Science.gov

Sample records for investigate intratumoral heterogeneity

  1. Intratumor Heterogeneity in Breast Cancer.

    PubMed

    Beca, Francisco; Polyak, Kornelia

    2016-01-01

    Intratumor heterogeneity is the main obstacle to effective cancer treatment and personalized medicine. Both genetic and epigenetic sources of intratumor heterogeneity are well recognized and several technologies have been developed for their characterization. With the technological advances in recent years, investigators are now elucidating intratumor heterogeneity at the single cell level and in situ. However, translating the accumulated knowledge about intratumor heterogeneity to clinical practice has been slow. We are certain that better understanding of the composition and evolution of tumors during disease progression and treatment will improve cancer diagnosis and the design of therapies. Here we review some of the most important considerations related to intratumor heterogeneity. We discuss both genetic and epigenetic sources of intratumor heterogeneity and review experimental approaches that are commonly used to quantify it. We also discuss the impact of intratumor heterogeneity on cancer diagnosis and treatment and share our perspectives on the future of this field. PMID:26987535

  2. Towards inverse modeling of intratumor heterogeneity

    NASA Astrophysics Data System (ADS)

    Brutovsky, Branislav; Horvath, Denis

    2015-08-01

    Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells' fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.

  3. Are we getting closer to understanding intratumor heterogeneity in hepatocellular carcinoma?

    PubMed

    Hammoud, Ghassan M; Ibdah, Jamal A

    2016-04-01

    Hepatocellular carcinoma (HCC) is a highly heterogenous disease and intratumor heterogeneity is a well-known fact within each individual tumor, and may involve morphological, immunohistochemical, and molecular heterogeneities. Understanding of intratumor heterogeneity of HCC should provide critical knowledge about prognosis of the disease and response to therapy. In a recent article by Friemel and colleagues, the investigators utilized a comprehensive approach in linking immunohistochemical markers and molecular changes to morphological intratumor heterogeneity in HCC. The study found that intratumor heterogeneity was detectable in 87% of HCC cases. Combined heterogeneities with respect to morphologic, immunohistochemical, and mutational status of the two most important driver mutations CTNNB1 and TP53 were seen in 22% of HCC cases. The study demonstrates the challenges facing therapeutic strategies targeting single molecules and may explain the limited success so far in developing molecular targeted therapy for HCC. PMID:27115014

  4. Are we getting closer to understanding intratumor heterogeneity in hepatocellular carcinoma?

    PubMed Central

    Hammoud, Ghassan M.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a highly heterogenous disease and intratumor heterogeneity is a well-known fact within each individual tumor, and may involve morphological, immunohistochemical, and molecular heterogeneities. Understanding of intratumor heterogeneity of HCC should provide critical knowledge about prognosis of the disease and response to therapy. In a recent article by Friemel and colleagues, the investigators utilized a comprehensive approach in linking immunohistochemical markers and molecular changes to morphological intratumor heterogeneity in HCC. The study found that intratumor heterogeneity was detectable in 87% of HCC cases. Combined heterogeneities with respect to morphologic, immunohistochemical, and mutational status of the two most important driver mutations CTNNB1 and TP53 were seen in 22% of HCC cases. The study demonstrates the challenges facing therapeutic strategies targeting single molecules and may explain the limited success so far in developing molecular targeted therapy for HCC. PMID:27115014

  5. Analysis of intratumor heterogeneity unravels lung cancer evolution.

    PubMed

    de Bruin, Elza C; McGranahan, Nicholas; Swanton, Charles

    2015-01-01

    Lung cancer is a disease with dismal outcome. We recently reported a detailed intratumor heterogeneity analysis in 7 non-small cell lung cancer samples, revealing spatially separated driver events as well as the temporal dynamics of mutational processes and demonstrating an important role for APOBEC-mediated heterogeneity later in disease evolution. PMID:27308463

  6. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma

    PubMed Central

    Parker, Nicole R.; Hudson, Amanda L.; Khong, Peter; Parkinson, Jonathon F.; Dwight, Trisha; Ikin, Rowan J.; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R.; Howell, Viive M.

    2016-01-01

    Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies. PMID:26940435

  7. Genomic imbalances in urothelial cancer: intratumor heterogeneity versus multifocality.

    PubMed

    Prat, Esther; Del Rey, Javier; Camps, Jordi; Ponsa, Immaculada; Lloreta, Josep; Egozcue, Josep; Gelabert, Antoni; Campillo, Mercedes; Miro, Rosa

    2008-09-01

    Comparative genomic hybridization and fluorescence in situ hybridization were used to define genetic changes associated with multifocal bladder cancer and to investigate whether the genetic relationship between synchronous urothelial tumors is similar to that observed within different parts of the same tumor. We investigated 8 synchronous urothelial tumors from 3 patients and macroscopically different parts of the same tumor from 2 other patients. The most frequent imbalances were gains of 1q, 2p, and 17q, and losses in 4q. The high number of chromosome imbalances detected in the present report confirms that a high level of chromosome instability could be characteristic of multicentric bladder tumors. Comparative genomic hybridization profiles obtained from independent tumors belonging to the same patient allowed us to elaborate cytogenetic pedigrees portraying the accumulation of chromosome alterations as a form of clonal evolution from a single precursor cell. The analysis of different macroscopic parts of the same tumor allowed us to detect chromosomal heterogeneity and to delineate intratumor clonal evolution. Some chromosome regions that appeared as a gain in one subpopulation were amplified in others indicating a genetic evolution process. Identical processes were observed in different tumors of the same patient. Expansion of chromosome gains and losses between different parts of the same tumor as well as in different tumors of the same patient was also observed. Our results not only provide further evidence of a clonal relationship between different synchronous bladder tumors but also show that the intratumor heterogeneity present in different subpopulations of the same tumor reproduces the behavior of independent synchronous tumors in a same patient. PMID:18382360

  8. Intra-tumor Genetic Heterogeneity in Rectal Cancer

    PubMed Central

    Hardiman, Karin M.; Ulintz, Peter J.; Kuick, Rork; Hovelson, Daniel H.; Gates, Christopher M.; Bhasi, Ashwini; Grant, Ana Rodrigues; Liu, Jianhua; Cani, Andi K.; Greenson, Joel; Tomlins, Scott; Fearon, Eric R.

    2015-01-01

    Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate regions from each of six rectal tumors were dissected and subjected to next-generation whole exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and copy number analysis including measurement of correlation between samples was performed. Somatic mutations profiles in individual cancers were similar to prior studies, with some variants found in previously reported significantly mutated genes and many patient-specific mutations in each tumor. Significant intra-tumor heterogeneity was identified in the spatially disparate regions of individual cancers. All tumors had some heterogeneity but the degree of heterogeneity was quite variable in the samples studied. We found that 67–97% of exonic somatic mutations were shared among all regions of an individual’s tumor. The SciClone computational method identified 2 to 8 shared and unshared subclones in the spatially disparate areas in each tumor. MATH scores ranged from 7 to 41. Allele frequency correlation scores ranged from R2 = 0.69 to 0.96. Measurements of correlation between samples for copy number changes varied from R2 = 0.74 to 0.93. All tumors had some heterogeneity, but the degree was highly variable in the samples studied. The occurrence of significant intra-tumor heterogeneity may allow

  9. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  10. Intratumoral heterogeneity of microRNA expression in breast cancer.

    PubMed

    Raychaudhuri, Mithu; Schuster, Tibor; Buchner, Theresa; Malinowsky, Katharina; Bronger, Holger; Schwarz-Boeger, Ulrike; Höfler, Heinz; Avril, Stefanie

    2012-07-01

    Profiling studies have identified specific microRNA (miRNA) signatures in malignant tumors including breast cancer. Our aim was to assess intratumoral heterogeneity in miRNA expression levels within primary breast cancers and between axillary lymph node metastases from the same patient. Specimens of 16 primary breast cancers were sampled in 8-10 distinct locations including the peripheral, intermediate, and central tumor zones, as well as two to five axillary lymph node metastases (n = 9). Total RNA was extracted from 132 paraffin-embedded samples, and the expression of miR-10b, miR-210, miR-31, and miR-335 was assessed as well as the reproducibility of RNA extraction and miRNA analysis by quantitative RT-PCR. Considerable intratumoral heterogeneity existed for all four miRNAs within primary breast cancers (CV 40%). No significant differences within (CV 34%) or between different tumor zones (CV 33%) were found. A similar variation in miRNA expression was observed between corresponding lymph node metastases (mean CV 40%). In comparison, the variation among different patients showed a CV of 80% for primary tumors and 103% for lymph node metastases. Both miRNA extraction procedures and quantitative RT-PCR showed high reproducibility (CV ≤ 2%). Thus, the intratumoral heterogeneity of miRNA expression in breast cancers can lead to significant sampling bias. Assessment of breast cancer miRNA profiles may require sampling at several different tumor locations and of several tumor-involved lymph nodes when deriving miRNA expression profiles of metastases.

  11. Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics

    PubMed Central

    Chen, Li; Choyke, Peter L.; Wang, Niya; Clarke, Robert; Bhujwalla, Zaver M.; Hillman, Elizabeth M. C.; Wang, Ge; Wang, Yue

    2014-01-01

    With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts. Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a variety of foreseeable applications in the clinic. PMID:25379705

  12. Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration.

    PubMed

    Rehemtulla, Alnawaz

    2012-12-01

    Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy. PMID:23308059

  13. Overcoming Intratumor Heterogeneity of Polygenic Cancer Drug Resistance with Improved Biomarker Integration1

    PubMed Central

    Rehemtulla, Alnawaz

    2012-01-01

    Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy. PMID:23308059

  14. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy.

    PubMed

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on (18)F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial (18)F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  15. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in 18F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy

    PubMed Central

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on 18F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial 18F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  16. ‘From the core to beyond the margin’: a genomic picture of glioblastoma intratumor heterogeneity

    PubMed Central

    Etcheverry, Amandine; Clavreul, Anne; Saikali, Stéphan; Menei, Philippe; Mosser, Jean

    2015-01-01

    Glioblastoma (GB) is a highly invasive primary brain tumor that almost systematically recurs despite aggressive therapies. One of the most challenging problems in therapy of GB is its extremely complex and heterogeneous molecular biology. To explore this heterogeneity, we performed a genome-wide integrative screening of three molecular levels: genome, transcriptome, and methylome. We analyzed tumor biopsies obtained by neuro-navigation in four distinct areas for 10 GB patients (necrotic zone, tumor zone, interface, and peripheral brain zone). We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. At the genome level, we identified common GB copy number alterations and but a strong interindividual molecular heterogeneity. Transcriptome analysis highlighted a pronounced intratumor architecture reflecting the surgical sampling plan of the study and identified gene modules associated with hallmarks of cancer. We provide a signature of key cancer-heterogeneity genes highly associated with the intratumor spatial gradient and show that it is enriched in genes with correlation between methylation and expression levels. Our study confirms that GBs are molecularly highly diverse and that a single tumor can harbor different transcriptional GB subtypes depending on its spatial architecture. PMID:25940437

  17. Evolution of intratumoral phenotypic heterogeneity: the role of trait inheritance.

    PubMed

    Gallaher, Jill; Anderson, Alexander R A

    2013-08-01

    A tumour is a heterogeneous population of cells that competes for limited resources. In the clinic, we typically probe the tumour by biopsy, and then characterize it by the dominant genetic clone. But genotypes are only the first link in the chain of hierarchical events that leads to a specific cell phenotype. The relationship between genotype and phenotype is not simple, and the so-called genotype to phenotype map is poorly understood. Many genotypes can produce the same phenotype, so genetic heterogeneity may not translate directly to phenotypic heterogeneity. We therefore choose to focus on the functional endpoint, the phenotype as defined by a collection of cellular traits (e.g. proliferative and migratory ability). Here, we will examine how phenotypic heterogeneity evolves in space and time and how the way in which phenotypes are inherited will drive this evolution. A tumour can be thought of as an ecosystem, which critically means that we cannot just consider it as a collection of mutated cells but more as a complex system of many interacting cellular and microenvironmental elements. At its simplest, a growing tumour with increased proliferation capacity must compete for space as a limited resource. Hypercellularity leads to a contact-inhibited core with a competitive proliferating rim. Evolution and selection occurs, and an individual cell's capacity to survive and propagate is determined by its combination of traits and interaction with the environment. With heterogeneity in phenotypes, the clone that will dominate is not always obvious as there are both local interactions and global pressures. Several combinations of phenotypes can coexist, changing the fitness of the whole. To understand some aspects of heterogeneity in a growing tumour, we build an off-lattice agent-based model consisting of individual cells with assigned trait values for proliferation and migration rates. We represent heterogeneity in these traits with frequency distributions and

  18. Intratumoral heterogeneity: Role of differentiation in a potentially lethal phenotype of testicular cancer

    PubMed Central

    Bilen, Mehmet Asim; Hess, Kenneth R.; Broaddus, Russell R.; Kopetz, Scott; Wei, Chongjuan; Pagliaro, Lance C.; Karam, Jose A.; Ward, John F.; Wood, Christopher G.; Rao, Priya; Tu, Zachary H.; General, Rosale; Chen, Adrienne H.; Nieto, Yago L.; Yeung, Sai‐ching J.; Lin, Sue‐Hwa; Logothetis, Christopher J.; Pisters, Louis L.

    2016-01-01

    BACKGROUND Intratumoral heterogeneity presents a major obstacle to the widespread implementation of precision medicine. The authors assessed the origin of intratumoral heterogeneity in nonseminomatous germ cell tumor of the testis (NSGCT) and identified distinct tumor subtypes and a potentially lethal phenotype. METHODS In this retrospective study, all consecutive patients who had been diagnosed with an NSGCT between January 2000 and December 2010 were evaluated. The histologic makeup of primary tumors and the clinical course of disease were determined for each patient. A Fine and Gray proportional hazards regression analysis was used to determine the prognostic risk factors, and the Gray test was used to detect differences in the cumulative incidence of cancer death. In a separate prospective study, next‐generation sequencing was performed on tumor samples from 9 patients to identify any actionable mutations. RESULTS Six hundred fifteen patients were included in this study. Multivariate analysis revealed that the presence of yolk sac tumor in the primary tumor (P = .0003) was associated with an unfavorable prognosis. NSGCT could be divided into 5 subgroups. Patients in the yolk sac‐seminoma subgroup had the poorest clinical outcome (P = .0015). These tumors tended to undergo somatic transformation (P < .0001). Among the 9 NSGCTs that had a yolk sac tumor phenotype, no consistent gene mutation was detected. CONCLUSIONS The current data suggest that intratumoral heterogeneity is caused in part by differentiation of pluripotent progenitor cells. Integrated or multimodal therapy may be effective at addressing intratumoral heterogeneity and treating distinct subtypes as well as a potentially lethal phenotype of NSGCT. Cancer 2016;122:1836–43. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License

  19. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site

    PubMed Central

    Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I.; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B.; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-01-01

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies. PMID:27034009

  20. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.

  1. Phenotypic Drift as a Cause for Intratumoral Morphological Heterogeneity of Invasive Ductal Breast Carcinoma Not Otherwise Specified

    PubMed Central

    Zavyalova, Marina V.; Tashireva, Lubov A.; Gerashchenko, Tatiana S.; Litviakov, Nikolay V.; Skryabin, Nikolay A.; Vtorushin, Sergey V.; Telegina, Nadezhda S.; Slonimskaya, Elena M.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.

    2013-01-01

    Abstract Invasive ductal carcinoma (IDC) not otherwise specified (NOS), the most common type of breast cancer, demonstrates great intratumoral morphological heterogeneity, which encompasses the presence of different types of morphological structures—tubular, trabecular, solid, and alveolar structures and discrete groups of tumor cells, the origins of which remain unclear at present. In this study of 162 IDC NOS patients, we investigated whether the distribution of different types of morphological structures is related to the basic clinicopathological parameters of IDC NOS. Our results showed that in patients with only one type of tumor structure, the presence of any one of the five types was equally probable; however, cases with two types of structures were more likely to contain trabecular structures than the other four types. The development of intratumoral morphological heterogeneity was not associated with menopausal status, tumor size, histological grade, hematogenic metastasis, or recurrence. However, the number of different types of morphological structures was significantly higher in luminal tumors than in triple-negative tumors. An increase in the frequency of lymph node metastasis correlated with the increased number of different types of structures in breast tumors; however, in contrast to premenopausal patients, this association was explained by the presence of alveolar structures in postmenopausal women. In addition, we showed a significant decrease in the numbers of positive lymph nodes in tumors with high numbers of morphological variants. The frequency of lymph node metastases and the number of positive nodes were generally independent features and formed by different mechanisms. Based on the evidence, the term “phenotypic drift” has been designated as the basis for the development of intratumoral morphological heterogeneity of IDC NOS. PMID:23593567

  2. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer

    PubMed Central

    Park, Noh-Hyun; Song, Yong Sang

    2016-01-01

    Objective We investigated the prognostic value of intratumoral [18F]fluorodeoxyglucose (FDG) uptake heterogeneity (IFH) derived from positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer. Methods Patients with uterine cervical cancer of the International Federation of Obstetrics and Gynecology (FIGO) stage IB to IIA were imaged with [18F]FDG PET/CT before radical surgery. PET/CT parameters such as maximum and average standardized uptake values (SUVmax and SUVavg), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and IFH were assessed. Regression analyses were used to identify clinicopathological and imaging variables associated with progression-free survival (PFS). Results We retrospectively reviewed clinical data of 85 eligible patients. Median PFS was 32 months (range, 6 to 83 months), with recurrence observed in 14 patients (16.5%). IFH at an SUV of 2.0 was correlated with primary tumor size (p<0.001), SUVtumor (p<0.001), MTVtumor (p<0.001), TLGtumor (p<0.001), depth of cervical invasion (p<0.001), and negatively correlated with age (p=0.036). Tumor recurrence was significantly associated with TLGtumor (p<0.001), MTVtumor (p=0.001), SUVLN (p=0.004), IFH (p=0.005), SUVtumor (p=0.015), and FIGO stage (p=0.015). Multivariate analysis identified that IFH (p=0.028; hazard ratio, 756.997; 95% CI, 2.047 to 279,923.191) was the only independent risk factor for recurrence. The Kaplan-Meier survival graphs showed that PFS significantly differed in groups categorized based on IFH (p=0.013, log-rank test). Conclusion Preoperative IFH was significantly associated with cervical cancer recurrence. [18F]FDG based heterogeneity may be a useful and potential predicator of patient recurrence before treatment. PMID:26768781

  3. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity | Office of Cancer Genomics

    Cancer.gov

    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools 'expanding ploidy and allele frequency on nested subpopulations' (EXPANDS) and PyClone to detect clones that are present at a ≥10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman's correlation coefficient, ρ = 0.24-0.41; P < 0.001).

  4. Intratumor heterogeneity, variability and plasticity: questioning the current concepts in classification and treatment of hepatocellular carcinoma.

    PubMed

    Weiskirchen, Ralf

    2016-04-01

    In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (β-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients. PMID:27115013

  5. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  6. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity.

    PubMed

    Rida, Padmashree C G; Cantuaria, Guilherme; Reid, Michelle D; Kucuk, Omer; Aneja, Ritu

    2015-12-01

    Cancer is truly an iconic disease--a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic.

  7. DREAMing: a simple and ultrasensitive method for assessing intratumor epigenetic heterogeneity directly from liquid biopsies.

    PubMed

    Pisanic, Thomas R; Athamanolap, Pornpat; Poh, Weijie; Chen, Chen; Hulbert, Alicia; Brock, Malcolm V; Herman, James G; Wang, Tza-Huei

    2015-12-15

    Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14(ARF) and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.

  8. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance. PMID:27641504

  9. Intra-tumor Heterogeneity in Localized Lung Adenocarcinomas Delineated by Multi-region Sequencing

    PubMed Central

    Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C.; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A.; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N.; Lee, Jack J.; Heymach, John V.; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I.; Futreal, P. Andrew

    2015-01-01

    Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intra-tumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multi-region whole exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20/21 known cancer gene mutations were identified in all regions of individual tumors suggesting single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months post-surgery, 3 patients have relapsed and all 3 patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. PMID:25301631

  10. Intra-tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas

    PubMed Central

    Mroz, Edmund A.; Tward, Aaron M.; Hammon, Rebecca J.; Ren, Yin; Rocco, James W.

    2015-01-01

    Background Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Methods and Findings Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity’s associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished

  11. Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer.

    PubMed Central

    Mirchandani, D.; Zheng, J.; Miller, G. J.; Ghosh, A. K.; Shibata, D. K.; Cote, R. J.; Roy-Burman, P.

    1995-01-01

    Prostatic carcinoma from 65 patients have been examined for the occurrence of point mutations in the p53 tumor suppressor gene locus within the region of exons 5 to 8. Overall, only a small fraction of tumors (12.3%) was found to contain p53 mutations. No significant correlation was detected between the presence of the mutant gene and either tumor volume or histopathological grade. However, metastatic prostatic tumors are found to display a higher percentage (21.4%) of p53 mutations compared with primary adenocarcinomas (9.8%). Analysis of the topographical distribution of the p53 mutant genotype revealed two remarkable findings. First, multifocal tumors within a prostate appear to differ in harboring the mutant gene, and second, evidence is obtained for intratumor heterogeneity in the distribution of the mutant p53 allele. Together these findings appear to explain, at least in part, why there has been a wide discrepancy in the reported detection frequency of p53 mutations in prostate cancer specimens. It appears that the outcome of mutation analysis would depend not only on which tumors but also which regions of the tumors are included in the study. Furthermore, the observed heterogeneous topographical distribution of the mutation, if confirmed to be unique to prostate cancer, may have important implications in the understanding of the biology of prostate carcinogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7604888

  12. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival

    PubMed Central

    Desrichard, Alexis; Şenbabaoğlu, Yasin; Hakimi, A. Ari; Makarov, Vladimir; Reis-Filho, Jorge S.; Chan, Timothy A.

    2016-01-01

    As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes, across different cancer types. Here, we report the results of a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 9 cancer types. While some gene mutations are subclonal, the majority of driver gene mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels of ITH are associated with poorer survival across diverse types of cancer. The adverse impact of high ITH is independent of other clinical, pathologic and molecular factors. High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, but this association is not able to explain the observed survival differences. Together, these data show that ITH is a prognostic marker in multiple cancers. These results illuminate the natural history of cancer evolution, indicating that tumor heterogeneity represents a significant obstacle to cancer control. PMID:26840267

  13. Intra-Tumor Genetic Heterogeneity in Wilms Tumor: Clonal Evolution and Clinical Implications.

    PubMed

    Cresswell, George D; Apps, John R; Chagtai, Tasnim; Mifsud, Borbala; Bentley, Christopher C; Maschietto, Mariana; Popov, Sergey D; Weeks, Mark E; Olsen, Øystein E; Sebire, Neil J; Pritchard-Jones, Kathy; Luscombe, Nicholas M; Williams, Richard D; Mifsud, William

    2016-07-01

    The evolution of pediatric solid tumors is poorly understood. There is conflicting evidence of intra-tumor genetic homogeneity vs. heterogeneity (ITGH) in a small number of studies in pediatric solid tumors. A number of copy number aberrations (CNA) are proposed as prognostic biomarkers to stratify patients, for example 1q+ in Wilms tumor (WT); current clinical trials use only one sample per tumor to profile this genetic biomarker. We multisampled 20 WT cases and assessed genome-wide allele-specific CNA and loss of heterozygosity, and inferred tumor evolution, using Illumina CytoSNP12v2.1 arrays, a custom analysis pipeline, and the MEDICC algorithm. We found remarkable diversity of ITGH and evolutionary trajectories in WT. 1q+ is heterogeneous in the majority of tumors with this change, with variable evolutionary timing. We estimate that at least three samples per tumor are needed to detect >95% of cases with 1q+. In contrast, somatic 11p15 LOH is uniformly an early event in WT development. We find evidence of two separate tumor origins in unilateral disease with divergent histology, and in bilateral WT. We also show subclonal changes related to differential response to chemotherapy. Rational trial design to include biomarkers in risk stratification requires tumor multisampling and reliable delineation of ITGH and tumor evolution.

  14. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  15. Common Protein Biomarkers Assessed by Reverse Phase Protein Arrays Show Considerable Intratumoral Heterogeneity in Breast Cancer Tissues

    PubMed Central

    Buchner, Theresa; Thulke, Sabrina; Wolff, Claudia; Höfler, Heinz; Becker, Karl-Friedrich; Avril, Stefanie

    2012-01-01

    Proteins are used as prognostic and predictive biomarkers in breast cancer. However, the variability of protein expression within the same tumor is not well studied. The aim of this study was to assess intratumoral heterogeneity in protein expression levels by reverse-phase-protein-arrays (RPPA) (i) within primary breast cancers and (ii) between axillary lymph node metastases from the same patient. Protein was extracted from 106 paraffin-embedded samples from 15 large (≥3 cm) primary invasive breast cancers, including different zones within the primary tumor (peripheral, intermediate, central) as well as 2–5 axillary lymph node metastases in 8 cases. Expression of 35 proteins including 15 phosphorylated proteins representing the HER2, EGFR, and uPA/PAI-1 signaling pathways was assessed using reverse-phase-protein-arrays. All 35 proteins showed considerable intratumoral heterogeneity within primary breast cancers with a mean coefficient of variation (CV) of 31% (range 22–43%). There were no significant differences between phosphorylated (CV 32%) and non-phosphorylated proteins (CV 31%) and in the extent of intratumoral heterogeneity within a defined tumor zone (CV 28%, range18–38%) or between different tumor zones (CV 24%, range 17–38%). Lymph node metastases from the same patient showed a similar heterogeneity in protein expression (CV 27%, range 18–34%). In comparison, the variation amongst different patients was higher in primary tumors (CV 51%, range 29–98%) and lymph node metastases (CV 65%, range 40–146%). Several proteins showed significant differential expression between different tumor stages, grades, histological subtypes and hormone receptor status. Commonly used protein biomarkers of breast cancer, including proteins from HER2, uPA/PAI-1 and EGFR signaling pathways showed higher than previously reported intratumoral heterogeneity of expression levels both within primary breast cancers and between lymph node metastases from the same

  16. Common protein biomarkers assessed by reverse phase protein arrays show considerable intratumoral heterogeneity in breast cancer tissues.

    PubMed

    Malinowsky, Katharina; Raychaudhuri, Mithu; Buchner, Theresa; Thulke, Sabrina; Wolff, Claudia; Höfler, Heinz; Becker, Karl-Friedrich; Avril, Stefanie

    2012-01-01

    Proteins are used as prognostic and predictive biomarkers in breast cancer. However, the variability of protein expression within the same tumor is not well studied. The aim of this study was to assess intratumoral heterogeneity in protein expression levels by reverse-phase-protein-arrays (RPPA) (i) within primary breast cancers and (ii) between axillary lymph node metastases from the same patient. Protein was extracted from 106 paraffin-embedded samples from 15 large (≥3 cm) primary invasive breast cancers, including different zones within the primary tumor (peripheral, intermediate, central) as well as 2-5 axillary lymph node metastases in 8 cases. Expression of 35 proteins including 15 phosphorylated proteins representing the HER2, EGFR, and uPA/PAI-1 signaling pathways was assessed using reverse-phase-protein-arrays. All 35 proteins showed considerable intratumoral heterogeneity within primary breast cancers with a mean coefficient of variation (CV) of 31% (range 22-43%). There were no significant differences between phosphorylated (CV 32%) and non-phosphorylated proteins (CV 31%) and in the extent of intratumoral heterogeneity within a defined tumor zone (CV 28%, range 18-38%) or between different tumor zones (CV 24%, range 17-38%). Lymph node metastases from the same patient showed a similar heterogeneity in protein expression (CV 27%, range 18-34%). In comparison, the variation amongst different patients was higher in primary tumors (CV 51%, range 29-98%) and lymph node metastases (CV 65%, range 40-146%). Several proteins showed significant differential expression between different tumor stages, grades, histological subtypes and hormone receptor status. Commonly used protein biomarkers of breast cancer, including proteins from HER2, uPA/PAI-1 and EGFR signaling pathways showed higher than previously reported intratumoral heterogeneity of expression levels both within primary breast cancers and between lymph node metastases from the same patient. Assessment

  17. Pan-cancer analysis of the extent and consequences of intra-tumor heterogeneity

    PubMed Central

    Andor, Noemi; Graham, Trevor A.; Jansen, Marnix; Xia, Li C.; Aktipis, C. Athena; Petritsch, Claudia; Ji, Hanlee P.; Maley, Carlo C.

    2016-01-01

    Intra-tumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used EXPANDS and PyClone to detect clones >10% frequency within 1,165 exome sequences from TCGA tumors. 86% of tumors across 12 cancer types had at least two clones. ITH in nuclei morphology was associated with genetic ITH (Spearman ρ: 0.24–0.41, P<0.001). Mutation of a driver gene that typically appears in smaller clones was a survival risk factor (HR=2.15, 95% CI: 1.71–2.69). The risk of mortality also increased when >2 clones coexisted (HR=1.49, 95% CI: 1.20–1.87). In two independent datasets, copy number alterations affecting either <25% or >75% of a tumor’s genome predicted reduced risk (HR=0.15, 95% CI: 0.08–0.29). Mortality risk also declined when more than four clones coexisted in the sample, suggesting a tradeoff between costs and benefits of genomic instability. ITH and genomic instability have the potential to be useful measures universally applicable across cancers. PMID:26618723

  18. Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results.

    PubMed

    Kim, Seong-Jang; Chang, Samuel

    2015-12-01

    The current study was aimed to investigate the clinical value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodule (TN) with inconclusive fine-needle aspiration biopsy (FNAB) results. The current study enrolled 200 patients who showed F-18 FDG incidentaloma and were performed FNAB. The intratumoral heterogeneity of F-18 FDG uptake was represented as the heterogeneity factor (HF), defined as the derivative (dV/dT) of a volume-threshold function for a primary tumor. The diagnostic and predictive values of HF and F-18 FDG PET/CT parameters were evaluated for characterization of inconclusive FNAB results. Among F-18 FDG PET/CT parameters, SUVmax, MTV, and TLG of malignant group were statistically higher than those of Bethesda category of suspicious malignant group. However, HF values were not statistically different between the groups of Bethesda categories (Kruskal-Wallis statistics, 9.924; p = 0.0774). In ROC analysis, when HF > 2.751 was used as cut-off value, the sensitivity and specificity for prediction of malignant TN were 100 % (95 % CI 69.2-100 %) and 60 % (95 % CI 42.1-76.1 %), respectively. The AUC was 0.826 (95 % CI 0.684-0.922) and standard error was 0.0648 (p < 0.0001). In conclusion, the intratumoral heterogeneity of F-18 FDG uptake represented by HF could be a predictor for characterization of TN with inconclusive FNAB results. Additional large population-based prospective studies are needed to validate the diagnostic utility of HF of F-18 FDG PET/CT.

  19. Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity

    PubMed Central

    McBride, Michelle; Rida, Padmashree C.G.; Aneja, Ritu

    2016-01-01

    Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor’s perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor’s inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor’s proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies. PMID:26024970

  20. Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity.

    PubMed

    McBride, Michelle; Rida, Padmashree C G; Aneja, Ritu

    2015-11-01

    Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.

  1. Understanding Intratumoral Heterogeneity: Lessons from the Analysis of At-Risk Tissue and Premalignant Lesions in the Colon.

    PubMed

    Sievers, Chelsie K; Leystra, Alyssa A; Clipson, Linda; Dove, William F; Halberg, Richard B

    2016-08-01

    Advances in DNA sequencing have created new opportunities to better understand the biology of cancers. Attention is currently focused on precision medicine: does a cancer carry a mutation that is targetable with already available drugs? But, the timing at which multiple, targetable mutations arise during the adenoma to carcinoma sequence remains unresolved. Borras and colleagues identified mutations and allelic imbalance in at-risk mucosa and early polyps in the human colon. Their analyses indicate that mutations in key genes can arise quite early during tumorigenesis and that polyps are often multiclonal with at least two clones. These results are consistent with the "Big Bang" model of tumorigenesis, which postulates that intratumoral heterogeneity is a consequence of a mutational burst in the first few cell divisions following initiation that drives divergence from a single founder with unique but related clones coevolving. Emerging questions center around the ancestry of the tumor and impact of early intratumoral heterogeneity on tumor establishment, growth, progression, and most importantly, response to therapeutic intervention. Additional sequencing studies in which samples, especially at-risk tissue and premalignant neoplasms, are analyzed from animal models and humans will further our understanding of tumorigenesis and lead to more effective strategies for prevention and treatment. Cancer Prev Res; 9(8); 638-41. ©2016 AACRSee related article by Borras, et al., Cancer Prev Res 2016;9(6):417-427. PMID:27199343

  2. Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases

    PubMed Central

    Sylvester, Brooke E.

    2015-01-01

    Metastatic colorectal cancer (CRC) is one of the leading causes of cancer-related mortality among men and women worldwide. Over the past few decades, advances in our understanding of the genetic and epigenetic underpinnings of CRC have led to important insights into the pathogenesis of invasive tumors and have identified different molecular subgroups. Nonetheless, the events that might facilitate dissemination of tumor cells to distant sites giving rise to metastatic disease are not well characterized. Furthermore, in contrast to intertumor heterogeneity the extent of intratumor heterogeneity in different types of CRC has not been fully defined. In this paper, we review studies that have compared the genetic profile of primary invasive carcinomas to that of matched metastases and discuss the implications of their findings for our understanding of tumor evolution and for the clinical management of patients with advanced CRC. PMID:26697200

  3. The value of intratumoral heterogeneity of 18F-FDG uptake to differentiate between primary benign and malignant musculoskeletal tumours on PET/CT

    PubMed Central

    Nakajo, Masayuki; Jinguji, Megumi; Fukukura, Yoshihiko; Nakabeppu, Yoshiaki; Tani, Atsushi; Yoshiura, Takashi

    2015-01-01

    Objective: The cumulative standardized uptake value (SUV)–volume histogram (CSH) was reported to be a novel way to characterize heterogeneity in intratumoral tracer uptake. This study investigated the value of fluorine-18 fludeoxyglucose (18F-FDG) intratumoral heterogeneity in comparison with SUV to discriminate between primary benign and malignant musculoskeletal (MS) tumours. Methods: The subjects comprised 85 pathologically proven MS tumours. The area under the curve of CSH (AUC-CSH) was used as a heterogeneity index, with lower values corresponding with increased heterogeneity. As 22 tumours were indiscernible on 18F-FDG positron emission tomography, maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and AUC-CSH were obtained in 63 positive tumours. The Mann–Whitney U test and receiver operating characteristic (ROC) analysis were used for analyses. Results: The difference between benign (n = 35) and malignant tumours (n = 28) was significant in AUC-CSH (p = 0.004), but not in SUVmax (p = 0.168) and SUVmean (p = 0.879). The sensitivity, specificity and accuracy for diagnosing malignancy were 61%, 66% and 64% for SUVmax (optical threshold value, >6.9), 54%, 60% and 57% for SUVmean (optical threshold value, >3) and 61%, 86% and 75% for AUC-CSH (optical threshold value, ≤0.42), respectively. The area under the ROC curve was significantly higher in AUC-CSH (0.71) than SUVmax (0.60) (p = 0.018) and SUVmean (0.51) (p = 0.005). Conclusion: The heterogeneity index, AUC-CSH, has a higher diagnostic accuracy than SUV analysis in differentiating between primary benign and malignant MS tumours, although it is not sufficiently high enough to obviate histological analysis. Advances in knowledge: AUC-CSH can assess the heterogeneity of 18F-FDG uptake in primary benign and malignant MS tumours, with significantly greater heterogeneity associated with malignant MS tumours. AUC-CSH is more diagnostically accurate

  4. Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; Liao, Lili; Cho, Eun-Ah; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2016-01-01

    Recent studies have shown that intratumoral heterogeneity (ITH) is prevalent in clear cell renal cell carcinoma (ccRCC), based on DNA sequencing and chromosome aberration analysis of multiple regions from the same tumor. VHL mutations were found to be universal throughout individual tumors when it occurred (ubiquitous), while the mutations in other tumor suppressor genes tended to be detected only in parts of the tumors (subclonal). ITH has been studied mostly by DNA sequencing in limited numbers of samples, either by whole genome sequencing or by targeted sequencing. It is not known whether immunohistochemistry (IHC) can be used as a tool to study ITH. To address this question, we examined the protein expression of PBRM1, and PBRM1-related proteins such as ARID1A, SETD2, BRG1, and BRM. Altogether, 160 ccRCC (40 per stage) were used to generate a tissue microarray (TMA), with four foci from each tumor included. Loss of expression was defined as 0–5% of tumor cells with positive nuclear staining in an individual focus. We found that 49/160 (31%), 81/160 (51%), 23/160 (14%), 24/160 (15%), and 61/160 (38%) of ccRCC showed loss of expression of PBRM1, ARID1A, SETD2, BRG1, and BRM, respectively, and that IHC could successfully detect a high prevalence of ITH. Phylogenetic trees were constructed that reflected the ITH. Striking co-losses among proteins were also observed. For instance, ARID1A loss almost always accompanied PBRM1 loss, whereas BRM loss accompanied loss of BRG1, PBRM1 or ARID1A. SETD2 loss frequently occurred with loss of one or more of the other four proteins. Finally, in order to learn the impact of combined losses, we compared the tumor growth after cells acquired losses of ARID1A, PBRM1, or both in a xenograft model. The results suggest that ARID1A loss has a greater tumor-promoting effect than PBRM1 loss, indicating that xenograft analysis is a useful tool to investigate how these losses impact on tumor behavior, either alone or in combination. PMID

  5. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces.

