eV/Ry, where V is the applied voltage.

  6. Optical-Mechanical System for Stabilizing an Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2016-08-01

    Controlling open-loop unstable systems is a common benchmark for designing the algorithms to maintain the equilibrium state of anthropomorphous technical devices used within control theory. In this connection, considerable attention is currently being focused on the problem of stabilizing the inverted pendulum system. In this work, the execution of swinging-up the pendulum and, subsequently, maintaining its upward equilibrium state is presented with the help of the laboratory bench TP-802 by Festo Didactics and the movement control device. The configuration of dynamic system for stabilizing the inverted pendulum is offered. The algorithms to swing-up the pendulum and balance it around its upright position are offered as well.

  7. Regenerative Snubber For GTO-Commutated SCR Inverter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  8. Test Report on ISR Double-Loop, Spray-Cooled Inverter

    SciTech Connect

    Hsu, John S; Coomer, Chester; Campbell, Steven L; Wiles, Randy H; Lowe, Kirk T; McFee, Marshall T

    2007-02-01

    The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling system. The ISR test setup did not include a dc bus capacitor. Because the insulated gate bipolar transistor (IGBT) conduction test indicated that the ISR test setup could not be properly loaded thermally, no switching tests were conducted. Therefore it was not necessary to attach external capacitors outside the test setup. During load situations not exceeding 400A, the WEG inlet temperature was higher than the WEG outlet temperature. This meant that the 85 C WEG heat exchanger was not cooling the inverter and became a thermal load to the inverter. Only when the load was higher than 400A with a higher coolant temperature and the release valve actuated did the WEG heat exchanger start to cool the 2-phase coolant. The inverter relied strongly on the cooling of the huge aluminum enclosure located inside the ventilation chamber. In a hybrid vehicle, the inverter is situated under the hood, where the dependency on cooling provided by the enclosure may become a problem. The IGBT power dissipation with both sides being spray cooled was around 34 W/cm{sup 2} at 403A, with 995W total IGBT loss at 113.5 C projected junction temperature before the release valve was actuated. The current loading could rise higher than 403 A before reaching the 125 C junction temperature limit if the pressure buildup inside the enclosure could be

  9. Three-phase multilevel solar inverter for motor drive system

    NASA Astrophysics Data System (ADS)

    Bhasagare, Mayuresh P.

    This thesis deals with three phase inverters and the different control strategies that can be associated with an inverter being used together. The first part of this thesis discusses the present research in the fields of PV panels, motor drive systems and three phase inverters along with their control. This control includes various strategies like MPPT, Volts-Hertz and modulation index compensation. Incorporating these techniques together is the goal of this thesis. A new topology for operating an open end motor drive system has also been discusses, where a boost converter and a flyback converter have been used in cascade to run a three phase motor. The main advantage of this is increasing the number of levels and improving the quality of the output voltage, not to mention a few other benefits of having the proposed circuit. A new algorithm has also been designed for starting and stopping the motor, which controls the current drawn from the power source during starting.

  10. Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.

  11. Thermal Study of Inverter Components: Preprint

    SciTech Connect

    Sorensen, N. R.; Thomas, E. V.; Quintana, M. A.; Barkaszi, S.; Rosenthal, A.; Zhang, Z.; Kurtz, S.

    2012-06-01

    Thermal histories of inverter components were collected from operating inverters from several manufacturers and three locations. The data were analyzed to determine thermal profiles, the dependence on local conditions, and to assess the effect on inverter reliability. Inverter temperatures were shown to increase with the power dissipation of the inverters, follow diurnal and annual cycles, and have a dependence on wind speed. An accumulated damage model was applied to the temperature profiles and an example of using these data to predict reliability was explored.

  12. HOLLOTRON switch for megawatt lightweight space inverters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Goebel, D. M.; Schumacher, R. W.

    1991-01-01

    The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications.

  13. Advances in series resonant inverter technology and its effect on spacecraft employing electric propulsion

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1982-01-01

    The efficiency of transistorized Series Resonant Inverters (SRIs), which is higher than that of silicon-controlled rectifier alternatives, reduces spacecraft radiator requirements by 40% and may eliminate the need for heat pipes on 30-cm ion thruster systems. Recently developed 10- and 25-kW inverters have potential applications in gas thrusters, and represent the first spaceborne SRI designs for such power levels. Attention is given to the design and control system approaches employed in these inverter designs to improve efficiency and reduce weight, along with the impact of such improved parameters on electric propulsion systems.

  14. Improvement on an inverted decoupling technique for a class of stable linear multivariable processes.

    PubMed

    Chen, Peiying; Zhang, Weidong

    2007-04-01

    This paper improves an inverted decoupling technique for a class of stable linear multivariable processes with multiple time delays and nonminimum-phase zeros. Two decoupling schemes are proposed based on the inverted decoupling technique. One is a developed inverted decoupling scheme. In this scheme, the decoupler is designed such that the inverted decoupling technique accommodates a wider field than the one introduced in the published literature. However, due to the stability issue, some multivariable processes still cannot be decoupled by the inverted decoupling structure. To solve this problem, another modified decoupling scheme with unity feedback structure is suggested for implementation. The Internal Model Control (IMC) theory is applied here to design PI/PID controllers for the decoupled processes. Furthermore, in the presence of multiplicative input uncertainty, low bounds of the control parameters are derived quantitatively for guaranteeing robust stability of the system. Simulations are illustrated for demonstrating the validity of the proposed control schemes.

  15. Invertible linear ordinary differential operators

    NASA Astrophysics Data System (ADS)

    Chetverikov, Vladimir N.

    2017-03-01

    We consider invertible linear ordinary differential operators whose inversions are also differential operators. To each such operator we assign a numerical table. These tables are described in the elementary geometrical language. The table does not uniquely determine the operator. To define this operator uniquely some additional information should be added, as it is described in detail in this paper. The possibility of generalization of these results to partial differential operators is also discussed.

  16. [Mechanical complications of total shoulder inverted prosthesis].

    PubMed

    Delloye, C; Joris, D; Colette, A; Eudier, A; Dubuc, J E

    2002-06-01

    Our series of inverted prosthesis included 5 patients with a mean age of 73 +/- 6 years. In 4 cases, the implant was performed as a surgical revision. The follow up was 81 +/- 15 months. Three shoulders were pain free whereas two caused a dull pain after a free interval due to mechanical complications. The mean active elevation was 72 degrees while external rotation was - 2 degrees. The adjusted Constant score passed from 32 to 60. In case of complications, the score dropped to 32. Mechanical complications were important with in one case, an unscrening of the glenosphere and in two cases, a loosening of the glenoid prosthesis. This last and major complication occurred 6 years after surgery and was promoted by the occurrence of a progressive bone erosion in the scapula. This gap represented an attempt to accomodate the medial part of the humeral prosthesis under the scapula when the arm is at rest or in adduction. The concept of an inverted prosthesis is attractive and this implant remains one of the options in cuff-tear arthropathy. Our results were not as good as those reported by others but most of ours patients had been already operated before. The occurrence of an osseous gap on pilar of scapula may lead to failure of this prosthesis. This gap remains a threath as it can progress and as such warrants a design alteration of the prosthesis.

  17. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, R.L.; Killian, M.A.

    1993-03-02

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  18. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, Richard L.; Killian, Mark A.

    1993-01-01

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  19. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  20. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  1. Analysis of high voltage step-up nonisolated DC-DC boost converters

    NASA Astrophysics Data System (ADS)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  2. Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2000-01-01

    DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.

  3. 76 FR 13926 - Airworthiness Directives; The Boeing Company Model DC-8-11, DC-8-12, DC-8-21, DC-8-31, DC-8-32...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Model DC-8-11, DC-8- 12, DC-8-21, DC-8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; DC-8-50 Series Airplanes; DC-8F-54 and DC-8F-55 Airplanes; DC-8-60 Series Airplanes; DC-8-60F Series Airplanes; DC-8-70 Series Airplanes; and DC-8-70F Series Airplanes AGENCY:......

  4. Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications

    NASA Technical Reports Server (NTRS)

    Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette

    2005-01-01

    A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.

  5. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  6. Modelling and Simulation of Digital Compensation Technique for dc-dc Converter by Pole Placement

    NASA Astrophysics Data System (ADS)

    Shenbagalakshmi, R.; Sree Renga Raja, T.

    2015-09-01

    A thorough and effective analysis of the dc-dc converters is carried out in order to achieve the system stability and to improve the dynamic performance. A small signal modelling based on state space averaging technique for dc-dc converters is carried out. A digital state feedback gain matrix is derived by pole placement technique in order to achieve the stability of a completely controllable system. A prediction observer for the dc-dc converters is designed and a dynamic compensation (observer plus control law) is provided using separation principle. The output is very much improved with zero output voltage ripples, zero peak overshoot, and much lesser settling time in the range of ms and with higher overall efficiency (>90 %).

  7. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators

    PubMed Central

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-01-01

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs. PMID:27990232

  8. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    ERIC Educational Resources Information Center

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  9. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Corporation Model DC- 8-31, DC-8-32, DC-8-33, DC-8-41, DC-8-42, and DC-8-43 Airplanes; Model DC-8-50 Series Airplanes; Model DC-8F-54 and DC-8F-55 Airplanes; Model DC-8-60 Series Airplanes; Model DC-8-60F Series Airplanes; Model DC-8- 70 Series Airplanes; and Model DC-8-70F Series Airplanes AGENCY:......

  10. 20 kHz main inverter unit. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  11. Dynamic performance of a STATCON at an HVDC inverter feeding a very weak AC system

    SciTech Connect

    Zhuang, Y.; Menzies, R.W.; Nayak, O.B.; Turanli, H.M.

    1996-04-01

    This paper investigates the dynamic performance of the advanced static var compensator or STATCON at a high voltage direct current (HVDC) converter terminal where the ac system has a very low short circuit ratio (SCR). The STATCON is based on a nine-level GTO thyristor inverter. The studies include operating characteristics of the STATCON under various ac and dc disturbances. The simulation results are compared with other types of reactive power compensation options available for such applications. It is shown that the STATCON has clear advantages over the other compensators, in areas such as; fault response time, voltage support ability, and dc recovery, while operating with very weak ac systems.

  12. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  13. Neutron resonance spin echo with longitudinal DC fields.

    PubMed

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ∼0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  14. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    NASA Astrophysics Data System (ADS)

    Khan, U. A.; Shin, W. J.; Seong, J. K.; Oh, S. H.; Lee, S. H.; Lee, B. W.

    2011-11-01

    DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  15. Toward a consolidation of the CPV-specific-test procedures for inverters

    NASA Astrophysics Data System (ADS)

    Voarino, Philippe; Dominguez, César; Bier, Anthony; Roujol, Yannick; Mangeant, Christophe; Baudrit, Mathieu

    2015-09-01

    The inverter in a photovoltaic system assures two essential functions. The first is to track the maximum power point of the system IV curve throughout variable environmental conditions. The second is to convert DC power delivered by the PV panels into AC power. Nowadays, in order to qualify inverters, manufacturers and certifying organisms use mainly European and/or CEC efficiency standards. The question arises if these are still representative of CPV system behaviour. We propose to use a set of CPV - specific weighted average and a representative dynamic response to have a better determination of the static and dynamic MPPT efficiencies. Four string-sized commercial inverters used in real CPV plants have been tested.

  16. Cascades of alternating pitchfork and flip bifurcations in H-bridge inverters

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Mosekilde, Erik

    2017-04-01

    Power electronic DC/AC converters (inverters) play an important role in modern power engineering. These systems are also of considerable theoretical interest because their dynamics is influenced by the presence of two vastly different forcing frequencies. As a consequence, inverter systems may be modeled in terms of piecewise smooth maps with an extremely high number of switching manifolds. We have recently shown that models of this type can demonstrate a complicated bifurcation structure associated with the occurrence of border collisions. Considering the example of a PWM H-bridge single-phase inverter, the present paper discusses a number of unusual phenomena that can occur in piecewise smooth maps with a very large number of switching manifolds. We show in particular how smooth (pitchfork and flip) bifurcations may form a macroscopic pattern that stretches across the overall bifurcation structure. We explain the observed bifurcation phenomena, show under which conditions they occur, and describe them quantitatively by means of an analytic approximation.

  17. An Inverter-Driven Induction Motor System with a Deadlock Breaking Capability

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takuto; Yoshida, Toshiya; Miyashita, Osamu

    Induction motors are very widely used in various industrial applications. In semiconductor manufacturing processes, deadlock failure of pumps may occur by the adhering of glass material contained in the gas to the rotor. This can lead to the shutdown of the manufacturing plant. Therefore, a countermeasure to prevent deadlocking of a motor is required. This paper proposes a method for generating an impulse torque in an induction motor fed by an inverter. The proposed inverter circuit is composed of a conventional inverter and a few additional relays. The on-and-off control of the relays supplies an appropriate magnetizing current and a large torque current from the dc-link capacitor. In experiment, a 1.5-kW cage-type induction motor generated a torque that was approximately seven times larger than the rated torque of the motor. This large impulse torque is useful for breaking the motor deadlock.

  18. Far infrared edge photoresponse and persistent edge transport in an inverted InAs/GaSb heterostructure

    SciTech Connect

    Dyer, G. C.; Olson, B. V.; Hawkins, S. D.; Klem, J. F.; Shaner, E. A.; Pan, W.; Shi, X.

    2016-01-04

    Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.

  19. Design of Value-Added Models for IMPACT and TEAM in DC Public Schools, 2010-2011 School Year. Final Report

    ERIC Educational Resources Information Center

    Isenberg, Eric; Hock, Heinrich

    2011-01-01

    This report presents the value-added models that will be used to measure school and teacher effectiveness in the District of Columbia Public Schools (DCPS) in the 2010-2011 school year. It updates the earlier technical report, "Measuring Value Added for IMPACT and TEAM in DC Public Schools." The earlier report described the methods used…

  20. Silicon-controlled-rectifier square-wave inverter with protection against commutation failure

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1971-01-01

    The square-wave SCR inverter that was designed, built, and tested includes a circuit to turn off the inverter in case of commutation failure. The basic power stage is a complementary impulse-commutated parallel inverter consisting of only six components. The 400-watt breadboard was tested while operating at + or - 28 volts, and it had a peak efficiency of 95.5 percent at 60 hertz and 91.7 percent at 400 hertz. The voltage regulation for a fixed input was 3 percent at 60 hertz. An analysis of the operation and design information is included.

  1. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect

    Crapo, A.D.; Lloyd, J.D. )

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  2. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  3. Stabilization of a Power System including Inverter Type Distributed Generators by the Virtual Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Sakimoto, Kenichi; Miura, Yushi; Ise, Toshifumi

    The capacity of Distributed Generators (DGs) connected to grid by inverters are growing year and year. The inverters are generally controlled by PLL (Phase Locked Loop) in order to synchronize with power system frequency. Power systems will become unstable, if the capacity of inverter type DGs become larger and larger, because inverter frequency is controlled just to follow the frequency decided by other synchronous generators. There is the idea that inverters are controlled to behave like a synchronous generator. This concept is called Virtual Synchronous Generator (VSG). In this paper, a control scheme of VSG is presented, and the design method of required energy storage and the ability of grid stabilizing control by VSG is investigated by computer simulations.

  4. System and method for regulating resonant inverters

    DOEpatents

    Stevanovic, Ljubisa Dragoljub; Zane, Regan Andrew

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  5. Experimental studies of a prototype model of the multilevel 6KW-power inverter at supply by 12 accumulators

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.

    2016-09-01

    The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.

  6. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  7. Single phase inverter for a three phase power generation and distribution system

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  8. Status and Needs of Power Electronics for Photovoltaic Inverters: Summary Document

    SciTech Connect

    WEST, RICK; MAUCH, KONRAD; QIN,YU CHIN; MOHAN,NED; BONN, RUSSELL H.

    2002-04-01

    Photovoltaic inverters are the most mature of any DER inverter, and their mean time to first failure (MTFF) is about five years. This is an unacceptable MTFF and will inhibit the rapid expansion of PV. With all DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. The increasing need for all of these technologies to have a reliable inverter provides a unique opportunity to address these needs with focused R&D development projects. The requirements for these inverters are so similar that modular designs with universal features are obviously the best solution for a ''next generation'' inverter. A ''next generation'' inverter will have improved performance, higher reliability, and improved profitability. Sandia National Laboratories has estimated that the development of a ''next generation'' inverter could require approximately 20 man-years of work over an 18- to 24-month time frame, and that a government-industry partnership will greatly improve the chances of success.

  9. Status and Needs of Power Electronics for Photovoltaic Inverters: Summary Document

    NASA Astrophysics Data System (ADS)

    West, R.; Mauch, K.; Qin, Y. C.; Mohan, N.; Bonn, R.

    2002-05-01

    Photovoltaic inverters are the most mature of any DER inverter, and their mean time to first failure (MTFF) is about five years. This is an unacceptable MTFF and will inhibit the rapid expansion of PV. With all DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. The increasing need for all of these technologies to have a reliable inverter provides a unique opportunity to address these needs with focused R&D development projects. The requirements for these inverters are so similar that modular designs with universal features are obviously the best solution for a 'next generation' inverter. A 'next generation' inverter will have improved performance, higher reliability, and improved profitability. Sandia National Laboratories has estimated that the development of a 'next generation' inverter could require approximately 20 man-years of work over an 18- to 24-month time frame, and that a government-industry partnership will greatly improve the chances of success.

  10. dc illusion and its experimental verification

    NASA Astrophysics Data System (ADS)

    Liu, Min; Lei Mei, Zhong; Ma, Xiang; Cui, Tie Jun

    2012-07-01

    Based on the transformation optics method, we propose a dc illusion device, which can transform a metallic object into a magnified dielectric object using anisotropic conducting materials. Utilizing the analogy between electric conductivities and resistor networks, we design and fabricate the device using metal film resistors. The practical measurement data agree very well with simulation results. The proposed dc illusion device is easy to process and measure, and thus has potential applications in various sectors.

  11. Design of power electronics for TVC EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark

    1993-01-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  12. Design of power electronics for TVC EMA systems

    NASA Astrophysics Data System (ADS)

    Nelms, R. Mark

    1993-08-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.

  13. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  14. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  15. A three-phase soft-switched high-power-density dc/dc converter for high power applications

    SciTech Connect

    DeDoncker, R.W.A.A. ); Divan, D.M.; Kheraluwala, M.H. )

    1991-01-01

    In this paper three dc/dc converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is seen to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase ac-link dc/dc converters, lower turn-off peak currents in the power devices and lower rms current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable.