    PubMed

    Lloyd, Mark C; Cunningham, Jessica J; Bui, Marilyn M; Gillies, Robert J; Brown, Joel S; Gatenby, Robert A

    2016-06-01

    Spatial heterogeneity in tumors is generally thought to result from branching clonal evolution driven by random mutations that accumulate during tumor development. However, this concept rests on the implicit assumption that cancer cells never evolve to a fitness maximum because they can always acquire mutations that increase proliferative capacity. In this study, we investigated the validity of this assumption. Using evolutionary game theory, we demonstrate that local cancer cell populations will rapidly converge to the fittest phenotype given a stable environment. In such settings, cellular spatial heterogeneity in a tumor will be largely governed by regional variations in environmental conditions, for example, alterations in blood flow. Model simulations specifically predict a common spatial pattern in which cancer cells at the tumor-host interface exhibit invasion-promoting, rapidly proliferating phenotypic properties, whereas cells in the tumor core maximize their population density by promoting supportive tissue infrastructures, for example, to promote angiogenesis. We tested model predictions through detailed quantitative image analysis of phenotypic spatial distribution in histologic sections of 10 patients with stage 2 invasive breast cancers. CAIX, GLUT1, and Ki67 were upregulated in the tumor edge, consistent with an acid-producing invasive, proliferative phenotype. Cells in the tumor core were 20% denser than the edge, exhibiting upregulation of CAXII, HIF-1α, and cleaved caspase-3, consistent with a more static and less proliferative phenotype. Similarly, vascularity was consistently lower in the tumor center compared with the tumor edges. Lymphocytic immune responses to tumor antigens also trended to higher level in the tumor edge, although this effect did not reach statistical significance. Like invasive species in nature, cancer cells at the leading edge of the tumor possess a different phenotype from cells in the tumor core. Our results suggest

  6. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma.

    PubMed

    Grove, Olya; Berglund, Anders E; Schabath, Matthew B; Aerts, Hugo J W L; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A; Eschrich, Steven; Gillies, Robert J

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  7. Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma

    PubMed Central

    Grove, Olya; Berglund, Anders E.; Schabath, Matthew B.; Aerts, Hugo J. W. L.; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A.; Eschrich, Steven; Gillies, Robert J.

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  8. Comparison of intratumoral heterogeneity of HER2 expression between primary tumor and multiple organ metastases in gastric cancer: Clinicopathological study of three autopsy cases and one resected case.

    PubMed

    Saito, Takuya; Kondo, Chihiro; Shitara, Kohei; Ito, Yuichi; Saito, Noriko; Ikehara, Yuzuru; Yatabe, Yasushi; Yamamichi, Keigo; Tanaka, Hideo; Nakanishi, Hayao

    2015-06-01

    Intratumoral heterogeneity of HER2 expression in the metastatic foci of HER2-positive advanced gastric cancer remains unclear. In this study, we compared HER2 expression between primary and metastatic tumors in HER2-positive three autopsied cases and one resected case with multiple organ metastases by immunohistochemistry (IHC) and dual color in situ hybridization (DISH). All four cases judged positive (IHC3+) at the primary tumor tissues showed varying HER2 gene amplification (GA) status. One homogeneously HER2-positive autopsied case (Case 1) and one intratumorally heterogeneous positive resected case (Case 2) with high GA showed a homogeneous positive staining pattern in all the metastatic foci. One heterogeneously HER2-positive autopsied case (Case 3) with low GA showed a partially heterogeneous HER2 staining pattern in all the metastatic foci. In contrast, one heterogeneously HER2-positive autopsied case (Case 4) with equivocal GA showed a completely heterogeneous HER2 staining pattern in the metastatic foci. These results indicate that HER2-positive gastric cancers with low to high GA at the primary tumor show substantially homogeneous HER2 overexpression in the metastatic foci, whereas HER2-positive gastric cancers with equivocal GA expressed HER2 heterogeneously within the metastatic tumor, suggesting that metastatic foci of the latter HER2-positive cases would be potentially resistant to trastuzumab. PMID:25828363

  9. Detecting Circulating Tumor DNA in Hepatocellular Carcinoma Patients Using Droplet Digital PCR Is Feasible and Reflects Intratumoral Heterogeneity

    PubMed Central

    Huang, Ao; Zhang, Xin; Zhou, Shao-Lai; Cao, Ya; Huang, Xiao-Wu; Fan, Jia; Yang, Xin-Rong; Zhou, Jian

    2016-01-01

    Purpose: Circulating tumor DNA (ctDNA) is increasingly recognized as liquid biopsy to profile tumor genome. Droplet digital PCR (ddPCR) is a highly sensitive and easily operable platform for mutant detection. Here, we tried to detect ctDNA in hepatocellular carcinoma (HCC) patients using ddPCR. Methods: Studies sequencing the genome of HCCs and COSMIC (Catalogue of Somatic Mutations in Cancer) database were reviewed to identify hotspot mutations. Circulating cell-free DNAs (cfDNAs) extracted from 1 ml preoperative plasma sample were analyzed to detect circulating mutants using ddPCR. The DNAs from matched tumor and adjacent liver tissues or peripheral blood mononuclear cells (PBMCs) were sequenced to identify the origin of circulating mutants. Results: Forty-eight HCC patients were enrolled and four gene loci, TP53 (c.747G>T), CTNNB1 (c.121A>G, c.133T>C), and TERT (c.1-124C>T) were chosen as targets for ddPCR assay. Serial dilution demonstrated the detection limit of ddPCR to be 0.01%. Twenty-seven patients (56.3%, 27/48) were found to have at least one kind of circulating mutants, with the mutant allele frequency ranging from 0.33% to 23.7%. Six patients (22.2%, 6/27) also had matched mutants in tumor tissues while none of the mutants were detected in adjacent liver tissues or PBMCs in all patients, which excluded the nonneoplastic origin of these circulating mutants and qualified them as ctDNA. Conclusions: ctDNA could be readily detected in HCC patients by targeting hotspot mutations using ddPCR and might reflect intratumoral heterogeneity. ctDNA detecting may serve as a promising liquid biopsy in HCC management.

  10. Detecting Circulating Tumor DNA in Hepatocellular Carcinoma Patients Using Droplet Digital PCR Is Feasible and Reflects Intratumoral Heterogeneity

    PubMed Central

    Huang, Ao; Zhang, Xin; Zhou, Shao-Lai; Cao, Ya; Huang, Xiao-Wu; Fan, Jia; Yang, Xin-Rong; Zhou, Jian

    2016-01-01

    Purpose: Circulating tumor DNA (ctDNA) is increasingly recognized as liquid biopsy to profile tumor genome. Droplet digital PCR (ddPCR) is a highly sensitive and easily operable platform for mutant detection. Here, we tried to detect ctDNA in hepatocellular carcinoma (HCC) patients using ddPCR. Methods: Studies sequencing the genome of HCCs and COSMIC (Catalogue of Somatic Mutations in Cancer) database were reviewed to identify hotspot mutations. Circulating cell-free DNAs (cfDNAs) extracted from 1 ml preoperative plasma sample were analyzed to detect circulating mutants using ddPCR. The DNAs from matched tumor and adjacent liver tissues or peripheral blood mononuclear cells (PBMCs) were sequenced to identify the origin of circulating mutants. Results: Forty-eight HCC patients were enrolled and four gene loci, TP53 (c.747G>T), CTNNB1 (c.121A>G, c.133T>C), and TERT (c.1-124C>T) were chosen as targets for ddPCR assay. Serial dilution demonstrated the detection limit of ddPCR to be 0.01%. Twenty-seven patients (56.3%, 27/48) were found to have at least one kind of circulating mutants, with the mutant allele frequency ranging from 0.33% to 23.7%. Six patients (22.2%, 6/27) also had matched mutants in tumor tissues while none of the mutants were detected in adjacent liver tissues or PBMCs in all patients, which excluded the nonneoplastic origin of these circulating mutants and qualified them as ctDNA. Conclusions: ctDNA could be readily detected in HCC patients by targeting hotspot mutations using ddPCR and might reflect intratumoral heterogeneity. ctDNA detecting may serve as a promising liquid biopsy in HCC management. PMID:27698932

  11. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  12. Discordant assessment of tumor biomarkers by histopathological and molecular assays in the EORTC randomized controlled 10041/BIG 03-04 MINDACT trial breast cancer : Intratumoral heterogeneity and DCIS or normal tissue components are unlikely to be the cause of discordance.

    PubMed

    Viale, Giuseppe; Slaets, Leen; de Snoo, Femke A; Bogaerts, Jan; Russo, Leila; van't Veer, Laura; Rutgers, Emiel J T; Piccart-Gebhart, Martine J; Stork-Sloots, Lisette; Dell'Orto, Patrizia; Glas, Annuska M; Cardoso, Fatima

    2016-02-01

    Accurate identification of breast cancer patients most likely to benefit from adjuvant systemic therapies is crucial. Better understanding of differences between methods can lead to an improved ER, PgR, and HER-2 assessment. The purpose of this preplanned translational research is to investigate the correlation of central IHC/FISH assessments with microarray mRNA readouts of ER, PgR, and HER-2 status in the MINDACT trial and to determine if any discordance could be attributed to intratumoral heterogeneity or the DCIS and normal tissue components in the specimens. MINDACT is an international, prospective, randomized, phase III trial investigating the clinical utility of MammaPrint in selecting patients with early breast cancer for adjuvant chemotherapy (n = 6694 patients). Gene-expression data were obtained by TargetPrint; IHC and/or FISH were assessed centrally (n = 5788; 86 %). Macroscopic and microscopic evaluation of centrally submitted FFPE blocks identified 1427 cases for which the very same sample was submitted for gene-expression analysis. TargetPrint ER had a positive agreement of 98 %, and a negative agreement of 95 % with central pathology. Corresponding figures for PgR were 85 and 94 % and for HER-2 72 and 99 %. Agreement of mRNA versus central protein was not different when the same or a different portion of the tumor tissue was analyzed or when DCIS and/or normal tissue was included in the sample subjected to mRNA assays. This is the first large analysis to assess the discordance rate between protein and mRNA analysis of breast cancer markers, and to look into intratumoral heterogeneity, DCIS, or normal tissue components as a potential cause of discordance. The observed difference between mRNA and protein assessment for PgR and HER-2 needs further research; the present analysis does not support intratumoral heterogeneity or the DCIS and normal tissue components being likely causes of the discordance.

  13. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules.

    PubMed

    Pelosi, Giuseppe; Pellegrinelli, Alessio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Settanni, Giulio; Busico, Adele; Picciani, Benedetta; Testi, Maria Adele; Militti, Lucia; Maisonneuve, Patrick; Valeri, Barbara; Sonzogni, Angelica; Proto, Claudia; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-06-01

    While pulmonary adenocarcinoma (ADC) is morphologically heterogeneous, little is known about intra-tumor gene mutation heterogeneity (ITH). We therefore subjected 20 ADC nodules, 5 mutated for EGFR and 5 for KRAS, 5 with an ALK translocation, and 5 wild type (WT) for these alterations, to unsupervised next-generation sequencing of tumor regions from diverse architectural patterns. When 2 or more different gene mutations were found in a single tumor, this fulfilled the criteria for ITH. In the 84 studied tumor regions with diverse architecture, 71 gene mutations and 34 WT profiles were found. ITH was observed in 9/15 (60 %) ADC, 3 with an EGFR, 3 with a KRAS, and 3 with an ALK aberration, as reflected in 5, 6, and 9 additional mutations, respectively, detected in these tumors. EGFR mutations were observed in 21/22 and KRAS mutations in 18/22 tumor regions, suggesting that they appear early and have a driver role (dominant or trunk mutations). Branching mutations (in EZH2, PIK3CA, TP53, and EGFR exon 18) occurred in two or more regions, while private mutations (in ABL1, ALK, BRAF, HER2, KDR, LKB1, PTEN, MET, SMAD4, SMARCB1, and SRC) were confined to unique tumor samples of individual lesions, suggesting that they occurred later on during tumor progression. Patients with a tumor showing branching mutations ran a worse clinical course, independent of confounding factors. We conclude that in ADC, ITH exists in a pattern suggesting spatial and temporal hierarchy with dominant, branching, and private mutations. This is consistent with diverse intra-tumor clonal evolution, which has potential implications for patient prognosis or development of secondary therapy resistance.

  14. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules.

    PubMed

    Pelosi, Giuseppe; Pellegrinelli, Alessio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Settanni, Giulio; Busico, Adele; Picciani, Benedetta; Testi, Maria Adele; Militti, Lucia; Maisonneuve, Patrick; Valeri, Barbara; Sonzogni, Angelica; Proto, Claudia; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-06-01

    While pulmonary adenocarcinoma (ADC) is morphologically heterogeneous, little is known about intra-tumor gene mutation heterogeneity (ITH). We therefore subjected 20 ADC nodules, 5 mutated for EGFR and 5 for KRAS, 5 with an ALK translocation, and 5 wild type (WT) for these alterations, to unsupervised next-generation sequencing of tumor regions from diverse architectural patterns. When 2 or more different gene mutations were found in a single tumor, this fulfilled the criteria for ITH. In the 84 studied tumor regions with diverse architecture, 71 gene mutations and 34 WT profiles were found. ITH was observed in 9/15 (60 %) ADC, 3 with an EGFR, 3 with a KRAS, and 3 with an ALK aberration, as reflected in 5, 6, and 9 additional mutations, respectively, detected in these tumors. EGFR mutations were observed in 21/22 and KRAS mutations in 18/22 tumor regions, suggesting that they appear early and have a driver role (dominant or trunk mutations). Branching mutations (in EZH2, PIK3CA, TP53, and EGFR exon 18) occurred in two or more regions, while private mutations (in ABL1, ALK, BRAF, HER2, KDR, LKB1, PTEN, MET, SMAD4, SMARCB1, and SRC) were confined to unique tumor samples of individual lesions, suggesting that they occurred later on during tumor progression. Patients with a tumor showing branching mutations ran a worse clinical course, independent of confounding factors. We conclude that in ADC, ITH exists in a pattern suggesting spatial and temporal hierarchy with dominant, branching, and private mutations. This is consistent with diverse intra-tumor clonal evolution, which has potential implications for patient prognosis or development of secondary therapy resistance. PMID:27056568

  15. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  16. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  17. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  18. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma.

    PubMed

    Lopez, José I; Cortes, Jesús M

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection. PMID:27127618

  19. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma.

    PubMed

    Lopez, José I; Cortes, Jesús M

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection.

  20. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. PMID:27275627

  1. Investigating Population Heterogeneity With Factor Mixture Models

    ERIC Educational Resources Information Center

    Lubke, Gitta H.; Muthen, Bengt

    2005-01-01

    Sources of population heterogeneity may or may not be observed. If the sources of heterogeneity are observed (e.g., gender), the sample can be split into groups and the data analyzed with methods for multiple groups. If the sources of population heterogeneity are unobserved, the data can be analyzed with latent class models. Factor mixture models…

  2. Multi-site tumor sampling (MSTS) improves the performance of histological detection of intratumor heterogeneity in clear cell renal cell carcinoma (CCRCC).

    PubMed

    Guarch, Rosa; Cortés, Jesús M; Lawrie, Charles H; López, José I

    2016-01-01

    Current standard-of-care tumor sampling protocols for CCRCC (and other cancers) are not efficient at detecting intratumoural heterogeneity (ITH). We have demonstrated in silico that an alternative protocol, multi-site tumor sampling (MSTS) based upon the divide and conquer (DAC) algorithm, can significantly increase the efficiency of ITH detection without extra costs. Now we test this protocol on routine hematoxylin-eosin (HE) sections in a series of 38 CCRCC cases. MSTS was found to outperform traditional sampling when detecting either high grade (p=0.0136) or granular/eosinophilic cells (p=0.0114). We therefore propose that MSTS should be used in routine clinical practice. PMID:27635226

  3. Multi-site tumor sampling (MSTS) improves the performance of histological detection of intratumor heterogeneity in clear cell renal cell carcinoma (CCRCC)

    PubMed Central

    Guarch, Rosa; Cortés, Jesús M.

    2016-01-01

    Current standard-of-care tumor sampling protocols for CCRCC (and other cancers) are not efficient at detecting intratumoural heterogeneity (ITH). We have demonstrated in silico that an alternative protocol, multi-site tumor sampling (MSTS) based upon the divide and conquer (DAC) algorithm, can significantly increase the efficiency of ITH detection without extra costs. Now we test this protocol on routine hematoxylin-eosin (HE) sections in a series of 38 CCRCC cases. MSTS was found to outperform traditional sampling when detecting either high grade (p=0.0136) or granular/eosinophilic cells (p=0.0114). We therefore propose that MSTS should be used in routine clinical practice. PMID:27635226

  4. Multi-site tumor sampling (MSTS) improves the performance of histological detection of intratumor heterogeneity in clear cell renal cell carcinoma (CCRCC)

    PubMed Central

    Guarch, Rosa; Cortés, Jesús M.

    2016-01-01

    Current standard-of-care tumor sampling protocols for CCRCC (and other cancers) are not efficient at detecting intratumoural heterogeneity (ITH). We have demonstrated in silico that an alternative protocol, multi-site tumor sampling (MSTS) based upon the divide and conquer (DAC) algorithm, can significantly increase the efficiency of ITH detection without extra costs. Now we test this protocol on routine hematoxylin-eosin (HE) sections in a series of 38 CCRCC cases. MSTS was found to outperform traditional sampling when detecting either high grade (p=0.0136) or granular/eosinophilic cells (p=0.0114). We therefore propose that MSTS should be used in routine clinical practice.

  5. Are geological media homogeneous or heterogeneous for neutron investigations?

    PubMed

    Woźnicka, U; Drozdowicz, K; Gabańska, B; Krynicka, E; Igielski, A

    2003-01-01

    The thermal neutron absorption cross section of a heterogeneous material is lower than that of the corresponding homogeneous one which contains the same components. When rock materials are investigated the sample usually contains grains which create heterogeneity. The heterogeneity effect depends on the mass contribution of highly and low-absorbing centers, on the ratio of their absorption cross sections, and on their sizes. An influence of the granulation of silicon and diabase samples on the absorption cross section measured with Czubek's method has been experimentally investigated. A 20% underestimation of the absorption cross section has been observed for diabase grains of sizes from 6.3 to 12.8 mm.

  6. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  7. Intratumoral diversity of telomere length in individual neuroblastoma tumors

    PubMed Central

    Pezzolo, Annalisa; Pistorio, Angela; Gambini, Claudio; Haupt, Riccardo; Ferraro, Manuela; Erminio, Giovanni; De Bernardi, Bruno; Garaventa, Alberto; Pistoia, Vito

    2015-01-01

    The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens. The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB. In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation. PMID:25595889

  8. Are geological media homogeneous or heterogeneous for neutron investigations?

    PubMed

    Woźnicka, U; Drozdowicz, K; Gabańska, B; Krynicka, E; Igielski, A

    2003-01-01

    The thermal neutron absorption cross section of a heterogeneous material is lower than that of the corresponding homogeneous one which contains the same components. When rock materials are investigated the sample usually contains grains which create heterogeneity. The heterogeneity effect depends on the mass contribution of highly and low-absorbing centers, on the ratio of their absorption cross sections, and on their sizes. An influence of the granulation of silicon and diabase samples on the absorption cross section measured with Czubek's method has been experimentally investigated. A 20% underestimation of the absorption cross section has been observed for diabase grains of sizes from 6.3 to 12.8 mm. PMID:12485675

  9. Investigating the effects of target heterogeneity on the cratering process.

    NASA Astrophysics Data System (ADS)

    Barnouin, O. S.

    2012-12-01

    Pre-existing target structures are known to influence the dynamics and morphologies of many terrestrial and planetary impact craters. Good examples include the Chesapeake and Ries craters, which both possess an inverted sombrero structure as a result of a weaker sedimentary surface layer overlying a stronger crystalline basement. But beyond such horizontal layering, closer analyses of the subsurface geology present in these and other planetary craters indicate that vertical heterogeneity in the strength and geochemistry of a target are also often present. These may influence the formation and subsequent modification of terrestrial craters. Evidence indicates that at Meteor crater, for example, pre-existing vertical jointing of the target gives this crater its square appearance, either by confining and re-directing the shock and subsequent rarefraction waves, or by allowing preferential weathering zones of weakness along the joints. In this study, we present a series of laboratory investigations and 2- and 3-dimensional numerical calculations of crater formation in a conceptually simple but physically complex target: a box of randomly distributed quartz spheres of identical size. These investigations provide constraints on how all types of target heterogeneity influence the cratering process. In both the laboratory and numerical studies, we measure the rate of crater growth, the transient crater shape, and in some instances the velocity of individual ejecta. These investigations vary the ratio of the impact shock thickness to target grain size by altering the impact velocity, projectile size, and target grain size. The laboratory data were collected at the NASA Ames vertical gun range, the NASA Johnson Space Center vertical gun range, and the University of Tokyo vertical gun range using non-intrusive diagonistic techniques. The numerical investigations were performed using the CTH hydrocode that solves the equations of motion, while conserving mass, energy, and

  10. Direct intratumoral embolization of intranasal vascular tumors.

    PubMed

    Jang, Hyun-Uk; Kim, Tae-Hoon; Park, Chang-Mook; Kim, Jung-Soo

    2013-02-01

    Embolization is a well established technique that facilitates the subsequent surgical removal of vascularized tumors such as juvenile angiofibroma. Preoperative transarterial embolization has proven beneficial for decreasing intraoperative blood loss. However, the procedure is often incomplete owing to extensive vascular structure. Direct intratumoral embolization may help overcome this limitation. We report our experience with embolization of nasal vascular tumors by means of direct intratumoral injection of n-butyl cyanoacrylate (NBCA).

  11. Intratumoral Pharmacokinetics: Challenges to Nanobiomaterials.

    PubMed

    Al-Abd, Ahmed M; Al-Abbasi, Fahad A; Torchilin, Vladimir P

    2015-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. Solid tumor tissue is characterized by high density of vascular bed however; the vast majority of these blood vessels are not functioning. The vast majority of solid tumors can be described as poorly perfused with blood; and anticancer agents need to penetrate/distribute avascularly within solid tumor micro-milieu. Classic pharmacokinetic parameters correlate drug status within central compartment (blood) to all perfused body tissues according to their degree of perfusion. Yet, these classic pharmacokinetic parameters cannot fully elucidate the intratumoral drug penetration/distribution status of anticancer drugs due to the great discrepancies in perfusion between normal and solid tumor tissues. Herein, we will discuss the recently proposed pharmacokinetic parameters that might accurately portray the distribution of anticancer agents within solid tumor micro-milieu. In addition, we will present the new challenges attributed to these new pharmacokinetic parameters towards designing nanobiomaterial drug delivery system. PMID:26027565

  12. Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

    SciTech Connect

    Weissmann, Gary S

    2013-12-06

    The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.

  13. Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature

    PubMed Central

    2012-01-01

    Background While there is some consensus on methods for investigating statistical and methodological heterogeneity, little attention has been paid to clinical aspects of heterogeneity. The objective of this study is to summarize and collate suggested methods for investigating clinical heterogeneity in systematic reviews. Methods We searched databases (Medline, EMBASE, CINAHL, Cochrane Library, and CONSORT, to December 2010) and reference lists and contacted experts to identify resources providing suggestions for investigating clinical heterogeneity between controlled clinical trials included in systematic reviews. We extracted recommendations, assessed resources for risk of bias, and collated the recommendations. Results One hundred and one resources were collected, including narrative reviews, methodological reviews, statistical methods papers, and textbooks. These resources generally had a low risk of bias, but there was minimal consensus among them. Resources suggested that planned investigations of clinical heterogeneity should be made explicit in the protocol of the review; clinical experts should be included on the review team; a set of clinical covariates should be chosen considering variables from the participant level, intervention level, outcome level, research setting, or others unique to the research question; covariates should have a clear scientific rationale; there should be a sufficient number of trials per covariate; and results of any such investigations should be interpreted with caution. Conclusions Though the consensus was minimal, there were many recommendations in the literature for investigating clinical heterogeneity in systematic reviews. Formal recommendations for investigating clinical heterogeneity in systematic reviews of controlled trials are required. PMID:22846171

  14. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  15. Hierarchical spike clustering analysis for investigation of interneuron heterogeneity.

    PubMed

    Boehlen, Anne; Heinemann, Uwe; Henneberger, Christian

    2016-04-21

    Action potentials represent the output of a neuron. Especially interneurons display a variety of discharge patterns ranging from regular action potential firing to prominent spike clustering or stuttering. The mechanisms underlying this heterogeneity remain incompletely understood. We established hierarchical cluster analysis of spike trains as a measure of spike clustering. A clustering index was calculated from action potential trains recorded in the whole-cell patch clamp configuration from hippocampal (CA1, stratum radiatum) and entorhinal (medial entorhinal cortex, layer 2) interneurons in acute slices and simulated data. Prominent, region-dependent, but also variable spike clustering was detected using this measure. Further analysis revealed a strong positive correlation between spike clustering and membrane potentials oscillations but an inverse correlation with neuronal resonance. Furthermore, clustering was more pronounced when the balance between fast-activating K(+) currents, assessed by the spike repolarisation time, and hyperpolarization-activated currents, gauged by the size of the sag potential, was shifted in favour of fast K(+) currents. Simulations of spike clustering confirmed that variable ratios of fast K(+) and hyperpolarization-activated currents could underlie different degrees of spike clustering and could thus be crucial for temporally structuring interneuron spike output. PMID:26987719

  16. Investigation of stochastic radiation transport methods in random heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Reinert, Dustin Ray

    Among the most formidable challenges facing our world is the need for safe, clean, affordable energy sources. Growing concerns over global warming induced climate change and the rising costs of fossil fuels threaten conventional means of electricity production and are driving the current nuclear renaissance. One concept at the forefront of international development efforts is the High Temperature Gas-Cooled Reactor (HTGR). With numerous passive safety features and a meltdown-proof design capable of attaining high thermodynamic efficiencies for electricity generation as well as high temperatures useful for the burgeoning hydrogen economy, the HTGR is an extremely promising technology. Unfortunately, the fundamental understanding of neutron behavior within HTGR fuels lags far behind that of more conventional water-cooled reactors. HTGRs utilize a unique heterogeneous fuel element design consisting of thousands of tiny fissile fuel kernels randomly mixed with a non-fissile graphite matrix. Monte Carlo neutron transport simulations of the HTGR fuel element geometry in its full complexity are infeasible and this has motivated the development of more approximate computational techniques. A series of MATLAB codes was written to perform Monte Carlo simulations within HTGR fuel pebbles to establish a comprehensive understanding of the parameters under which the accuracy of the approximate techniques diminishes. This research identified the accuracy of the chord length sampling method to be a function of the matrix scattering optical thickness, the kernel optical thickness, and the kernel packing density. Two new Monte Carlo methods designed to focus the computational effort upon the parameter conditions shown to contribute most strongly to the overall computational error were implemented and evaluated. An extended memory chord length sampling routine that recalls a neutron's prior material traversals was demonstrated to be effective in fixed source calculations containing

  17. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems.

  18. Intradural chordoma presenting with intratumoral bleeding.

    PubMed

    Vellutini, Eduardo de Arnaldo Silva; de Oliveira, Matheus Fernandes

    2016-03-01

    Intradural clival chordomas are very rare, and only 29 cases have been reported to our knowledge. They arise purely intradurally without bone or dural involvement and may differ from classic clival chordomas in physiopathology and management. We present a 28-year-old woman who presented with intradural clival chordoma and tumoral bleeding. After initial gross macroscopic surgical resection, she presented with tumor recurrence after 2 years, again with intratumoral bleeding. Although usually considered to have a more favorable prognosis in comparison to typical chordomas, intradural chordomas appear to behave as typical chordomas. Intratumoral bleeding may be a sign of an aggressive lesion and risk of recurrence. We highlight the differential diagnosis of intrinsic posterior fossa bleeding, especially in young patients. Intradural chordomas may be underdiagnosed and incorrectly treated as other types of parenchymal hemorrhage.

  19. Functional versus non-functional intratumor heterogeneity in cancer.

    PubMed

    Williams, Marc J; Werner, Benjamin; Graham, Trevor A; Sottoriva, Andrea

    2016-07-01

    Next-generation sequencing data from human cancers are often difficult to interpret within the context of tumor evolution. We developed a mathematical model describing the accumulation of mutations under neutral evolutionary dynamics and showed that 323/904 cancers (∼30%) from multiple types were consistent with the neutral model of tumor evolution. PMID:27652316

  20. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    PubMed

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.

  1. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses

    PubMed Central

    Rusk, Anthony W.; Tung, David; Miller, Maria; Roix, Jeffrey; Khanna, Kristen V.; Murthy, Ravi; Benjamin, Robert S.; Helgason, Thorunn; Szvalb, Ariel D.; Bird, Justin E.; Roy-Chowdhuri, Sinchita; Zhang, Halle H.; Qiao, Yuan; Karim, Baktiar; McDaniel, Jennifer; Elpiner, Amanda; Sahora, Alexandra; Lachowicz, Joshua; Phillips, Brenda; Turner, Avenelle; Klein, Mary K.; Post, Gerald; Diaz, Luis A.; Riggins, Gregory J.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Bettegowda, Chetan; Huso, David L.; Varterasian, Mary

    2015-01-01

    Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted. PMID:25122639

  2. An Experimental Investigation of Foam Flow in Homogeneous and Heterogeneous Porous Media, SUPRI TR-112

    SciTech Connect

    Apaydin, Osman G.; Bertin, Henri; Castanier, Louis M.; Kovscek, Anthony R.

    1999-08-09

    Foam is used to reduce the high mobility of gas-drive fluids and improve the contact between oil and these injected fluids. We require a better understanding of the effect of surfactant concentration on foam flow in porous media. Besides this, the literature on foam flow and transport in heterogeneous systems is sparse although the field situation is primarily heterogeneous and multidimensional. In this study, foam flow experiments were conducted first in homogeneous sand packs to investigate the effect of surfactant concentration on foam flow and then a heterogeneous experimental setup was prepared to observe heterogeneity and multidimensional flow effects on foam propagation. The homogeneous core experiments were conducted in a cylindrical aluminum core holder that was packed with a uniform Ottawa sand. Sand permeability is about 7.0 Darcy. The experiments were interpreted in terms of evolution of in-situ water saturation as a function of time by the usage of CT scanner, cumulative water, and pressure drop across the core. At very low surfactant concentration, no significant benefit was observed. But when stable foam generation started sweep efficiency (water recovery), breakthrough time, and pressure drop increased as surfactant concentration increased.

  3. Targeting intratumoral androgens: statins and beyond.

    PubMed

    Schweizer, Michael T; Yu, Evan Y

    2016-09-01

    While initially effective, androgen deprivation therapy (ADT) is not curative, and nearly all men with advanced prostate cancer will eventually progress to the more resistant, and ultimately lethal form of the disease, so called castration-resistant prostate cancer (CRPC). The maintenance of androgens within the prostate cancer microenvironment likely represents one of the key mechanisms by which this transition from hormone-sensitive to CRPC occurs. This can be accomplished either through intratumoral androgen biosynthesis or the active transport of androgens and androgenic precursors into the tumor microenvironment. More recently, preclinical and clinical data supported therapeutic strategies that seek to target these two mechanisms, either through the use of drugs that impair androgen biosynthesis (e.g. inhibiting the steroidogenic enzymes CYP17 and AKR1C3 with abiraterone and indomethacin, respectively) or drugs that inhibit the SLCO transporters responsible for importing androgens (e.g. statins). PMID:27583031

  4. Targeting intratumoral androgens: statins and beyond

    PubMed Central

    Schweizer, Michael T.; Yu, Evan Y.

    2016-01-01

    While initially effective, androgen deprivation therapy (ADT) is not curative, and nearly all men with advanced prostate cancer will eventually progress to the more resistant, and ultimately lethal form of the disease, so called castration-resistant prostate cancer (CRPC). The maintenance of androgens within the prostate cancer microenvironment likely represents one of the key mechanisms by which this transition from hormone-sensitive to CRPC occurs. This can be accomplished either through intratumoral androgen biosynthesis or the active transport of androgens and androgenic precursors into the tumor microenvironment. More recently, preclinical and clinical data supported therapeutic strategies that seek to target these two mechanisms, either through the use of drugs that impair androgen biosynthesis (e.g. inhibiting the steroidogenic enzymes CYP17 and AKR1C3 with abiraterone and indomethacin, respectively) or drugs that inhibit the SLCO transporters responsible for importing androgens (e.g. statins). PMID:27583031

  5. Trochlear Nerve Schwannoma With Repeated Intratumoral Hemorrhage.

    PubMed

    Liu, Pengfei; Bao, Yuhai; Zhang, Wenchuan

    2016-09-01

    Trochlear nerve schwannoma is extremely rare, with only 35 pathologically confirmed patients being reported in the literature. Here, the authors report a patient of trochlear nerve schwannoma in the prepontine cistern manifesting as facial pain and double vision and presenting the image characteristics of repeated intratumoral hemorrhage, which has never been reported in the literature. Total tumor along with a portion of the trochlear nerve was removed by using a retrosigmoid approach. Facial pain disappeared after operation, and the diplopia remained. Follow-up studies have shown no tumor recurrence for 2 years and the simultaneous alleviation of diplopia. Information regarding the clinical presentation, radiological features and surgical outcomes of trochlear nerve schwannoma are discussed and reviewed in the paper. PMID:27607129

  6. A Massive Intratumoral Aneurysmal Vessel in a Retroperitoneal Lipoblastoma.

    PubMed

    Moon, Suk-Bae

    2015-12-01

    Lipoblastoma is a benign tumor and usually does not require radical operation for complete excision. We describe here a case of a retroperitoneal lipoblastoma with a massive intratumoral aneurysmal vessel.