  16. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; McGowan, Ryan; Disser, Katherine; Corke, Thomas; Matlis, Eric

    2016-11-01

    A new powering system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. However instead of an AC voltage input to drive the actuator, the pulsed-DC utilizes a DC voltage source. The DC source is supplied to both electrodes, and remains constant in time for the exposed electrode. The DC source for the covered electrode is periodically grounded for very short instants and then allowed to rise to the source DC level. This process results in a plasma actuator body force that is significantly larger than that with an AC-DBD at the same voltages. The important characteristics used in optimizing the pulsed-DC plasma actuators are presented. Time-resolved velocity measurements near the actuator are further used to understand the underlying physics of its operation compared to the AC-DBD. Supported by NASA Glenn RC.

  17. EV drivetrain inverter with V/HZ optimization

    DOEpatents

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  18. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  19. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L; Ning, Puqi; White, Cliff P; Miller , John M.

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at three center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.

  20. 75 FR 6160 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10... airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and... would require a one-time installation of electrical bonding jumpers for the fill valve controllers...

  1. Silicon carbide DC-DC multilevel Cuk converter

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Alateeq, Ayoob; Matin, Mohammad

    2016-09-01

    In this paper, DC-DC multilevel cuk converter using silicon carbide (SiC) Components is presented. Cuk converter gives output voltage with negative polarity. This topology is useful for applications require high gain with limitation on duty cycle. The gain of the design can be enhanced by increasing the number of multiplier level (N). This relation between the gain and the number of levels is the major advantage of this multilevel cuk converter. In the proposed cuk converter, a single SiC MOSFET, 2N-1 SiC schottky diodes, 2N capacitors, 2 inductors, and single input voltage are used to supply a load with negative polarity. 300V input voltage, 50KHz switching frequency, and 75% duty cycle are the main parameters used in the design. The output parameters are 3KW power and -5.7 KV voltage. Because this design can be used in applications which temperature plays a critical role, the relation between increasing temperature and output voltage and power are tested. The design is simulated using LTspice software and the results are discussed.

  2. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1993-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  3. Forback DC-to-DC converter

    NASA Technical Reports Server (NTRS)

    Lukemire, Alan T. (Inventor)

    1995-01-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  4. Circuit controls transients in SCR inverters

    NASA Technical Reports Server (NTRS)

    Moore, E. T.; Wilson, T. G.

    1964-01-01

    Elimination of starting difficulties in SCR inverters is accomplished by the addition of two taps of the output winding of the inverter. On starting or under transient loads, the two additional taps deliver power through diodes without requiring quenching of SCR currents in excess of normal starting load.

  5. Self-oscillating inverter with bipolar transistors

    NASA Astrophysics Data System (ADS)

    Baciu, I.; Cunţan, C. D.; Floruţa, M.

    2016-02-01

    The paper presents a self-oscillating inverter manufactured with bipolar transistors that supplies a high-amplitude alternating voltage to a fluorescent tube with a burned filament. The inverter is supplied from a low voltage accumulator that can be charged from a photovoltaic panel through a voltage regulator.

  6. Radiotherapy for inverted papilloma: a case report.

    PubMed

    Levendag, P C; Annyas, A A; Escajadillo, J R; Elema, J D

    1984-06-01

    Inverted papilloma is an infrequent tumour of the nasal cavity and paranasal sinuses associated with controversy. The incidence of carcinoma in situ associated with inverted papilloma, has not been very well documented until now. Therefore, we present a case report characterized by an aggressive clinical behaviour, treated by extensive surgery and ultimately controlled by radiotherapy.

  7. Phoenix Scoop Inverted Showing Rasp

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows the silver colored rasp protruding from NASA's Phoenix Mars Lander's Robotic Arm scoop. The scoop is inverted and the rasp is pointing up.

    Shown with its forks pointing toward the ground is the thermal and electrical conductivity probe, at the lower right. The Robotic Arm Camera is pointed toward the ground.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Negation-Limited Inverters of Linear Size

    NASA Astrophysics Data System (ADS)

    Morizumi, Hiroki; Suzuki, Genki

    An inverter is a circuit which outputs ¬x1, ¬x2, …, ¬xn for any Boolean inputs x1, x2, …, xn. We consider constructing an inverter with AND gates and OR gates and a few NOT gates. Beals, Nishino and Tanaka have given a construction of an inverter which has size O(nlog n) and depth O(log n) and uses ⌈ log(n+1) ⌉ NOT gates. In this paper we give a construction of an inverter which has size O(n) and depth log1+o(1)n and uses log1+o(1)n NOT gates. This is the first negation-limited inverter of linear size using only o(n) NOT gates. We also discuss implications of our construction for negation-limited circuit complexity.

  9. Four new cases of inverted terminal duplication: A modified hypothesis of mechanism of origin

    SciTech Connect

    Hoo, J.J.; Chao, M.; Szego, K.

    1995-09-25

    We present 4 recently diagnosed cases of inverted tandem duplication with involvement of the respective terminal band. Based on these 4 cases and review of the literature, the term {open_quotes}inverted terminal duplication{close_quotes} is proposed to designate specifically the type of inverted tandem duplication which involves the terminal band. A modification of the previous hypothesis of mechanism of origin is advanced. It is speculated further that a telomeric deletion of a meiotic chromosome followed by a U-type reunion of the chromatids, considered to be the first steps of the proposed mechanism of origin, may not be a rare gonadal event. 12 refs., 5 figs.

  10. Low noise DC to DC converters for the sLHC experiments

    NASA Astrophysics Data System (ADS)

    Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Michelis, S.; Orlandi, S.

    2010-11-01

    The development of front-end systems for the ATLAS tracker at the sLHC is now in progress and the availability of radiation tolerant buck converter ASICs enables the implementation of DC to DC converter based powering schemes. The front-end systems powered in this manner will be exposed to the radiated and conducted noise emitted by the converters. The electromagnetic compatibility between DC to DC converters and ATLAS short strip tracker hybrid prototypes has been studied with specific susceptibility tests. Different DC to DC converter prototypes have been designed following a noise optimization methodology to match the noise requirements of these front-end systems. The DC to DC converter developed in this manner presents a negligible emission of noise that was confirmed by system tests on an ATLAS tracker front-end module prototype. As a result of this, power converters can now be integrated in close vicinity of front-end chips without compromising their overall noise performance.

  11. DC-DC conversion powering schemes for the CMS tracker at Super-LHC

    NASA Astrophysics Data System (ADS)

    Klein, K.; Feld, L.; Jussen, R.; Karpinski, W.; Merz, J.; Sammet, J.

    2010-07-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as the power efficiency, conducted and radiated noise levels, and material budget are presented, and a possible implementation of DC-DC buck converters into one proposed track trigger layout is sketched.

  12. Advanced Energy Conversion System Using Sinusoidal Voltage Tracking Buck-Boost Converter Cascaded Polarity Changing Inverter

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil A.

    2011-06-01

    This paper presents an advanced power converter employs a sinusoidal voltage absolute value tracking buck-boost DC-DC converter in the first power processing stage and a polarity changing full-bridge inverter in the second stage. The proposed power conversion system has the capability of delivering sinusoidal output and input current with unity power factor and good output voltage regulation. Consequently, the complete voltage regulator system, which is mainly suitable for new energy generation systems as well as energy storage systems, can be constructed compactly and inexpensively without DC link electrolytic capacitor. Also, the paper presents an auxiliary passive resonant circuit for soft switching operation. Simulation results using PSIM software are presented to verify the operation principles and feasibility of the proposed power conversion system.

  13. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  14. Recent advances in stacked inverted top-emitting organic electrophosphorescent diodes (presentation video)

    NASA Astrophysics Data System (ADS)

    Kippelen, Bernard; Knauer, Keith A.; Najafabadi, Ehsan M.; Zhou, Yinhua; Fuentes-Hernandez, Canek

    2014-10-01

    In this talk, we will discuss recent advances in green and white electrophosphorescent stacked organic light-emitting diodes (OLEDs) with inverted top-emitting structures. These devices combine the advantages of having inverted electrode positions, a top-emissive design, and a stacked architecture. We will also demonstrate OLEDs that are fabricated on cellulose nanocrystal substrates and discuss how the use of such naturally-derived materials can reduce the environmental footprint of organic electronic devices such as OLEDs.

  15. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  16. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    NASA Astrophysics Data System (ADS)

    Bochenek, M.; Dabrowski, W.; Faccio, F.; Michelis, S.

    2010-12-01

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved.

  17. Sizing SiC Storage Inverters for Fast Grid Frequency Support

    SciTech Connect

    Hoke, Anderson; Bennion, Kevin; Gevorgian, Vahan; Chakraborty, Sudipta; Muljadi, Eduard

    2015-11-02

    As wind and solar displace synchronous generators whose inertia stabilizes the AC grid frequency on fast time scales, it has been proposed to use energy storage systems (ESSs) to mitigate frequency transient events. Such events require a rapid surge of power from the ESS, but they occur only rarely. The high temperature tolerance of SiC MOSFETs and diodes presents an opportunity for innovative ESS inverter designs. Herein we investigate a SiC ESS inverter design such that the SiC device ratings are obeyed during mild frequency events but are exceeded during rare, major events, for a potentially more economical inverter design. In support of this proposal we present: 1. An analysis of four years of grid frequency events in the U.S. Western Interconnection. 2. A switch-level ESS inverter simulation using SiC devices with detailed loss estimates. 3. Thermal analysis of the SiC power modules during a worst-case frequency event, showing that the modules can likely withstand the brief overcurrent. This analysis supports the conclusion that it may be advantageous for economical designs (acknowledging the increased risks) to undersize the SiC switches when designing inverters to perform active power control for grid frequency support. Such a strategy may result in SiC-based designs being more competitive with less costly silicon IGBT-based designs.

  18. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  19. Static Characteristics of the Ferroelectric Transistor Inverter

    NASA Technical Reports Server (NTRS)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  20. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles.

    PubMed

    Ijiri, Y; Poudel, C; Williams, P S; Moore, L R; Orita, T; Zborowski, M

    2013-07-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles.

  1. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    PubMed Central

    Ijiri, Y.; Poudel, C.; Williams, P.S.; Moore, L.R.; Orita, T.; Zborowski, M.

    2014-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles. PMID:25382864

  2. Comparison of solar panel cooling system by using dc brushless fan and dc water

    NASA Astrophysics Data System (ADS)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  3. RISK D/C

    NASA Technical Reports Server (NTRS)

    Dias, W. C.

    1994-01-01

    RISK D/C is a prototype program which attempts to do program risk modeling for the Space Exploration Initiative (SEI) architectures proposed in the Synthesis Group Report. Risk assessment is made with respect to risk events, their probabilities, and the severities of potential results. The program allows risk mitigation strategies to be proposed for an exploration program architecture and to be ranked with respect to their effectiveness. RISK D/C allows for the fact that risk assessment in early planning phases is subjective. Although specific to the SEI in its present form, RISK D/C can be used as a framework for developing a risk assessment program for other specific uses. RISK D/C is organized into files, or stacks, of information, including the architecture, the hazard, and the risk event stacks. Although predefined, all stacks can be upgraded by a user. The architecture stack contains information concerning the general program alternatives, which are subsequently broken down into waypoints, missions, and mission phases. The hazard stack includes any background condition which could result in a risk event. A risk event is anything unfavorable that could happen during the course of a specific point within an architecture, and the risk event stack provides the probabilities, consequences, severities, and any mitigation strategies which could be used to reduce the risk of the event, and how much the risk is reduced. RISK D/C was developed for Macintosh series computers. It requires HyperCard 2.0 or later, as well as 2Mb of RAM and System 6.0.8 or later. A Macintosh II series computer is recommended due to speed concerns. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. RISK D/C was developed in 1991 and is a copyrighted work with all copyright vested in NASA. Macintosh and HyperCard are trademarks of Apple Computer, Inc.

  4. 75 FR 23571 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40,......

  5. ITAR Free Commercial-of-the-Shelf DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Denzinger, Wolfgang; Hintze, Thomas

    2014-08-01

    A commercial-of-the-shelf (COTS) DC/DC converter for digital space equipment has been developed by ASP under ESA contract with special emphasis on low cost, no use of ITAR listed EEE parts like Mosfets, minimum number of rad-hard digital IC's and a design tolerance against single event effects by appropriate filtering. However, the intention to qualify this discrete converter design for a low cost FM series production was difficult due to the high up-sceening cost of EEE-parts with one lot guarantee and minimum-by. To overcome this problem, in a next step a redesign of the DC/DC converter was performed with all semiconductors like bipolar transistors, rectifiers and zener diodes packaged into hybrids. With this approach it was possible to buy a high number of less expensive wafers or dies from one lot, to perform a lot acceptance test and to integrate the dies into hybrid packages with further up- screening for FM use. The semiconductors have been packaged into three signal hybrids with 44 pins and one power hybrid with 24 pins for the dissipating transistors and rectifiers. The design of the hybrids is such, that all integrated semiconductors can be tested individually. The qualification of four EQM DC/DC converters with different combinations of output voltages has been successfully performed and two FM's have been manufactured and tested.

  6. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  7. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  8. Possible Problems: Inverted, Flat, or Pierced Nipples

    MedlinePlus

    ... Breastfeeding Crying & Colic Diapers & Clothing Feeding & Nutrition Preemie Sleep Teething & Tooth Care Toddler Preschool Gradeschool Teen Young Adult Healthy Children > Ages & Stages > Baby > Breastfeeding > Possible Problems: Inverted, Flat, or Pierced ...

  9. Design and realization of an autonomous solar system

    NASA Astrophysics Data System (ADS)

    Gaga, A.; Diouri, O.; Es-sbai, N.; Errahimi, F.

    2017-03-01

    The aim of this work is the design and realization of an autonomous solar system, with MPPT control, a regulator charge/discharge of batteries, an H-bridge multi-level inverter with acquisition system and supervising based on a microcontroller. The proposed approach is based on developing a software platform in the LabVIEW environment which gives the system a flexible structure for controlling, monitoring and supervising the whole system in real time while providing power maximization and best quality of energy conversion from DC to AC power. The reliability of the proposed solar system is validated by the simulation results on PowerSim and experimental results achieved with a solar panel, a Lead acid battery, solar regulator and an H-bridge cascaded topology of single-phase inverter.

  10. DC side filters for multiterminal HVDC systems

    SciTech Connect

    Shore, N.L.; Adamson, K.; Bard, P.

    1996-10-01

    Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

  11. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8

  12. On the construction of invertible filter banks on the 2-sphere.

    PubMed

    Yeo, Boon Thye Thomas; Ou, Wanmei; Golland, Polina

    2008-03-01

    The theories of signal sampling, filter banks, wavelets, and "overcomplete wavelets" are well established for the Euclidean spaces and are widely used in the processing and analysis of images. While recent advances have extended some filtering methods to spherical images, many key challenges remain. In this paper, we develop theoretical conditions for the invertibility of filter banks under continuous spherical convolution. Furthermore, we present an analogue of the Papoulis generalized sampling theorem on the 2-Sphere. We use the theoretical results to establish a general framework for the design of invertible filter banks on the sphere and demonstrate the approach with examples of self-invertible spherical wavelets and steerable pyramids. We conclude by examining the use of a self-invertible spherical steerable pyramid in a denoising experiment and discussing the computational complexity of the filtering framework.

  13. On the Construction of Invertible Filter Banks on the 2-Sphere

    PubMed Central

    Yeo, Boon Thye Thomas; Ou, Wanmei; Golland, Polina

    2009-01-01

    The theories of signal sampling, filter banks, wavelets, and “overcomplete wavelets” are well established for the Euclidean spaces and are widely used in the processing and analysis of images. While recent advances have extended some filtering methods to spherical images, many key challenges remain. In this paper, we develop theoretical conditions for the invertibility of filter banks under continuous spherical convolution. Furthermore, we present an analogue of the Papoulis generalized sampling theorem on the 2-Sphere. We use the theoretical results to establish a general framework for the design of invertible filter banks on the sphere and demonstrate the approach with examples of self-invertible spherical wavelets and steerable pyramids. We conclude by examining the use of a self-invertible spherical steerable pyramid in a denoising experiment and discussing the computational complexity of the filtering framework. PMID:18270119

  14. Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Liu, Xue

    2010-09-01

    A new multi-local linear model based on the Tkakgi-Sugeno approach is presented to carry out controlling of a nonlinear unsteady system and to make a design of inverted pendulum fuzzy controller. Nonlinear multi-variance behaviors are transformed to a multi-local linear model using a fuzzy approximation method, which is used to implement control steadily and rapidly for the global system. Detailed investigations on dynamic behaviors of inverted pendulum under reduced-gravity space environments are performed using Simulink simulations. Results showed that stabilization of an inverted pendulum is greatly affected by reduced-gravity conditions and effects of θ angle variation are the largest. When θ is greater than 1.571 rad threshold value, balances will be lost under earth, lunar and microgravity conditions. Furthermore, microgravity is favorable for keeping balance status. An appropriate compensation controlling provided by the presented fuzzy controller can keep a better balance for inverted pendulum.

  15. Automatic load sharing in inverter modules

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.

  16. Base drive for paralleled inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  17. Work Station For Inverting Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  18. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  19. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    SciTech Connect

    Nelson, A.; Hoke, A.; Chakraborty, S.; Chebahtah, J.; Wang, T.; Zimmerly, B.

    2015-02-01

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here, as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.

  20. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  1. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  2. DC-to-dc converter power-train optimization for maximum efficiency

    NASA Astrophysics Data System (ADS)

    Wilson, T. G., Jr.; Whelan, E. W., Jr.; Rodriguez, R.; Dishman, J. M.

    This paper presents a new way of describing the independent and dependent design variables of the power train of a dc-to-dc converter in terms of a multi-dimensional design-parameter space. These concepts provide a framework for examining the problem of design optimization of the power train, with particular emphasis on the maximization of converter efficiency. Numerous examples of important parameter-space surfaces illustrate some of the major relationships between core volume, switching frequency and output power, and between efficiency, ripple, and temperature rise of the energy-storage reactor. Also, we explore the difference in performance between the continuous and discontinuous mmf modes of operation.

  3. A Transformerless Motor Drive with a Five-Level Diode-Clamped PWM Inverter for Fan/Blower Loads

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazunori; Hatti, Natchpong; Akagi, Hirofumi

    This paper describes a 6.6-kV adjustable-speed motor drive for use in fans, blowers, and pumps without a transformer. The power-conversion system consists of a diode rectifier, a five-level diode-clamped PWM inverter, and a voltage-balancing circuit. A 200-V 5.5-kW downscale model is developed, constructed, and tested. The five-level PWM inverter and the voltage-balancing circuit are studied in detail. Experimental results obtained from testing the 200-V downscale model confirm the viability and effectiveness of the 6.6-kV adjustable-speed motor drive, indicating that the dc mean voltages of the four split dc capacitors are well balanced under all the given operating conditions.