  7. Numerical and Experimental Investigation of Soil Heterogeneity around Landmines in Natural Soil

    NASA Astrophysics Data System (ADS)

    Wallen, B.; Smits, K. M.; Howington, S. E.

    2015-12-01

    The environment in which landmines are placed is oftentimes highly heterogeneous. These heterogeneities such as differences in soil type, packing and moisture, combined with changes in surface and climate conditions can oftentimes mask the presence of the mine. Understanding the impact of heterogeneity on heat and mass transfer behavior in the vicinity of landmines is paramount to properly identifying landmine locations for demining operations. This study investigates the impact of soil heterogeneity on soil moisture and temperature distributions around buried objects with the goal of increasing our ability to model and predict the environmental conditions that are most dynamic to mine detection performance. A ten-day field experiment was conducted in which two anti-personnel landmines at different depths and a limestone block of comparable size were buried. The site was instrumented with a series of sensors, monitoring atmospheric, surface and subsurface conditions to include measurements of soil moisture, soil and air temperature, relative humidity, vapor concentration, and meteorological conditions such as wind speed and net radiation. Infrared thermal imaging was used to provide continuous profiles of surface temperature conditions. The soil was well characterized in the laboratory to provide good understanding of field conditions for numerical modeling efforts. Experimental results demonstrate the strongest thermal contrast between shallow landmine emplacement and the surrounding soil occurring as the sun approaches its zenith and two hours after sunset until the sun directly impacts the soil above the landmine. A finite-element model of fluid flow and heat transport through porous media is compared against experimental observations, capturing the diurnal variation. A validated model, like this one, offers the opportunity to improve landmine detection probabilities and reduce false alarms caused by environmental variability.

  8. An Investigation of Homogeneous and Heterogeneous Sonochemistry for Destruction of Hazardous Waste

    SciTech Connect

    Hua, Inez

    1999-06-01

    The primary objective of this research project is to acquire a deeper fundamental knowledge of acoustic cavitation and cavitation chemistry, and in doing so, to ascertain how ultrasonic irradiation can be more effectively applied to environmental problems. The primary objective will be accomplished by examining numerous aspects of sonochemical systems and acoustic cavitation. During the course of the project, the research group will investigate sonochemical kinetics and reactive intermediates, the behavior of heterogeneous (solid/liquid) systems, and the significance of physical variables during sonolysis. An additional component of the project includes utilizing various techniques to image cavitation bubble cloud development.

  9. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account. PMID:23338186

  10. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  11. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    PubMed

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  12. X-ray and synchrotron investigations of heterogeneous systems based on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sivkov, V. N.; Ob"edkov, A. M.; Petrova, O. V.; Nekipelov, S. V.; Kremlev, K. V.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.

    2015-01-01

    This paper presents the results of a complex investigation of heterogeneous systems based on multiwalled carbon nanotubes with the outer surfaces covered by iron oxide (Fe3O4) nanocoatings deposited using iron pentacarbonyl as a precursor. Investigations were performed by the methods of electron microscopy, X-ray diffractometry, and ultrasoft X-ray spectroscopy with synchrotron radiation. It was established that the formed thin coatings are continuous and nonuniform in thickness. It was shown that good adhesion of iron oxide on the multiwalled carbon nanotube surface is provided by the formation of epoxy and double carbon-oxygen bonds; in this case, the outer graphene layer of nanotubes is not destroyed and retains the hexagonal structure.

  13. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  14. The role of intratumoral lymphovascular density in distinguishing primary from secondary mucinous ovarian tumors

    PubMed Central

    de Lacerda Almeida, Bernardo Gomes; Bacchi, Carlos E; Carvalho, Jesus P; Ferreira, Cristiane R; Carvalho, Filomena M

    2014-01-01

    OBJECTIVE: Ovarian mucinous metastases commonly present as the first sign of the disease and are capable of simulating primary tumors. Our aim was to investigate the role of intratumoral lymphatic vascular density together with other surgical-pathological features in distinguishing primary from secondary mucinous ovarian tumors. METHODS: A total of 124 cases of mucinous tumors in the ovary (63 primary and 61 metastatic) were compared according to their clinicopathological features and immunohistochemical profiles. The intratumoral lymphatic vascular density was quantified by counting the number of vessels stained by the D2-40 antibody. RESULTS: Metastases occurred in older patients and were associated with a higher proportion of tumors smaller than 10.0 cm; bilaterality; extensive necrosis; extraovarian extension; increased expression of cytokeratin 20, CDX2, CA19.9 and MUC2; and decreased expression of cytokeratin 7, CA125 and MUC5AC. The lymphatic vascular density was increased among primary tumors. However, after multivariate analysis, the best predictors of a secondary tumor were a size of 10.0 cm or less, bilaterality and cytokeratin 7 negativity. Lack of MUC2 expression was an important factor excluding metastasis. CONCLUSIONS: The higher intratumoral lymphatic vascular density in primary tumors when compared with secondary lesions suggests differences in the microenvironment. However, considering the differential diagnosis, the best discriminator of a secondary tumor is the combination of tumor size, laterality and the pattern of expression of cytokeratin 7 and MUC2. PMID:25518016

  15. Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates

    PubMed Central

    Yu, Shang-Fan; Ma, Yong; Xu, Keyang; Dragovich, Peter S.; Pillow, Thomas H.; Liu, Luna; Del Rosario, Geoffrey; He, Jintang; Pei, Zhonghua; Sadowsky, Jack D.; Erickson, Hans K.; Hop, Cornelis E. C. A.; Khojasteh, S. Cyrus

    2016-01-01

    Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy. PMID:27417182

  16. Macrophage-targeted photosensitizer conjugate delivered by intratumoral injection

    PubMed Central

    Anatelli, Florencia; Mroz, Pawel; Liu, Qingde; Yang, Changming; Castano, Ana P; Swietlik, Emilia; Hamblin, Michael R.

    2008-01-01

    A conjugate between malelyated albumin and a photosensitizer (PS) shows cell-type specific targeting to macrophages via the scavenger receptor. Administration of this conjugate to a tumor-bearing mouse followed by illumination may allow selective destruction of macrophages within tumors. There is accumulating evidence that tumor-associated macrophages contribute to tumor growth, invasiveness, metastasis and immune suppression. We tested the intravenous injection of a conjugate between maleylated albumin and chlorin(e6) to Balb/c mice bearing three tumor-types with differing proportions of tumor-associated macrophages. The accumulation of PS within the tumors after intravenous (IV) injection and twenty-four hours incubation time was disappointing and we therefore investigated intratumoral (IT) injection. This gave 20−50 times greater concentrations of PS within the tumor compared to IV injection as determined by tissue extraction. Furthermore the amounts of PS in each tumor type correlated well with the numbers of macrophages both as determined by extraction from bulk tumor and fluorescence quantification, and by tissue dissociation to a single cell suspension and two-color flow cytometry with macrophage-specific antibodies. IT injection of non-conjugated PS gave lower tumor accumulation that did not correlate with macrophage content. IT injection of targeted macromolecular delivery systems is an underexplored area and worthy of further study. PMID:17140253

  17. Heterogeneity of salivary gland tumors studied by flow cytometry.

    PubMed

    Tytor, M; Gemryd, P; Wingren, S; Grenko, R T; Lundgren, J; Lundquist, P G; Nordenskjöld, B

    1993-01-01

    Intratumor DNA heterogeneity was investigated by flow cytometric analysis of multiple samples taken from different sites of 8 benign and 16 malignant primarily resected salivary gland tumors. All benign tumors had diploid DNA content. The overall incidence of DNA diploidy in 16 malignant cases examined was 50%. Intratumor differences in DNA ploidy were observed in four malignant tumors (25%); 2 of these 4 heterogeneous tumors contained both aneuploid and diploid cell clones. The remaining 12 tumors showed a homogeneous DNA content in the different specimens; 8 were diploid, 3 aneuploid, and 1 was polypoid. The DNA nondiploid tumors were clinically more advanced than the DNA diploid ones (p < 0.01). The tumor proliferation rate (fraction of cells in S-phase) was higher in DNA nondiploid samples than in diploid ones (p < 0.01). The DNA nondiploid tumors seemed to recur more often than DNA diploid ones did. The data emphasize the usefulness of DNA measurements for the characterization of malignant salivary gland tumors but also the importance of adequate sampling in assessing their DNA ploidy.

  18. Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-09-01

    This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.

  19. Improved GPR interpretation through resolution of lateral velocity heterogeneity: Example from an archaeological site investigation

    NASA Astrophysics Data System (ADS)

    Brown, Joel; Nichols, Josh; Steinbronn, Leah; Bradford, John

    2009-05-01

    In a typical common-offset ground-penetrating radar (GPR) survey, lateral velocity contrasts may go undetected leading to misinterpretation. Resolution of lateral velocity heterogeneity requires multi-fold acquisition and analysis. Further, pre-stack depth migration (PSDM) is required to produce accurate images in the presence of large lateral velocity gradients. In an archaeological investigation conducted near Boise, Idaho, we delineated a portion of what we interpret to be an abandoned dump site. Using multi-fold acquisition with reflection tomography, we identified an abrupt lateral velocity increase of ˜ 40% resulting in a substantial velocity pull-up in the time domain. PSDM corrected for the velocity pull-up enabling a more accurate interpretation and identification of additional structures of potential historical significance. The migration velocity model provided additional constraints on materials which enhanced our understanding of the subsurface.

  20. Numerical investigations of triggering mechanisms of shallow landslides due to heterogeneous spatio-temporal hydrological patterns.

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Cohen, Denis

    2016-04-01

    regional scale rely on the infinite slope assumption for stability calculations and on continuous hydrological properties of the soil. The objective of the present study is to investigate the influence of non-continuos hydrological features (such as ephemeral springs) on the triggering mechanisms of shallow landslides using a discrete element model (SOSlope) in which the stress-strain behavior of soil is explicitly considered. The application of a stress-strain calculation allows for the simulation of local versus global loading due to hydrological processes. In particular, this study investigates the effects of different types of hydrological loading on the force redistribution on a slope associated with local displacements and following failures of soil masses. Strength and stiffness of soil are considered heterogeneous and are calculated based on the assumption of root distributions within a forested hillslope.

  1. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.

    PubMed

    Qu, Yuangao; Engdahl, Anders; Zhu, Shixing; Vajda, Vivi; McLoughlin, Nicola

    2015-10-01

    Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars.

  2. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.

    PubMed

    Qu, Yuangao; Engdahl, Anders; Zhu, Shixing; Vajda, Vivi; McLoughlin, Nicola

    2015-10-01

    Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars. PMID:26496525

  3. Investigating the Effect of Hydraulic Data and Heterogeneity on Stochastic Inversion of a Physically Based Groundwater Model

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Y.

    2014-12-01

    This research explores the interactions between data quantity, data quality and heterogeneity resolution on stochastic inversion of a physically based model. To further investigate aquifer heterogeneity, simulations are used to examine the impact of geostatistical models on inversion quality, as well as the spatial sensitivity to heterogeneity using local and global methods. The model domain is a two-dimensional steady-state confined aquifer with lateral flows through two hydrofacies with alternating patterns.To examine general effects, the control variable method was adopted to reveal the impact of three factors on estimated hydraulic conductivity (K) and hydraulic head boundary conditions (BCs): (1) data availability, (2) data error, and (3) characterization of heterogeneity. Results show that fewer data increase model sensitivity to measurement error and heterogeneity. Extremely large data errors can cause severe model deterioration, regardless of sufficient data availability or high resolution representation of heterogeneity. Smaller data errors can alleviate the bias caused by the limited observations. For heterogeneity resolution, once general patterns of geological structures are captured, its influence is minimal compared to the other factors.Next, two geostatistical models (spherical and exponential variograms), were used to explore the representation of heterogeneity under the same nugget effects. The results show that stochastic inversion based on the exponential variogram improves both the precision and accuracy of the inverse model, as compared to the spherical variogram. This difference is particularly important for determining accurate BCs through stochastic inversion.Last, sensitivity analysis was conducted to further investigate the effect of varying the K of each hydrofacies on model inversion. Results from the partial local method show that the inversion is more sensitive to perturbations of K in regions with high heterogeneity. Using the

  4. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Darwiche, Kaid; Vogl, Thomas; Goldberg, Eugene P; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Turner, Francis J; Le Pivert, Patrick; Spyratos, Dionysios; Zarogoulidis, Konstantinos; Celikoglu, Seyhan I; Celikoglu, Firuz; Brachmann, Johannes

    2013-01-01

    Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of

  5. Characterization of Soil Heterogeneity Across Scales in an Intensively Investigated Soil Volume

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew; Gimenez, Daniel; Nemes, Attila; Dathe, Annette; French, Helen; Bloem, Esther; Koestel, John; Jarvis, Nick

    2016-04-01

    Heterogeneous water flow in undisturbed soils is a natural occurrence that is complex to model due to potential changes in hydraulic properties in soils over changes in space. The use of geophysical methods, such as Electrical Resistivity Tomography (ERT), can provide a minimally-invasive approximation of the spatial heterogeneity of the soil. This spatial distribution can then be combined with measured hydraulic properties to inform a model. An experiment was conducted on an Intensively Investigated Soil Volume (IISV), with dimensions of 2m x 1m x 0.8m, located in an agricultural field that is part of the Gryteland catchment in Ås, Norway. The location of the IISV was determined through surface ERT runs at two sequential resolutions. The first run was used to find an area of higher apparent electrical resistivity in a 23.5 x 11.5 m area with 0.5 m spacing. The second run measured apparent electrical resistivity in a 4.7 x 1 m area with 0.1 m spacing, from which the final IISV volume was derived. Distinct features found in the higher resolution run of the IISV, including a recent tire track from a harvester, were used as a spatial reference point for the installation of 20 pairs of TDR probes and tensiometers. The instruments measured water content, temperature and pressure potential at 10 minute intervals and ran continuously for a period of two weeks. After completion of the data collection the IISV was intensively sampled, with 30 samples taken for bulk density, 62 for hydraulic property measurements, and 20 to be used for both CT scanning and hydraulic property measurements. The measurement of hydraulic properties is ongoing and retention will be measured in the 0 - 100 cm range on a sand table, and from 100 - approx. 900 cm with an automated evaporation method. The formation of spatial clusters to represent the soil heterogeneity as relatively homogeneous units based on mesoscale properties like apparent electrical resistivity, bulk density, texture, in

  6. Petrogenesis of Near-Ridge Seamounts: AN Investigation of Mantle Source Heterogeneity and Melting Processes

    NASA Astrophysics Data System (ADS)

    Baxter, N. L.; Perfit, M. R.; Lundstrom, C.; Clague, D. A.

    2010-12-01

    Near-ridge (NR) seamounts offer an important opportunity to study lavas that have similar sources to ridge basalts but have been less affected by fractionation and homogenization that takes place at adjacent spreading ridge axes. By studying lavas erupted at these off-axis sites, we have the potential to better understand source heterogeneity and melting and transport processes that can be applied to the ridge system as a whole. One purpose of our study is to investigate the role of dunite conduits in the formation of near-ridge seamount chains. We believe that near-ridge seamounts could form due to focusing of melts in dunite channels located slightly off-axis and that such conduits may be important in the formation and transport of melt both on- and off-axis (Lundstrom et al., 2000). New trace element and isotopic analyses of glasses from Rogue, Hacksaw, and T461 seamounts near the Juan de Fuca Ridge (JdFR), the Lamont Seamounts adjacent to the East Pacific Rise (EPR) ~ 10°N, and the Vance Seamounts next to the JdFR ~45°N provide a better understanding of the petrogenesis of NR seamounts. Our data indicate that lavas from these seamounts have diverse incompatible trace element compositions that range from highly depleted to slightly enriched in comparison to associated ridge basalts. Vance A lavas (the oldest in the Vance chain) have the most enriched signatures and lavas from Rogue seamount on the JdFR plate have the most depleted signatures. Sr-Nd-Pb isotopic ratios indicate that NR seamount lava compositions vary within the chains as well as within individual seamounts, and that there is some mixing between heterogeneous, small-scale mantle sources. Using the program PRIMELT2.XLS (Herzberg and Asimow, 2008), we calculated mantle potential temperatures (Tp) for some of the most primitive basalts erupted at these seamounts. Our data indicate that NR seamount lavas have Tp values that are only slightly higher than that of average ambient mantle. Variations in

  7. Investigating cultural heterogeneity in San Pedro de Atacama, northern Chile, through biogeochemistry and bioarchaeology.

    PubMed

    Knudson, Kelly J; Torres-Rouff, Christina

    2009-04-01

    Individuals living in the San Pedro de Atacama oases and the neighboring upper Loa River Valley of northern Chile experienced the collapse of an influential foreign polity, environmental decline, and the appearance of a culturally distinct group during the Late Intermediate Period (ca. AD 1,100-1,400). We investigate cultural heterogeneity at the Loa site of Caspana through analyses of strontium and oxygen isotopes, cranial modification styles, and mortuary behavior, integrating biological aspects of identity, particularly geographic origins, with cultural aspects of identity manifested in body modification and mortuary behavior. We test the hypothesis that the Caspana population (n = 66) represents a migrant group, as supported by archeological and ethnographic evidence, rather than a culturally distinct local group. For Caspana archeological human tooth enamel, mean (87)Sr/(86)Sr = 0.70771 +/- 0.00038 (1sigma, n = 30) and mean delta(18)O(c(V-PDB)) = -3.9 +/- 0.6 per thousand (1sigma, n = 16); these isotopic data suggest that only one individual lived outside the region. Material culture suggests that the individuals buried at Caspana shared some cultural affinity with the San Pedro oases while maintaining distinct cultural traditions. Finally, cranial modification data show high frequencies of head shaping [92.4% (n = 61/65)] and an overwhelming preference for annular modification [75.4% (n = 46/61)], contrasting sharply with practices in the San Pedro area. Based on multiple lines of evidence, we argue that, rather than representing a group of altiplano migrants, the Caspana population existed in the region for some time. However, cranial modification styles and mortuary behavior that are markedly distinct from patterns in surrounding areas raise the possibility of cultural heterogeneity and cultural fissioning.

  8. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-06-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10–100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.

  9. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    PubMed Central

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10–100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity. PMID:27283981

  10. Effects of Spatially Heterogeneous Porosity on Matrix-Diffusion as Investigated by X ray Absorption Imaging

    SciTech Connect

    Boney, C.; Christian-Frear, T.; Meigs, L.C.; Tidwell, V.C.

    1998-10-20

    Laboratory experiments were performed to investigate the effects of spatial variation in porosity on matrix-diffusion processes. Four centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant site were used in the tests. Experiments involved the simple diffusion of iodine into a single edge of each rock slab while X ray absorption imaging was used to measure the resulting two-dmensional solute concentration field as a function of time. X ray imaging was also used to quantify the two-dimensional porosity field of each rock slab. Image analysis provided a unique opportunity to both visuake and quantifj the effects of the spatially variable porosi~ on matrixdMusion. Four key results were obtained. First, significant variation in rates of diffusion were realized over the relatively small length (centimeter) and time scales (months) investigated. Second, clear evidence of diffusion preferentially following zones of relatively higher porosity was noted. Third, rate of difhion was found to vary as tracer diffused into the rock slabs encountering changing porosity conditions. Fourth, strong correlation between porosi~ and the calculated diffusion coefficients was found. In fact, the nature of the correlation can be related to the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab.

  11. Numerical investigations on mapping permeability heterogeneity in coal seam gas reservoirs using seismo-electric methods

    NASA Astrophysics Data System (ADS)

    Gross, L.; Shaw, S.

    2016-04-01

    Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.

  12. Genomic Investigation into Strain Heterogeneity and Pathogenic Potential of the Emerging Gastrointestinal Pathogen Campylobacter ureolyticus

    PubMed Central

    Bullman, Susan; Lucid, Alan; Corcoran, Daniel; Sleator, Roy D.; Lucey, Brigid

    2013-01-01

    The recent detection and isolation of C. ureolyticus from patients with diarrhoeal illness and inflammatory bowel diseases warrants further investigation into its role as an emerging pathogen of the human gastrointestinal tract. Regarding the pathogenic mechanisms employed by this species we provide the first whole genome analysis of two C. ureolyticus isolates including the type strain. Comparative analysis, subtractive hybridisation and gene ontology searches against other Campylobacter species identifies the high degree of heterogenicity between C. ureolyticus isolates, in addition to the identification of 106 putative virulence associated factors, 52 of which are predicted to be secreted. Such factors encompass each of the known virulence tactics of pathogenic Campylobacter spp. including adhesion and colonisation (CadF, PEB1, IcmF and FlpA), invasion (ciaB and 16 virB-virD4 genes) and toxin production (S-layer RTX and ZOT). Herein, we provide the first virulence catalogue for C. ureolyticus, the components of which theoretically provide this emerging species with sufficient arsenal to establish pathology. PMID:24023611

  13. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989

  14. Intratumoral immunocytokine treatment results in enhanced antitumor effects.

    PubMed

    Johnson, Erik E; Lum, Hillary D; Rakhmilevich, Alexander L; Schmidt, Brian E; Furlong, Meghan; Buhtoiarov, Ilia N; Hank, Jacquelyn A; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A; Gillies, Stephen D; Sondel, Paul M

    2008-12-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled (111)In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.

  15. Intratumoral Immunocytokine Treatment Results in Enhanced Antitumor Effects

    PubMed Central

    Johnson, Erik E.; Lum, Hillary D.; Rakhmilevich, Alexander L.; Schmidt, Brian E.; Furlong, Meghan; Buhtoiarov, Ilia N.; Hank, Jacquelyn A.; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A.; Gillies, Stephen D.; Sondel, Paul M.

    2008-01-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors, and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy. PMID:18438664

  16. Impact of peritumoral and intratumoral budding in esophageal adenocarcinomas.

    PubMed

    Thies, Svenja; Guldener, Lars; Slotta-Huspenina, Julia; Zlobec, Inti; Koelzer, Viktor H; Lugli, Alessandro; Kröll, Dino; Seiler, Christian A; Feith, Marcus; Langer, Rupert

    2016-06-01

    Tumor budding has prognostic significance in many carcinomas and is defined as the presence of detached isolated single cells or small cell clusters up to 5 cells at the invasion front (peritumoral budding [PTB]) or within the tumor (intratumoral budding [ITB]). For esophageal adenocarcinomas (EACs), there are currently only few data about the impact of this morphological feature. We investigated tumor budding in a large collective of 200 primarily resected EACs. Pancytokeratin staining was demonstrated to be superior to hematoxylin and eosin staining for the detection of buds with substantial to excellent interobserver agreement and used for subsequent analysis. PTB and ITB were scored across 10 high-power fields (HPFs). The median count of tumor buds was 130/10 HPFs for PTB (range, 2-593) and 80/10 HPFs for ITB (range, 1-656). PTB and ITB correlated significantly with each other (r = 0.9; P < .001). High PTB and ITB rates were seen in more advanced tumor categories (P < .001 each); tumors with lymph node metastases (P < .001/P = .002); and lymphatic, vascular, and perineural invasion and higher tumor grading (P < .001 each). Survival analysis showed an association with worse survival for high-grade ITB (P = .029) but not PTB (P = .385). However, in multivariate analysis, lymph node and resection status, but not ITB, were independent prognostic parameters. In conclusion, PTB and ITB can be observed in EAC to various degrees. High-grade budding is associated with aggressive tumor phenotype. Assessment of tumor budding, especially ITB, may provide additional prognostic information about tumor behavior and may be useful in specific cases for risk stratification of EAC patients. PMID:26980046

  17. Variable bucket representation of TOPMODEL and investigation of the effects of rainfall heterogeneity

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Woods, Ross A.; Kalma, Jetse D.

    1997-07-01

    In this paper we present a variable bucket capacity (VBC) representation of TOPMODEL (Beven and Kirkby, 1979), generalizing the Manabe simple bucket scheme widely used in climate models. In doing this, we have been motivated by the variable infiltration capacity (VIC) model presented by Wood et al. (1992). For catchments, or for parts of the land surface, whose hydrology fits the TOPMODEL assumptions, this lumped version offers an alternative representation that can be used as the building block for land surface hydrology models at large spatial scales. The model is first applied, with satisfactory results, to a small catchment near Canberra in Australia. Next, using the same model, the effects of random spatial variability of rainfall are studied, but in the context of land surface hydrological parameterizations for global climate models. Sub-grid rainfall variability, especially the partial coverage that characterizes rainfall events at such large scales, is found to cause significant biases in the estimation of land surface fluxes. Other manifestations of the effects of the spatial variability of rainfall are also investigated, also by means of model simulations, but with a view to gaining insights for developing simple parameterizations of land surface fluxes at large scales. This includes the investigation of the dynamics, i.e. spatial and temporal variability, of the soil moisture state variable during and after a rainfall event. In addition, empirical relationships linking the variable contributing area, subsurface runoff and evaporation, to a soil moisture state variable (e.g. soil moisture storage), are derived based on model simulations, and the effects of the sub-grid rainfall variability on these relationships are examined. Because of the strong non-linearity inherent in the process descriptions within the model, the above constitutive relationships are strongly affected by rainfall heterogeneity.

  18. An investigation of interference coordination in heterogeneous network for LTE-Advanced systems

    NASA Astrophysics Data System (ADS)

    Hasan, M. K.; Ismail, A. F.; H, Aisha-Hassan A.; Abdullah, Khaizuran; Ramli, H. A. M.

    2013-12-01

    The novel "femtocell" in Heterogeneous Network (HetNet) for LTE-Advanced (LTE-A) set-up will allow Malaysian wireless telecommunication operators (Maxis, Celcom, Digi, U-Mobile, P1, YTL and etc2.) to extend connectivity coverage where access would otherwise be limited or unavailable, particularly indoors of large building complexes. A femtocell is a small-sized cellular base station that encompasses all the functionality of a typical station. It therefore allows a simpler and self-contained deployment including private residences. For the Malaysian service providers, the main attractions of femtocell usage are the improvements to both coverage and capacity. The operators can provide a better service to end-users in turn reduce much of the agitations and complaints. There will be opportunity for new services at reduced cost. In addition, the operator not only benefits from the improved capacity and coverage but also can reduce both capital expenditure and operating expense i.e. alternative to brand new base station or macrocell installation. Interference is a key issue associated with femtocell development. There are a large number of issues associated with interference all of which need to be investigated, identified, quantified and solved. This is to ensure that the deployment of any femtocells will take place successfully. Among the most critical challenges in femtocell deployment is the interference between femtocell-to-macrocell and femtocell-to-femtocell in HetNets. In this paper, all proposed methods and algorithms will be investigated in the OFDMA femtocell system considering HetNet scenarios for LTE-A.

  19. Investigating Velocity Spectra at the Hugoniot State of Shock Loaded Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Jeff; Borg, John; Stewart, Sarah; Thadhani, Naresh

    2015-06-01

    Hugoniot states achieved in heterogeneous materials have shown oscillations in particle velocity about an averaged state for both experimental and simulated data. These oscillations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between different types of shock-loaded materials are compared such as sand, concrete, aluminum foam, and layered composites. I would like to acknowledge the AFOSR under grant: FA9550-12-1-0128, ``Dynamic High-Pressure Behavior of Hierarchical Heterogenous Geological Granular Materials'' and the D.o.D. Supercomputing Resource Center.

  20. Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR was employed to investigate differences in chemical structure and heterogeneity between milled wood lignin (MWL) and residual enzyme lignin (REL). Wiley and conventional milled woods were also studied. The advanced NMR techniques included 13C quantitative direct polarization...

  1. Lysimeter Soil Retriever (LSR) - A tool for investigation on heterogeneity of the migration and structural changes

    NASA Astrophysics Data System (ADS)

    Reth, S.; Gierig, M.; Winkler, J. B.; Mueller, C. W.; Nitsche, C.; Seyfarth, M.

    2009-04-01

    Generally research fields of lysimeter studies scheduled as long term experiments. In the course of the studies, the lysimeters act more or less as a "black box". Usually the soil material is identified and analysed at the beginning of the experiments. But there is also a strong need to analyze the soil without disturbance of the soil structure after the experiments in order to obtain information about spatial and structural changes within the soil profile. The new technique of the Lysimeter Soil Retriever for the first time enables studies on the heterogeneous migration of percolating water, and changes of soil structure as well as soil organic matter (SOM) and biomass distribution, as well as the distribution of mycorrhiza and microbes in different depths on intact soil profiles. The main target by using the LSR is the preparation of an intact soil monolith from the field lysimeter and the immediate dissection into slices to enable a direct sampling of its soil environment at several depths. Distribution and composition of SOM, pF-values, soil porosity, as well as degradation of PAH were only a few parameters, which are determined at the different soil depths. In this presentation we give some examples for the different application of the LSR and the advantage for the experiments: - The soil of 8 lysimeters, planted with young beeches was retrieved after several years of fumigation with doubled atmospheric ozone concentrations and application of fungi. Due to the accurate sectioning of the soil monoliths a very dense and intensive soil sampling was possible. As the whole soil space of 8 lysimeters could be sampled, precise spatial information were obtained about the rapid formation of SOM depth gradients within the experiment duration. - After the investigation on the mobilization of polycyclic aromatic hydrocarbons (PAH) by the seepage water, the lysimeter soil was retrieved. Investigations on the microbiological degradation of the PAH were possible in the whole

  2. Lidar Investigation of Infiltration Water Heterogeneity in the Tamala Limestone, SW WA

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Treble, P. C.; Baker, A.

    2014-12-01

    To better manage groundwater resources in carbonate areas and improve our understanding of speleothem archives, it is important to understand and predict unsaturated zone hydrology in karst. The high level of complexity and spatial heterogeneity of such systems is challenging and requires knowledge of the typical geometry of karstic features. We present an exhaustive characterization of Golgotha Cave, SW Western Australia, based on an extensive LIDAR measurement campaign. The cave is developed in Quaternary age aeolianite (dune limestone) and contains speleothem records. We collect 30 representative 3D scan images from this site using FARO Focus3D, a high-speed 3D laser scanner, to visualize, study and extract 2D and 3D information from various points of view and at different scales. In addition to LIDAR data, 32 automatic drip loggers are installed at this site to measure the distribution and volume of water flow. We perform mathematical morphological analyses on the cave ceiling, to determine statistical information regarding the stalactites widths, lengths and spatial distribution. We determine a relationship between stalactites diameter and length. We perform tests for randomness to investigate the relationship between stalactite distribution and ceiling features such as fractures and apply this to identify different types of possible flow patterns such as fracture flow, solution pipe flow, primary matrix flow etc. We also relate stalactites density variation with topography of the cave ceiling which shows hydraulic gradient deviations. Finally we use Image Quilting, one of the recently developed multiple-point geostatistics methods, with the training images derived from LIDAR data to create a larger cave system to represent not only the caves that are visible, but the entire system which is inaccessible. As a result, an integral geological model is generated which may allow other scientists, geologist, to work on two different levels, integrating different

  3. Investigations of the impact of wettability heterogeneity on trapping and relative permeability using pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Jiang, F.

    2015-12-01

    Wettability is one of the most important factors influencing the multi-phase fluid flow behavior in porous media. However, the role of wettability at pore-scale still remains poorly understood. In this study, we carried out a series of pore-scale simulations of multiphase displacement process to investigate the impact of wettability heterogeneity on trapping, sweep efficiency and relative permeability using lattice Boltzmann method. We first artificially generated mixed-wet bead pack models with varying degree of wettability by introducing spatial heterogeneity. Based on these models, we then calculated the relative permeability curves and performed the drainage and imbibition simulations to obtain the residual non-wetting phase distributions. The results indicate that strong wettability heterogeneity results in a decrease of non-wetting phase permeability due to the pinned interfaces at wettability discontinuities. The wetting phase permeability as well as the sweep efficiency are largely influenced by the degree of wettability rather than the wettability heterogeneity. The non-wetting phase is observed to be less trapped with strong heterogeneity conditions.

  4. Antitumor efficacy and intratumoral distribution of SN-38 from polymeric depots in brain tumor model

    PubMed Central

    Vejjasilpa, Ketpat; Manaspon, Chawan; Larbcharoensub, Noppadol; Boongird, Atthaporn; Hongeng, Suradej; Israsena, Nipan

    2015-01-01

    We investigate antitumor efficacy and 2D and 3D intratumoral distribution of 7-ethyl-10-hydroxycamptothecin (SN-38) from polymeric depots inside U-87MG xenograft tumor model in nude mice. Results showed that polymeric depots could be used to administer and controlled release of a large amount of SN-38 directly to the brain tumor model. SN-38 released from depots suppressed tumor growth, where the extent of suppression greatly depended on doses and the number of depot injections. Tumor suppression of SN-38 from depots was three-fold higher in animals which received double injections of depots at high dose (9.7 mg of SN-38) compared to single injection (2.2 mg). H&E staining of tumor sections showed that the area of tumor cell death/survival of the former group was two-fold higher than those of the latter group. Fluorescence imaging based on self-fluorescent property of SN-38 was used to evaluate the intratumoral distribution of this drug compared to histological results. The linear correlation between fluorescence intensity and the amount of SN-38 allowed quantitative determination of SN-38 in tumor tissues. Results clearly showed direct correlation between the amount of SN-38 in tumor sections and cancer cell death. Moreover, 3D reconstruction representing the distribution of SN-38 in tumors was obtained. Results from this study suggest the rationale for intratumoral drug administration and release of drugs inside tumor, which is necessary to design drug delivery systems with efficient antitumor activity. PMID:26080460

  5. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts.

    PubMed

    Kim, Jung Ho; Lee, Joo-Ho; Kim, Kwang-Suck; Na, Kun; Song, Soo-Chang; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone. PMID:23371803

  6. Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma

    PubMed Central

    Hayashi, Akimasa; Shibahara, Junji; Misumi, Kento; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi

    2016-01-01

    In the present study, we investigated the clinicopathologic significance of intratumoral lymphoplasmacytic infiltration in a large cohort of patients with solitary hepatocellular carcinoma (HCC). Based on examination of hematoxylin and eosin-stained sections, significant infiltration was defined as dense lymphoplasmacytic infiltration, either multifocal or diffuse, in 2 or more fields under low-power magnification. Of 544 cases, 216 (39.7%) were positive for significant infiltration (HCC-LI group), while 328 (60.3%) were negative (HCC-NLI group). There were no significant between-group differences in patient age, sex, or background etiology. The lower incidence of Child-Pugh stage B (P = 0.001) and lower level of indocyanine green retention rate at 15 minutes (P < 0.001) in the HCC-LI group indicated better liver function in this group. Histologically, tumors were significantly smaller in size in the HCC-LI group than in the HCC-NLI group (P < 0.001). In addition, prominent neutrophilic infiltration, interstitial fibrosis and tumor steatosis were significantly more frequent (P < 0.001) in the HCC-LI group, while tumor necrosis was significantly less frequent (P = 0.008). Kaplan-Meier analyses revealed that overall and recurrence-free survival were significantly better in the HCC-LI group (P < 0.001). Multivariate Cox regression analysis showed that intratumoral lymphoplasmacytic infiltration was independently prognostic of both overall and recurrence-free survival (P < 0.001), with absence of infiltration showing high Cox-hazard ratios for poor prognosis. In conclusion, intratumoral lymphoplasmacytic infiltration, as determined by assessment of hematoxylin and eosin-stained slides, was significantly associated with the clinical and pathologic features of HCC and has profound prognostic importance. PMID:27195977

  7. Investigation of detonation velocity in heterogeneous explosive system using the reactive Burgers' analog

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.

    2016-06-01

    In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.