  4. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  5. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    SciTech Connect

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.; Giannakis, Georgios B.

    2015-10-05

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this paper shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.

  6. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  7. GaN HFET-Based DC/DC Converters for Low Power RF Satellite Equipment

    NASA Astrophysics Data System (ADS)

    Delamare, Guillaume; Maynadier, Paul; Schneider, Henri

    2014-08-01

    This paper presents the evaluation and prototyping of a low power, multiple outputs, isolated DC/DC converter for 100 V telecom satellite applications, using enhancement-mode GaN heterostructure field effect transistors (HFETs) to enable 1 MHz switching frequencies.Radiation-hardened power MOSFETs are currently the main drivers for both cost and size (because of their limited switching frequency) of existing DC/DC converters. Commercially available normally-off GaN HFETs are very promising replacements, thanks to their high switching speed and intrinsic radiation hardness.In this study different designs, built around various isolated topologies, were compared for a typical low power RF application (10W) with a switching frequency of 1 MHz. Calculations and simulations helped select the most adequate architecture in terms of size and efficiency. A prototype was then built and its performance measured. Electromagnetic compatibility was evaluated by mating the power supply to its RF equipment.

  8. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    SciTech Connect

    Marlino, Laura D; Zhu, Lizhi

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  9. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Astrophysics Data System (ADS)

    Zhu, Minshao

    2002-02-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  10. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  11. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  12. Global DC closed orbit correction experiment on the NSLS x-ray ring

    SciTech Connect

    Chung, Y.; Decker, G.; Evans, K.

    1992-09-15

    In this note are described the global DC closed orbit correction experiments conducted on the X-ray ring at National Synchrotron Light Source (NSLS). The beam response matrix, defined as beam motion at BPM locations per unit kick by corrector magnets, was measured and then inverted using the technique of singular value decomposition (SVD). The product of the inverted matrix and the difference orbit gives the incremental kick strengths necessary to correct the orbit. As a result, the r.m.s. orbit error around the ring was reduced from 208 {mu}m to 61 {mu}m.

  13. Pre-IGY Ionosphere Over Washington D.C

    NASA Astrophysics Data System (ADS)

    Rice, D. D.; Sojka, J. J.; Eccles, J. V.; Hunsucker, R. D.

    2012-12-01

    A data recovery study has been sponsored by the NSF to determine how successfully the ionosphere during a pre-IGY era can be inferred from archived ionogram films. This pilot study targets the Washington, DC ionosonde WA938 located at Ft. Belvoir in Fairfax, VA (38.7° N, -77.1° E). The focus of the study is 1951, 61 years ago, or about 5 1/2 solar cycles ago. The ionosonde was a model C-3 designed by the National Bureau of Standards (NBS). Ionograms were taken at approximately six per hour, but not uniformly spaced in time. These were recorded on an extended frame 35 mm film. Between 2-4 weeks of ionograms were recorded on a single film reel. These films were archived at the NOAA's National Geophysical Data Center (NGDC), also known as a World Data Center . Over the past five years, NGDC has been able to digitize several months from selected years of these films. These digitized ionogram images are the starting point for the ionospheric data analysis for this study. SEC has developed an image processing technique called the Expert System for Ionogram Reduction (ESIR), which has been patented [Sojka et al. 2009]. This software was developed specifically to recognize and invert an ionogram from a photographic image, producing an equivalent ionospheric electron density profile. The recognition of both virtual height and frequency axes in these ionogram photos is discussed. We demonstrate how we can validate and calibrate these scales independent of the ionosonde's virtual height and frequency markings. Examples during several months of 1951 of the automated ESIR ionogram reduction will be provided. These examples will be presented in the context of how the mid-latitude ionosphere over Washington DC in 1951 compares with the present-day ionosphere. Limitations in the data extraction are discussed from a point of view of how they might affect confidence in the inferred long-term trends in the ionosphere. Reference: Sojka J. J., D. C. Thompson, D. D. Rice (2009

  14. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome

    PubMed Central

    Carvalho, Claudia M. B.; Ramocki, Melissa B.; Pehlivan, Davut; Franco, Luis M.; Gonzaga-Jauregui, Claudia; Fang, Ping; McCall, Alanna; Pivnick, Eniko Karman; Hines-Dowell, Stacy; Seaver, Laurie; Friehling, Linda; Lee, Sansan; Smith, Rosemarie; del Gaudio, Daniela; Withers, Marjorie; Liu, Pengfei; Cheung, Sau Wai; Belmont, John W.; Zoghbi, Huda Y.; Hastings, P. J.; Lupski, James R.

    2011-01-01

    We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at both the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 12 unrelated subjects. Interestingly, only two novel breakpoint junctions were generated during each rearrangement formation. Remarkably, all the complex rearrangement products share the common genomic organization duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) wherein the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by over 300 kb; a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology driven, via inverted repeats, and microhomologous/nonhomologous events. PMID:21964572

  15. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification

    PubMed Central

    Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.

    2015-01-01

    DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of

  16. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  17. Comparison between features and performance characteristics of fifteen hp samarium cobalt and ferrite based brushless dc motors operated by same power conditioner

    SciTech Connect

    Demerdash, N.A.; Ford, C.J.; Miller, R.H.; Nehl, T.W.; Overton, B.P.

    1983-01-01

    The impact of samarium-cobalt and ferrite magnet materials on the design and performance characteristics of electronically commutated brushless dc motors of equal horsepower output is presented. This is accomplished through the design, construction and testing of two 15 hp, 120 volt brushless dc motors built for propulsion of electric vehicles, and similar applications. In one of these motors, samarium-cobalt (Sm Co/sub 5/) is used as permanent magnet material, while in the other the magnets were made of strontium ferrite number 8. The two machines were built to operate from the same power conditioner, which consisted of a transistor chopper in series with a three phase full wave inverter/converter bridge, which consists of six transistor-diode switches. Both of the two motors achieved a continuous 2 hour rating of more than 15 hp with a peak one minute rating of 35 hp. System efficiency (combined motor and conditioner) under rated conditions of 90% was achieved for both machines. Details of these and other performance characteristics and design parameters are presented and analyzed to assess the impact of the choice of magnet material on design and performance for this, as well as other applications.

  18. 76 FR 18022 - Airworthiness Directives; The Boeing Company Model DC-9-14, DC-9-15, and DC-9-15F Airplanes; and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Model DC-9-14, DC-9- 15, and DC-9-15F Airplanes; and DC-9-20, DC-9-30, DC-9-40, and DC-9-50 Series..., Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT...) This AD applies to The Boeing Company Model DC-9-14, DC-9- 15, DC-9-15F, DC-9-21, DC-9-31,......

  19. 75 FR 47242 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... Corporation Model DC- 9-14, DC-9-15, and DC-9-15F Airplanes; and Model DC-9-20, DC-9-30, DC- 9-40, and DC-9-50... airworthiness directive (AD) that applies to certain Model DC-9-14 and DC-9-15 airplanes; and Model DC-9-20, DC-9-30, DC-9-40, and DC-9-50 series airplanes. The existing AD currently......

  20. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  1. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated in this study, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold voltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  2. Addressable inverter matrix for process and device characterization

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  3. Nearly Unity Power-Factor of the Modular Three-Phase AC to DC Converter with Minimized DC Bus Capacitor

    NASA Astrophysics Data System (ADS)

    Chunkag, Viboon; Kamnarn, Uthen

    The analysis and design of nearly unity power-factor and fast dynamic response of the modular three-phase ac to dc converter using three single-phase isolated SEPIC rectifier modules with minimized dc bus capacitor is discussed, based on power balance control technique. The averaged small-signal technique is used to obtain the inductor current compensator, thus resulting in the output impedance and audio susceptibility become zero, that is, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The proposed system significantly improves the dynamic response of the converter to load steps with minimized dc bus capacitor for Distributed Power System (DPS). A 600W prototype modular three-phase ac to dc converter comprising three 200W single-phase SEPIC rectifier modules with the proposed control scheme has been designed and implemented. The proposed system is confirmed by experimental implementation.

  4. Characterization of the Ecosole HCPV tracker and single module inverter

    NASA Astrophysics Data System (ADS)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  5. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  6. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  7. Application of GTO voltage source inverter in a hybrid HVDC link

    SciTech Connect

    Zhao, Z.; Iravani, M.R. . Dept. of Electrical Engineering)

    1994-01-01

    This paper investigates the application of a GTO voltage source inverter in a two-terminal HVdc link, which is fed at the sending end by a line-commutated rectifier. This type of HVdc link may be applied when power transfer is predominantly unidirectional, especially to a weak ac system. The investigations are based on analytical studies and digital time-domain simulations with the Electro-Magnetic Transient program for DC systems (EMTDC). Control method and protection requirements are studied, together with dynamic behavior of the system following disturbances, e.g. dc fault, ac fault, start-up etc. The studies are aimed at exhibiting the technical feasibility of the proposed HVdc scheme. Need for further studies is pointed out when necessary.

  8. Frequency Domain Analysis of Beat-Less Control Method for Converter-Inverter Driving Systems Applied to AC Electric Cars

    NASA Astrophysics Data System (ADS)

    Kimura, Akira

    In inverter-converter driving systems for AC electric cars, the DC input voltage of an inverter contains a ripple component with a frequency that is twice as high as the line voltage frequency, because of a single-phase converter. The ripple component of the inverter input voltage causes pulsations on torques and currents of driving motors. To decrease the pulsations, a beat-less control method, which modifies a slip frequency depending on the ripple component, is applied to the inverter control. In the present paper, the beat-less control method was analyzed in the frequency domain. In the first step of the analysis, transfer functions, which revealed the relationship among the ripple component of the inverter input voltage, the slip frequency, the motor torque pulsation and the current pulsation, were derived with a synchronous rotating model of induction motors. An analysis model of the beat-less control method was then constructed using the transfer functions. The optimal setting of the control method was obtained according to the analysis model. The transfer functions and the analysis model were verified through simulations.

  9. A diagonally inverted LU implicit multigrid scheme

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.

    1988-01-01

    A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.

  10. Maskless inverted pyramid texturization of silicon.

    PubMed

    Wang, Yan; Yang, Lixia; Liu, Yaoping; Mei, Zengxia; Chen, Wei; Li, Junqiang; Liang, Huili; Kuznetsov, Andrej; Xiaolong, Du

    2015-06-02

    We discovered a technical solution of such outstanding importance that it can trigger new approaches in silicon wet etching processing and, in particular, photovoltaic cell manufacturing. The so called inverted pyramid arrays, outperforming conventional pyramid textures and black silicon because of their superior light-trapping and structure characteristics, can currently only be achieved using more complex techniques involving lithography, laser processing, etc. Importantly, our data demonstrate a feasibility of inverted pyramidal texturization of silicon by maskless Cu-nanoparticles assisted etching in Cu(NO3)2 / HF / H2O2 / H2O solutions and as such may have significant impacts on communities of fellow researchers and industrialists.

  11. Patterned semiconductor inverted quantum dot photonic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.

    2016-03-01

    A novel inverted quantum dot structure is presented, which consists of an InGaAs quantum well that has been periodically perforated and then filled with the higher bandgap GaAs barrier material. This structure exhibits a unique quantized energy structure something like a planar atomic bond structure and formation of allowed and forbidden energy bands instead of highly localized, fully discrete states. We describe the growth, processing and characteristics of inverted quantum dot structures and outline interesting and potentially important effects arising from the introduction of nanoscale features (<50 nm) in the active medium.

  12. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  13. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  14. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  15. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  16. Design Conference for the Evaluation of the Talent Search Program: Synthesis of Major Themes and Commissioned Papers Prepared for the Conference (Washington, D.C., September 30, 1992).

    ERIC Educational Resources Information Center

    Westat, Inc., Rockville, MD.

    This report gathers papers prepared for a design conference for the evaluation of the Federal Talent Search Program, an early intervention program to identify gifted and talented financially needy students and connect them with discretionary grants for higher education. An introductory paper synthesizes major conference themes. These include: (1)…

  17. DC Cable for Railway

    NASA Astrophysics Data System (ADS)

    Tomita, Masaru

    The development of a superconducting cable for railways has commenced, assuming that a DC transmission cable will be used for electric trains. The cable has been fabricated based on the results of current testing of a superconducting wire, and various evaluation tests have been performed to determine the characteristics of the cable. A superconducting transmission cable having zero electrical resistance and suitable for railway use is expected to enhance regeneration efficiency, reduce power losses, achieve load leveling and integration of sub-stations, and reduce rail potential.

  18. Radiation dependence of inverter propagation delay from timing sampler measurements

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.

    1989-01-01

    A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.

  19. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  20. A delta configured auxiliary resonant snubber inverter

    SciTech Connect

    Lai, J.S.; Young, R.W.; Ott, G.W. Jr.; McKeever, J.W.; Peng, F.Z. |

    1995-09-01

    A delta ({Delta}) configured auxiliary resonant snubber inverter is developed to overcome the voltage floating problem in a wye (Y) configured resonant snubber inverter. The proposed inverter is to connect auxiliary resonant branches between phase outputs to avoid a floating point voltage which may cause over-voltage failure of the auxiliary switches. Each auxiliary branch consists of a resonant inductor and a reverse blocking auxiliary switch. Instead of using an anti-paralleled diode to allow resonant current to flow in the reverse direction, as in the Y-configured version, the resonant branch in the {Delta}-configured version must block the negative voltage, typically done by a series diode. This paper shows single-phase and three-phase versions of {Delta}-configured resonant snubber inverters and describes in detail the operating principle of a single-phase version. The extended three-phase version is proposed with non-adjacent state space vector modulation. For hardware implementation, a single-phase 1-kW unit and a three-phase 100-kW unit were built to prove the concept. Experimental results show the superiority of the proposed topology.

  1. [Inverted papiloma and its rare forms].

    PubMed

    Bugová, G; Jeseňák, M; Wallenfels, P; Ondrušová, B; Hajtman, A

    2014-01-01

    Authors address the issue of a frequent benign tumour of the nasal cavity and paranasal sinuses -  inverted papilloma. They analyse the available diagnostic methods and treatment options. On the background of selected case reports of a rare malignant transformation they emphasize the need for longterm dispensarization as a part of management plan for patients with this oncological disease.

  2. Inverted drop testing and neck injury potential.

    PubMed

    Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.

  3. Proceedingsof the International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (3rd) ICIDES-III Held in Washington, DC 23-25 October 1991

    DTIC Science & Technology

    1991-09-01

    second approximation. The iteration process is schematically shown in Fig. 1. One significant feature of this method is that analysis code is sort of...analysis module are usually necessary. The optimization code was used to define some of the principal features of the external shape for a few other short...picked, in part, to demonstrate the design algorithm’s robustness and ability to respond correctly to shockwaves in the flowfield. This feature is

  4. View of Inverted Siphon crossing Hot Water (or White) Canyon. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Inverted Siphon crossing Hot Water (or White) Canyon. Looking northeast - Childs-Irving Hydroelectric Project, Irving System, Inverted Siphon, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. Improved DC Gun Insulator

    SciTech Connect

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  6. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  7. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE PAGES

    Xiao, Bailu; Hang, Lijun; Mei, Jun; ...

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  8. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    SciTech Connect

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

  9. Mobile Inverted Constructivism: Education of Interaction Technology in Social Media

    ERIC Educational Resources Information Center

    Chai, Jia-Xiang; Fan, Kuo-Kuang

    2016-01-01

    The combination of social media and invert teaching is a new path to inverting interation technology education and reconstructing the curriculum of context. In this paper, based on the theory of constructivism learning, a model named Mobile Inverted Constructivism (MIC) is provided. Moreover, in view of the functional quality of social media in…

  10. A New Approach for High Efficiency Buck-Boost DC/DC Converters Using Series Compensation

    NASA Astrophysics Data System (ADS)

    Itoh, Jun-Ichi; Fujii, Takashi

    This paper proposes a novel concept for non-isolated buck-boost DC/DC converter and control method. The proposed concept uses a series connection converter that only regulates the differential voltage between the input and output voltage. As a result, the power converter capacity is decreased. Moreover, the proposed circuit has advantages such as improved efficiency and losses reduction. The fundamental operation, control method, and design method of the proposed circuit are described in this paper. In addition, the validity of the proposed circuit is confirmed by carrying out simulations and experiments.

  11. Real-Time Implementation of a Fuzzy Logic Controller for DC-DC Switching Converters

    DTIC Science & Technology

    2007-11-02

    studies, it will be observed that, the proposed fuzzy controller maintains the output voltage at the desired 5V with slight overshoot during each...537-546, May 1997. [3] H. Sira -Ramirez, “Design of P-I controllers for DC-to-DC power supplies via extended linearization,” Int. J. Control, vol. 51...Technology, vol. 7, pp. 230-237, Mar. 1999. [5] G. Escobar, R. Ortega, H. Sira -Ramirez, J.P. Vilain and I. Zein, “An experimental comparison of several

  12. Motor/Generator and Inverter Characterization for Flywheel System Applications

    NASA Technical Reports Server (NTRS)

    Tamarcus, Jeffries L.

    2004-01-01

    The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.

  13. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  14. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  15. Interlayer coupling effect on the performance of monolithic three-dimensional inverters and its dependence on the interlayer dielectric thickness

    NASA Astrophysics Data System (ADS)

    Hattori, Junichi; Fukuda, Koichi; Irisawa, Toshifumi; Ota, Hiroyuki; Maeda, Tatsuro

    2017-04-01

    We study the interlayer coupling in monolithic three-dimensional (3D) inverters and investigate its effect on the performance of 3D inverters using technology computer-aided design simulation. The interlayer coupling in 3D inverters consisting of silicon-on-insulator metal–oxide–semiconductor field-effect transistors (FETs) improves the current driving capability of the top FETs. Owing to this improvement, 3D inverters have a smaller intrinsic delay than the corresponding two-dimensional (2D) inverters although the switching energies of 3D and 2D inverters are comparable to each other. We analyze the relationship of such interlayer coupling effects with the interlayer dielectric (ILD) thickness and find that there exists an appropriate ILD thickness in terms of various aspects of the performance such as speed, energy efficiency, and both. It is also found that decreasing the power supply voltage enhances the interlayer coupling effects. In addition, we reveal that the interlayer coupling in 3D inverters is strongly dependent on the original structure of the constituent FETs.

  16. A DC Transformer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  17. How Learning in an Inverted Classroom Influences Cooperation, Innovation and Task Orientation

    ERIC Educational Resources Information Center

    Strayer, Jeremy F.