  8. Hilar cholangiocarcinoma with intratumoral calcification: A case report

    PubMed Central

    Inoko, Kazuho; Tsuchikawa, Takahiro; Noji, Takehiro; Kurashima, Yo; Ebihara, Yuma; Tamoto, Eiji; Nakamura, Toru; Murakami, Soichi; Okamura, Keisuke; Shichinohe, Toshiaki; Hirano, Satoshi

    2015-01-01

    This report describes a rare case of hilar cholangiocarcinoma with intratumoral calcification that mimicked hepatolithiasis. A 73-year-old man presented to a local hospital with a calcified lesion in the hepatic hilum. At first, hepatolithiasis was diagnosed, and he underwent endoscopic stone extraction via the trans-papillary route. This treatment strategy failed due to biliary stricture. He was referred to our hospital, and further examination suggested the existence of cholangiocarcinoma. He underwent left hepatectomy with caudate lobectomy and extrahepatic bile duct resection. Pathological examination revealed hilar cholangiocarcinoma with intratumoral calcification, while no stones were found. To the best of our knowledge, only one case of calcified hilar cholangiocarcinoma has been previously reported in the literature. Here, we report a rare case of calcified hilar cholangiocarcinoma and reveal its clinicopathologic features. PMID:26478684

  9. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  10. Chemical Heterogeneity of Organic Soil Colloids Investigated by Scanning Transmission X-ray Microscopy and C-1s NEXAFS Microspectroscopy

    SciTech Connect

    Schumacher,M.; Christl, I.; Scheinost, A.; Jacobsen, C.; Kretzschmar, R.

    2005-01-01

    Colloid release and deposition in soils and sorption of inorganic and organic pollutants to soil colloids are strongly influenced by the composition and chemical heterogeneity of colloidal soil particles. To investigate the chemical heterogeneity of organic soil colloids at the particle scale, we used synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy on 49 individual particles isolated from the surface horizons of three forest soils. Stacks of 130 images of each particle were collected at different X-ray energies between 280 and 310 eV. From these image arrays, NEXAFS spectra were obtained for each pixel and analyzed by principle component analysis and cluster analysis (PCA-CA) to characterize the intraparticle heterogeneity of the organic components. The results demonstrate that the organic matter associated with water-dispersible soil colloids is chemically heterogeneous at the single-particle scale. PCA-CA identified at least two distinct regions within single particles. However, the spectral variations between these regions were much smaller than the variations of averaged NEXAFS spectra representing different particles from the same soil horizon, implying that interparticle heterogeneity is much larger than intraparticle heterogeneity. Especially the contents of aromatic and carboxyl carbon exhibited a large variability. Overall, the NEXAFS spectra of water-dispersible soil colloids were similar to the NEXAFS spectrum of the humic acid fraction, but differed clearly from the fulvic acid and dissolved organic matter fractions extracted from the same soil horizon using conventional techniques.

  11. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  12. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  13. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression.

    PubMed

    Anz, David; Rapp, Moritz; Eiber, Stephan; Koelzer, Viktor H; Thaler, Raffael; Haubner, Sascha; Knott, Max; Nagel, Sarah; Golic, Michaela; Wiedemann, Gabriela M; Bauernfeind, Franz; Wurzenberger, Cornelia; Hornung, Veit; Scholz, Christoph; Mayr, Doris; Rothenfusser, Simon; Endres, Stefan; Bourquin, Carole

    2015-11-01

    The chemokine CCL22 is abundantly expressed in many types of cancer and is instrumental for intratumoral recruitment of regulatory T cells (Treg), an important subset of immunosuppressive and tumor-promoting lymphocytes. In this study, we offer evidence for a generalized strategy to blunt Treg activity that can limit immune escape and promote tumor rejection. Activation of innate immunity with Toll-like receptor (TLR) or RIG-I-like receptor (RLR) ligands prevented accumulation of Treg in tumors by blocking their immigration. Mechanistic investigations indicated that Treg blockade was a consequence of reduced intratumoral CCL22 levels caused by type I IFN. Notably, stable expression of CCL22 abrogated the antitumor effects of treatment with RLR or TLR ligands. Taken together, our findings argue that type I IFN blocks the Treg-attracting chemokine CCL22 and thus helps limit the recruitment of Treg to tumors, a finding with implications for cancer immunotherapy. PMID:26432403

  14. Intratumoral oxygen gradients mediate sarcoma cell invasion.

    PubMed

    Lewis, Daniel M; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T S Karin; Simon, M Celeste; Gerecht, Sharon

    2016-08-16

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  15. One size does not fit all: investigating doctors' stated preference heterogeneity for job incentives to inform policy in Thailand.

    PubMed

    Lagarde, Mylene; Pagaiya, Nonglak; Tangcharoensathian, Viroj; Blaauw, Duane

    2013-12-01

    This study investigates heterogeneity in Thai doctors' job preferences at the beginning of their career, with a view to inform the design of effective policies to retain them in rural areas. A discrete choice experiment was designed and administered to 198 young doctors. We analysed the data using several specifications of a random parameter model to account for various sources of preference heterogeneity. By modelling preference heterogeneity, we showed how sensitivity to different incentives varied in different sections of the population. In particular, doctors from rural backgrounds were more sensitive than others to a 45% salary increase and having a post near their home province, but they were less sensitive to a reduction in the number of on-call nights. On the basis of the model results, the effects of two types of interventions were simulated: introducing various incentives and modifying the population structure. The results of the simulations provide multiple elements for consideration for policy-makers interested in designing effective interventions. They also underline the interest of modelling preference heterogeneity carefully.

  16. A new method for investigating heterogeneities from well logs using the Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Zaourar, Naima; Hachay, Olga

    2015-04-01

    Borehole logs exhibit multi-scale properties that cannot be analyzed using the conventional tools. Here, we propose a new method based on Hilbert-Huang transform (HHT), a combination of the empirical mode decomposition (EMD) and Hilbert transform (HT), for estimating a local scaling coefficient from well logs. This parameter measures heterogeneities degree of the layers crossed by the borehole. The proposed technique has been applied on P- and S-wave seismic velocity logs recorded at the KTB main borehole drilled for the German Continental Deep Drilling program. The calculated depth-dependent scaling parameter highlighted the lithological discontinuities occurred within the logged depth interval, and allowed to measure the complexity of underground heterogeneities. To conclude, the suggested method presents a new way to explore multi-scale features of the logs data, and may bring additional information to the conventional analysis tools. More datasets are needed to establish a possible relationship between the local scaling parameter and lithology.

  17. Monte Carlo Investigation on the Effect of Heterogeneities on Strut Adjusted Volume Implant (SAVI) Dosimetry

    NASA Astrophysics Data System (ADS)

    Koontz, Craig

    Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.

  18. Primary central nervous system lymphoma: is absence of intratumoral hemorrhage a characteristic finding on MRI?

    PubMed Central

    Sakata, Akihiko; Okada, Tomohisa; Yamamoto, Akira; Kanagaki, Mitsunori; Fushimi, Yasutaka; Dodo, Toshiki; Arakawa, Yoshiki; Takahashi, Jun C; Miyamoto, Susumu; Togashi, Kaori

    2015-01-01

    Background. Previous studies have shown that intratumoral hemorrhage is a common finding in glioblastoma multi-forme, but is rarely observed in primary central nervous system lymphoma. Our aim was to reevaluate whether intratumoral hemorrhage observed on T2-weighted imaging (T2WI) as gross intratumoral hemorrhage and on susceptibility-weighted imaging as intratumoral susceptibility signal can differentiate primary central nervous system lymphoma from glioblastoma multiforme. Patients and methods. A retrospective cohort of brain tumors from August 2008 to March 2013 was searched, and 58 patients (19 with primary central nervous system lymphoma, 39 with glioblastoma multiforme) satisfied the inclusion criteria. Absence of gross intratumoral hemorrhage was examined on T2WI, and an intratumoral susceptibility signal was graded using a 3-point scale on susceptibility-weighted imaging. Results were compared between primary central nervous system lymphoma and glioblastoma multiforme, and values of P < 0.05 were considered significant. Results. Gross intratumoral hemorrhage on T2WI was absent in 15 patients (79%) with primary central nervous system lymphoma and 23 patients (59%) with glioblastoma multiforme. Absence of gross intratumoral hemorrhage could not differentiate between the two disorders (P = 0.20). However, intratumoral susceptibility signal grade 1 or 2 was diagnostic of primary central nervous system lymphoma with 78.9% sensitivity and 66.7% specificity (P < 0.001), irrespective of gross intratumoral hemorrhage. Conclusions. Low intratumoral susceptibility signal grades can differentiate primary central nervous system lymphoma from glioblastoma multiforme. However, specificity in this study was relatively low, and primary central nervous system lymphoma cannot be excluded based solely on the presence of an intratumoral susceptibility signal. PMID:26029023

  19. Investigating the heterogeneous freezing behavior of supercooled droplets containing different amounts of SNOMAX

    NASA Astrophysics Data System (ADS)

    Niedermeier, D.; Budke, C.; Koop, T.; Hartmann, S.; Augustin, S.; Stratmann, F.; Wex, H.

    2013-12-01

    Heterogeneous ice nucleation, a fundamental process for ice formation in the atmosphere, has been observed to occur in clouds at temperatures higher than -20 °C (Kanitz et al., 2011). However, laboratory studies showed that mineral dust particles, which are the most abundant atmospheric ice nuclei (IN), are ice active at lower temperature (Murray et al., 2012). Biological particles such as bacteria nucleate ice at higher temperatures similar to those observed in the atmosphere. But their atmospheric relevance is controversially discussed (Hartmann et al., 2013; Hoose et al., 2010). In order to achieve a better understanding, fundamental processes underlying ice nucleation on bacteria should be investigated. Within the Ice Nuclei research UnIT (INUIT), the ice nucleating ability of SNOMAX, which contains non-viable Pseudomonas syringae bacteria as well as their fragments, was quantified using different measurement devices featuring different measurement techniques. Here, results determined with the Bielefeld Ice Nucleation ARraY (BINARY, Budke et al., 2013) and the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011) are presented exemplarily. Within these devices, droplets with different amounts of SNOMAX were exposed to supercooling temperatures until they froze (BINARY: cooling rate: 1K/min; LACIS: residence time of supercooled droplets at a certain temperature: ~0.2s). Frozen fractions were determined in a temperature range of ca. -4 to -20 °C. These fractions increase steeply and, in part, level off at values lower than 100% (i.e., they reach a plateau value indicating the number of SNOMAX IN per droplet) depending on the SNOMAX concentration. With increasing amount of SNOMAX per droplet, the frozen fraction curve is shifted to higher temperature and the plateau value increases, reaching 100% for the highest SNOMAX concentrations. It has been suggested that ice nucleation active (INA) macromolecules, i.e. protein complexes in the case of

  20. Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D

    2014-01-01

    The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in

  1. Tumor Heterogeneity in Hepatocellular Carcinoma: Facing the Challenges.

    PubMed

    Lu, Li-Chun; Hsu, Chih-Hung; Hsu, Chiun; Cheng, Ann-Lii

    2016-04-01

    Tumor heterogeneity in hepatocellular carcinoma (HCC), such as that found in second primary tumors after curative treatment, synchronous multifocal tumors of different clonality, or intratumor heterogeneity, poses severe challenges for the development and administration of systemic molecular targeted therapies. Various methodologies, including historical DNA ploidy analysis, integrated hepatitis B virus DNA analysis, DNA fingerprinting, and next-generation sequencing technologies, are used to explore tumor heterogeneity in HCC. It is estimated that 30%-60% of recurrent or metastatic tumors harbor clones different from the primary tumor, 22%-79% of synchronous tumors vary clonally, and 12%-66% of single tumors contain intratumor heterogeneity. Substantial intertumor and intratumor heterogeneity renders biomarker identification, which is critical for the development and administration of molecular targeted therapy, challenging when applied to a single tumor biopsy specimen. The use of circulating tumor cells or circulating tumor DNA to evaluate overall tumor heterogeneity may help resolve this problem. This article reviews previous studies of tumor heterogeneity and discusses the implications and future opportunities regarding tumor heterogeneity in HCC. PMID:27386431

  2. Intratumor photosensitizer injection for photodynamic therapy: Pre-clinical experience with methylene blue, Pc 4, and Photofrin

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.; Foster, Thomas H.

    2016-03-01

    Intravenous administration of some photosensitizers, including the FDA-approved Photofrin, results in significant systemic photosensitivity and a 2-3-day drug-light interval. Direct intratumor injection of photosensitizer could potentially eliminate these negative aspects of photodynamic therapy (PDT), while requiring a lower photosensitizer dose to achieve comparable drug concentration in the target tissue. We performed PDT using intratumor injection of 3 photosensitizers, methylene blue (MB), Pc 4, and Photofrin, in mouse tumor models. After a 0-15 minute drug-light interval, illumination was delivered by appropriate diode lasers. For animals receiving MB or Pc 4, surface illumination was delivered using a microlens-terminated fiber. For animals receiving Photofrin, interstitial illumination was delivered by a 1 cm diffuser. In animals receiving MB or Pc 4, tumor dimensions were measured daily post-PDT, with a cure being defined as no palpable tumor 90 days post-treatment. For Photofrin, animals were sacrificed 24 hours post-PDT and tumors were excised, with samples HE stained to assess PDT-induced necrosis. 55% of tumors were cured with MB-PDT, and significant tumor growth delay (p=0.002) was observed for Pc 4. For Photofrin PDT, the mean necrosis radius was 3.4+/-0.8 mm, compared to 2.9+/-1.3 mm for systemic administration, which was not a significant difference (p=0.58). Intratumoral injection of the photosensitizers methylene blue, Pc 4, and Photofrin is feasible, and results in appreciable tumor response. Further investigation is necessary to optimize treatment protocols and assess the systemic photosensitivity induced by intratumor injection.

  3. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.

    PubMed

    Page, John W E; Soga, Kenichi; Illangasekare, Tissa

    2007-12-01

    Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations. PMID:17706832

  4. A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity.

    PubMed

    Yan, Han; Li, Denghua; He, Chang; Wei, Zhixiang; Yang, Yanlian; Li, Yongfang

    2013-12-01

    Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered.

  5. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.

    PubMed

    Page, John W E; Soga, Kenichi; Illangasekare, Tissa

    2007-12-01

    Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.

  6. Relaxation Nuclear Magnetic Resonance Imaging Investigation of Heterogeneous Aging in a Hydroxy-Terminated Polybutadiene-Based Elastomer

    SciTech Connect

    Alam, Todd M.; Cherry, Brian R.; Minard, Kevin R.; Celina, Mat C.

    2005-12-27

    Relaxation nuclear magnetic resonance imaging (R-NMRI) was employed to investigate the effects of thermo-oxidative aging in a hydroxy-terminated polybutadiene (HTPB) based elastomer. A series of three-dimensional (3D) Hahn-echo weighted single point images (SPI) of the elastomer were utilized to generate a 3D parameter map of the aged material. NMR spin-spin relaxation times (T2) were measured for each voxel producing a 3D NMR parameter (T2) map of the aged polymer. These T2 maps reveal a dramatic reduction of local polymer mobility near the aging surface with the degree of T2 heterogeneity varying as a function of aging. Using correlations between NMR T2 and material modulus, the impact of this heterogeneous thermo-oxidative aging on the material properties is discussed.

  7. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  8. Spinal epidural angiolipoma complicated by an intratumoral abscess. Case report.

    PubMed

    Petrella, Gianpaolo; Tamburrini, Gianpiero; Lauriola, Libero; Di Rocco, Concezio

    2005-08-01

    Spinal angiolipomas are rare, benign lesions representing 0.14 to 1.2% of all spinal axis tumors. They most commonly involve the midthoracic spine and are located in the posterior epidural space. Up to now, six pediatric cases have been reported in the literature; two of them involved an acute clinical onset that was related to a venous infarction of a tumor. The authors report the case of a 16-year-old boy with a midthoracic epidural angiolipoma who was admitted with a clinical history of an acute paraparesis. In contrast to previous descriptions, the acute onset in this case was related to a spontaneous intratumoral abscess within the tumor.

  9. WE-E-17A-05: Complementary Prognostic Value of CT and 18F-FDG PET Non-Small Cell Lung Cancer Tumor Heterogeneity Features Quantified Through Texture Analysis

    SciTech Connect

    Desseroit, M; Cheze Le Rest, C; Tixier, F; Majdoub, M; Visvikis, D; Hatt, M; Guillevin, R; Perdrisot, R

    2014-06-15

    Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM. Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET

  10. Heterogeneity of blood flow in tibial cortical bone: An experimental investigation using microspheres

    SciTech Connect

    Willans, S.M.; McCarthy, I.D. )

    1991-03-01

    The distribution of tibial blood flow was measured by injecting approximately (600-1000) x 10(3) 15 mu microspheres, labelled with either tin-113 (113Sn) or cobalt-57 (57Co) into femoral arteries of five mature greyhounds. The diaphyseal cortex, stripped of periosteum and devoid of marrow, was sawn into 40 pieces (10 transverse sections x 4 anatomical quarters/section). Relative deposition densities of the 113Sn microspheres in 40 pieces of cortex were found. These values, together with their associated masses, proved, from a statistical point of view, that flow rate heterogeneity was substantial in the diaphysis. In particular, for the diaphyseal cortex, distribution of relative deposition densities (flow rates) in six bones was found to be positively-skewed with a relative dispersion ((SD/mean) x 100) of approximately 40%.

  11. Experimental investigation of supercritical CO2 trapping mechanisms at the Intermediate Laboratory Scale in well-defined heterogeneous porous media

    DOE PAGESBeta

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; Illangasekare, Tissa H.

    2014-12-31

    The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of the migrationmore » and trapping of supercritical CO2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.« less

  12. Electronic Energy Transfer in Polarizable Heterogeneous Environments: A Systematic Investigation of Different Quantum Chemical Approaches.

    PubMed

    Steinmann, Casper; Kongsted, Jacob

    2015-09-01

    Theoretical prediction of transport and optical properties of protein-pigment complexes is of significant importance when aiming at understanding the structure-function relationship in such systems. Electronic energy transfer (EET) couplings represent a key property in this respect since such couplings provide important insight into the strength of interaction between photoactive pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding model has been suggested (Curutchet, C., et al. J. Chem. Theory Comput., 2009, 5, 1838-1848). In this work, we further develop this computational model by extending it with an ab initio derived polarizable force field including higher-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made, for example, the explicit use of transition densities in the calculation of the electronic couplings, and also when including the explicit environment contribution, can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions. PMID:26575923

  13. A computational investigation of the role of behavioral heterogeneities on cell cluster motion

    NASA Astrophysics Data System (ADS)

    Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay

    2015-03-01

    Collective motion of cells is a common occurence in many biological systems, including tissue develope- ment and repair, and tumor formation. Recent experiments have shown that malignant B and T lymphocytes form clusters in a chemical gradient of CCL19 which display three different phases: translational, rotational, and random. Could these phases be due to interactions between cells as well as chemotaxis of individuals? If so what types of local interactions can lead to the three phases seen in experiment? We model cell clusters with a continuous two dimensional agent based model. To form a single cell cluster which displays all three of the phases described above, cells interact with a Vicsek alignment interaction, a Lennard-Jones collision- avoidance and cohesiveness interaction, and a long range spring interaction to prevent fracture. By changing the behaviors of individual cells depending on the number of cells they are contacting, we are able to create clusters that occupy these phases with varying likelihood. Our results show that heterogeneous behaviors of individuals based on local environment can lead to novel phases seen in experiments.

  14. Electronic Energy Transfer in Polarizable Heterogeneous Environments: A Systematic Investigation of Different Quantum Chemical Approaches.

    PubMed

    Steinmann, Casper; Kongsted, Jacob

    2015-09-01

    Theoretical prediction of transport and optical properties of protein-pigment complexes is of significant importance when aiming at understanding the structure-function relationship in such systems. Electronic energy transfer (EET) couplings represent a key property in this respect since such couplings provide important insight into the strength of interaction between photoactive pigments in protein-pigment complexes. Recently, attention has been payed to how the environment modifies or even controls the electronic couplings. To enable such theoretical predictions, a fully polarizable embedding model has been suggested (Curutchet, C., et al. J. Chem. Theory Comput., 2009, 5, 1838-1848). In this work, we further develop this computational model by extending it with an ab initio derived polarizable force field including higher-order multipole moments. We use this extended model to systematically examine three different ways of obtaining EET couplings in a heterogeneous medium ranging from use of the exact transition density to a point-dipole approximation. Several interesting observations are made, for example, the explicit use of transition densities in the calculation of the electronic couplings, and also when including the explicit environment contribution, can be replaced by a much simpler transition point charge description without comprising the quality of the model predictions.

  15. An investigation of genetic heterogeneity and linkage disequilibrium in 161 families with spinal muscular atrophy

    SciTech Connect

    Merette, C.; Gilliam, T.C.; Brzustowicz, L.M. ); Daniels, R.J.; Davies, K.E. ); Melki, J.; Munnich, A. ); Pericak-Vance, M.A. ); Siddique, T. ); Voosen, B. )

    1994-05-01

    The authors performed linkage analysis of 161 families with spinal muscular atrophy (SMA) in which affected individuals suffer from the intermediate or mild form of the disease (Types II or III). Markers for six loci encompassing the chromosome 5q11.2-q13.3 region were typed. The best map location for the disease locus was found to be between D5S6 and MAP1B. The corresponding 1 lod unit support interval is confined to this interval and spans 0.5 cM. The data strongly support the hypothesis of linkage heterogeneity (likelihood ratio, 1.14 [times] 10[sup 4]), with 5% of the families unlinked. Four families have a probability of less than 50% of segregating the SMA gene linked to the region 5q11.2-q13.3. A likelihood approach to test for linkage disequilibrium revealed no significant departure from Hardy-Weinberg equilibrium with any marker under study. 28 refs., 4 figs., 3 tabs.

  16. Natural flow and vertical heterogeneities in a sedimentary geothermal reservoir (Paris Basin, France): Geochemical investigations

    SciTech Connect

    Criaud, Annie, Fouassier, Philippe; Fouillac, Christian; Brach, Michel

    1988-01-01

    Three geothermal wells tapping the Dogger aquifer were studied in detail for their variations in chemical composition with time or conditions of exploitation. Analytical improvements for the determination of Cl, SO{sub 4}, Ca, Mg, Na and K make it possible to detect variations respectively of 0.15, 0.8, 0.6, 1.8, 1.8 and 1.4 %. Despite the fact that the natural flow may be important in some parts of the basin aquifer, we conclude that this factor is not responsible for the small variations noticed in mineralization within the one year survey period. The results concerning reactive and nonreactive species are best explained if a vertical heterogeneity of the chemistry of the fluid is assumed. A number of calcareous sub-layers, already demonstrated by geological studies, contribute to varying degrees to the production of the hot water. The changes in pumping rates, which are fixed according to external requirements, play a major role in the hydrodynamic and chemical disequilibrium of the wells. The consequences for the geothermal exploitations are emphasized.

  17. Effects of intratumoral injection of I-125 iododeoxyuridine on Ehrlich ascites carcinoma

    SciTech Connect

    Hong, S.S.; Ford, E.H.; Alfieri, A.A.; Bravo, S. )

    1989-11-01

    Intratumoral injection of I-125 iododeoxyuridine (IUdR), saline solution, and oil suspension was investigated using Ehrlich ascites tumors in the thighs of mice. The oil suspension was more effective in tumor growth delay than was the saline solution. Single injection of the oil suspension at the dose of 12.5 microCi resulted in 21.5 days growth delay, whereas 50 microCi of the saline solution resulted in 11.5 days growth delay relative to control growth delay. At 40 days after treatment, higher radioactivities were observed in the tumor and the skin of the mice treated with the oil suspension, which represented the prolongation of I-125 IUdR oil suspension within the tumor. No normal tissue toxicities were observed.

  18. Heterogeneity of ERBB2 in gastric carcinomas: a study of tissue microarray and matched primary and metastatic carcinomas.

    PubMed

    Cho, Eun Yoon; Park, Kyeongmee; Do, Ingu; Cho, Junhun; Kim, Jiyun; Lee, Jeeyun; Kim, Seonwoo; Kim, Kyoung-Mee; Sohn, Tae Sung; Kang, Won Ki; Kim, Sung

    2013-05-01

    Trastuzumab in association with systemic cytotoxic chemotherapy is a therapeutic option for patients with advanced or metastatic ERBB2+ gastric carcinoma. The status of the ERBB2 overexpression or gene amplification is an important predictive marker in gastric cancer. However, it is controversial whether the primary tumor is representative of distant metastases in terms of ERBB2 status. Quadruplicated tissue microarrays from formalin-fixed paraffin-embedded tissues from 498 advanced primary gastric carcinomas and 97 matched metastatic lymph nodes were investigated by immunohistochemistry with HercepTest and silver in situ hybridization. For further comparison, another set of 41 paired primary and distant metastatic gastric carcinomas were also tested. Intratumoral heterogeneity was defined as different results between tissue microarray cores. ERBB2-positivity was observed in 52 gastric carcinomas (10%) and was not associated with recurrence of disease or survival of patients. In ERBB2-positive primary gastric carcinomas, heterogeneous ERBB2 overexpression was observed in 21/63 (33%) gastric carcinomas and heterogeneous ERBB2 gene amplification in 14/62 (23%) cases. Repeated immunohistochemistry and silver in situ hybridization in representative paraffin tumor blocks confirmed focal ERBB2 overexpression and ERBB2 gene amplification and did not change the final results. Discrepancies in ERBB2 results between primary and paired metastatic lymph nodes were observed in 11% of cases by immunohistochemistry and 7% by silver in situ hybridization. Out of the 41 paired primary and distant metastases, 5 (12%) cases were ERBB2-positive, and discrepancy was observed in one case. Intratumoral heterogeneity and discrepant ERBB2 results in primary and metastatic tumor are not uncommon in gastric carcinoma. Results of silver in situ hybridization showed less frequent heterogeneity compared with immunohistochemistry. Wherever possible, ERBB2 immunohistochemistry testing should be

  19. Bimodality of intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with invasive breast carcinoma.

    PubMed

    Laurinavicius, Arvydas; Plancoulaine, Benoit; Rasmusson, Allan; Besusparis, Justinas; Augulis, Renaldas; Meskauskas, Raimundas; Herlin, Paulette; Laurinaviciene, Aida; Abdelhadi Muftah, Abir A; Miligy, Islam; Aleskandarany, Mohammed; Rakha, Emad A; Green, Andrew R; Ellis, Ian O

    2016-04-01

    Proliferative activity, assessed by Ki67 immunohistochemistry (IHC), is an established prognostic and predictive biomarker of breast cancer (BC). However, it remains under-utilized due to lack of standardized robust measurement methodologies and significant intratumor heterogeneity of expression. A recently proposed methodology for IHC biomarker assessment in whole slide images (WSI), based on systematic subsampling of tissue information extracted by digital image analysis (DIA) into hexagonal tiling arrays, enables computation of a comprehensive set of Ki67 indicators, including intratumor variability. In this study, the tiling methodology was applied to assess Ki67 expression in WSI of 152 surgically removed Ki67-stained (on full-face sections) BC specimens and to test which, if any, Ki67 indicators can predict overall survival (OS). Visual Ki67 IHC estimates and conventional clinico-pathologic parameters were also included in the study. Analysis revealed linearly independent intrinsic factors of the Ki67 IHC variance: proliferation (level of expression), disordered texture (entropy), tumor size and Nottingham Prognostic Index, bimodality, and correlation. All visual and DIA-generated indicators of the level of Ki67 expression provided significant cutoff values as single predictors of OS. However, only bimodality indicators (Ashman's D, in particular) were independent predictors of OS in the context of hormone receptor and HER2 status. From this, we conclude that spatial heterogeneity of proliferative tumor activity, measured by DIA of Ki67 IHC expression and analyzed by the hexagonal tiling approach, can serve as an independent prognostic indicator of OS in BC patients that outperforms the prognostic power of the level of proliferative activity. PMID:26818835

  20. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  1. Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-01-01

    Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.

  2. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    NASA Astrophysics Data System (ADS)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  3. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme

    PubMed Central

    de Aquino, Priscila F.; Carvalho, Paulo Costa; Nogueira, Fábio C. S.; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B.; Zanchin, Nilson I. T.; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  4. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme

    PubMed Central

    de Aquino, Priscila F.; Carvalho, Paulo Costa; Nogueira, Fábio C. S.; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B.; Zanchin, Nilson I. T.; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.

  5. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme.

    PubMed

    de Aquino, Priscila F; Carvalho, Paulo Costa; Nogueira, Fábio C S; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B; Zanchin, Nilson I T; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient's GBM but obtained from two surgeries a year's time apart. Our analysis also included GBM's fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor's anatomical region. Nevertheless, we report differentially abundant proteins from GBM's fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  6. Use of tracers to investigate preferential flow in heterogeneous and unstable media : the case of active mudslides in French Alps.

    NASA Astrophysics Data System (ADS)

    Marc, V.; Garel, E.; Debieche, T. H.; Krzeminska, D. M.; Bogaard, T. A.; Malet, J. P.

    2009-04-01

    Among the difficulties usually encountered in catchment hydrology, the study of local scale hydrological processes comes up against the critical point of scaling up the information to proper scale in term of risk or resources management. In highly heterogeneous media, the major impact of preferential flow makes the question still trickier since the problem of measurements is to be added to the areal extrapolation. One of the most suitable methods to elaborate hydrological conceptual scheme at hillslope or catchment scale is water tracing (both environmental and artificial). In the framework of the GACH2C and ECOUPREF projects, environmental and artificial tracers, both isotopes and solutes, were used to clarify infiltration and groundwater recharge processes on different black marl unstable hillslopes of southern French Alps. The investigation was carried out at different time steps (from event to long term scale) and from local to catchment scale. Long term isotopic monitoring showed that mean residence time of groundwater was quite short (around a year). However, local isotopic and hydrochemical anomalies suggested that part of groundwater recharge could be due to areas outside the watershed. At local scale, artificial rainfall experiments were carried out in summers 2007 and 2008 and in autumn 2007 using bromide and chloride as tracers. Despite the impervious nature of the marl material, initial results showed how efficient was the role of areal heterogeneity (fissures system, matrix-blocks contacts) on the rapid percolation of water to the water table. Experimental investigations in different soil surface contexts made it possible to propose a first attempt of macropore flow typology and assess the impact of initial and forcing conditions on the preferential flow generation. The analysis of these data provides a description of the main flow mechanisms in the marl material. This advancement in hydrological process understanding helps in better understanding the

  7. Characterising the structural heterogeneity of Irish hard rock aquifers: insights from field-scale geophysical investigations

    NASA Astrophysics Data System (ADS)

    Cassidy, R.; Comte, J.-C.; Nitsche, J.; Ofterdinger, U.; Flynn, R.

    2012-04-01

    In spite of extending over 65% of the Irish land surface, fluid movement in Irish hard rock aquifers, and the interaction between ground- and surface-water bodies, is poorly understood. Their management and protection is required under the Water Framework Directive, yet there have been few studies to date and conceptual models have not been developed specifically for an Irish context. Conceptualising flow in such aquifers requires a comprehensive, three-dimensional understanding of the structure and zonation of the overburden and bedrock units. Four general zones are recognised, extending from the (1) unconsolidated overburden, through a physically and chemically weathered (2) transition zone into the (3) shallow and (4) deep fractured bedrock. Beyond this simple, layered categorisation, however, little research has been undertaken to investigate the 3D continuity and possible variations of this model at the catchment-scale. In particular the roles played by bedrock lithology and the depositional history of the region (including the influence of the recent glaciation) with regard to the development of the weathered units, are of importance for the generalisation of the conceptual understanding for this region. Although providing accurate information at point locations in an aquifer, borehole (hydraulic, geophysical or hydrochemical) investigations are often insufficient to account for the catchment-scale variability in fractured rock and must be put in context within a larger scale of investigation. Surface geophysical methods provide a valuable tool in this respect, as the range of scales over which they can be applied provides a means of identifying relevant structural features across the relevant hydrogeological scales. A suite of geophysical methods were applied to the characterisation of aquifer structure at 3 sites, covering low- to high-grade metamorphic units in the North and West of Ireland. Electrical resistivity tomography along kilometre-scale transects

  8. Investigation of molecular heterogeneity of β-thalassemia disorder in District Charsadda of Pakistan

    PubMed Central

    Shakeel, Muhammad; Arif, Muhammad; Rehman, Shoaib Ur; Yaseen, Tabassum

    2016-01-01

    Objective: Thalassemia is blood related disease which arises from the reduced level of hemoglobin in red blood cells (RBC), a protein responsible for carrying oxygen inside the body. Considering its widespread occurrence in developing countries like Pakistan, this study aims to investigate the common molecular anomalies of the beta thalassemia disease in district Charsadda, Khyber Pakhtunkhwa. Methods: This work was done at Abdul Wali Khan University (AWKU) Mardan, Khyber Pakhtunkhwa, Pakistan. The work was performed on the blood samples collected from the patients and their families with beta thalassemia major (n = 13 families) belonged to District Charsadda. The collected blood samples were analyzed for presence of six known mutations with the help of polymerase cha in reaction technique i.e. amplification of refractory mutation system. Results: Our Study reports six known mutations (IVS-1-5, FSC 8/9, CD 41/42, IVS-1-1, CD 15 and FSC-5) accounting for about 90% of total beta thalassemia genes in this country. Among the reported mutations, IVS 1-5 was the most prevalent beta thalassemia gene in patients belonging to District Charsadda. Conclusion: The results and findings of the current study may help in accessing the frequency of these common mutations and in initiating pre-natal diagnosis programme in Pakistan. PMID:27182268

  9. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing

    PubMed Central

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J.; Zhang, Nancy R.

    2016-01-01

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  10. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  11. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/.

  12. Myxopapillary ependymoma of the conus medullaris presenting with intratumoral hemorrhage during weight lifting in a teenager.

    PubMed

    Khalatbari, Mahmoud Reza; Moharamzad, Yashar

    2014-01-01

    Intratumoral hemorrhage within a myxopapillary ependymoma of the conus medullaris and cauda equina is rare. Most patients with myxopapillary ependymoma present insidiously, but they may present with hemorrhage or cauda equina syndrome. Limited number of case reports available has described this condition only in adult patients. We report our experience with intratumoral hemorrhage of myxopapillary ependymoma of the conus medullaris during weight lifting in a 15-year-old boy.

  13. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles

    PubMed Central

    Ernsting, Mark J.; Murakami, Mami; Roy, Aniruddha; Li, Shyh-Dar

    2014-01-01

    Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided. PMID:24075927

  14. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines

    PubMed Central

    Durymanov, Mikhail O; Rosenkranz, Andrey A; Sobolev, Alexander S

    2015-01-01

    The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These “smart” systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking. PMID:26155316

  15. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    PubMed

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. PMID:26301831

  16. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    PubMed

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns.

  17. An Analysis Framework for Investigating the Trade-offs Between System Performance and Energy Consumption in a Heterogeneous Computing Environment

    SciTech Connect

    Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A; Siegel, Howard Jay; Koenig, Gregory A; Powers, Sarah S; Hilton, Marcia M; Rambharos, Rajendra; Okonski, Gene D; Poole, Stephen W

    2013-01-01

    Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective genetic algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.

  18. Intratumoral expression of CCR3 in breast cancer is associated with improved relapse-free survival in luminal-like disease

    PubMed Central

    Chen, Hai-Yan; Ding, Ke-Feng; Yu, Ke-Da

    2016-01-01

    Purpose The association chemokine receptor CCR3 with breast cancer subtypes and relapse-free survival is unknown. Results The overall expression (either intratumoral or peritumoral) of CCR3 was not associated with tumor size, lymph node status, age, and subtype. When we confined the analysis in samples without peritumoral stromal CCR3 expression, intratumoral expression of CCR3 was associated with breast cancer subtype (P=0.04). Tumors with high expression of CCR3 were more likely to be luminal-like rather than TNBC or HER2-enriched cancers. Moreover, high mRNA expression of CCR3 was related with improved relapse-free survival in luminal-A/B (P<0.001). The subsequent sensitivity analysis using the systemically untreated patients confirmed that higher mRNA expression of CCR3 was a robust prognostic factor for luminal-A (P=0.0025) and luminal-B (P=0.088), but not for HER2-enriched (P=0.21) and TNBC (P=0.86). In the independent cohort, the positive association between increased expression of CCR3 and improved distant relapse-free survival was also observed. Methods We determined the expression level of CCR3 in 150 cases with breast cancer by using immunohistochemistry (IHC) assay, for both intratumoral and peritumoral stroma, and investigated the effect of CCR3 expression on relapse-free survival according to subtype using cases from publicly available datasets, in the whole group (N=3557) and in the patients without adjuvant systemic treatment (N=1005), respectively. Moreover, the survival outcomes were validated in another independent cohort including 508 breast cancer patients treated with neoadjuvant chemotherapy. Conclusions Our data indicate that intratumoral expression of CCR3 in breast cancer is associated with improved relapse-free survival in patients with luminal-like disease. PMID:27086913

  19. The prognostic advantage of preoperative intratumoral injection of OK-432 for gastric cancer patients

    PubMed Central

    Gochi, A; Orita, K; Fuchimoto, S; Tanaka, N; Ogawa, N

    2001-01-01

    To investigate, by a multi-institutional randomized trial, the prognostic significance of the augmentation of tumour-infiltrating lymphocytes (TILs) by preoperative intratumoral injection of OK-432 (OK-432 it), a bacterial biological response modifier, in patients with gastric cancer. The 10-year survival and disease-free survival were examined and analysis of the factors showing survival benefit was performed. 370 patients who had undergone curative resection of gastric cancer were enrolled in this study and followed up for 10 years postoperatively. Patients were randomized into either an OK-432 it group or a control group. Ten Klinishe Einheit (KE) of OK-432 was endoscopically injected at 1 to 2 weeks before the operation in the OK-432 it group. Both groups received the same adjuvant chemoimmunotherapy consisting of a bolus injection of mitomycin C (0.4 mg kg−1i.v.) and administration of tegafur and OK-432 from postoperative day 14 up to 1 year later. Tegafur (600 mg day−1) was given orally and OK-432 (5 KE/2 weeks) was injected intradermally for a maintenance therapy. The TILs grades in resected tumour specimens and presence of metastasis and metastatic pattern in dissected lymph nodes were examined. Multivariate analysis was performed to determine the efficacy of OK-432 it on prognostic factors. All patients were followed up for 10 years. The overall 5- and 10-year survival rates and disease-free survival rates of the OK-432 it group were not significantly higher than those of the control group. However, OK-432 it significantly increased the 5- and 10-year survival rates of patients with stage IIIA + IIIB, moderate lymph node metastasis (pN2), and positive TILs. OK-432 it was most effective at prolonging the survival of patients who had both positive TILs and lymph node metastasis. The OK-432 it group with positive TILs showed a significant decrease in metastatic lymph node frequency and in the number of lymph node micro- metastatic foci when compared to

  20. Investigating Population Heterogeneity and Interaction Effects of Covariates: The Case of a Large-Scale Assessment for Teacher Licensure in Saudi Arabia

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.; Al-Saud, Faisal Abdullah Al-Mashari; Alsadaawi, Abdullah Saleh

    2015-01-01

    This article investigates the population heterogeneity of test data for the case of teacher licensure assessments in Saudi Arabia. The results from factor mixture modeling of the data (N = 15,962) on the construct of "promoting learning" revealed the presence of two latent classes of examinees based on their performance profiles across…

  1. Application of a proapoptotic peptide to intratumorally spreading cancer therapy

    PubMed Central

    Chen, Renwei; Braun, Gary B; Luo, Xiuquan; Sugahara, Kazuki N.; Teesalu, Tambet; Ruoslahti, Erkki

    2013-01-01

    Bit1 is a pro-apoptotic mitochondrial protein associated with anoikis. Upon cell detachment, Bit1 is released into the cytoplasm and triggers caspase-independent cell death. Bit1 consists of 179 amino acids; the C-terminal two thirds of the molecule functions as a peptidyl-tRNA hydrolase, while the N-terminus contains a mitochondrial localization signal. Here, we localize the cell death domain (CDD) to the N-terminal 62 amino acids of Bit1 by transfecting cells with truncated Bit1 cDNA constructs. CDD was more potent in killing cells than the full-length Bit1 protein when equivalent amounts of cDNA were transfected. To develop Bit1 CDD into a cancer therapeutic we engineered a recombinant protein consisting of the CDD fused to iRGD, which is a tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. iRGD-CDD internalized into cultured tumor cells through a neuropilin-1-activated pathway and triggered cell death. Importantly, iRGD-CDD spread extensively within the tumor when injected intratumorally into orthotopically implanted breast tumors in mice. Repeated treatment with iRGD-CDD strongly inhibited tumor growth, resulting in an average reduction of 77% in tumor volume and eradication of some tumors. The caspase independence of Bit1-induced cell death makes CDD a potentially attractive anti-cancer agent because tumor resistance to the main mechanisms of apoptosis is circumvented. Using iRGD to facilitate the spreading of a therapeutic agent throughout the tumor mass may be a useful adjunct to local therapy of tumors that are surgically inoperable or difficult to treat systemically. PMID:23248118

  2. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    PubMed Central

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  3. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  4. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients. PMID:25563193

  5. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  6. An Efficient Referencing And Sample Positioning System To Investigate Heterogeneous Substances With Combined Microfocused Synchrotron X-ray Techniques

    SciTech Connect

    Spangenberg, Thomas; Goettlicher, Joerg; Steininger, Ralph

    2009-01-29

    A referencing and sample positioning system has been developed to transfer object positions measured with an offline microscope to a synchrotron experimental station. The accuracy should be sufficient to deal with heterogeneous samples on micrometer scale. Together with an online fluorescence mapping visualisation the optical alignment helps to optimize measuring procedures for combined microfocused X-ray techniques.

  7. Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts.

    PubMed

    Romanías, Manolis N; Ourrad, Habib; Thévenet, Frédéric; Riffault, Véronique

    2016-03-01

    The heterogeneous interaction of limonene and toluene with Saharan dusts was investigated under dark conditions, pressure of 1 atm, and temperature 293 K. The mineral dust samples were collected from six different regions along the Sahara desert, extending from Tunisia to the western Atlantic coastal areas of Morocco, and experiments were carried out with the smallest sieved fractions, that is, inferior to 100 μm. N2 sorption measurements, granulometric analysis, and X-ray fluorescence and diffraction (XRF and XRD) measurements were conducted to determine the physicochemical properties of the particles. The chemical characterization showed that dust originating from mideastern Sahara has a significantly higher SiO2 content (∼ 82%) than dust collected from the western coastal regions where the SiO2 relative abundance was ∼ 50%. A novel experimental setup combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), selected-ion flow-tube mass spectrometry (SIFT-MS), and long path transmission Fourier transform infrared spectroscopy (FTIR) allowed us to follow both the adsorbed and gas phases. The kinetic adsorption/desorption measurements were performed using purified dry air as bath gas, exposing each dust surface to 10 ppm of the selective volatile organic compound (VOC). The adsorption of limonene was independent of the SiO2 content, given the experimental uncertainties, and the coverage measurements ranged between (10 and 18) × 10(13) molecules cm(-2). Experimental results suggest that other metal oxides that could possibly influence dust acidity may enhance the adsorption of limonene. On the contrary, in the case of toluene, the adsorption capacities of the Saharan samples increased with decreasing SiO2 content; however, the coverage measurements were significantly lower than those of limonene and ranged between (2 and 12) × 10(13) molecules cm(-2). Flushing the surface with purified dry air showed that VOC desorption is not a

  8. Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts.

    PubMed

    Romanías, Manolis N; Ourrad, Habib; Thévenet, Frédéric; Riffault, Véronique

    2016-03-01

    The heterogeneous interaction of limonene and toluene with Saharan dusts was investigated under dark conditions, pressure of 1 atm, and temperature 293 K. The mineral dust samples were collected from six different regions along the Sahara desert, extending from Tunisia to the western Atlantic coastal areas of Morocco, and experiments were carried out with the smallest sieved fractions, that is, inferior to 100 μm. N2 sorption measurements, granulometric analysis, and X-ray fluorescence and diffraction (XRF and XRD) measurements were conducted to determine the physicochemical properties of the particles. The chemical characterization showed that dust originating from mideastern Sahara has a significantly higher SiO2 content (∼ 82%) than dust collected from the western coastal regions where the SiO2 relative abundance was ∼ 50%. A novel experimental setup combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), selected-ion flow-tube mass spectrometry (SIFT-MS), and long path transmission Fourier transform infrared spectroscopy (FTIR) allowed us to follow both the adsorbed and gas phases. The kinetic adsorption/desorption measurements were performed using purified dry air as bath gas, exposing each dust surface to 10 ppm of the selective volatile organic compound (VOC). The adsorption of limonene was independent of the SiO2 content, given the experimental uncertainties, and the coverage measurements ranged between (10 and 18) × 10(13) molecules cm(-2). Experimental results suggest that other metal oxides that could possibly influence dust acidity may enhance the adsorption of limonene. On the contrary, in the case of toluene, the adsorption capacities of the Saharan samples increased with decreasing SiO2 content; however, the coverage measurements were significantly lower than those of limonene and ranged between (2 and 12) × 10(13) molecules cm(-2). Flushing the surface with purified dry air showed that VOC desorption is not a

  9. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    PubMed Central

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  10. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  11. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    NASA Astrophysics Data System (ADS)

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  12. Intratumoral expression of cyclooxygenase-2 (COX-2) is a negative prognostic marker for patients with cutaneous melanoma.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Stanek-Widera, Agata; Chwirot, Barbara W

    2016-10-01

    Because of the well-known heterogeneity of melanomas, prognosis of the disease is often difficult to assess even for lesions classified in similar stages. The aim of this study was to assess the usefulness of COX-2 as a melanoma prognostic marker and to establish an optimum algorithm for analysis of COX-2 expression levels in lesions of interest. Expression of COX-2 was detected immunohistochemically in standard sections of formalin-fixed paraffin-embedded tissue samples of 85 primary melanomas, 36 lymph node metastases, and five skin metastases including 39 cases of paired primary and metastatic lesions obtained from the same patient. Enhanced expression of COX-2 in primary melanomas is an indicator of poorer prognosis. A significant correlation was found between high expression of COX-2 in primary lesions and shorter survival. The enhancement of COX-2 expression is also positively correlated with other prognostic factors such as tumor thickness and infiltration level, ulceration, high mitotic index, more invasive histologic type, vertical growth phase, and lymph node metastasis. On the whole, the results suggest that intratumoral expression of COX-2 is a strong negative prognostic marker for patients with melanoma. Moreover, our work shows that a simple and objective immunohistochemical scoring algorithm involving the determination of only a percentage fraction of positively stained cells is sufficient to obtain the prognostic information.

  13. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth.

    PubMed

    Guedan, Sonia; Rojas, Juan José; Gros, Alena; Mercade, Elena; Cascallo, Manel; Alemany, Ramon

    2010-07-01

    Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing.

  14. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity.

  15. Vitamin D Enhances the Efficacy of Irinotecan through miR-627-Mediated Inhibition of Intratumoral Drug Metabolism.

    PubMed

    Sun, Meiyan; Zhang, Qunshu; Yang, Xiaoyu; Qian, Steven Y; Guo, Bin

    2016-09-01

    Cytochrome P450 enzyme CYP3A4 is an important drug-metabolizing enzyme, and high levels of tumoral expression of CYP3A4 are linked to drug resistance. We investigated the function of vitamin D-regulated miR-627 in intratumoral CYP3A4 suppression and its role in enhancing the efficacy of chemotherapy. We found that miR-627 targets CYP3A4 and suppresses CYP3A4 expression in colon cancer cell lines. Furthermore, calcitriol (the active form of vitamin D) suppressed CYP3A4 expression by activating miR-627. As a result, calcitriol inhibited CYP3A4-mediated metabolism of irinotecan (a topoisomerase I inhibitor) in cancer cells. We show that calcitriol enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. When miR-627 is inhibited, calcitriol fails to enhance the activity of irinotecan. In addition, overexpression of miR-627 or siRNA knockdown of CYP3A4 enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. In contrast, overexpression of CYP3A4 abolished the effects of calcitriol on the activity of irinotecan. Using a nude mouse xenograft model, we demonstrated that calcitriol inhibited CYP3A4 and enhanced the in vivo antitumor activity of irinotecan without causing side effects. Our study identified a novel target for improving cancer therapy, i.e., modulating the intratumoral CYP3A4-mediated drug metabolism with vitamin D. This strategy could enhance the therapeutic efficacy without eliciting the side effects. Mol Cancer Ther; 15(9); 2086-95. ©2016 AACR. PMID:27458137

  16. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity. PMID:27622052

  17. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids

    USGS Publications Warehouse

    Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.

    2007-01-01

    A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly

  18. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    NASA Astrophysics Data System (ADS)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  19. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Giuliani, J; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2007-03-20

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone foam network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The foam materials were synthesized with two different types of crosslinks, with functionalities, {phi}, of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional (f=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties via compression and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the network structure of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform heterogeneously and non-affinely. The heterogeneity of the deformation process was observed to depend on the amount of the high functionality crosslinking site PMHS. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical

  20. Investigating the chemical mechanisms of the functionalization and fragmentation of hydrocarbons in the heterogeneous oxidation by OH using a stochastic kinetics model

    NASA Astrophysics Data System (ADS)

    Wiegel, A. A.; Wilson, K. R.; Hinsberg, B.; Houle, F. A.

    2014-12-01

    While the heterogeneous oxidation of atmospheric organic aerosols influences their effects on climate, air quality, and visibility, a more detailed understanding of the chemical mechanisms in heterogeneous oxidation is crucial for improving models of their chemical evolution in the atmosphere. Previous experimental work in our lab has shown two general reaction pathways for organic aerosol upon oxidation: functionalization, which adds additional oxygen functional groups to the carbon skeleton, and fragmentation, which leads to C-C bond scission and lower molecular weight oxidized products. Furthermore, these pathways were also found to be dependent on molecular structure, with more branched or oxidized hydrocarbons undergoing more fragmentation than less branched or oxidized hydrocarbons. However, while the mechanisms of hydrocarbon oxidation have been studied extensively in the gas phase, to what extent the gas phase mechanisms of hydrocarbon oxidation can be reliably applied to heterogeneous or bulk oxidation in aerosol remains unclear. To investigate the role of the condensed phase and molecular structure in the mechanism of heterogeneous organic aerosol oxidation, stochastic kinetics models are developed and compared to measurements of the products in the oxidation of hydrocarbons. Within the aerosol bulk, condensed phase rate coefficients and product branching ratios for peroxy reactions lead to different product distributions than those expected from gas phase peroxy reactions due to the presence of the liquid radical cage at the reaction site. As a result, tertiary alcohols and ketones were found to be the predominate products in the oxidation of squalane as observed in experiments. As the aerosol becomes further oxidized, β-scission of alkoxy radicals with neighboring functional groups is the primary fragmentation pathway leading to lower volatility products. In conjunction with this fragmentation mechanism, elimination of CO2 from acyloxy radicals was

  1. Experimental investigation of supercritical CO2 trapping mechanisms at the Intermediate Laboratory Scale in well-defined heterogeneous porous media

    SciTech Connect

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; Illangasekare, Tissa H.

    2014-12-31

    The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of the migration and trapping of supercritical CO2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.

  2. Mitoxantrone-loaded albumin microspheres for localized intratumoral chemotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Almond, Brett Anthony

    The safety and efficacy of conventional chemotherapy is limited by its toxicity. The direct intratumoral injection of free or microsphere-loaded antineoplastic drugs is a promising modality for the treatment of solid tumors. Intratumoral chemotherapy delivers high localized doses of cytotoxic drugs to the tumor tissues than does systemic (intravenous) chemotherapy and it decreases systemic drug concentrations and toxicities. The use of drug-loaded microspheres also provides a prolonged release of drug into the surrounding tumor tissues, increasing exposure of the neoplasm to therapeutic levels of the cytotoxic drug. Mitoxantrone and 5-fluorouracil-loaded albumin microspheres were synthesized. The microspheres were synthesized using a suspension crosslinking technique and a glutardehyde crosslinking agent. The particle-size distribution of the microspheres was controlled by adjusting the emulsion energy and the concentration of cellulose acetate butyrate, the emulsion stabilization agent. Both microsphere size and crosslink density (glutaraldehyde concentration) were found to affect the in vitro release of loaded drugs in in vitro infinite sink conditions. The in vivo efficacy and toxicity of intratumoral chemotherapy with free and microsphere-loaded mitoxantrone were evaluated in a 16/C murine mammary adenocarcinoma model. Intratumoral chemotherapy with free mitoxantrone significantly improved survival and decreased toxicity compared to intravenously delivered drug. The efficacy of two size distributions of mitoxantrone-loaded albumin microspheres, corresponding to mean diameters of 5 to 10 mum and 20 to 40 mum, were evaluated delivered both alone and in combination with free mitoxantrone. Intratumoral injection of mitoxantrone-loaded microspheres was found to allow the safe delivery of increased doses compared to free drug. The maximum tolerated doses were approximately 40 mg/kg compared to 12 mg/kg, respectively. Intratumoral chemotherapy using free and

  3. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC)

    PubMed Central

    Taus, Álvaro; Pijuan, Lara; Arumí, Miriam; Lorenzo, Marta; Menéndez, Silvia; Cañadas, Israel; Albanell, Joan; Serrano, Sergio; Espinet, Blanca; Salido, Marta; Arriola, Edurne

    2015-01-01

    Objective We aimed to assess MET intratumoral heterogeneity and its potential impact on biomarker-based patient selection as well as potential surrogate biomarkers of MET activation. Methods Our study included 120 patients with non-squamous Non-small-cell Lung Cancer (nsNSCLC), of which 47 were incorporated in tissue microarrays (TMA). Four morphologically distinct tumor areas were selected to assess MET heterogeneity. MET positivity by immunohistochemistry (IHC) was defined as an above-median H-score and by +2/+3 staining intensity in >50% of tumor cells (Metmab criteria). MET FISH positivity was defined by MET/CEP7 ratio ≥ 2.0 and/or MET ≥ 5.0. MET staining pattern (cytoplasmic vs. membranous) and mesenchymal markers were investigated as surrogates of MET activation. Results Median MET H-score was 140 (range 0–400) and 47.8% of patients were MET positive by Metmab criteria. Eight cases (6.8%) were MET FISH positive and showed higher H-scores (p = 0.021). MET positivity by IHC changed in up to 40% of cases among different tumor areas, and MET amplification in 25–50%. Cytoplasmic MET staining and positivity for vimentin predicted poor survival (p = 0.042 and 0.047, respectively). Conclusions MET status is highly heterogeneous among different nsNSCLC tumor areas, hindering adequate patient selection for MET-targeted therapies. MET cytoplasmic staining and vimentin might represent surrogate markers for MET activation. PMID:26041880

  4. Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma.

    PubMed Central

    Färkkilä, M.; Jääskeläinen, J.; Kallio, M.; Blomstedt, G.; Raininko, R.; Virkkunen, P.; Paetau, A.; Sarelin, H.; Mäntylä, M.

    1994-01-01

    The effect of intratumoral recombinant interferon gamma (rIFN-gamma) as adjuvant to open cytoreduction and external irradiation of 60 Gy on survival in adults with a newly diagnosed high-grade cerebral glioma was studied. The patients were randomised during surgery into the rIFN-gamma group (n = 14) or the control group (n = 17), and the latter received a subcutaneous reservoir of rIFN-gamma injections. Intratumoral rIFN-gamma was given three times a week for 4 weeks until radiotherapy, escalating the dose from 5 micrograms to 50 micrograms. Both groups received external whole-brain irradiation of 40 Gy and a local boost of 20 Gy. After radiotherapy, rIFN-gamma was continued with 50 micrograms twice a week up to 9 weeks. The patients received no chemotherapy. Intratumoral rIFN-gamma was tolerated well with transient fever only. There were 12 glioblastomas (GBs) in the control group and nine in the rIFN-gamma group with completed irradiation. The patients were followed clinically and by computerised tomography (CT) every third month until death. Tumour responses were seen in three interferon-treated (one still alive 45 months after operation) and in two conventionally treated patients. The progression of the tumour volumes on CT did not differ between the IFN-treated and control groups. There were no differences in the survival times. Median survival of the rIFN-gamma-treated patients was 54 weeks (95% CI 35-68) and of the control patients 55 weeks (95% CI 41-77). Intratumoral rIFN-gamma given in the study doses does not seem to inhibit tumour growth or improve the prognosis of patients with high-grade glioma. PMID:8018525

  5. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection.

    PubMed

    Jiang, Yingchun; Meng, Xuanyu; Wu, Zhenghong; Qi, Xiaole

    2016-06-25

    Thermosensitive in situ hydrogels are potential candidates to achieve intratumoral administration, nevertheless their weak mechanical strength always lead to serious drug leakage and burst. Herein, we developed a chitosan based thermosensitive hydrogel of high mechanical strength, which was modified by glutaraldehyde (GA) and polyvinyl alcohol (PVA), for intratumoral delivery of paclitaxel (PTX). The modified hydrogel system could achieve sol-gel transition at 35.79±0.4°C and exhibit a 7.03-fold greater mechanical strength compared with simple chitosan hydrogel. Moreover, the drug release of PTX loaded modified hydrogel in PBS (pH 7.4) was found to be extended to 13 days. After intratumoral administration in mice bearing H22 tumors, PTX-loaded modified hydrogels exhibited a 3.72-fold greater antitumor activity compared with Taxol(®). Overall, these modified hydrogel systems demonstrated to be a promising way to achieve efficient sustained release and enhanced anti-tumor therapy efficiency of anticancer drugs through in situ tumor injectable administration. PMID:27083815

  6. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy.

    PubMed

    Mooney, Rachael; Weng, Yiming; Garcia, Elizabeth; Bhojane, Sukhada; Smith-Powell, Leslie; Kim, Seung U; Annala, Alexander J; Aboody, Karen S; Berlin, Jacob M

    2014-10-10

    Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration.

  7. Antitumor activity of TNF-α after intratumoral injection using an in situ thermosensitive hydrogel.

    PubMed

    Xu, Yourui; Shen, Yan; Ouahab, Ammar; Li, Chang; Xiong, Yerong; Tu, Jiasheng

    2015-03-01

    Local drug delivery strategies based on nanoparticles, gels, polymeric films, rods and wafers are increasingly used in cancer chemotherapy in order to enhance therapeutic effect and reduce systemic toxicity. Herein, a biodegradable and biocompatible in situ thermosensitive hydrogel was designed and employed to deliver tumor necrosis factor-α (TNF-α) locally by intratumoral injection. The triblock copolymer was synthesized by ring-opening polymerization (ROP) of β-butyrolactone (β-BL) and lactide (LA) in bulk using polyethylene glycol (PEG) as an initiator and Sn(Oct)2 as the catalyst, the polymer was characterized by NMR, gel permeation chromatography and differential scanning calorimetry. Blood and tumor pharmacokinetics and in vivo antitumor activity of TNF-α after intratumoral administration in hydrogel or solution with the same dose were evaluated on S180 tumor-bearing mice. Compared with TNF-α solution, TNF-α hydrogel exhibited a longer T1/2 (4-fold) and higher AUCtumor (19-fold), but Cmax was lower (0.5-fold), which means that the hydrogel formulation improved the efficacy with a lower systhemic exposure than the solution formation. In addition, TNF-α hydrogel improved the antitumor activity and survival due to lower systemic exposure than the solution. These results demonstrate that the in situ thermosensitive hydrogel-based local delivery system by intratumoral injection is well suited for the administration of TNF-α.

  8. αB-Crystallin: A Hybrid Solid-Solution State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    PubMed Central

    Jehle, Stefan; van Rossum, Barth; Stout, Joseph R.; Noguchi, Satoshi R.; Falber, Katja; Rehbein, Kristina; Oschkinat, Hartmut; Klevit, Rachel E.; Rajagopal, Ponni

    2009-01-01

    Summary Atomic level structural information on αB-Crystallin (αB), a prominent member of the small Heat Shock Protein (sHSP) family has been a challenge to obtain due its polydisperse, oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on ∼ 580 kDa human αB assembled from 175-residue, 20 kDa subunits. An ∼100-residue α-crystallin domain is common to all sHSPs and solution-state NMR was performed on two different α-crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and the Cβ resonances have been obtained for residues 64-162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid- and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid- and solution-state indicating a similar structure for the domain in its isolated and oligomeric forms. Sites of inter-subunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid- and solution-state chemical shift data and (ii) 1H-15N HSQC spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer-monomer transition over the pH range of 7.5 to 6.8. This steep pH-dependent switch may be important for αB to function optimally, e.g., to preserve the filament integrity of cardiac muscle proteins such as actin and desmin during cardiac ischemia which

  9. αB-Crystallin. A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    SciTech Connect

    Jehle, Stefan; van Rossum, Barth; Stout, Joseph R.; Noguchi, Satoshi M.; Falber, Katja; Rehbein, Kristina; Oschkinat, Hartmut; Klevit, Rachel E.; Rajagopal, Ponni

    2008-11-14

    Atomic-level structural information on αB-Crystallin (αB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ~580-kDa human αB assembled from 175-residue 20-kDa subunits. An ~100-residue α-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different α- crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and Cβ resonances have been obtained for residues 64–162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) 1H–15N heteronuclear single quantum coherence spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer–monomer transition over the pH range 7.5–6.8. This steep pHdependent switch may be important for αB to function optimally (e.g., to preserve the filament integrity

  10. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas.

    PubMed

    Coman, Daniel; Huang, Yuegao; Rao, Jyotsna U; De Feyter, Henk M; Rothman, Douglas L; Juchem, Christoph; Hyder, Fahmeed

    2016-03-01

    Solid tumors have an acidic extracellular pH (pHe ) but near neutral intracellular pH (pHi ). Because acidic pHe milieu is conducive to tumor growth and builds resistance to therapy, simultaneous mapping of pHe inside and outside the tumor (i.e., intratumoral-peritumoral pHe gradient) fulfills an important need in cancer imaging. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes shifts of non-exchangeable protons from macrocyclic chelates (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) or DOTP(8-) ) complexed with paramagnetic thulium (Tm(3) (+) ) ion, to generate in vivo pHe maps in rat brains bearing 9L and RG2 tumors. Upon TmDOTP(5-) infusion, MRI identified the tumor boundary by enhanced water transverse relaxation and BIRDS allowed imaging of intratumoral-peritumoral pHe gradients. The pHe measured by BIRDS was compared with pHi measured with (31) P-MRS. In normal tissue, pHe was similar to pHi , but inside the tumor pHe was lower than pHi . While the intratumoral pHe was acidic for both tumor types, peritumoral pHe varied with tumor type. The intratumoral-peritumoral pHe gradient was much larger for 9L than RG2 tumors because in RG2 tumors acidic pHe was found in distal peritumoral regions. The increased presence of Ki-67 positive cells beyond the RG2 tumor border suggested that RG2 was more invasive than the 9L tumor. These results indicate that extensive acidic pHe beyond the tumor boundary correlates with tumor cell invasion. In summary, BIRDS has sensitivity to map the in vivo intratumoral-peritumoral pHe gradient, thereby creating preclinical applications in monitoring cancer therapeutic responses (e.g., with pHe -altering drugs). Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752688

  11. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis

    PubMed Central

    Natrajan, Rachael; Sailem, Heba; Mardakheh, Faraz K.; Arias Garcia, Mar; Tape, Christopher J.; Dowsett, Mitch; Bakal, Chris; Yuan, Yinyin

    2016-01-01

    Background The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters. Methods and Findings We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D) in solid tumors, termed the tumor ecosystem diversity index (EDI), using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2) breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10−4, hazard ratio = 1.47, 95% CI 1.17–1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26–2.52). Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size. Conclusions To

  12. Is the ANOVA F-Test Robust to Variance Heterogeneity When Sample Sizes are Equal?: An Investigation via a Coefficient of Variation

    ERIC Educational Resources Information Center

    Rogan, Joanne C.; Keselman, H. J.

    1977-01-01

    The effects of variance heterogeneity on the empirical probability of a Type I error for the analysis of variance (ANOVA) F-test are examined. The rate of Type I error varies as a function of the degree of variance heterogeneity, and the ANOVA F-test is not always robust to variance heterogeneity when sample sizes are equal. (Author/JAC)

  13. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.

    PubMed

    Black, Kvar C L; Wang, Yucai; Luehmann, Hannah P; Cai, Xin; Xing, Wenxin; Pang, Bo; Zhao, Yongfeng; Cutler, Cathy S; Wang, Lihong V; Liu, Yongjian; Xia, Younan

    2014-05-27

    With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.

  14. Investigation Gender/Ethnicity Heterogeneity in Course Management System Use in Higher Education by Utilizing the MIMIC Model

    ERIC Educational Resources Information Center

    Li, Yi

    2012-01-01

    This study focuses on the issue of learning equity in colleges and universities where teaching and learning have come to depend heavily on computer technologies. The study uses the Multiple Indicators Multiple Causes (MIMIC) latent variable model to quantitatively investigate whether there is a gender /ethnicity difference in using computer based…

  15. Heterogeneity of KRAS Mutation Status in Rectal Cancer

    PubMed Central

    Jo, Peter; König, Alexander; Schirmer, Markus; Kitz, Julia; Conradi, Lena-Christin; Azizian, Azadeh; Bernhardt, Markus; Wolff, Hendrik A.; Grade, Marian; Ghadimi, Michael; Ströbel, Philipp; Schildhaus, Hans-Ulrich; Gaedcke, Jochen

    2016-01-01

    Introduction Anti-EGFR targeted therapy is of increasing importance in advanced colorectal cancer and prior KRAS mutation testing is mandatory for therapy. However, at which occasions this should be performed is still under debate. We aimed to assess in patients with locally advanced rectal cancer whether there is intra-specimen KRAS heterogeneity prior to and upon preoperative chemoradiotherapy (CRT), and if there are any changes in KRAS mutation status due to this intervention. Materials and Methods KRAS mutation status analyses were performed in 199 tumor samples from 47 patients with rectal cancer. To evaluate the heterogeneity between different tumor areas within the same tumor prior to preoperative CRT, 114 biopsies from 34 patients (mean 3 biopsies per patient) were analyzed (pre-therapeutic intratumoral heterogeneity). For the assessment of heterogeneity after CRT residual tumor tissue (85 samples) from 12 patients (mean 4.2 tissue samples per patient) were analyzed (post-therapeutic intratumoral heterogeneity) and assessment of heterogeneity before and after CRT was evaluated in corresponding patient samples (interventional heterogeneity). Primer extension method (SNaPshot™) was used for initial KRAS mutation status testing for Codon 12, 13, 61, and 146. Discordant results by this method were reevaluated by using the FDA-approved KRAS Pyro Kit 24, V1 and the RAS Extension Pyro Kit 24, V1 Kit (therascreen® KRAS test). Results For 20 (43%) out of the 47 patients, a KRAS mutation was detected. With 12 out of 20, the majority of these mutations affected codon 35. We did not obtained evidence that CRT results in changes of the KRAS mutation pattern. In addition, no intratumoral heterogeneity in the KRAS mutational status could be proven. This was true for both the biopsies prior to CRT and the resection specimens thereafter. The discrepancy observed in some samples when using the SNaPshot™ assay was due to insufficient sensitivity of this technique upon

  16. Neuropsychological heterogeneity in preschool ADHD: investigating the interplay between cognitive, affective and motivation-based forms of regulation.

    PubMed

    Sjöwall, Douglas; Backman, Anna; Thorell, Lisa B

    2015-05-01

    There is a trend toward diagnosing ADHD prior to school entry. Despite this, there is a lack of studies investigating ADHD in the preschool years, at least studies including a large range of different neuropsychological functions. Our knowledge of the independent effects of different neuropsychological functions in relation to preschool ADHD is therefore limited. In order to address this issue, the present study investigated cognitive, affective, and motivation-based regulation in relation to ADHD symptoms in 104 preschool children (age M = 67.33 months, SD = 10.10; 65 % boys). Results showed that these regulatory processes were all significantly related to ADHD symptoms and that most of these relations remained after controlling for comorbid conduct problems. Most previous preschool studies have only included cognitive regulation, and to some extent motivation-based regulation. By also including affective regulation, we were able to explain a larger proportion of the variance in ADHD symptoms. However, it should be noted that the amount of variance explained was still small in comparison with what has been found in previous studies of school-aged children. This finding could be taken as an indication that further studies examining the nature of preschool ADHD are needed, and that it may be necessary to look beyond the neuropsychological factors that have been linked to the disorder in older children and adults. PMID:25239053

  17. Single-cell profiling approaches to probing tumor heterogeneity.

    PubMed

    Khoo, Bee Luan; Chaudhuri, Parthiv Kant; Ramalingam, Naveen; Tan, Daniel Shao Weng; Lim, Chwee Teck; Warkiani, Majid Ebrahimi

    2016-07-15

    Tumor heterogeneity is a major hindrance in cancer classification, diagnosis and treatment. Recent technological advances have begun to reveal the true extent of its heterogeneity. Single-cell analysis (SCA) is emerging as an important approach to detect variations in morphology, genetic or proteomic expression. In this review, we revisit the issue of inter- and intra-tumor heterogeneity, and list various modes of SCA techniques (cell-based, nucleic acid-based, protein-based, metabolite-based and lipid-based) presently used for cancer characterization. We further discuss the advantages of SCA over pooled cell analysis, as well as the limitations of conventional techniques. Emerging trends, such as high-throughput sequencing, are also mentioned as improved means for cancer profiling. Collectively, these applications have the potential for breakthroughs in cancer treatment. PMID:26789729

  18. Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2013-08-01

    Hu14.18-IL2 is an immunocytokine (IC) consisting of human IL-2 linked to hu14.18 mAb, which recognizes GD2 disialoganglioside. Phase II clinical trials of intravenous-hu14.18-IL2 (IV-IC) in neuroblastoma and melanoma are underway, and have already demonstrated activity in neuroblastoma. In our Phase II trial, lower neuroblastoma burden at the time of treatment was associated with a greater likelihood of clinical response to IV-IC. We have previously shown that intratumoral-hu14.18-IL2 (IT-IC) compared to IV-IC results in enhanced local and systemic antitumor activity in tumor-bearing mice. We utilized a mouse model to investigate the impact of tumor burden on hu14.18-IL2 treatment efficacy in IV- versus IT-treated animals. Studies presented here describe the analyses of tumor burden at the initiation of treatment and its effects on treatment efficacy, survival, and tumor-infiltrating leukocytes in A/J mice bearing subcutaneous NXS2 neuroblastoma. We show that smaller tumor burden at treatment initiation is associated with increased infiltration of NK and CD8+ T cells and increased overall survival. NXS2 tumor shrinkage shortly after completion of the 3 days of hu14.18-IL2 treatment is necessary for long-term survival. This model demonstrates that tumor size is a strong predictor of hu14.18-IL2-induced lymphocyte infiltration and treatment outcome.

  19. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  20. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts.