    2012-01-01

    Recent technological developments have given rise to blended learning classrooms. An inverted (or flipped) classroom is a specific type of blended learning design that uses technology to move lectures outside the classroom and uses learning activities to move practice with concepts inside the classroom. This article compares the learning…

  18. Experimental study on the performance of an inverter heat pump system with bypass orifices

    SciTech Connect

    Choi, J.; Kim, Y.

    1999-07-01

    An experimental study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of an inverter heat pump was measured with a variation of frequency and length of capillary tube, and applying a newly designed bypass orifice. The inverter heat pump with the standard capillary tube that was optimum size at the rated frequency and ASHRAE test condition ``A'' was tested by varying frequency. The optimum cycles were also investigated by changing the length of capillary tube at individual level of low, rated, and high frequency. Since the inverter heat pump with a capillary tube does not provide optimal cycles at all operating frequencies, a bypass orifice was invented to improve the performance of the system at the wide frequency range. The flow rate change of the bypass orifice with respect to frequency was higher than that of the capillary tube. As a results of applying the bypass orifice to the inverter heat pump system, the performance was enhanced in the low frequency level compared with the conventional expansion device of a capillary tube.

  19. DSP-based control of a high frequency three cell flying capacitor inverter

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, A. A.; Rossano-Díaz, I. O.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; de la Piedad-Beneitez, A.; Barocio, S. R.; Valencia, R.

    2010-03-01

    The design, instrumentation and early operation results of a digitally controlled voltage source inverter (VSI) are described. This inverter has been structured from a three cell flying capacitor inverter (TCFCI). Two different inverter control modes - open-loop and closed-loop - are applied by a digital system based on a Texas Instrument TMS320C6713 digital signal processor (DSP) board. The VSI is able to generate AC voltage signals up to 120 V amplitudes at a maximal 6 A current, from ∼9 kHz to ∼60 kHz in ∼900 Hz steps in both controls by varying the signal period through the square-wave command strategy. The multi-cell structure of the inverter provides an output frequency nearly three times that of the TCFCI semiconductor commutation. The power output of the TCFCI can drive a high frequency step-up transformer which, in turn, is associated with a cylindrical reactor where dielectric barrier discharges (DBD) are conducted.

  20. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect

    Lai, Jason; Yu, Wensong; Sun, Pengwei; Leslie, Scott; Prusia, Duane; Arnet, Beat; Smith, Chris; Cogan, Art

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  1. Hybrid DC/DC Converter for SAR Antenna Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Calcatterra, Paolo; Galantini, Paolo; Scorzafava, Edmondo; Sagnelli, Salvatore; Benettin, Piero

    2014-08-01

    When distributed power supply is mandatory to provide full functional redundancy in a SAR application, a compact design to minimize size and weight became the main driver of the system.In this context a single hermetic DC/DC converter, including magnetic components, has been made in thick-film Hybrid technology.It is designed for state of the art electrical performance, minimum mass and size, maximum reliability for SAR application, where each transmitter / receiver module is powered by one dedicated DC/DC converterIt is characterised by a very simplified design approach to get high reliability and repeatability for large scale production.The Hybrid uses a standard thick film multilayer technology, currently in use for military and Space application.A few passive components are placed outside the Hybrid according to desired Conducted Emission / Susceptibility performance requirements (input and output filters).The Hybrid is manufactured with multilayer ceramic substrate with ad-hoc solution to manage thermal and cross talk signal issues.The trimming of the PSU is via laser active trimming performed during Hybrid manufacturing. No further trimming is needed.The process control is performed according to MIL PRF 38534.The Hybrid is manufactured according ECSS-Q-ST-60- 05C.

  2. Minimizing Gravity Sag of a Large Mirror with an Inverted Hindle-Mount

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    A method of minimizing the optical distortion from gravity sag on a suspended large autocollimating flat mirror has been devised. This method consists of an inverted nine-point Hindle-Mount. A conventional Hindle-mount is located underneath a sky-viewing mirror and is primarily under compression loads from the weight of the mirror. It is not suitable for the situation where the mirror is viewing the ground, since a mirror would tend to fall out of the mount when in an inverted position. The inverted Hindle-Mount design consists of bonded joints on the backside of the mirror that allow the mirror to be held or suspended above an object to be viewed. This ability is useful in optical setups such as a calibration test where a flat mirror is located above a telescope so that the telescope may view a known optic.

  3. Electronic Document Management Using Inverted Files System

    NASA Astrophysics Data System (ADS)

    Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon

    2014-03-01

    The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  4. Maskless inverted pyramid texturization of silicon

    PubMed Central

    Wang, Yan; Yang, Lixia; Liu, Yaoping; Mei, Zengxia; Chen, Wei; Li, Junqiang; Liang, Huili; Kuznetsov, Andrej; Xiaolong, Du

    2015-01-01

    We discovered a technical solution of such outstanding importance that it can trigger new approaches in silicon wet etching processing and, in particular, photovoltaic cell manufacturing. The so called inverted pyramid arrays, outperforming conventional pyramid textures and black silicon because of their superior light-trapping and structure characteristics, can currently only be achieved using more complex techniques involving lithography, laser processing, etc. Importantly, our data demonstrate a feasibility of inverted pyramidal texturization of silicon by maskless Cu-nanoparticles assisted etching in Cu(NO3)2 / HF / H2O2 / H2O solutions and as such may have significant impacts on communities of fellow researchers and industrialists. PMID:26035520

  5. Mutagenic inverted repeat assisted genome engineering (MIRAGE).

    PubMed

    Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Here we describe a one-step method to create precise modifications in the genome of Saccharomyces cerevisiae as a tool for synthetic biology, metabolic engineering, systems biology and genetic studies. Through homologous recombination, a mutagenesis cassette containing an inverted repeat of selection marker(s) is integrated into the genome. Due to its inherent instability in genomic DNA, the inverted repeat catalyzes spontaneous self-excision, resulting in precise genome modification. Since this excision occurs at very high frequencies, selection for the integration event can be followed immediately by counterselection, without the need for growth in permissive conditions. This is the first time a truly one-step method has been described for genome modification in any organism.

  6. Micro-inverter solar panel mounting

    SciTech Connect

    Morris, John; Gilchrist, Phillip Charles

    2016-02-02

    Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solar panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.

  7. A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells

    SciTech Connect

    Jason Lai

    2009-03-03

    A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

  8. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  9. Inverter testing at Sandia National Laboratories

    SciTech Connect

    Ginn, J.W.; Bonn, R.H.; Sittler, G.

    1997-04-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  10. Fault Current Contribution from Single-Phase PV Inverters

    SciTech Connect

    Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

    2011-01-01

    A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

  11. Triple voltage dc-to-dc converter and method

    DOEpatents

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  12. Power supply system design and build for Antarctica telescope

    NASA Astrophysics Data System (ADS)

    Du, Fujia; Li, Hao; Li, Aiai

    2016-07-01

    Currently, more and more telescopes were built and installed in Dome A of Antarctic. The telescopes are remote controlled, unattended operation due to Dome A's environment. These telescopes must be work successfully at least one year without any failure. According to past experience, the power supply system is the weakest point in whole system. The telescopes have to stop if the power system have a problem, even a minor problem. So the high requirement for power supply system are presented. The requirement include high reliability, the self-diagnosis and perfect monitor system. Furthermore, the optic telescope only can work at night. The power source mainly relay on diesel engine. To protect the Antarctic environment and increase the life of engines. The power capacity is limited during observation. So it need the power supply system must be high power factor, high efficient. To meet these requirement, one power supply system was design and built for Antarctic telescope. The power supply system have the following features. First, we give priority to achieve high reliability. The reliability of power system was calculated and the redundant system is designed to make sure that the spare one can be work immediately when some parts have problems. Second, the perfect monitor system was designed to monitor the voltage, current, power and power factor for each power channel. The status of power supply system can be acquired by internet continuously. All the status will be logged in main computer for future analysis. Third, the PFC (Power Factor Correction) technology was used in power supply system. This technology can dramatically increase the power factor, especially in high power situation. The DC-DC inverter instead of AC-DC inverter was used for different voltage level to increase the efficient of power supply.

  13. Multiple DC, single AC converter with a switched DC transformer

    DOEpatents

    Donnelly, M.K.; Hammerstrom, D.J.

    1997-05-20

    The invention is an improvement of the PASC inverter, wherein the improvements include the reduction from two shorting gates per transformer to one shorting gate per transformer and replacement of active control of the shorting gate with passive control of the shorting gate. Further advantages are obtained through the use of anti-parallel gate sets. 14 figs.

  14. Multiple DC, single AC converter with a switched DC transformer

    DOEpatents

    Donnelly, Matthew K.; Hammerstrom, Donald J.

    1997-01-01

    The invention is an improvement of the PASC inverter, wherein the improvements include the reduction from two shorting gates per transformer to one shorting gate per transformer and replacement of active control of the shorting gate with passive control of the shorting gate. Further advantages are obtained through the use of anti-parallel gate sets.