    PubMed

    Cassidy, John W; Caldas, Carlos; Bruna, Alejandra

    2015-08-01

    Preclinical models often fail to capture the diverse heterogeneity of human malignancies and as such lack clinical predictive power. Patient-derived tumor xenografts (PDX) have emerged as a powerful technology: capable of retaining the molecular heterogeneity of their originating sample. However, heterogeneity within a tumor is governed by both cell-autonomous (e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal heterogeneity) drivers. Although PDXs can largely recapitulate the polygenomic architecture of human tumors, they do not fully account for heterogeneity in the tumor microenvironment. Hence, these models have substantial utility in basic and translational research in cancer biology; however, study of stromal or immune drivers of malignant progression may be limited. Similarly, PDX models offer the ability to conduct patient-specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses may be under-represented. This review discusses the sources and consequences of intratumor heterogeneity and how these are recapitulated in the PDX model. Limitations of the current generation of PDXs are discussed and strategies to improve several aspects of the model with respect to preserving heterogeneity are proposed.

  1. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    PubMed

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (<3 kDa) was more pronounced for sole HA rather than HA in the presence of clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters. PMID:25145193

  2. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    PubMed

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (<3 kDa) was more pronounced for sole HA rather than HA in the presence of clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters.

  3. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis

    PubMed Central

    Chao, Ming; Wu, Hao; Jin, Kai; Li, Bin; Wu, Jianjun; Zhang, Guangqiang; Yang, Gong; Hu, Xun

    2016-01-01

    Study design: Previous works suggested that neutralizing intratumoral lactic acidosis combined with glucose deprivation may deliver an effective approach to control tumor. We did a pilot clinical investigation, including a nonrandomized (57 patients with large HCC) and a randomized controlled (20 patients with large HCC) studies. Methods: The patients were treated with transarterial chemoembolization (TACE) with or without bicarbonate local infusion into tumor. Results: In the nonrandomized controlled study, geometric mean of viable tumor residues (VTR) in TACE with bicarbonate was 6.4-fold lower than that in TACE without bicarbonate (7.1% [95% CI: 4.6%–10.9%] vs 45.6% [28.9%–72.0%]; p<0.0001). This difference was recapitulated by a subsequent randomized controlled study. TACE combined with bicarbonate yielded a 100% objective response rate (ORR), whereas the ORR treated with TACE alone was 44.4% (nonrandomized) and 63.6% (randomized). The survival data suggested that bicarbonate may bring survival benefit. Conclusion: Bicarbonate markedly enhances the anticancer activity of TACE. Clinical trail registration: ChiCTR-IOR-14005319. DOI: http://dx.doi.org/10.7554/eLife.15691.001 PMID:27481188

  4. Antiangiogenic therapy using endostatin increases the number of ALDH+ lung cancer stem cells by generating intratumor hypoxia

    PubMed Central

    Yu, Yang; Wang, Yu-yi; Wang, Yi-qin; Wang, Xia; Liu, Yan-Yang; Wang, Jian-Tao; Du, Chi; Wang, Li; Li, Mei; Luo, Feng; Jiang, Ming

    2016-01-01

    Antiangiogenic therapy is becoming a promising option for cancer treatment. However, many investigations have recently indicated that these therapies may have limited efficacy, and the cancers in most patients eventually develop resistance to these therapies. There is considerable recently acquired evidence for an association of such resistance with cancer stem-like cells (CSLCs). Here, we used xenograft tumor murine models to further suggest that antiangiogenic agents actually increase the invasive and metastatic properties of lung cancer cells. In our experiments with murine lung cancer xenografts, we found that the antiangiogenic agent endostatin increased the population of ALDH+ cells, and did so by generating intratumoral hypoxia in the xenografts. We further showed endostatin to cause an increase in the CSLC population by accelerating the generation of tumor hypoxia and by recruiting TAMs, MDSCs and Treg cells, which are inflammatory and immunosuppressive cells and which can secrete cytokines and growth factors such as IL-6, EGF, and TGF-β into the tumor microenvironment. All these factors are related with increased CSLC population in tumors. These results imply that improving the clinical efficacy of antiangiogenic treatments will require the concurrent use of CSLC-targeting agents. PMID:27703219

  5. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  6. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  7. KIT oncogene inhibition drives intratumoral macrophage M2 polarization

    PubMed Central

    Cavnar, Michael J.; Zeng, Shan; Kim, Teresa S.; Sorenson, Eric C.; Ocuin, Lee M.; Balachandran, Vinod P.; Seifert, Adrian M.; Greer, Jonathan B.; Popow, Rachel; Crawley, Megan H.; Cohen, Noah A.; Green, Benjamin L.; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R.

    2013-01-01

    Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers. PMID:24323358

  8. Hyperechoic renal tumors: anechoic rim and intratumoral cysts in US differentiation of renal cell carcinoma from angiomyolipoma.

    PubMed

    Yamashita, Y; Ueno, S; Makita, O; Ogata, I; Hatanaka, Y; Watanabe, O; Takahashi, M

    1993-07-01

    To determine whether angiomyolipomas (AMLs) and renal cell carcinomas (RCCs) can be differentiated at ultrasonography (US), the authors retrospectively evaluated the sonographic appearances of 31 AMLs and 38 RCCs. Sonograms were evaluated by three radiologists without knowledge of histologic findings, with respect to the echogenicity of the tumor, predominant echotexture, and whether an anechoic rim was present. All patients had also undergone computed tomography (CT) to check for tumoral fat. Intratumoral fat was evident at CT in 28 of the 31 AMLs. RCCs had no fat at CT or histologic evaluation. An anechoic rim was evident in 32 of 38 (84%) RCCs, and 10 RCCs had small anechoic areas with back echo enhancement, which corresponded to intratumoral cysts or cystic necrosis at histologic evaluation. The anechoic rim and areas indicative of cysts were not found in AMLs. Demonstration of an anechoic rim and/or intratumoral cysts in a hyperechoic mass at US suggests that the tumor is an RCC.

  9. Profile of differentially expressed intratumoral cytokines to predict the immune-polarizing side effects of tamoxifen in breast cancer treatment

    PubMed Central

    Li, Bailiang; Li, Yang; Wang, Xiao-Yu; Yan, Zi-Qiao; Liu, Huidi; Liu, Gui-Rong; Liu, Shu-Lin

    2015-01-01

    Factors within the tissue of breast cancer (BC) may shift the polarization of CD4+ T cells towards Th2 direction. This tendency can promote tumor development and be enhanced by the use of tamoxifen during the treatment. Thus, the patients with low levels of tumor-induced Th2 polarization prior to tamoxifen treatment may better endure the immune-polarizing side effects (IPSE) of tamoxifen and have better prognoses. Estimation of Th2 polarization status should help predict the IPSE among tamoxifen-treated patients and guide the use of tamoxifen among all BC patients before the tamoxifen therapy. Here, we report profiling of differentially expressed (DE) intratumoral cytokines as a signature to evaluate the IPSE of tamoxifen. The DE genes of intratumoral CD4+ T cells (CD4 DEGs) were identified by gene expression profiles of purified CD4+ T cells from BC patients and validated by profiling of cultured intratumoral CD4+ T cells. Functional enrichment analyses showed a directed Th2 polarization of intratumoral CD4+ T cells. To find the factors inducing the Th2 polarization of CD4+ T cells, we identified 995 common DE genes of bulk BC tissues (BC DEGs) by integrating five independent datasets. Five DE cytokines observed in bulk BC tissues with dysregulated receptors in the intratumoral CD4+ T cells were selected as the predictor of the IPSE of tamoxifen. The patients predicted to suffer low IPSE (low Th2 polarization) had a significantly lower distant relapse risk than the patients predicted to suffer high IPSE in independent datasets (n = 608; HR = 4.326, P = 0.000897; HR = 2.014, P = 0.0173; HR = 2.72, P = 0.04077). Patients predicted to suffer low IPSE would benefit from tamoxifen treatment (HR = 2.908, P = 0.03905). The DE intratumoral cytokines identified in this study may help predict the IPSE of tamoxifen and justify the use of tamoxifen in BC treatment. PMID:25973310

  10. Technique, pharmacokinetics, toxicity, and efficacy of intratumoral etanidazole and radiotherapy for treatment of spontaneous feline oral squamous cell carcinoma

    SciTech Connect

    Evans, S.M.; LaCreta, F.; Helfand, S.; VanWinkle, T.; Curran, W.J. Jr.; Brown, D.Q.; Hanks, G. )

    1991-04-01

    The histologic appearance, locoregional recurrence, and rate/site of metastases of spontaneous feline oral squamous cell carcinoma are similar to head and neck cancer in humans. A feasibility study of intratumoral Etanidazole, a hypoxic cell sensitizer, and radiation therapy were instituted in this model. Eleven cats with feline squamous cell carcinoma were treated with intratumoral Etanidazole and radiation therapy. Total Etanidazole doses were 1.5-24.0 gms/m2 (0.5-6.9 gms). The tumor partial response rate was 100% (11/11); the median volume regression was 70%. All cats have died as a result of tumor recurrence or tumor-related complications. Median survival was 116 days. Ten cats have been autopsied. Non-necrotic and necrotic tumor cells were identified at the treatment site in all cats. Pharmacokinetic studies were performed in six cats. Following intravenous infusion, the plasma elimination of the Etanidazole was biexponential. The systemic availability following intratumoral administration was 61.2 +/- 21.1%. Peak plasma Etanidazole levels were observed 14 minutes following intratumoral injection, after which elimination was biexponential. Thirty minutes following intratumoral Etanidazole administration, tumor Etanidazole levels were 62.8% of plasma levels. Feline squamous cell carcinoma appears to be a useful model of human head and neck cancer. Cats tolerate substantial doses of intratumoral and intravenous Etanidazole. Etanidazole and radiation therapy cause rapid regression, but not cure, of feline squamous cell carcinoma. There is a similarity between the intravenous kinetics of Etanidazole in humans and cats. Further studies in this model are planned.

  11. In vivo observing x-ray attenuation of intratumor injection of indocyanine green

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Luo, Qingming; Liang, Wenxi; Lu, Jinling

    2003-12-01

    We report our experimental results of in vivo observing x-ray attenuation of intra-tumor injection of indocyanine green (ICG). An eight- to nine-week-old male BALB/c mouse weighting between 15 and 20 g is used in the experiments, which has been implanted with myeloma cell line (SP2/0) two week before. The system used to monitor the intratumor diffusion of ICG is a digital x-ray imaging system. It works at 33kVp, 0.3mAs, 4 seconds and 1.5×magnification. The objective of this research is to study the x-ray attenuation at different area, which represented by gray-scale value. Compare to the ROI in the tissue without ICG and ROI of black background in the image, there is an obvious change before and after injecting ICG in the tumor, which is the area ICG can diffuse to. It shows the feasibility of using digital x-ray imaging system to dynamically, effectively and noninterventionly monitor the diffusion of the ICG.

  12. Lack of functioning intratumoral lymphatics in colon and pancreas cancer tissue.

    PubMed

    Olszewski, Waldemar L; Stanczyk, Marek; Gewartowska, Magdalena; Domaszewska-Szostek, Anna; Durlik, Marek

    2012-09-01

    There are controversial views as to whether intratumoral or peritumoral lymphatics play a dominant role in the metastatic process. Most clinical observations originate from studies of colon cancer. Colon contains mucosa and submucosa rich in lymphatics and with high lymph formation rate. This seems to be a prerequisite for easy metastasis of cancer cells to regional lymph nodes. However, there are other tissues as pancreas with a rudimentary lymphatic network where cancer metastasis formation is as intensive as in colon cancer. This contradicts the common notion that intratumor lymphatics play major role in metastases. We visualized interstitial space and lymphatics in the central and peripheral regions of colon and pancreas tumors using the color stereoscopic lymphography and simultaneously immunohistochemical performed stainings specific for lymphatic and blood endothelial cells. The density of open and compressed lymphatic and blood vessels was measured in the tumor core and edge. There were very few lymphatics in the colon and pancreas tumor core but numerous minor fluid "lakes" with no visible connection to the peritumoral lymphatics. Lining of "lakes" did not express molecular markers specific for lymphatic endothelial cells. Dense connective tissue surrounding tumor foci did not contain lymphatics. Peritumoral lymphatics were irregularly distributed in both types of tumor and only sporadically contained cells that might be tumor cells. Similar lymphoscintigraphic and histological pictures were seen in colon and pancreas cancer despite of different structure of both tissues. This suggests a uniform reaction of tissues to the growing cancer irrespective of the affected organ.

  13. [Non invasive intracranial hyperthermia with Electric Capacitive Transference -ECT- Intratumoral and cerebral thermometry results].

    PubMed

    Ley-Valle, A

    2003-02-01

    The aim of this work is to present the results of thermic increase obtained at the brain and intratumoral levels through a non invasive technique -Electric Capacitive Transference- (ECT), developed in 1985 by Indiba. A review of the literature does not provide any reference of cerebral and intratumoral thermometry in real time with a non invasive technique of intracranial hyperthermia. In the 8 studied patients, the increases of temperature in the brain, ranged between 0.7 and 1.5 degrees C in relation to the depth of the thermometric probe and the incidence angle of the external electrode. Between tumoral and perilesional brain tissues, thermic increase was 0.3 to 0.7 degrees C greater at tumoral level. The observation that in no case the surrounding brain tissue registered a temperature over 39.2 degrees C supports the harmlessness of the technique regarding the potential damage to healthy brain tissue and seems to confirm previous data obtained in anatomopathological studies in animal experimentation performed in 1990, which showed an absence of lesions in tissues and organs. The greater and somewhat more prolonged thermic increase observed at tumoral level has been called the "greenhouse effect".

  14. Spectroscopic investigation of heterogeneous Ziegler-Natta catalysts: Ti and Mg chloride tetrahydrofuranates, their interaction compound, and the role of the activator.

    PubMed

    Seenivasan, Kalaivani; Sommazzi, Anna; Bonino, Francesca; Bordiga, Silvia; Groppo, Elena

    2011-07-25

    X-ray powder diffraction (XRPD), Infrared, Raman, and UV/Vis spectroscopy have been used to investigate the structural, vibrational, and optical properties of Ti and Mg chloride tetrahydrofuranates as precursors of heterogeneous Ziegler-Natta catalysts for polyethylene production; as well as their interaction compound (pro-catalyst) and the final catalyst obtained after interaction with the AlR(3) activator. Although the structure of the precursors and of the pro-catalyst were well known, that of the catalyst (obtained by reaction of the pro-catalyst with AlR(3)) was not easily obtainable from XRPD data. IR and Raman spectroscopy provided important information on tetrahydrofuran (thf) coordination and on the ν(M-Cl) region; whereas UV/Vis spectroscopy gave the direct proof on both the formal oxidation state and the coordination environment of the active Ti sites. Those presented herein are among the first direct experimental data on the structure of the active Ti sites in Ziegler-Natta catalysts, and can be used to validate the many computational studies that have been increasing exponentially in the last few decades.

  15. Investigation of heterogeneous asymmetric dihydroxylation over OsO{sub 4}-(QN){sub 2}PHAL catalysts of functionalized bimodal mesoporous silica with ionic liquid

    SciTech Connect

    Qiu, Shenjie; Sun, Jihong; Li, Yuzhen; Gao, Lin

    2011-08-15

    Highlights: {yields} Functionalized bimodal mesoporous silica with MTMSPIm{sup +}Cl{sup -}. {yields} Mesoporous catalyst immobilized with OsO{sub 4}-(QN){sub 2}PHAL. {yields} Catalysts for asymmetric dihydroxylation reaction with high yield and enatioselectivity. {yields} Recyclable catalysts. -- Abstract: A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN){sub 2}-PHAL) and K{sub 2}Os(OH){sub 4}.2H{sub 2}O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transform Infrared spectroscopy, N{sub 2} adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO{sub 4}-(QN){sub 2}PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.

  16. Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system.

    PubMed

    Yin, Mingcai; Li, Zhaosheng; Kou, Jiahui; Zou, Zhigang

    2009-11-01

    Visible light-induced degradation of rhodamine B (RhB) and eosin Y (EO) in a heterogeneous TiO(2) P-25/EO/RhB system was investigated in the present work. The results showed that the photodegradation of RhB is enhanced significantly when EO is introduced into the P-25/RhB system. Under optimal conditions (50 mg P-25, 20 mg L(-1) EO), RhB (4 mg L(-1)) almost decomposed completely after 35 min of visible light irradiation, though EO was photodegraded simultaneously. The possible photodegradation mechanism was studied by the examination of active species HO*, O(2)(*-) anions, or dye radical cations through adding their scavengers such as methanol, t-butanol, benzoquinone, EDTA, and the I(-) anion. In addition, the electron paramagnetic resonance (EPR) spin trapping technique was also used to monitor the active oxygen species formed in the photocatalytic process. Combined with the contrastive experiments under different atmospheres (N(2)-purged or air) and in different systems, it can be deduced that dissolved O(2) plays a crucial role in dye photodegradation and the O(2)(*-) anion is possibly the major active oxygen species. The low degradation rate with the introduction of EDTA or I(-) indicated that dye radical cations also play a part in photodegradation. Furthermore, except for the dye-sensitized photodegradation on the P-25 surface, reaction in bulk solution also occurs in this system, leading to effective photodegradation of RhB.

  17. An Investigation of Homogeneous and Heterogeneous Sonochemistry for Destruction of Hazardous Waste - Final Report - 09/15/1996 - 09/14/2000

    SciTech Connect

    Hua, Inez

    2000-09-14

    During the last 20 years, various legislative acts have mandated the reduction and elimination of water and land pollution. In order to fulfill these mandates, effective control and remediation methods must be developed and implemented. The drawbacks of current hazardous waste control methods motivate the development of new technology, and the need for new technology is further driven by the large number of polluted sites across the country. This research explores the application and optimization of ultrasonic waves as a novel method by which aqueous contaminants are degraded. The primary objective of the investigation is to acquire a deeper fundamental knowledge of acoustic cavitation and cavitation chemistry, and in doing so, to ascertain how ultrasonic irradiation can be more effectively applied to environmental problems. Special consideration is given to the types of problems and hazardous chemical substrates found specifically at Department of Energy (DOE) sites. The experimental work is divided into five broad tasks, to be completed over a period of three years. The first task is to explore the significance of physical variables during sonolysis, such as ultrasonic frequency. The second aim is an understanding of sonochemical degradation kinetics and by-products, complemented by information from the detection of reactive intermediates with electron paramagnetic resonance. The sonolytic decomposition studies will focus on polychlorinated biphenyls (PCBs). Investigation of activated carbon regeneration during ultrasonic irradiation extends sonochemical applications in homogeneous systems to heterogeneous systems of environmental interest. Lastly, the physics and hydrodynamics of cavitation bubbles and bubble clouds will be correlated with sonochemical effects by performing high-speed photographic studies of acoustically cavitating aqueous solutions. The most important benefit will be fundamental information which will allow a more optimal application of

  18. Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer.

    PubMed

    Delitto, Daniel; Perez, Chelsey; Han, Song; Gonzalo, David H; Pham, Kien; Knowlton, Andrea E; Graves, Christina L; Behrns, Kevin E; Moldawer, Lyle L; Thomas, Ryan M; Liu, Chen; George, Thomas J; Trevino, Jose G; Wallet, Shannon M; Hughes, Steven J

    2015-12-01

    The cancer microenvironment allows tumor cells to evade immune surveillance through a variety of mechanisms. While interferon-γ (IFNγ) is central to effective antitumor immunity, its effects on the microenvironment are not as clear and have in some cancers been shown to induce immune checkpoint ligands. The heterogeneity of these responses to IFNγ remains poorly characterized in desmoplastic malignancies with minimal inflammatory cell infiltration, such as pancreatic cancer (PC). Thus, the IFNγ response within and on key cells of the PC microenvironment was evaluated. IFNγ induced expression of human leukocyte antigen (HLA) class I and II on PC cell lines, primary pancreatic cancer epithelial cells (PPCE) and patient-derived tumor-associated stroma, concomitant with an upregulation of PDL1 in the absence of CD80 and CD86 expression. As expected, IFNγ also induced high levels of CXCL10 from all cell types. In addition, significantly higher levels of CXCL10 were observed in PC specimens compared to those from chronic pancreatitis, whereby intratumoral CXCL10 concentration was an independent predictor of poor survival. Immunohistochemical analysis revealed a subset of CXCR3-positive cancer cells in over 90 % of PC specimens, as well as on a subset of cultured PC cell lines and PPCE, whereby exposure to CXCL10 induced resistance to the chemotherapeutic gemcitabine. These findings suggest that IFNγ has multiple effects on many cell types within the PC microenvironment that may lead to immune evasion, chemoresistance and shortened survival.

  19. Intratumoral expression profiling of genes involved in angiogenesis in colorectal cancer patients treated with chemotherapy plus the VEGFR inhibitor PTK787/ZK 222584 (vatalanib).

    PubMed

    Wilson, P M; Yang, D; Azuma, M; Shi, M M; Danenberg, K D; Lebwohl, D; Sherrod, A; Ladner, R D; Zhang, W; Danenberg, P V; Trarbach, T; Folprecht, G; Meinhardt, G; Lenz, H-J

    2013-10-01

    The phase III CONFIRM clinical trials demonstrated that metastatic colorectal cancer patients with elevated serum lactate dehydrogenase (LDH) had improved outcome when the vascular endothelial growth factor receptor (VEGFR) inhibitor PTK/ZK (Vatalanib) was added to FOLFOX4 chemotherapy. We investigated the hypothesis that high intratumoral expression of genes regulated by hypoxia-inducible factor-1 alpha (HIF1α), namely LDHA, glucose transporter-1 (GLUT-1), VEGFA, VEGFR1, and VEGFR2, were predictive of outcome in CONFIRM-1. Tumor tissue was isolated by laser-capture microdissection from 85 CONFIRM-1 tumor specimens; FOLFOX4/placebo n=42, FOLFOX4/PTK/ZK n=43. Gene expression was analyzed using quantitative RT-PCR. In univariate analyses, elevated mRNA expression of LDHA, GLUT-1, and VEGFR1 were associated with response to FOLFOX4/PTK/ZK. In univariate and multivariate analyses, elevated LDHA and VEGFR1 mRNA levels were associated with improved progression-free survival in FOLFOX4/PTK/ZK patients. Furthermore, increased HIF1α and VEGFR2 mRNA levels were associated with decreased survival in FOLFOX/placebo patients but not in patients who received FOLFOX4/PTK/ZK. These are the first data suggesting intratumoral mRNA expression of genes involved in angiogenesis/HIF pathway may predict outcome to VEGFR-inhibitors. Biomarkers that assist in directing VEGFR-inhibitors toward patients with an increased likelihood of benefit will improve the cost-effectiveness of these promising agents. PMID:22664478

  20. Management of Giant Facial Neurofibroma With Intratumoral Hematoma in Neurofibromatosis Type 1 Patient.

    PubMed

    Tak, Min Sung; Cho, Seong Eun; Kang, Sang Gue; Kim, Chul Han; Lee, Yong Seok

    2016-09-01

    Type-1 neurofibromatosis, a common autosomal dominant disease, is also known as von Recklinghausen disease. Surgical procedures to treat this condition are challenging because of the brittleness of the surrounding blood vessels and soft tissues that bring the risk of causing fatal bleeding. With improvements in neurovascular embolization procedures, some literatures have been published about the application of preoperative embolization for neurofibromatosis. This case report describes a 60-year-old female with Type-1 neurofibromatosis, who presented giant facial neurofibromas with intratumoral hemorrhage on both cheeks. This patient demonstrates that these huge and challenging lesions can be successfully treated with preoperative embolization and surgical treatment. We also discuss the timing of surgical treatment with such lesions. PMID:27603687

  1. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  2. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  3. Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy

    PubMed Central

    2015-01-01

    Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV–vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments. PMID:25375246

  4. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.

    PubMed

    Hagberg Thulin, Malin; Nilsson, Maria E; Thulin, Pontus; Céraline, Jocelyn; Ohlsson, Claes; Damber, Jan-Erik; Welén, Karin

    2016-02-15

    The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.

  5. Political Jurisdictions in Heterogeneous Communities.

    ERIC Educational Resources Information Center

    Alesina, Alberto; Baqir, Reza; Hoxby, Caroline

    2004-01-01

    We investigate whether political jurisdictions form in response to the trade-off between economies of scale and the costs of a heterogeneous population. We consider heterogeneity in income, race, ethnicity, and religion, and we test the model using American school districts, school attendance areas, municipalities, and special districts. We find…

  6. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer.

    PubMed

    Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard

    2015-02-10

    The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.

  7. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer.

    PubMed

    Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard

    2015-02-10

    The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors. PMID:25624490

  8. Theoretical investigation on the role of mineral dust aerosol in atmospheric reaction: A case of the heterogeneous reaction of formaldehyde with NO2 onto SiO2 dust surface

    NASA Astrophysics Data System (ADS)

    Ji, Yuemeng; Wang, Honghong; Li, Guiying; An, Taicheng

    2015-02-01

    The role of mineral dusts on the heterogeneous reaction of formaldehyde with NO2 was investigated using a quantum chemical approach. SiO2 was selected as a model of mineral dust to investigate the heterogeneous reaction mechanism and kinetics because the mineral dust is comprised of ∼60% of SiO2. Compared with NO2, formaldehyde was easily adsorbed onto SiO2 model, indicating SiO2 was a sink for formaldehyde. Further data showed that the presence of SiO2 reduced the reaction barrier, but did not change reaction mechanism. The kinetics calculation using the canonical variational transition state theory plus small curvature tunneling correction showed that the presence of SiO2 could accelerate the atmospheric reaction rate of formaldehyde with NO2 to produce HONO. The effect of the altitudes was also considered, and the heterogeneous reaction rate decreased with increasing the altitude due to the atmospheric temperature decrease, suggesting that the degradation of atmospheric HCHO onto available mineral dusts might be competitive with the corresponding homogeneous reaction, especially in dusty urban and desert environments. This work can lay the foundation on the atmospheric heterogeneous reaction of VOCs, probe the role of mineral dust and establish the atmospheric transformation models, to better understand pollution mechanism.

  9. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  10. Investigation of the Neel Model of Thermal Activation in Heterogeneous Cobalt-Silver Alloy Films Through the Use of Dynamic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Slade, Steven Barclay

    Co-Ag heterogeneous alloys films having 5 at% Co are produced by sputtering and annealed after deposition to relieve stress and promote particle growth. X-ray diffraction suggests the as-deposited state consists of a single fcc alloy phase, with local density fluctuations resulting from the immiscible nature of Co and Ag leading to the formation of Co-rich and Ag-rich regions. Annealing is seen to drive progressive separation and growth of the Ag-rich and Co-rich areas. Characterizations of magnetic properties indicate the Co precipitates are ferromagnetically ordered and have a uniaxial anisotropy. A Curie-Weiss analysis of the inverse initial dc susceptibility indicates the as-deposited film has net antiferromagnetic interparticle magnetic interactions, while the annealed sample has non-interacting particles. Fitting the magnetization curves to a Langevin function with a lognormal volume distribution indicates the films have a narrow particle size distribution. The thermal activation behavior of the annealed sample is investigated through the use of dynamic susceptibility measurements made with a high sensitivity ac susceptometer and a SQUID magnetometer, which span 8 decades in frequency. The Neel model of thermal activation is first applied to the in-phase susceptibility data following a generally-accepted conventional analysis taken from the spin glass literature. Trends in the data are consistent with the Neel model, but values for the prefactor and the most probable energy barrier to reversal from this analysis are unphysical. A new method for applying the Neel model is presented, and allows, for the first time, correct application of this model to dynamic susceptibility data from a distributed system. This analysis of the dynamic susceptibility data yields physically meaningful results, provides a direct measure of the distribution of energy barriers, and derives a scaling relationship allowing data at different frequencies to be scaled onto a universal

  11. Isolation of Pancreatic Cancer Cells from a Patient-Derived Xenograft Model Allows for Practical Expansion and Preserved Heterogeneity in Culture.

    PubMed

    Pham, Kien; Delitto, Daniel; Knowlton, Andrea E; Hartlage, Emily R; Madhavan, Ricky; Gonzalo, David H; Thomas, Ryan M; Behrns, Kevin E; George, Thomas J; Hughes, Steven J; Wallet, Shannon M; Liu, Chen; Trevino, Jose G

    2016-06-01

    Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and culture directly from human PC specimens. However, these techniques are associated with exceedingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines (PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44, CD133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary human PC cells and, thereby, provides a platform for translational investigation and, importantly, potential personalized therapeutic approaches.

  12. An investigation on the determinants of carbon emissions for OECD countries: empirical evidence from panel models robust to heterogeneity and cross-sectional dependence.

    PubMed

    Dogan, Eyup; Seker, Fahri

    2016-07-01

    This empirical study analyzes the impacts of real income, energy consumption, financial development and trade openness on CO2 emissions for the OECD countries in the Environmental Kuznets Curve (EKC) model by using panel econometric approaches that consider issues of heterogeneity and cross-sectional dependence. Results from the Pesaran CD test, the Pesaran-Yamagata's homogeneity test, the CADF and the CIPS unit root tests, the LM bootstrap cointegration test, the DSUR estimator, and the Emirmahmutoglu-Kose Granger causality test indicate that (i) the panel time-series data are heterogeneous and cross-sectionally dependent; (ii) CO2 emissions, real income, the quadratic income, energy consumption, financial development and openness are integrated of order one; (iii) the analyzed data are cointegrated; (iv) the EKC hypothesis is validated for the OECD countries; (v) increases in openness and financial development mitigate the level of emissions whereas energy consumption contributes to carbon emissions; (vi) a variety of Granger causal relationship is detected among the analyzed variables; and (vii) empirical results and policy recommendations are accurate and efficient since panel econometric models used in this study account for heterogeneity and cross-sectional dependence in their estimation procedures.

  13. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients.

    PubMed

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-03-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 10(6) or 10(7) plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3-4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population.

  14. IL-12 Delivered Intratumorally by Multilamellar Liposomes Reactivates Memory T Cells in Human Tumor Microenvironments

    PubMed Central

    Simpson-Abelson, Michelle R.; Purohit, Vivek S.; Pang, Wing Man; Iyer, Vandana; Odunsi, Kunle; Demmy, Todd L; Yokota, Sandra J.; Loyall, Jenni L.; Kelleher, Raymond J.; Balu-Iyer, Sathy; Bankert, Richard B.

    2009-01-01

    Using a novel loading technique, IL-12 is reported here to be efficiently encapsulated within large multilamellar liposomes. The preclinical efficacy of the cytokine loaded liposomes to deliver IL-12 into human tumors and to reactive tumor-associated T cells in situ is tested using a human tumor xenograft model. IL-12 is released in vivo from these liposomes in a biologically active form when injected into tumor xenografts that are established by the subcutaneous implantation of non-disrupted pieces of human lung, breast or ovarian tumors into immunodeficient mice. The histological architecture of the original tumor tissue, including tumor-associated leukocytes, tumor cells and stromal cells is preserved anatomically and the cells remain functionally responsive to cytokines in these xenografts. The local and sustained release of IL-12 into the tumor microenvironment reactivates tumor-associated quiescent effector memory T cells to proliferate, produce and release IFN-γ resulting in the killing of tumor cells in situ. Very little IL-12 is detected in the serum of mice for up to 5 days after an intratumoral injection of the IL-12 liposomes. We conclude that IL-12 loaded large multilamellar liposomes provide a safe method for the local and sustained delivery of IL-12 to tumors and a therapeutically effective way of reactivating existing tumor-associated T cells in human solid tumor microenvironments. The potential of this local in situ T cell re-stimulation to induce a systemic anti-tumor immunity is discussed. PMID:19395317

  15. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice

    PubMed Central

    Amos, Sally M.; Pegram, Hollie J.; Westwood, Jennifer A.; John, Liza B.; Devaud, Christel; Clarke, Chris J.; Restifo, Nicholas P.; Smyth, Mark J.; Darcy, Phillip K.; Kershaw, Michael H.

    2012-01-01

    Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp10025–33, led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic. PMID:21327636

  16. Reporting Tumor Molecular Heterogeneity in Histopathological Diagnosis

    PubMed Central

    Mafficini, Andrea; Amato, Eliana; Fassan, Matteo; Simbolo, Michele; Antonello, Davide; Vicentini, Caterina; Scardoni, Maria; Bersani, Samantha; Gottardi, Marisa; Rusev, Borislav; Malpeli, Giorgio; Corbo, Vincenzo; Barbi, Stefano; Sikora, Katarzyna O.; Lawlor, Rita T.; Tortora, Giampaolo; Scarpa, Aldo

    2014-01-01

    Background Detection of molecular tumor heterogeneity has become of paramount importance with the advent of targeted therapies. Analysis for detection should be comprehensive, timely and based on routinely available tumor samples. Aim To evaluate the diagnostic potential of targeted multigene next-generation sequencing (TM-NGS) in characterizing gastrointestinal cancer molecular heterogeneity. Methods 35 gastrointestinal tract tumors, five of each intestinal type gastric carcinomas, pancreatic ductal adenocarcinomas, pancreatic intraductal papillary mucinous neoplasms, ampulla of Vater carcinomas, hepatocellular carcinomas, cholangiocarcinomas, pancreatic solid pseudopapillary tumors were assessed for mutations in 46 cancer-associated genes, using Ion Torrent semiconductor-based TM-NGS. One ampulla of Vater carcinoma cell line and one hepatic carcinosarcoma served to assess assay sensitivity. TP53, PIK3CA, KRAS, and BRAF mutations were validated by conventional Sanger sequencing. Results TM-NGS yielded overlapping results on matched fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues, with a mutation detection limit of 1% for fresh-frozen high molecular weight DNA and 2% for FFPE partially degraded DNA. At least one somatic mutation was observed in all tumors tested; multiple alterations were detected in 20/35 (57%) tumors. Seven cancers displayed significant differences in allelic frequencies for distinct mutations, indicating the presence of intratumor molecular heterogeneity; this was confirmed on selected samples by immunohistochemistry of p53 and Smad4, showing concordance with mutational analysis. Conclusions TM-NGS is able to detect and quantitate multiple gene alterations from limited amounts of DNA, moving one step closer to a next-generation histopathologic diagnosis that integrates morphologic, immunophenotypic, and multigene mutational analysis on routinely processed tissues, essential for personalized cancer therapy. PMID:25127237

  17. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    PubMed

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  18. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  19. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc. PMID:26614913

  20. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.

  1. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI

    NASA Astrophysics Data System (ADS)

    Gensheimer, Michael F.; Hawkins, Douglas S.; Ermoian, Ralph P.; Trister, Andrew D.

    2015-02-01

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.

  2. In vivo assessment of intratumoral aspirin injection to treat hepatic tumors

    PubMed Central

    Saad-Hossne, Rogério; Teixeira, Fábio Vieira; Denadai, Rafael

    2013-01-01

    AIM: To study the antineoplastic efficacy of 10% aspirin intralesional injection on VX2 hepatic tumors in a rabbit model. METHODS: Thirty-two male rabbits (age: 6-9 wk; body weight: 1700-2500 g) were inoculated with VX2 hepatic tumor cells (104 cells/rabbit) via supra-umbilical median laparotomy. On day 4 post-implantation, when the tumors were about 1 cm in diameter, the rabbits were randomly divided into the following groups (n = 8 each group) to assess early (24 h) and late (7 d) antineoplastic effects of intratumoral injection of 10% bicarbonate aspirin solution (experimental groups) in comparison to intratumoral injection of physiological saline solution (control groups): group 1, 24 h control; group 2, 24 h experimental; group 3, 7 d control; group 4, 7 d experimental. The serum biochemistry profile (measurements of glycemia, alkaline phosphatase, gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase) and body weight measurements were obtained for all animals at the following time points: D0, before tumor implant; D4, day of treatment; D5, day of sacrifice for groups 1 and 2; D11, day of sacrifice for groups 3 and 4. Gross assessments of the abdominal and thoracic cavities were carried out upon sacrifice. The resected liver tissues, including hepatic tumors, were qualitatively (general morphology, signs of necrosis) and quantitatively (tumor area) assessed by histopathological analysis. RESULTS: Gross examination showed no alterations, besides the left hepatic lobe tumors, had occurred in the thoracic and abdominal cavities of any animal at any time point evaluated. However, the features of the tumor foci were distinctive between the groups. Compared to the control groups, which showed normal unabated tumor progression, the aspirin-treated groups showed imprecise but limited tumor boundaries and a general red-white coloration (indicating hemorrhaging) at 24 h post-treatment, and development of yellow-white areas of a cicatricial

  3. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    PubMed

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization.

  4. Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    PubMed Central

    Vermeulen, P B; Eynden, G G Van den; Huget, P; Goovaerts, G; Weyler, J; Lardon, F; Marck, E Van; Hubens, G; Dirix, L Y

    1999-01-01

    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaign PMID:9888475

  5. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles

    PubMed Central

    Shi, Minghan; Paquette, Benoit; Thippayamontri, Thititip; Gendron, Louis; Guérin, Brigitte; Sanche, Léon

    2016-01-01

    The potential of gold nanoparticles (GNPs) as radiosensitizers for the treatment of malignant tumors has been limited by the large quantities of GNPs that must be administered and the requirement for low-energy X-ray irradiation to optimize radiosensitization. In this study, we enhance the radiosensitivity of HCT116 human colorectal cells with tiopronin-coated GNPs (Tio-GNPs) combined with a low-energy X-ray (26 keV effective energy) source, similar to the Papillon 50 clinical irradiator used for topical irradiation of rectal tumors. Sensitizer enhancement ratios of 1.48 and 1.69 were measured in vitro, when the HCT116 cells were incubated with 0.1 mg/mL and 0.25 mg/mL of Tio-GNPs, respectively. In nude mice bearing the HCT116 tumor, intra-tumoral (IT) injection of Tio-GNPs allowed a 94 times higher quantity of Tio-GNPs to accumulate than was possible by intravenous injection and facilitated a significant tumor response. The time following irradiation, for tumors growing to four times their initial tumor volume (4Td) was 54 days for the IT injection of 366.3 μg of Tio-GNPs plus 10 Gy, compared to 37 days with radiation alone (P=0.0018). Conversely, no significant improvement was obtained when GNPs were injected intravenously before tumor irradiation (P=0.6547). In conclusion, IT injection of Tio-GNPs combined with low-energy X-rays can significantly reduce the growth of colorectal tumors. PMID:27789945

  6. Toremifene – Atamestane; Alone or In Combination: Predictions from the Preclinical Intratumoral Aromatase Model

    PubMed Central

    Sabnis, Gauri J; Macedo, Luciana; Goloubeva, Olga; Schayowitz, Adam; Zhu, Yue; Brodie, Angela

    2011-01-01

    Since most breast cancers occur in post-menopausal women and are hormone dependent, we developed a model system that mimics this situation. In this model, tumors of human estrogen receptor ER positive breast cancer cells stably transfected with aromatase (Ac-1) are grown in immune compromised mice. Using this model we have explored a number of therapeutic strategies to maximize the antitumor efficacy of antiestrogens (AEs) and aromatase inhibitors (AIs). This intratumoral aromatase xenograft model has proved accurate in predicting the outcome of several clinical trials. In this current study we compared the effect of an AE toremifene and steroidal AI atamestane, alone or in combination, on growth of hormone dependent human breast cancer. We have also compared toremifene plus atamestane combination with tamoxifen in this study. The growth of Ac-1 cells was inhibited by tamoxifen, toremifene and atamestane in vitro with IC50 values of 1.8±1.3μM, 1±0.3μM and 60.4±17.2μM, respectively. The combination of toremifene plus atamestane was found to be better than toremifene or atamestane alone in vitro. The effect of this combination was then studied in vivo using Ac-1 xenografts grown in ovariectomized female SCID mice. The mice were injected with toremifene (1000μg/day), atamestane (1000μg/day), tamoxifen (100μg/day), or the combination of toremifene plus atamestane. In this study, our results indicate that the combination of toremifene plus atamestane was as effective as toremifene or tamoxifen alone but may not provide any additional benefit over toremifene alone or tamoxifen alone. PMID:17942301

  7. Atmospheric Heterogeneous Stereochemistry

    NASA Astrophysics Data System (ADS)

    Stokes, G. Y.; Buchbinder, A. M.; Geiger, F. M.

    2009-12-01

    This paper addresses the timescale and mechanism of heterogeneous interactions of laboratory models of organic-coated mineral dust and ozone. We are particularly interested in investigating the role of stereochemistry in heterogeneous oxidation reactions involving chiral biogenic VOCs. Using the surface-specific nonlinear optical spectroscopy, sum frequency generation, we tracked terpene diastereomers during exposure to 10^11 to 10^13 molecules of ozone per cm^3 in 1 atm helium to model ozone-limited and ozone-rich tropospheric conditions. Our kinetic data indicate that the diastereomers which orient their reactive C=C double bonds towards the gas phase exhibit heterogeneous ozonolysis rate constants that are two times faster than diastereomers that orient their C=C double bonds away from the gas phase. Insofar as our laboratory model studies are representative of real world environments, our studies suggest that the propensity of aerosol particles coated with chiral semivolatile organic compounds to react with ozone may depend on stereochemistry. Implications of these results for chiral markers that would allow for source appointment of anthropogenic versus biogenic carbon emissions will be discussed.

  8. Intratumoral hemorrhage-related differences in the expression of vascular endothelial growth factor, basic fibroblast growth factor and thioredoxin reductase 1 in human glioblastoma

    PubMed Central

    Kaya, Bulent; Çiçek, Onur; Erdi, Fatih; Findik, Siddika; Karatas, Yasar; Esen, Hasan; Keskin, Fatih; Kalkan, Erdal

    2016-01-01

    The present study was designed to evaluate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and thioredoxin reductase 1 (TrxR1) in glioblastoma multiforme (GBM) with and without intratumoral hemorrhage. Surgically resected human GBM samples from 20 patients who underwent surgery at our institute were extracted from the histopathological specimens and divided into two groups. A total of 10 samples from each type of GBM (World Health Organization grade IV, intratumoral hemorrhage-positive or -negative) were included in each group. VEGF, bFGF and TrxR1 expression was analyzed using immunohistochemistry and the results were compared between groups. VEGF and bFGF immunoreactivity was significantly higher in GBMs containing intratumoral hemorrhage. Furthermore, VEGF, bFGF and TrxR1 immunointensity was significantly higher in GBMs containing intratumoral hemorrhage. Thus, the present study demonstrated a higher VEGF, bFGF and TrxR1 expression in GBMs contain intratumoral hemorrhage, indicatiogn a role of VEGF, bFGF and TrxR1 expression in the promotion of tumoral angiogenesis and tumoral growth by complex mechanisms that require further elucidation.

  9. Intra-tumor AvidinOX allows efficacy of low dose systemic biotinylated Cetuximab in a model of head and neck cancer

    PubMed Central

    Anastasi, Anna Maria; Petronzelli, Fiorella; Chiapparino, Caterina; Carollo, Valeria; Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Aurisicchio, Luigi; Pacello, Maria Lucrezia; Spagnoli, Luigi Giusto; De Santis, Rita

    2016-01-01

    For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR. In the mouse model of FaDu cancer, we show that intra-tumor injection of AvidinOX allows anti-tumor activity of an otherwise inactive, intraperitoneally delivered, low dose bCet. Consistently with in vitro data, in vivo tumor inhibition is associated to induction of apoptosis, DNA damage and reduced angiogenesis. AvidinOX is under clinical investigation for delivering radioactive biotin to inoperable tumors (ClinicalTrials.gov NCT02053324) and present data support its use for the local treatment of HNSCC in combination with systemic administration of low dose bCet. PMID:26575422

  10. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker. PMID:27496736

  11. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  12. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker.

  13. Heterogeneous UO2 fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Lamontagne, J.; Nakae, N.; Kitagawa, T.; Kosaka, Y.; Tverberg, T.

    2013-11-01

    A UO2 fuel with a heterogeneous distribution of 235U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in 235U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral 235U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO2. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths. SUP>235U-rich agglomerates, SUP>235U-poor areas, an intermediate phase with intermediate 235U concentrations. Short fuel rods were fabricated with these pellets. The main characteristics of these fuel rods are shown in Table 1.These rods were irradiated to high burn-ups in the IFA-609/626 of the HBWR and then one was irradiated in the IFA-702 for 100 days. Fig. 2 shows the irradiation history of this fuel. The final average burn-up of the rod was 69 GWd/tU. Due to the flux differences along the rod, however, the average burn-up of the cross section examined was 63 GWd/tU. This fuel

  14. Metaplastic thymoma with myasthenia gravis presumably caused by an accumulation of intratumoral immature T cells: a case report.

    PubMed

    Tajima, Shogo; Yanagiya, Masahiro; Sato, Masaaki; Nakajima, Jun; Fukayama, Masashi

    2015-01-01

    Among human neoplasms, thymomas are well known for their association with paraneoplastic autoimmune diseases such as myasthenia gravis. However, regarding rare metaplastic thymoma, only one case of an association with myasthenia gravis has been reported. Here, we present the second case of a 44-year-old woman with metaplastic thymoma associated with myasthenia gravis. In metaplastic thymoma, intratumoral terminal deoxynucleotidyl transferase-positive T-cells (immature T-cells) are generally scarce, while they were abundant in the present case. We believe that these immature T-cells could be related to the occurrence of myasthenia gravis.

  15. Lateral heterogeneity of dipalmitoylphosphatidylethanolamine-cholesterol Langmuir-Blodgett films investigated with imaging time-of-flight secondary ion mass spectrometry and atomic force microscopy.

    PubMed

    McQuaw, Carolyn M; Sostarecz, Audra G; Zheng, Leiliang; Ewing, Andrew G; Winograd, Nicholas

    2005-02-01

    To better understand the influence of cholesterol (CH) on dipalmitoylphosphatidylethanolamine (DPPE), Langmuir-Blodgett (LB) model membranes of DPPE with varying amounts of cholesterol were imaged by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Cholesterol has a condensing effect on DPPE that at low cholesterol concentrations results in lateral heterogeneity of the LB monolayer. At 4:1 DPPE/CH, islands of DPPE/CH phase exist with a connected DPPE phase. As the concentration of cholesterol is increased, the percolation threshold is crossed and the DPPE/CH phase islands connect to separate the DPPE phase (2:1 DPPE/CH). Finally, at 50 mol % cholesterol a single homogeneous DPPE/CH phase LB monolayer exists. ToF-SIMS of the DPPE/CH phase provides a lower ion signal for the characteristic lipid fragments and substrate apparently owing to the higher molecular density induced by cholesterol. AFM data indicate that the DPPE/CH phase is lower in height than the DPPE phase. As phosphatidylethanolamine is predominant in the inner lipid leaflet of cellular membranes, this work has implications for the understanding of cholesterol domains in the inner leaflet of cells. PMID:15667151

  16. An investigation of the effects of spatial heterogeneity of initial soil moisture content on surface runoff simulation at a small watershed scale

    NASA Astrophysics Data System (ADS)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Corradini, Corrado; Brocca, Luca; Govindaraju, Rao S.

    2016-08-01

    In addition to the soil saturated hydraulic conductivity, Ks, the initial soil moisture content, θi, is the quantity commonly incorporated in rainfall infiltration models for simulation of surface runoff hydrographs. Previous studies on the effect of the spatial heterogeneity of initial soil water content in the generation of surface runoff were generally not conclusive, and provided no guidance on designing networks for soil moisture measurements. In this study, the role of the spatial variability of θi at the small watershed scale is examined through the use of a simulation model and measurements of θi. The model combines two existing components of infiltration and surface runoff to model the flow discharge at the watershed outlet. The observed values of soil moisture in three experimental plots are combined to determine seven different distributions of θi, each used to compute the hydrographs produced by four different rainfall patterns for two initial conditions classified as "dry" soil and "wet" soil. For rainfalls events typically associated with floods, the spatial variability of θi at the watershed scale does not cause significant variations in surface runoff for initially dry or wet soils. Furthermore, when the main objective is to represent flood events a single ground point measurement of θi in each area with the same land use may suffice to obtain adequate outflow hydrographs at the outlet.

  17. A New Ghost-Node Method for Linking Different Gound-Water Models and Initial Investigation of Heterogeneity and Nonmatching Grids

    SciTech Connect

    J.E. Dickinson; S.C. james; S. Mehl; M.C. hill; G.A. Zyvoloski; A.A. Eddebbarh

    2006-09-26

    A method was developed for flexible and robust grid refinement of ground-water models that use different types of numerical methods. One application is the use of a child (local scale) finite-element model to solve for local heat and (or) solute transport by using boundary conditions derived from a parent (regional scale) finite-difference model. This paper presents a new iterative method that uses ghost nodes to link different models. The models are solved iteratively based on the shared-node method for coupling a parent model that encloses a child model described by Steffen W. Mehl and Mary C. Hill in 2002. Ghost nodes are located within the parent model along a line or plane that passes through nodes of parent cells along the model interface. The links between the parent and child models-specified-flow boundary conditions for the parent model and specified-head boundary conditions for the child model-are achieved by using heads at ghost nodes and flows through the material in model cells between the child and ghost nodes. The ghost-node method can be used to link nonmatching grids that occur when parent-model cell edgedfaces do not coincide with child-model cell edgedfaces and the parent model nodes do not coincide with a ghost node. The ghost-node method is tested for two- and three-dimensional systems that are either homogeneous or moderately heterogeneous, and for matching and nonmatching grids. The coupled models are simulated by using the finite-difference MODFLOW and finite-element FEHM models for the parent and child grids, respectively. Results for models of two-dimensional, homogeneous systems having matching or nonmatching grids indicate that the new method is as accurate as coupling using shared-node method of two MODFLOW models having matching grids. The three-dimensional systems exhibit similar errors to the two-dimensional homogeneous systems with both matching and nonmatching grids.

  18. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues

    PubMed Central

    Gao, Weidong; Wang, Zhaohui; Lv, Liwei; Yin, Deyan; Chen, Dan; Han, Zhihao; Ma, Yi; Zhang, Min; Yang, Man; Gu, Yueqing

    2016-01-01

    Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effect of deep-tissue PDT on nanoparticle uptake in tumors. This platform employed c(RGDyK)-conjugated upconversion nanoparticles (UCNPs), which facilitate active targeting of the nanoconstruct to tumor vasculature and achieve the deep-tissue photosensitizer activation by NIR light irradiation. Results indicated that our PDT system efficiently enhanced intratumoral uptake of different nanoparticles in a deep-seated tumor model. The optimal light dose for deep-tissue PDT (34 mW/cm2) was determined and the most robust permeability enhancement was achieved by administering the nanoparticles within 15 minutes following PDT treatment. Further, a two-step treatment strategy was developed and validated featuring the capability of improving the therapeutic efficacy of Doxil while simultaneously reducing its cardiotoxicity. This two-step treatment resulted in a tumor inhibition rate of 79% compared with 56% after Doxil treatment alone. These findings provide evidence in support of the clinical application of deep-tissue PDT for enhanced nano-drug delivery. PMID:27279907

  19. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system

    PubMed Central

    Zhou, Sujin; Zhao, Zhenggang; Lin, Yan; Gong, Sijia; Li, Fanghong; Pan, Jinshun; Li, Xiaoxi; Gao, Zhuo; Zhao, Allan Z.

    2016-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis among all malignancies and is resistant to almost all current therapies. Attenuated Salmonella typhimurium strain VNP20009 has been deployed as powerful anticancer agent in a variety of animal cancer models, and previous phase 1 clinical trials have proven its safety profiles. However, thus far, little is known about its effect on PDAC. Here, we established CFPAC-1 cell lines expressing an mKate2 protein and thus emitting far-red fluorescence in the subsequent xenograft implant. VNP20009 strain was further engineered to carry a luciferase cDNA, which catalyzes the light-emitting reaction to allow the observation of salmonella distribution and accumulation within tumor with live imaging. Using such VNP20009 strain and intratumoral delivery, we could reduce the growth of pancreatic cancer by inducing apoptosis and severe necrosis in a dosage dependent manner. Consistent with this finding, intratumoral delivery of VNP20009 also increase caspase-3 activity and the expression of Bax protein. In summary, we revealed that VNP20009 is a promising bacterial agent for the treatment of PDAC, and that we have established a dual fluorescent imaging system as a valuable tool for noninvasive live imaging of solid tumor and engineered bacterial drug. PMID:27089121

  20. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery.

    PubMed

    Liao, Rui; Jiang, Ning; Tang, Zhuo-Wei; Li, De Wei; Huang, Ping; Luo, Shi-Qiao; Gong, Jian-Ping; Du, Cheng-You

    2016-05-24

    The peripheral neutrophil-monocyte/lymphocyte ratio (NMLR) and intratumoral CD16/CD8 ratio (iMLR) may have prognostic value in hepatocellular carcinoma (HCC) patients after curative resection. In this study, the circulating NMLR was examined 387 HCC patients who underwent curative resection between 2006 and 2009. Intratumoral levels of CD4, CD8, CD16 and CD68 and the CD16/CD8 ratio were determined immunohistologically. The prognostic values of clinicopathological parameters, including NMLR and iMLR, were evaluated. NMLR was predictive of overall survival (OS) and recurrence-free survival (RFS) when patients in the training cohort (n = 256) were separated into high (> 1.2) and low (≤ 1.2) NMLR subgroups. NMLR was also an independent predictor of low alpha-fetoprotein (AFP) expression and early recurrence. High NMLR was associated with increases in clinicopathological variables, including alanine aminotransferase (ALT), tumor number, tumor size and BCLC stage. In addition, iMLR strongly predicted risk of recurrence and patient survival, and was positively correlated with NMLR. These findings were confirmed in an independent validation patient cohort (n = 131). Peripheral NMLR and iMLR may thus be useful prognostic markers, and anti-inflammatory treatment may be beneficial in HCC patients after curative hepatectomy.

  1. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model

    PubMed Central

    Liu, Wenge; MacKay, J. Andrew; Dreher, Matthew R.; Chen, Mingnan; McDaniel, Jonathan R.; Simnick, Andrew J.; Callahan, Daniel J.; Zalutsky, Michael R.; Chilkoti, Ashutosh

    2010-01-01

    This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kD) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP1, was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP2 was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP1 in the tumor was significantly longer than the thermally insensitive ELP2 conjugate. In addition, the thermal transition of ELP1 significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP2 was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP1 depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP2 control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues. PMID:20117157

  2. Heterogeneous catalytic alcoholysis of benzonitrile

    SciTech Connect

    Kagarlitskii, A.D.; Dmumakaev, K.Kh.; Bekova, N.S.

    1986-04-01

    The authors investigate the possibility of the direct heterogeneous catalytic synthesis of ethylbenzoate from benzonitrile. The catalysts tested were oxides of aluminium, titanium, and vanadium. The main conversion product detected chromatographically was ethylbenzoate; benzaldehyde, benzamide, and benzanilide were also identified. Aluminium oxide was found to be the most effective catalyst.

  3. Limited Role for Biliary Stent as Surrogate Fiducial Marker in Pancreatic Cancer: Stent and Intratumoral Fiducials Compared

    SciTech Connect

    Horst, Astrid van der; Lens, Eelco; Wognum, Silvia; Jong, Rianne de; Hooft, Jeanin E. van; Tienhoven, Geertjan van; Bel, Arjan

    2014-07-01

    Purpose: Because of low soft-tissue contrast of cone beam computed tomography (CBCT), fiducial markers are often used for radiation therapy patient setup verification. For pancreatic cancer patients, biliary stents have been suggested as surrogate fiducials. Using intratumoral fiducials as standard for tumor position, this study aims to quantify the suitability of biliary stents for measuring interfractional and respiratory-induced position variations of pancreatic tumors. Methods and Materials: Eleven pancreatic cancer patients with intratumoral fiducials and a biliary stent were included in this study. Daily CBCT scans (243 in total) were registered with a reference CT scan, based on bony anatomy, on fiducial markers, and on the biliary stent, respectively. We analyzed the differences in tumor position (ie, markers center-of-mass position) among these 3 registrations. In addition, we measured for 9 patients the magnitude of respiratory-induced motion (MM) of the markers and of the stent on 4-dimensional CT (4DCT) and determined the difference between these 2 magnitudes (ΔMM). Results: The stent indicated tumor position better than bony anatomy in 67% of fractions; the absolute difference between the markers and stent registration was >5 mm in 46% of fractions and >10 mm in 20% of fractions. Large PTV margins (superior-inferior direction, >19 mm) would be needed to account for this interfractional position variability. On 4DCT, we found in superior-inferior direction a mean ΔMM of 0.5 mm (range, –2.6 to 4.2 mm). Conclusions: For respiratory-induced motion, the mean ΔMM is small, but for individual patients the absolute difference can be >4 mm. For interfractional position variations, a stent is, on average, a better surrogate fiducial than bony anatomy, but large PTV margins would still be required. Therefore, intratumoral fiducials are recommended for online setup verification for all pancreatic patients scheduled for radiation therapy, including

  4. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    SciTech Connect

    Gensheimer, M; Trister, A; Ermoian, R; Hawkins, D

    2014-06-15

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was

  5. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors.

    PubMed

    Cai, Changmeng; Chen, Sen; Ng, Patrick; Bubley, Glenn J; Nelson, Peter S; Mostaghel, Elahe A; Marck, Brett; Matsumoto, Alvin M; Simon, Nicholas I; Wang, Hongyun; Chen, Shaoyong; Balk, Steven P

    2011-10-15

    Relapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and androstenedione are synthesized by the adrenals through the sequential actions of the cytochrome P450 enzymes CYP11A1 and CYP17A1, so that CYP17A1 inhibitors such as abiraterone are effective therapies for CRPC. However, the significance of intratumoral CYP17A1 and de novo androgen synthesis from cholesterol in CRPC, and the mechanisms contributing to CYP17A1 inhibitor resistance/relapse, remain to be determined. We report that AR activity in castration-resistant VCaP tumor xenografts can be restored through CYP17A1-dependent de novo androgen synthesis, and that abiraterone treatment of these xenografts imposes selective pressure for increased intratumoral expression of CYP17A1, thereby generating a mechanism for development of resistance to CYP17A1 inhibitors. Supporting the clinical relevance of this mechanism, we found that intratumoral expression of CYP17A1 was markedly increased in tumor biopsies from CRPC patients after CYP17A1 inhibitor therapy. We further show that CRPC cells expressing a progesterone responsive T877A mutant AR are not CYP17A1 dependent, but that AR activity in these cells is still steroid dependent and mediated by upstream CYP11A1-dependent intraturmoral pregnenolone/progesterone synthesis. Together, our results indicate that CRPCs resistant to CYP17A1 inhibition may remain steroid dependent and therefore responsive to therapies that can further suppress de novo intratumoral steroid synthesis.

  6. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model.

    PubMed Central

    Addison, C L; Braciak, T; Ralston, R; Muller, W J; Gauldie, J; Graham, F L

    1995-01-01

    Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers. PMID:7667323

  7. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.

    PubMed

    Rehman, Hasan; Silk, Ann W; Kane, Michael P; Kaufman, Howard L

    2016-01-01

    With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy. PMID:27660707

  8. Cervicomedullary intramedullary peripheral primitive neuroectodermal tumor with intratumoral bleed: Report of one case and review of literature

    PubMed Central

    Sharma, Pradeep; Das, Kuntal K; Mehrotra, Anant; Srivastava, Arun K; Sahu, Rabi N; Jaiswal, Awadhesh; Pandey, Rakesh; Behari, Sanjay; Bhaisora, Kamlesh S; Sardhara, Jayesh

    2016-01-01

    Primitive neuroectodermal tumors (PNET) are highly malignant, yet relatively uncommon neoplasms of the central nervous system. Although a host of different parts of the nervous system can be affected, intramedullary location of PNET is extremely rare. Most reports on intramedullary PNET have reported central PNET (cPNET); peripheral PNET (pPNET) affecting intramedullary spinal location is extremely rare. Till now, seven such cases of intramedullary pPNET have been described in medical literature in English. Here, we report an 11-year-old boy with cervicomedullary junction intramedullary pPNET who presented with intratumoral bleed, wherein the clinical presentation and radiological features gave us no clue preoperatively about the underlying diagnosis. In this report, we additionally review certain salient aspects of this dreaded disease in light of the existing evidence. PMID:27217659

  9. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.

    PubMed

    Rehman, Hasan; Silk, Ann W; Kane, Michael P; Kaufman, Howard L

    2016-01-01

    With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy.

  10. Intratumor chemotherapy in combination with a systemic antimetastatic drug in the treatment of Lewis-lung carcinoma.

    PubMed

    De-Oliveira, M M; Nakamura, I T; Joussef, A C; Giannotti Filho, O

    1985-01-01

    The effect of an antimetastatic agent plus intratumor chemotherapy was evaluated in mice bearing Lewis-lung carcinoma by measuring survival time and by histological examination. Polymeric flavan-3,4-diol (APF) from avocado seeds, Persea gratissima, administered alone directly into the tumor did not change survival time, although it partially destroyed the primary tumor. However, the drug administered in combination with an antimetastatic, 1,2-bis(3,5-dioxopiperazin-1-yl)ethane (ICRF-154), resulted in an increase in survival time. When 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was used in place of polymeric flavanadiol as an intralesional drug, a significant increase in survival was also achieved. The effect of each drug alone and of their combination was evaluated by "responder analyses". Animals "cured" by the combination and rechallenged with 2 X 10(6) tumor cells showed that immunization could occur.

  11. Investigation of Heterogeneous Atmospheric Chlorine Chemistry: Modeling and Environmental Chamber Studies Authors: Cameron B. Faxon, Lea Hildebrandt Ruiz, and David Allen University of Texas at Austin, McKetta Department of Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Faxon, C. B.; Hildebrandt Ruiz, L.; Allen, D.

    2013-12-01

    Previous work has shown that gas phase atomic chlorine radicals (Cl*) can influence tropospheric photochemistry, including concentrations of volatile organic compound (VOC) and ozone. These radicals are produced through both gas phase and heterogeneous pathways. This work presents computational and experimental investigation into the heterogeneous reactions of chloride aerosols. An overview of a sensitivity analysis of the physical parameters involved in the heterogeneous production of nitryl chloride (ClNO2) (R1-R5) will comprise the computational work presented. NO2(g) + NO3(g) ↔ N2O5(g) (R1) N2O5(aq) ↔ N2O5(aq) (R2) N2O5(aq) ↔ NO2+(aq) + NO3-(aq) (R3) NO2+(aq) + H2O(aq) → H3O+(aq) + HNO3(aq) (R4a) NO2+(aq) + Cl- → ClNO2 + H2O(aq) (R4b) NO3-(aq) + H+ ↔ HNO3+(aq) (R5) Relative parameters include the reactive uptake coefficient, ClNO2 yield, particle surface area, and gas phase concentrations of VOCs and NOx. The sensitivity analysis results were generated through photochemical box modeling and focus on the production of ClNO2 and impacts to ozone production. Results were compared to a base case scenario in which all heterogeneous reactions were absent. Parameter values reaching the upper limits reported in the literature were tested, and results indicate that ClNO2 chemistry can potentially change peak O3 concentrations by -10.5% to 27%. NOx availability was also found to play an important role. Experimental results of the heterogeneous reaction between OH* and particulate chloride (R6-R7) will also be discussed. The mechanism is shown below, and OH***Cl- represents an intermediate species forming at the particle surface. OH(g) + Cl-(aq) → OH***Cl-(aq) (R6) 2OH***Cl-(aq) → Cl2,g + 2OH-(aq) (R7) Environmental chamber experiments involving the exposure of NaCl aerosol particles to typical atmospheric conditions (HOx, NOx, O3 and UV radiation) were performed. A 10 cubic meter teflon reaction chamber equipped with UV lights was used to contain the

  12. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG.

    PubMed

    Confino, Hila; Schmidt, Michael; Efrati, Margalit; Hochman, Ilan; Umansky, Viktor; Kelson, Itzhak; Keisari, Yona

    2016-10-01

    It has been demonstrated that aggressive in situ tumor destruction (ablation) could lead to the release of tumor antigens, which can stimulate anti-tumor immune responses. We developed an innovative method of tumor ablation based on intratumoral alpha-irradiation, diffusing alpha-emitters radiation therapy (DaRT), which efficiently ablates local tumors and enhances anti-tumor immunity. In this study, we investigated the anti-tumor potency of a treatment strategy, which combines DaRT tumor ablation with two approaches for the enhancement of anti-tumor reactivity: (1) neutralization of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and (2) boost the immune response by the immunoadjuvant CpG. Mice bearing DA3 mammary adenocarcinoma with metastases were treated with DaRT wires in combination with a MDSC inhibitor (sildenafil), Treg inhibitor (cyclophosphamide at low dose), and the immunostimulant, CpG. Combination of all four therapies led to a complete rejection of primary tumors (in 3 out of 20 tumor-bearing mice) and to the elimination of lung metastases. The treatment with DaRT and Treg or MDSC inhibitors (without CpG) also resulted in a significant reduction in tumor size, reduced the lung metastatic burden, and extended survival compared to the corresponding controls. We suggest that the therapy with DaRT combined with the inhibition of immunosuppressive cells and CpG reinforced both local and systemic anti-tumor immune responses and displayed a significant anti-tumor effect in tumor-bearing mice. PMID:27495172

  13. Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Salim, Hani; Barbos, Dumitru

    2008-08-01

    This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-L-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion-solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 x 10(13) n/cm(2)/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for

  14. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    SciTech Connect

    Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.

    2010-06-15

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  15. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    PubMed Central

    Green, Hadiyah N; Crockett, Stephanie D; Martyshkin, Dmitry V; Singh, Karan P; Grizzle, William E; Rosenthal, Eben L; Mirov, Sergey B

    2014-01-01

    Purpose Nanoparticle (NP)-enabled near infrared (NIR) photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies. Methods Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG)-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed. Results The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a comparison to the average of all three control groups over time (P<0.01). Conclusion Photothermal nanotherapy, or intratumoral nanorod injections followed by NIR laser irradiation of tumors and tumor margins, demonstrate the potential of NIR photothermal therapy as a viable localized treatment approach for primary and early stage tumors, and prevents NP uptake by the reticuloendothelial system. PMID:25395847

  16. First-principle and experiment investigation of MoS2@SnO2 nano-heterogeneous structures with enhanced humidity sensing performance

    NASA Astrophysics Data System (ADS)

    Lei, Xiang; Yu, Ke; Li, Honglin; Tang, Zheng; Guo, Bangjun; Li, Jinzhu; Fu, Hao; Zhang, Qingfeng; Zhu, Ziqiang

    2016-04-01

    In this work, we report the First-principle investigation and synthesis of MoS2@SnO2 heterostructure as high-performance humidity sensor by a two-step hydrothermal method. The first-principles calculations were performed to explain water molecule adsorption mechanism by applying density of state model to simulate the interaction between water molecule and sensing base material. The higher specific surface and the lower adsorption energy theoretically predicted the improvement on humidity sensing performance, which was confirmed by experiments testing. The MoS2@SnO2 heterostructure exhibited promoted humidity sensing characteristics on response time of 53 s and recovery time of 21 s, while switching the humidity between 11% relative humidity (RH) and 95% RH. The corresponding humidity sensing mechanisms of MoS2@SnO2 were elaborately interpreted. This work could bring forward a new design method on practical humidity sensing devices with an excellent stability and fast response by using MoS2@SnO2 heterostructure.

  17. Single cell heterogeneity

    PubMed Central

    Abdallah, Batoul Y; Horne, Steven D; Stevens, Joshua B; Liu, Guo; Ying, Andrew Y; Vanderhyden, Barbara; Krawetz, Stephen A; Gorelick, Root; Heng, Henry HQ

    2013-01-01

    Multi-level heterogeneity is a fundamental but underappreciated feature of cancer. Most technical and analytical methods either completely ignore heterogeneity or do not fully account for it, as heterogeneity has been considered noise that needs to be eliminated. We have used single-cell and population-based assays to describe an instability-mediated mechanism where genome heterogeneity drastically affects cell growth and cannot be accurately measured using conventional averages. First, we show that most unstable cancer cell populations exhibit high levels of karyotype heterogeneity, where it is difficult, if not impossible, to karyotypically clone cells. Second, by comparing stable and unstable cell populations, we show that instability-mediated karyotype heterogeneity leads to growth heterogeneity, where outliers dominantly contribute to population growth and exhibit shorter cell cycles. Predictability of population growth is more difficult for heterogeneous cell populations than for homogenous cell populations. Since “outliers” play an important role in cancer evolution, where genome instability is the key feature, averaging methods used to characterize cell populations are misleading. Variances quantify heterogeneity; means (averages) smooth heterogeneity, invariably hiding it. Cell populations of pathological conditions with high genome instability, like cancer, behave differently than karyotypically homogeneous cell populations. Single-cell analysis is thus needed when cells are not genomically identical. Despite increased attention given to single-cell variation mediated heterogeneity of cancer cells, continued use of average-based methods is not only inaccurate but deceptive, as the “average” cancer cell clearly does not exist. Genome-level heterogeneity also may explain population heterogeneity, drug resistance, and cancer evolution. PMID:24091732

  18. Improving tumour heterogeneity MRI assessment with histograms

    PubMed Central

    Just, N

    2014-01-01

    By definition, tumours are heterogeneous. They are defined by marked differences in cells, microenvironmental factors (oxygenation levels, pH, VEGF, VPF and TGF-α) metabolism, vasculature, structure and function that in turn translate into heterogeneous drug delivery and therapeutic outcome. Ways to estimate quantitatively tumour heterogeneity can improve drug discovery, treatment planning and therapeutic responses. It is therefore of paramount importance to have reliable and reproducible biomarkers of cancerous lesions' heterogeneity. During the past decade, the number of studies using histogram approaches increased drastically with various magnetic resonance imaging (MRI) techniques (DCE-MRI, DWI, SWI etc.) although information on tumour heterogeneity remains poorly exploited. This fact can be attributed to a poor knowledge of the available metrics and of their specific meaning as well as to the lack of literature references to standardised histogram methods with which surrogate markers of heterogeneity can be compared. This review highlights the current knowledge and critical advances needed to investigate and quantify tumour heterogeneity. The key role of imaging techniques and in particular the key role of MRI for an accurate investigation of tumour heterogeneity is reviewed with a particular emphasis on histogram approaches and derived methods. PMID:25268373

  19. Phenotypically heterogeneous populations in spatially heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2014-03-01

    The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.