  15. Electrodynamics of AN Ion Inverted V.

    NASA Astrophysics Data System (ADS)

    Burgess, Georgette Olive

    Particle precipitation around the earth's polar regions may be the footprint of various energizing phenomena in the magnetosphere. Satellite-observed electron fluxes whose peak energy increases then decreases are called inverted V's. The Atmosphere Explorer-D Low Energy Electron (LEE) data for January 11, 1976 indicates that the precipitating ions have been accelerated. In this event the spectrograms of the ion flux shows the change of the peak energy with time characteristic of an inverted V. The electron population is decelerated as the ion population is accelerated, consistent with a downward electric field. The Birkeland current at an inverted V may be calculated in two ways: from the divergence of the electric field or from the observed particle fluxes. We found that the two methods agree on the location of Birkeland current throughout the event, but the magnitudes are not the same. This is not surprising, since the component of (DEL)((')(SIGMA)(.)(')E) perpendicular to the trajectory can not be determined. The electric potential along the spacecraft's trajectory (790-650 km altitude) was calculated from the measured electric fields. The sum of the parallel potential drop (inferred from the ion distribution function) and the ionospheric potential gives the potential profile at the magnetosphere. The parallel electric field thus partially decoupled the ionospheric flow from the magnetospheric flow. The electric field pattern in the magnetosphere -ionosphere system demands field-aligned currents. When the thermal current is insufficient, a field-aligned potential drop can accelerate particles to satisfy the requirements. The thermal electron current from the ionosphere is much greater than that from the magnetosphere. Thus, it is more common to observe the signatures of an upward electric field: the electron "inverted V". In the ion inverted V observed during AE-D orbit 1141, the postulated parallel potential has reduced the required parallel current. This high

  16. Light weight, high power, high voltage dc/dc converter technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  17. Thermoelectric-Generator-Based DC-DC Conversion Networks for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Li, Molan; Xu, Shaohui; Chen, Qiang; Zheng, Li-Rong

    2011-05-01

    Maximizing electrical energy generation through waste heat recovery is one of the modern research questions within automotive applications of thermoelectric (TE) technologies. This paper proposes a novel concept of distributed multisection multilevel DC-DC conversion networks based on thermoelectric generators (TEGs) for automotive applications. The concept incorporates a bottom-up design approach to collect, convert, and manage vehicle waste heat efficiently. Several state-of-the-art thermoelectric materials are analyzed for the purpose of power generation at each waste heat harvesting location on a vehicle. Optimal materials and TE couple configurations are suggested. Moreover, a comparison of prevailing DC-DC conversion techniques was made with respect to applications at each conversion level within the network. Furthermore, higher-level design considerations are discussed according to system specifications. Finally, a case study is performed to compare the performance of the proposed network and a traditional single-stage system. The results show that the proposed network enhances the system conversion efficiency by up to 400%.

  18. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  19. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  20. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  1. An Approach to Suppressing Both Shaft Voltage and Leakage Current in an AC Motor Driven by a Voltage-Source PWM Inverter

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a practical approach to suppressing both shaft voltage and leakage current in an ac motor driven by a voltage-source PWM inverter. This approach is characterized by using a neutral line of the ac motor. A common-mode inductor is connected between the inverter and the motor. Moreover, a resistor and a capacitor are connected in series between the motor neutral point and the inverter negative dc bus. This unique circuit configuration makes the common-mode inductor effective in reducing the common-mode voltage appearing at the motor terminals. As a result, both shaft voltage and ground current are significantly suppressed with low cost. Over-voltages at the end of a cable can be suppressed by a normal-mode inductor and a resistor which are connected in parallel. The validity and effectiveness of the new approach are verified by experimental results from a 5-kVA laboratory system.

  2. Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    PubMed Central

    Gigley, Jason P.; Khan, Imtiaz A.

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169

  3. Plasmacytoid DC from aged mice down-regulate CD8 T cell responses by inhibiting cDC maturation after Encephalitozoon cuniculi infection.

    PubMed

    Gigley, Jason P; Khan, Imtiaz A

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.

  4. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect

    Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M; Ozpineci, Burak

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  5. Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Filho, Faete; Cao, Yue

    2011-01-01

    This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).

  6. Unified power flow controller: Modeling, stability analysis, control strategy and control system design

    NASA Astrophysics Data System (ADS)

    Sreenivasachar, Kannan

    2001-07-01

    Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this

  7. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; Duboz, Jean-Yves; De Moor, Piet; Minoglou, Kyriaki; John, Joachim; Horcajo, Sara Martin; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Esposito, Marco; Giordanengo, Boris; BenMoussa, Ali; Mertens, Robert; Van Hoof, Chris

    2011-04-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  8. High performance control of a three-level IGBT inverter fed AC drive

    SciTech Connect

    Zhang, J.

    1995-12-31

    Three-level PWM inverters have been increasingly employed in industry and traction applications where high power and efficiency energy conversions are required. This paper presents a high performance control of a cage induction motor drive fed by a 100 Hp three-level IGBT inverter operating at a low switching frequency. A practical math model of the drive control system is established to aid in the control design to improve the system stability, dynamic performance and robustness over a wide speed range. The modeling and the simulation in Matlab/Simulink facilitate the self-tuning of the regulators in the multi-loop systems. The field oriented control and three-level space-vector modulation together with the drive protection and diagnostics are implemented in software based on a DSP TMS320C31. Experimental results based on the IGBT inverter prototype are given to verify the design and performance. Test results in motor common-mode voltage reduction and inverter neutral-point potential control re also briefly presented.

  9. Alpha detection in pipes using an inverting membrane scintillator

    SciTech Connect

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  10. Dynamic Modeling and Simulation of a Rotational Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.

    2017-01-01

    This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.

  11. Multiplatform information-based sensor management: an inverted UAV demonstration

    NASA Astrophysics Data System (ADS)

    Kreucher, Chris; Wegrzyn, John; Beauvais, Michel; Conti, Ralph

    2007-04-01

    This paper describes an experimental demonstration of a distributed, decentralized, low communication sensor management algorithm. We first review the mathematics surrounding the method, which includes a novel combination of particle filtering for predictive density estimation and information theory for maximizing information flow. Earlier work has shown the utility via Monte Carlo simulations. Here we present a laboratory demonstration to illustrate the utility and to provide a stepping stone toward full-up implementation. To that end, we describe an inverted Unmanned Aerial Vehicle (UAV) test-bed developed by The General Dynamics Advanced Information Systems (GDAIS) Michigan Research and Development Center (MRDC) to facilitate and promote the maturation of the research algorithm into an operational, field-able system. Using a modular design with wheeled robots as surrogates to UAVs, we illustrate how the method is able to detect and track moving targets over a large surveillance region by tasking a collection of limited field of view sensors.

  12. Enhancement of Current Density by dc Electric Concentrator

    PubMed Central

    Jiang, Wei Xiang; Luo, Chen Yang; Ma, Hui Feng; Mei, Zhong Lei; Cui, Tie Jun

    2012-01-01

    We investigate a dc electric concentrator for steady current fields theoretically and experimentally. Based on the transformation electrostatics, we show that the dc concentrator can focus electric currents into the central concentrated region and enhance the electric field and current density. Outside the concentrator, the current lines are distributed as the same as those in a homogeneous conducting material. Hence, such a dc electric concentrator has no impact on other external devices. Using the analogy between electrically conducting materials and resistor networks, we design, fabricate, and test a dc concentrator using the circuit theory. The measured results agree very well with the theoretical predictions and numerical simulations, demonstrating the perfect concentrating performance. PMID:23233875

  13. Semi-transparent inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Winkler, T.; Tilgner, M.; Flügge, H.; Schmale, S.; Bülow, T.; Meyer, J.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-08-01

    We will present efficient semi-transparent bulk-heterojunction [regioregular of poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester] solar cells with an inverted device architecture. Highly transparent ZnO and TiO2 films prepared by Atomic Layer Deposition are used as cathode interlayers on top of ITO. The topanode consists of a RF-sputtered ITO layer. To avoid damage due to the plasma deposition of this layer, a sputtering buffer layer of MoO3 is used as protection. This concept allows for devices with a transmissivity higher than 60 % for wavelengths 650 nm. The thickness of the MoO3 buffer has been varied in order to study its effect on the electrical properties of the solar cell and its ability to prevent possible damage to the organic active layers upon ITO deposition. Without this buffer or for thin buffers it has been found that device performance is very poor concerning the leakage current, the fill factor, the short circuit current and the power conversion efficiencies. As a reference inverted solar cells with a metal electrode (Al) instead of the ITO-top contact are used. The variation between the PCE of top versus conventional illumination of the semi-transparent cells was also examined and will be interpreted in view of the results of the optical simulation of the dielectric device stack with and without reflection top electrode. Power conversion efficiencies of 2-3 % for the opaque inverted solar cells and 1.5-2.5 % for the semi-transparent devices were obtained under an AM1.5G illumination.

  14. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  15. The 25 kW resonant dc/dc power converter

    NASA Astrophysics Data System (ADS)

    Robson, R. R.

    1983-09-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  16. Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter

    NASA Astrophysics Data System (ADS)

    Kurokawa, Fujio; Okamatsu, Masashi

    This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.

  17. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    NASA Astrophysics Data System (ADS)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  18. FPGA Based Compensation Method for Correcting Distortion in Voltage Inverters

    DTIC Science & Technology

    2007-12-01

    inserted to prevent the short circuit that would occur if the two transistors in the same inverter leg are both on at the same time. This delay...occur if the two transistors in the same inverter leg are both on at the same time. This delay produces harmonic distortion and non-linearity when...delay inserted to prevent the short circuit that would occur if the two transistors in a single inverter leg were both on at the same time. This

  19. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    SciTech Connect

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    2016-10-14

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  20. Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications

    SciTech Connect

    Onar, Omer C; Campbell, Steven L; Ning, Puqi; Miller, John M; Liang, Zhenxian

    2013-01-01

    In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.