  20. Inter- and intra-tumor profiling of multi-regional colon cancer and metastasis.

    PubMed

    Kogita, Akihiro; Yoshioka, Yasumasa; Sakai, Kazuko; Togashi, Yosuke; Sogabe, Shunsuke; Nakai, Takuya; Okuno, Kiyotaka; Nishio, Kazuto

    2015-02-27

    Intra- and inter-tumor heterogeneity may hinder personalized molecular-target treatment that depends on the somatic mutation profiles. We performed mutation profiling of formalin-fixed paraffin embedded tumors of multi-regional colon cancer and characterized the consequences of intra- and inter-tumor heterogeneity and metastasis using targeted re-sequencing. We performed targeted re-sequencing on multiple spatially separated samples obtained from multi-regional primary colon carcinoma and associated metastatic sites in two patients using next-generation sequencing. In Patient 1 with four primary tumors (P1-1, P1-2, P1-3, and P1-4) and one liver metastasis (H1), mutually exclusive pattern of mutations was observed in four primary tumors. Mutations in primary tumors were identified in three regions; KARS (G13D) and APC (R876*) in P1-2, TP53 (A161S) in P1-3, and KRAS (G12D), PIK3CA (Q546R), and ERBB4 (T272A) in P1-4. Similar combinatorial mutations were observed between P1-4 and H1. The ERBB4 (T272A) mutation observed in P1-4, however, disappeared in H1. In Patient 2 with two primary tumors (P2-1 and P2-2) and one liver metastasis (H2), mutually exclusive pattern of mutations were observed in two primary tumors. We identified mutations; KRAS (G12V), SMAD4 (N129K, R445*, and G508D), TP53 (R175H), and FGFR3 (R805W) in P2-1, and NRAS (Q61K) and FBXW7 (R425C) in P2-2. Similar combinatorial mutations were observed between P2-1 and H2. The SMAD4 (N129K and G508D) mutations observed in P2-1, however, were nor detected in H2. These results suggested that different clones existed in primary tumors and metastatic tumor in Patient 1 and 2 likely originated from P1-4 and P2-1, respectively. In conclusion, we detected the muti-clonalities between intra- and inter-tumors based on mutational profiling in multi-regional colon cancer using next-generation sequencing. Primary region from which metastasis originated could be speculated by mutation profile. Characterization of inter- and

  1. Using WRF-Chem to investigate the impact of night time nitrate radical chemistry and N2O5 heterogeneous chemistry on the chemical composition of the UK troposphere.

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Utembe, S.; McFiggans, G.

    2012-04-01

    of two flight periods: one during July 2010; the other during January 2011. We have run five model scenarios for both these periods: a base case, with standard emissions and chemistry; two scenarios with standard chemistry, but with halved and doubled NOx transport emissions respectively; and two scenarios with standard emissions, but one without N2O5 heterogeneous chemistry, and the other with the Cl- reaction pathway disabled. We will present results from the application of WRF-Chem to model the regional chemical composition of the atmosphere about the UK. Sensitivities to changing emission profiles and the impact of N2O5 heterogeneous chemistry will be discussed. Preliminary comparisons between model results and aircraft data will be shown. The strengths and weaknesses of our modelling approach, in particular the gains and drawbacks of using a fully coupled online model for use in this campaign, will be highlighted. The wider impacts of the processes investigated on the regional climate and air quality will be further discussed. Allan, B., et. al. (2000); J. Geophys. Res., 105, doi: 10.1046/j.1365-2370.2000.00208. Bertram, T. H., Thornton, J. A. (2009); Atmos. Chem. Phys., 9, 8351-8363, doi: 10.5194/acp-9-8351-2009 Grell, G., et. al. (2005); Atmos. Environ., 39, 6957- 6975. doi: 10.1016/j.atmosenv.2005.04.027 Topping, D., Lowe, D. & McFiggans, G. (2012); Geosci. Model Dev., 5, 1-13. doi:10.5194/gmd-5-1-2012 Watson, L., et. al. (2008); Atmos. Environ., 42, 7196- 7204, doi: 10.1016/j.atmosenv.2008.07.034 Zaveri, R. A., et. al. (2008); J. Geophys. Res., 113, doi:10.1029/2007JD008782

  2. Patterns of Emphysema Heterogeneity

    PubMed Central

    Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.

    2016-01-01

    Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783

  3. Are Heterogeneous or Homogeneous Groups More Beneficial to Students?

    ERIC Educational Resources Information Center

    Schullery, Nancy M.; Schullery, Stephen E.

    2006-01-01

    This study investigated the relative benefits to the student of working in homogeneous versus heterogeneous classroom groups. Correlation analysis of 18 desirable outcomes versus 8 personality-based heterogeneity variables reveals that heterogeneity associates with advantages as well as disadvantages. Ways in which group composition might be…

  4. Upstream reciprocity in heterogeneous networks.

    PubMed

    Iwagami, Akio; Masuda, Naoki

    2010-08-01

    Many mechanisms for the emergence and maintenance of altruistic behavior in social dilemma situations have been proposed. Indirect reciprocity is one such mechanism, where other-regarding actions of a player are eventually rewarded by other players with whom the original player has not interacted. The upstream reciprocity (also called generalized indirect reciprocity) is a type of indirect reciprocity and represents the concept that those helped by somebody will help other unspecified players. In spite of the evidence for the enhancement of helping behavior by upstream reciprocity in rats and humans, theoretical support for this mechanism is not strong. In the present study, we numerically investigate upstream reciprocity in heterogeneous contact networks, in which the players generally have different number of neighbors. We show that heterogeneous networks considerably enhance cooperation in a game of upstream reciprocity. In heterogeneous networks, the most generous strategy, by which a player helps a neighbor on being helped and in addition initiates helping behavior, first occupies hubs in a network and then disseminates to other players. The scenario to achieve enhanced altruism resembles that seen in the case of the Prisoner's Dilemma game in heterogeneous networks.

  5. Tumour Cell Heterogeneity

    PubMed Central

    Gay, Laura; Baker, Ann-Marie; Graham, Trevor A.

    2016-01-01

    The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment. PMID:26973786

  6. Temperature chaos and quenched heterogeneities

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso

    2014-03-01

    We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.

  7. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  8. Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer.

    PubMed

    Sabel, Michael S; Su, Gang; Griffith, Kent A; Chang, Alfred E

    2010-07-01

    Intratumoral (i.t.) cytokine release through the use of poly-lactic acid microspheres (PLAM) holds tremendous potential for the immunotherapy of breast cancer as it harnesses the immunologic potential of autologous tumor in a clinically feasible and minimally toxic manner. We examined the potential of combinations of i.t. IL-12, IL-18 and TNF-alpha PLAM to generate a tumor-specific immune response and improve outcome in a model of metastatic breast cancer. Balb/c mice with established 4T1 mammary carcinomas were treated with a single injection of BSA, IL-12, IL-18 or TNF-alpha-loaded PLAM alone or in combination after spontaneous metastases occurred. Combined treatment with IL-12 and TNF-alpha PLAM was superior to all other treatments, including the triple combination of IL-12, IL-18 and TNF-alpha in ablation of the primary tumor, eradicating distant disease and enhancing survival. Simultaneous delivery of IL-12 and TNF-alpha was superior to sequential delivery of IL-12 followed by TNF-alpha, but not TNF-alpha followed by IL-12. In vivo lymphocyte depletion studies established that the effects of IL-12 alone are mediated primarily by NK cells, while the combination of IL-12 and TNF-alpha is dependent upon CD8+ T-cells. Only the combination of IL-12 and TNF-alpha results in an increase in both CD4+ and CD8+ T-cells and a reduction in CD4+CD25+ cells. While there was no change in the dendritic cell population, IL-12 and TNF-alpha resulted in a dramatic increase in DC maturation and antigen presentation. Neoadjuvant immunotherapy with simultaneous intratumoral delivery of IL-12 and TNF-alpha PLAM augments DC antigen presentation and increases cytotoxic T-cells without increasing regulatory T-cells, resulting in a T-cell based anti-tumor immune response capable of eradicating disseminated disease. The addition of IL-18 did not improve the efficacy. PMID:19802695

  9. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

    PubMed

    Kim, Da Yeon; Kwon, Doo Yeon; Kwon, Jin Seon; Park, Ji Hoon; Park, Seung Hun; Oh, Hyun Ju; Kim, Jae Ho; Min, Byoung Hyun; Park, Kinam; Kim, Moon Suk

    2016-04-01

    Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients. PMID:26874285

  10. Intratumoral Macroscopic Fat and Hemorrhage Combination Useful in the Differentiation of Benign and Malignant Solid Renal Masses

    PubMed Central

    Sun, Jun; Xing, Zhaoyu; Xing, Wei; Zheng, Linfeng; Chen, Jie; Fan, Min; Chen, Tongbing; Zhang, Zhuoli

    2016-01-01

    Abstract To evaluate the value of combining the detection of intratumoral macroscopic fat and hemorrhage in the differentiation of the benign from malignant solid renal masses. Conventional magnetic resonance imaging (MRI), chemical shift (CS)–MRI, and susceptibility-weighted imaging were performed in 152 patients with 152 solid renal masses, including 48 benign and 104 malignant masses all pathologically confirmed. The presence of macroscopic fat detected by CS-MRI and hemorrhage detected by susceptibility-weighted imaging were evaluated in all masses. The rates of macroscopic fat and hemorrhage observed between benign and malignant masses were compared by a χ2 test. All masses found to contain macroscopic fat with or without hemorrhage were considered to be benign. The remaining masses (without macroscopic fat) found not to contain hemorrhage were considered to be benign. Only those found to contain hemorrhage alone were considered to be malignant. The evaluation indexes for differentiating and forecasting the benign and malignant masses were calculated. Significant differences in the rate of macroscopic fat (observed in 85.42% of benign masses vs. 0% of malignant masses) and hemorrhage (observed in 4.17% of benign masses vs. 95.19% of malignant masses) were measured in the benign and malignant groups (P < 0.005, for both). The 41 masses containing macroscopic fat with or without hemorrhage and 11 masses containing neither macroscopic fat nor hemorrhage were considered to be benign. The 100 masses containing no macroscopic fat and only hemorrhage were considered to be malignant. By combining the results for the macroscopic fat and hemorrhage, the accuracy, sensitivity, and specificity in the differential diagnosis of the benign and malignant masses were 96.05%, 95.19%, and 97.92%, respectively, and the accuracy and error rate of forecasting the benign and malignant masses were 95.39% and 4.61%, respectively. Combining the detection intratumoral macroscopic

  11. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    -use situation. In order to support the above assertions, two investigations are undertaken: 1) PCT data are examined in detail to discover the pressure dependence of heterogeneous combustion experiment results; and 2) heterogeneous combustion in a PCT situation is described by a heat transfer model, which is solved first in simplified form for a simple actual-use situation, and then extended to apply to PCT data reduction (combustion constant identification).

  12. Reference Point Heterogeneity.

    PubMed

    Terzi, Ayse; Koedijk, Kees; Noussair, Charles N; Pownall, Rachel

    2016-01-01

    It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income. PMID:27672374

  13. Reference Point Heterogeneity

    PubMed Central

    Terzi, Ayse; Koedijk, Kees; Noussair, Charles N.; Pownall, Rachel

    2016-01-01

    It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income. PMID:27672374

  14. Heterogeneous recording media

    NASA Astrophysics Data System (ADS)

    Sukhanov, Vitaly I.

    1991-02-01

    The paper summarizes the results of investigations performed to obtain deep 3-D holograms with 102 i0 mkm physical thickness allowing the postexposure amplification and the a posteriori changing of the grating parameters. This aim has been achieved by developing heterogeneous systems on the basis of porous glass with light-sensitive compositions introduced into it. 1. INTRODUCTION. LIGHT-SENSITIVE MEDIA FOR 3-D HOLOGRAMS RECORDING. The 3-D holograms have many useful properties: very high diffraction efficiency angular and spectral selectivity but low level of noise. It shoud be noted that in this case deep 3-D holograms are dealt with whose physical thickness is as high as 102 -i mkm. Such hologram recording is usually done using homogeneous light-sensitive media for example dyed acid-halide and electrooptical crystals photochrome glass photostructurized polimer compositions and so on. The nature of photophisical and photochemical processes responsible for the light sensitivity of these materials exclude the possibility of post-exposure treatment. This does not allow to enhance the recorded holograms and considerably hampers their fixing or makes it practically impossible. The object of our work is to create the media which are quite suitable for two-stage processes of the deep hologram formation with post-exposure processing. Such material must satisfy the following requirements: a)they must have high permeability for the developing substances in order to make the development duration suitable for practical applications b)they must be shrinkproof to prevent deformation of the

  15. Reference Point Heterogeneity

    PubMed Central

    Terzi, Ayse; Koedijk, Kees; Noussair, Charles N.; Pownall, Rachel

    2016-01-01

    It is well-established that, when confronted with a decision to be taken under risk, individuals use reference payoff levels as important inputs. The purpose of this paper is to study which reference points characterize decisions in a setting in which there are several plausible reference levels of payoff. We report an experiment, in which we investigate which of four potential reference points: (1) a population average payoff level, (2) the announced expected payoff of peers in a similar decision situation, (3) a historical average level of earnings that others have received in the same task, and (4) an announced anticipated individual payoff level, best describes decisions in a decontextualized risky decision making task. We find heterogeneity among individuals in the reference points they employ. The population average payoff level is the modal reference point, followed by experimenter's stated expectation of a participant's individual earnings, followed in turn by the average earnings of other participants in previous sessions of the same experiment. A sizeable share of individuals show multiple reference points simultaneously. The reference point that best fits the choices of the individual is not affected by a shock to her income.

  16. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.

  17. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer. PMID:24285215

  18. Molecular heterogeneity in adjacent cells in triple-negative breast cancer

    PubMed Central

    Huebschman, Michael L; Lane, Nancy L; Liu, Huaying; Sarode, Venetia R; Devlin, Judith L; Frenkel, Eugene P

    2015-01-01

    Purpose This study interrogates the molecular status of individual cells in patients with triple-negative breast cancers and explores the molecular identification and characterization of these tumors to consider the exploitation of a potential-targeted therapeutic approach. Patients and methods Hyperspectral immunologic cell by cell analysis was applied to touch imprint smears obtained from fresh tumors of breast cancer patients. Results Cell by cell analysis confirms significant intratumoral molecular heterogeneity in cancer markers with differences from polymerase chain reaction marker reporting. The individual cell heterogeneity was recognized in adjacent cells examined with panels of ten molecular markers in each single cell and included some markers that are considered to express “stem-cell” character. In addition, heterogeneity did not relate either to the size or stage of the primary tumor or to the site from within the cancer. Conclusion There is a very significant molecular heterogeneity when “adjacent cells” are examined in triple-negative breast cancer, thereby making a successful targeted approach unlikely. In addition, it is not reasonable to consider that these changes will provide an answer to tumor dormancy. PMID:26316815

  19. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  20. Teaching Heterogeneous Classes.

    ERIC Educational Resources Information Center

    Millrood, Radislav

    2002-01-01

    Discusses an approach to teaching heterogeneous English-as-a-Second/Foreign-Language classes. Draws on classroom research data to describe the features of a success-building lesson context. (Author/VWL)

  1. In Situ Conversion of Melanoma Lesions into Autologous Vaccine by Intratumoral Injections of α-gal Glycolipids

    PubMed Central

    Galili, Uri; Albertini, Mark R.; Sondel, Paul M.; Wigglesworth, Kim; Sullivan, Mary; Whalen, Giles F.

    2010-01-01

    Autologous melanoma associated antigens (MAA) on murine melanoma cells can elicit a protective anti-tumor immune response following a variety of vaccine strategies. Most require effective uptake by antigen presenting cells (APC). APC transport and process internalized MAA for activation of anti-tumor T cells. One potential problem with clinical melanoma vaccines against autologous tumors may be that often tumor cells do not express surface markers that label them for uptake by APC. Effective uptake of melanoma cells by APC might be achieved by exploiting the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. This approach has been developed in a syngeneic mouse model using mice capable of producing anti-Gal. Anti-Gal binds specifically to α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). Injection of glycolipids carrying α-gal epitopes (α-gal glycolipids) into melanoma lesions results in glycolipid insertion into melanoma cell membranes, expression of α-gal epitopes on the tumor cells and binding of anti-Gal to these epitopes. Interaction between the Fc portions of bound anti-Gal and Fcγ receptors on APC induces effective uptake of tumor cells by APC. The resulting anti-MAA immune response can be potent enough to destroy distant micrometastases. A clinical trial is now open testing effects of intratumoral α-gal glycolipid injections in melanoma patients. PMID:23087817

  2. Fluence Rate-Dependent Photobleaching of Intratumorally-Administered Pc 4 Does Not Predict Tumor Growth Delay

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2012-01-01

    We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg/kg Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW/cm2 to a fluence of 100 J/cm2. While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared to drug-only controls. There was no significant difference in tumor responses to these two irradiances (p = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW/cm2 group, enhanced photobleaching was associated with prolonged growth delay (p = 0.188), while at 150 mW/cm2 this trend was reversed (p = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc4-PDT under these treatment conditions. PMID:22582826

  3. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution.

    PubMed

    Le Calvé, Benjamin; Griveau, Audrey; Vindrieux, David; Maréchal, Raphaël; Wiel, Clotilde; Svrcek, Magali; Gout, Johann; Azzi, Lamia; Payen, Léa; Cros, Jérôme; de la Fouchardière, Christelle; Dubus, Pierre; Guitton, Jérôme; Bartholin, Laurent; Bachet, Jean-Baptiste; Bernard, David

    2016-05-31

    Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant "Gemcitabine-based chemotherapy" benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors.

  4. Intratumoral Injection of Ad-ISF35 (Chimeric CD154) Breaks Tolerance and Induces Lymphoma Tumor Regression

    PubMed Central

    Urquiza, Mauricio; Melo-Cardenas, Johanna; Aguillon, Robier

    2015-01-01

    Abstract Ad-ISF35, an adenovirus vector encoding a membrane-bound engineered CD154 chimeric protein (ISF35), induces complete A20 lymphoma tumor regression in mice after intratumoral direct injection (IDI). Ad-ISF35 induced durable local and systemic antitumor responses associated with a rapid tumor infiltration of macrophages and neutrophils as well as increased levels of proinflammatory cytokines in the tumor microenvironment. Ad-ISF35 IDI transduced preferentially fibroblasts and macrophages present in the tumor microenvironment, and ISF35 protein expression was observed in only 0.25% of cells present in the tumor. Moreover, Ad-ISF35 IDI induced upregulation of CD40 in tumor and immune regulatory cells, including those that did not express ISF35, suggesting the presence of a strong bystander effect. These responses resulted in the generation of IFN-γ-secreting cytotoxic lymphocytes and the production of specific cytotoxic antibodies against lymphoma cells. Overall, cellular immune therapy based on ISF35 induced phenotypic changes in the tumor cells and tumor microenvironment that were associated with a break in tumor immune tolerance and a curative antitumor effect in this lymphoma mouse model. Our data highlight the potential activity that modulation of costimulatory signaling has in cancer therapy. PMID:25382101

  5. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution

    PubMed Central

    Le Calvé, Benjamin; Maréchal, Raphaël; Wiel, Clotilde; Svrcek, Magali; Gout, Johann; Azzi, Lamia; Payen, Léa; Cros, Jérôme; de la Fouchardière, Christelle; Dubus, Pierre; Guitton, Jérôme; Bartholin, Laurent; Bachet, Jean-Baptiste; Bernard, David

    2016-01-01

    Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant “Gemcitabine-based chemotherapy” benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors. PMID:27050073

  6. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  7. [A Case of Intrahepatic Cholangiocarcinoma with Invasion to the Transverse Colon and Gallbladder, Forming an Intra-Tumor Abscess].

    PubMed

    Okada, Nami; Kametaka, Hisashi; Koyama, Takashi; Seike, Kazuhiro; Makino, Hironobu; Fukada, Tadaomi; Sato, Yutaka; Miyazaki, Masaru

    2015-11-01

    An 81-year-old man was referred to our institution for evaluation of high fever and a liver tumor that had been detected by ultrasonography. Computed tomography revealed a low-density mass with peripheral ring-like enhancement in S5 of the liver. The liver mass was in contact with the gallbladder, and the boundary between the mass and the gallbladder was unclear. On the suspicion of liver abscess, percutaneous transhepatic drainage was performed. The cavity of the abscess communicated with the gallbladder. Because the cavity had no tendency to reduce in size, we performed surgical resection under a preoperative diagnosis of liver abscess or primary liver carcinoma invading to the gallbladder. Intraoperative findings revealed a liver tumor invading the transverse colon and gallbladder. Subsegmentectomy of S4a and S5 of the liver combined with gallbladder and transverse colon resection was performed. Histopathological findings indicated the growth of a mass forming type intrahepatic cholangiocarcinoma with invasion to the transverse colon and gallbladder, and the pathological stage of the tumor was pT3N0M0, fStage Ⅲ. Thus far, the patient is alive without recurrence 9 months after surgery. Here, we report an extremely rare case of intrahepatic cholangiocarcinoma that invaded other organs and was associated with an intra-tumor abscess.

  8. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity

    PubMed Central

    Meyer, Mona; Reimand, Jüri; Lan, Xiaoyang; Head, Renee; Zhu, Xueming; Kushida, Michelle; Bayani, Jane; Pressey, Jessica C.; Lionel, Anath C.; Clarke, Ian D.; Cusimano, Michael; Squire, Jeremy A.; Scherer, Stephen W.; Bernstein, Mark; Woodin, Melanie A.; Bader, Gary D.; Dirks, Peter B.

    2015-01-01

    Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies. PMID:25561528

  9. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    PubMed Central

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted

  10. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  11. Characterization of Paper Heterogeneity

    NASA Astrophysics Data System (ADS)

    Considine, John M.

    Paper and paperboard are the most widely-used green materials in the world because they are renewable, recyclable, reusable, and compostable. Continued and expanded use of these materials and their potential use in new products requires a comprehensive understanding of the variability of their mechanical properties. This work develops new methods to characterize the mechanical properties of heterogeneous materials through a combination of techniques in experimental mechanics, materials science and numerical analysis. Current methods to analyze heterogeneous materials focus on crystalline materials or polymer-crystalline composites, where material boundaries are usually distinct. This work creates a methodology to analyze small, continuously-varying stiffness gradients in 100% polymer systems and is especially relevant to paper materials where factors influencing heterogeneity include local mass, fiber orientation, individual pulp fiber properties, local density, and drying restraint. A unique approach was used to understand the effect of heterogeneity on paper tensile strength. Additional variation was intentionally introduced, in the form of different size holes, and their effect on strength was measured. By modifying two strength criteria, an estimate of strength in the absence of heterogeneity was determined. In order to characterize stiffness heterogeneity, a novel load fixture was developed to excite full-field normal and shear strains for anisotropic stiffness determination. Surface strains were measured with digital image correlation and were analyzed with the VFM (Virtual Fields Method). This approach led to VFM-identified stiffnesses that were similar to values determined by conventional tests. The load fixture and VFM analyses were used to measure local stiffness and local stiffness variation on heterogeneous anisotropic materials. The approach was validated on simulated heterogeneous materials and was applied experimentally to three different paperboards

  12. Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas

    PubMed Central

    Zhang, Yan; Young, Eric D.; Bill, Katelynn; Belousov, Roman; Peng, Tingsheng; Lazar, Alexander J; Pollock, Raphael E; Simmons, Paul J.; Lev, Dina; Kolonin, Mikhail G.

    2013-01-01

    Liposarcomas are tumors arising in white adipose tissue (WAT) with avidity for local recurrence. Aggressive dedifferentiated liposarcomas (DDLS) may arise from well-differentiated subtypes (WDLS) upon disease progression, however, this key issue is unresolved due in large part to knowledge gaps about liposarcoma cellular composition. Here, we wished to improve insights into liposarcoma cellular hierarchy. Tumor section analysis indicated that the populations, distinguishable based on expression of CD34 (a marker of adipocyte progenitors) and CD36 (a marker of adipocyte differentiation), occupy distinct intra-tumoral locations in both WDLS and DDLS. Taking advantage of these markers, we separated cells from a panel of fresh human surgical specimens by fluorescence-activated cell sorting (FACS). Based on chromosome analysis and the culture phenotypes of the composing populations, we demonstrate that malignant cells comprise four mesenchymal populations distinguished by expression of CD34 and CD36, while vascular (CD31+) and hematopoietic (CD45+) components are non-neoplastic. Finally, we show that mouse xenografts are derivable from both CD36-negative and CD36-positive DDLS cells, and that each population recreates the heterogeneity of CD36 expression in vivo. Combined, our results show that malignant cells in WDLS and DDLS can be classified according to distinct stages of adipogenesis and indicate immonophenotypic plasticity of malignant liposarcoma cells. PMID:23770802

  13. Heterogeneity of link weight and the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Iwata, Manabu; Akiyama, Eizo

    2016-04-01

    In this paper, we investigate the effect of heterogeneity of link weight, heterogeneity of the frequency or amount of interactions among individuals, on the evolution of cooperation. Based on an analysis of the evolutionary prisoner's dilemma game on a weighted one-dimensional lattice network with intra-individual heterogeneity, we confirm that moderate level of link-weight heterogeneity can facilitate cooperation. Furthermore, we identify two key mechanisms by which link-weight heterogeneity promotes the evolution of cooperation: mechanisms for spread and maintenance of cooperation. We also derive the corresponding conditions under which the mechanisms can work through evolutionary dynamics.

  14. Exploring heterogeneous market hypothesis using realized volatility

    NASA Astrophysics Data System (ADS)

    Chin, Wen Cheong; Isa, Zaidi; Mohd Nor, Abu Hassan Shaari

    2013-04-01

    This study investigates the heterogeneous market hypothesis using high frequency data. The cascaded heterogeneous trading activities with different time durations are modelled by the heterogeneous autoregressive framework. The empirical study indicated the presence of long memory behaviour and predictability elements in the financial time series which supported heterogeneous market hypothesis. Besides the common sum-of-square intraday realized volatility, we also advocated two power variation realized volatilities in forecast evaluation and risk measurement in order to overcome the possible abrupt jumps during the credit crisis. Finally, the empirical results are used in determining the market risk using the value-at-risk approach. The findings of this study have implications for informationally market efficiency analysis, portfolio strategies and risk managements.

  15. Imaging Intratumoral Nanoparticle Uptake After Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors.

    PubMed

    Tam, Alda L; Melancon, Marites P; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-02-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (⁶⁴Cu-PEG-HAuNS-DOX); (ii) NE + RFA; (iii) NE + IRE; (iv) NE +LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+ RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE + IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE + LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  16. SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

    NASA Astrophysics Data System (ADS)

    Reeves, Russell; Petryk, Alicia A.; Kastner, Elliot J.; Zhang, Jinjin; Ring, Hattie; Garwood, Michael; Hoopes, P. Jack

    2015-03-01

    Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

  17. Imaging Intratumoral Nanoparticle Uptake after Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors

    PubMed Central

    Tam, Alda L; Melancon, Marites P.; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-01-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (64Cu-PEG-HAuNS-DOX); (ii) NE+RFA; (iii) NE+IRE; (iv) NE+LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE+IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE+LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  18. Combined Intralesional Neodymium-Doped Yttrium Aluminium Garnet Laser and Intratumoral Ligation as Curative Treatment for Craniofacial Arteriovenous Malformations.

    PubMed

    Rojvachiranonda, Nond; Lerdlum, Sukalaya; Mahatumarat, Charan

    2016-03-01

    Craniofacial arteriovenous malformation (AVM), although very rare, has been a very difficult problem to treat especially when it is large and involves important structures. Surgical resection often results in unacceptable complications but still not curative. At our institution, treatment by combined intralesional neodymium-doped yttrium aluminium garnet laser and intratumoral ligation has been successful in venous malformation. This minimally invasive technique was then applied to more challenging AVM on the head and neck. Disease control was studied using clinical parameters and magnetic resonance imaging.Four patients with moderate-to-severe (Schobinger 2-4) craniofacial AVM were treated by this technique from 2001 to 2011. Patient age ranged from 2 to 51 years (mean: 25 years). After 2 to 4 treatments and follow-up period of 1456 days, 3 (75%) were cured. One of them was infant with huge mass and secondary pulmonary hypertension. Clinical cure was achieved after 3 treatments without residual cardiovascular compromise. The other patient (25%) had cheek mass with intraorbital involvement. The authors did not treat periorbital lesion so as to avoid triggering intraorbital spreading. The rest of the cheek lesion was clinically and radiologically cured.Laser energy setting, ablative technique, and skin cooling are the main factors determining the success. Individualized laser settings and properly set endpoints can increase treatment effectiveness in shorter period. In conclusion, this minimally invasive technique was successful in curing AVM without complication. With more clinical study and development of soft tissue monitoring tools, it is possible that intralesional laser could become the treatment of choice for all cutaneous AVM.

  19. Mechanism of antitumor effect on mouse hepatocellular carcinoma by intratumoral injection of OK-432, a streptococcal preparation.

    PubMed

    Homma, Sadamu; Sagawa, Yukiko; Komita, Hideo; Koido, Shigeo; Nagasaki, Eijiro; Ryoma, Yoshiki; Okamoto, Masato

    2007-08-01

    Intratumoral (i.t.) injection of OK-432, a streptococcal preparation, into implanted tumors of mouse hepatocellular carcinoma (MIH-2) showed antitumor effect including tumor eradication. Intraperitoneal administration of same dose OK-432 did not exhibit tumor suppressive effect. In vitro cytotoxic test suggested that direct cytotoxic effect of OK-432 was not associated with antitumor activity by i.t.-OK-432 treatment. It was also found that Toll-like receptor 4 signaling was not involved in i.t.-OK-432 treatment. Three mice out of five, which had shown tumor eradication by i.t.-OK-432 treatment did not reject re-challenge of MIH-2 cells. Splenocytes from i.t.-OK-432 treated mice did not produce IFN-gamma by stimulation with MIH-2 cells in vitro, but produced abundant IFN-gamma by stimulation with OK-432. Immunofluorescence microscopy demonstrated that CD4+T cells, but not CD8+T cells, infiltrated to i.t.-OK-432 treated tumor tissue produced IFN-gamma. Tumor-infiltrating CD4+T cells from i.t.-OK-432 treated tumor tissue produced IFN-gamma by in vitro stimulation with OK-432 higher than those from untreated tumor tissue. IFN-gamma directly induced apoptosis of MIH-2 cells in vitro. Collectively, i.t.-OK-432 treatment induced priming of CD4+T cells to antigenecity of OK-432, and repetitive i.t.-OK-432 treatment induced IFN-gamma production from OK-432-sensitized CD4+T cells in tumor site, leading to apoptosis of MIH-2 cells susceptible to IFN-gamma.

  20. Managing Power Heterogeneity

    NASA Astrophysics Data System (ADS)

    Pruhs, Kirk

    A particularly important emergent technology is heterogeneous processors (or cores), which many computer architects believe will be the dominant architectural design in the future. The main advantage of a heterogeneous architecture, relative to an architecture of identical processors, is that it allows for the inclusion of processors whose design is specialized for particular types of jobs, and for jobs to be assigned to a processor best suited for that job. Most notably, it is envisioned that these heterogeneous architectures will consist of a small number of high-power high-performance processors for critical jobs, and a larger number of lower-power lower-performance processors for less critical jobs. Naturally, the lower-power processors would be more energy efficient in terms of the computation performed per unit of energy expended, and would generate less heat per unit of computation. For a given area and power budget, heterogeneous designs can give significantly better performance for standard workloads. Moreover, even processors that were designed to be homogeneous, are increasingly likely to be heterogeneous at run time: the dominant underlying cause is the increasing variability in the fabrication process as the feature size is scaled down (although run time faults will also play a role). Since manufacturing yields would be unacceptably low if every processor/core was required to be perfect, and since there would be significant performance loss from derating the entire chip to the functioning of the least functional processor (which is what would be required in order to attain processor homogeneity), some processor heterogeneity seems inevitable in chips with many processors/cores.

  1. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma

    PubMed Central

    Bianchi, Giada; Ghobrial, Irene M.

    2015-01-01

    Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence. PMID:25705146

  2. Investigating the Relationship between Test-Taker Background Characteristics and Test Performance in a Heterogeneous English-as-a-Second-Language (ESL) Test Population: A Factor Analytic Approach. Research Report. ETS RR-15-25

    ERIC Educational Resources Information Center

    Manna, Venessa F.; Yoo, Hanwook

    2015-01-01

    This study examined the heterogeneity in the English-as-a-second-language (ESL) test population by modeling the relationship between test-taker background characteristics and test performance as measured by the "TOEFL iBT"® using a confirmatory factor analysis (CFA) with covariate approach. The background characteristics studied…

  3. Micro- and nanorobots swimming in heterogeneous liquids.

    PubMed

    Nelson, Bradley J; Peyer, Kathrin E

    2014-09-23

    Essentially all experimental investigations of swimming micro- and nanorobots have focused on swimming in homogeneous Newtonian liquids. In this issue of ACS Nano, Schamel et al. investigate the actuation of "nanopropellers" in a viscoelastic biological gel that illustrates the importance of the size of the nanostructure relative to the gel mesh size. In this Perspective, we shed further light on the swimming performance of larger microrobots swimming in heterogeneous liquids. One of the interesting results of our work is that earlier findings on the swimming performance of motile bacteria in heterogeneous liquids agree, in principle, with our results. We also discuss future research directions that should be pursued in this fascinating interdisciplinary field.

  4. Heterogeneous waste processing

    DOEpatents

    Vanderberg, Laura A.; Sauer, Nancy N.; Brainard, James R.; Foreman, Trudi M.; Hanners, John L.

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  5. Scales of mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.

    2004-12-01

    A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd

  6. Two-Stage Phase I Dose-Escalation Study of Intratumoral Reovirus Type 3 Dearing and Palliative Radiotherapy in Patients with Advanced Cancers

    PubMed Central

    Harrington, Kevin J.; Karapanagiotou, Eleni M.; Roulstone, Victoria; Twigger, Katie R.; White, Christine L.; Vidal, Laura; Beirne, Debbie; Prestwich, Robin; Newbold, Kate; Ahmed, Merina; Thway, Khin; Nutting, Christopher M.; Coffey, Matt; Harris, Dean; Vile, Richard G.; Pandha, Hardev S.; DeBono, Johann S.; Melcher, Alan A.

    2013-01-01

    Purpose To determine the safety and feasibility of combining intratumoral reovirus and radiotherapy in patients with advanced cancer and to assess viral biodistribution, reoviral replication in tumors, and antiviral immune responses. Experimental Design Patients with measurable disease amenable to palliative radiotherapy were enrolled. In the first stage, patients received radiotherapy (20 Gy in five fractions) plus two intratumoral injections of RT3D at doses between 1 × 108 and 1 × 1010 TCID50. In the second stage, the radiotherapy dose was increased (36 Gy in 12 fractions) and patients received two, four, or six doses of RT3D at 1 × 1010 TCID50. End points were safety, viral replication, immunogenicity, and antitumoral activity. Results Twenty-three patients with various solid tumors were treated. Dose-limiting toxicity was not seen. The most common toxicities were grade 2 (or lower) pyrexia, influenza-like symptoms, vomiting, asymptomatic lymphopenia, and neutropenia. There was no exacerbation of the acute radiation reaction. Reverse transcription-PCR (RT-PCR) studies of blood, urine, stool, and sputum were negative for viral shedding. In the low-dose (20 Gy in five fractions) radiation group, two of seven evaluable patients had a partial response and five had stable disease. In the high-dose (36 Gy in 12 fractions) radiation group, five of seven evaluable patients had partial response and two stable disease. Conclusions The combination of intratumoral RT3D and radiotherapy was well tolerated. The favorable toxicity profile and lack of vector shedding means that this combination should be evaluated in newly diagnosed patients receiving radiotherapy with curative intent. PMID:20484020

  7. Immunotherapeutic Synergy Between Anti-CD137 mAb and Intratumoral Administration of a Cytopathic Semliki Forest Virus Encoding IL-12

    PubMed Central

    Quetglas, José I; Dubrot, Juan; Bezunartea, Jaione; Sanmamed, Miguel F; Hervas-Stubbs, Sandra; Smerdou, Cristian; Melero, Ignacio

    2012-01-01

    Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8β+ T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8+ T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress. PMID:22735380

  8. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    SciTech Connect

    Finkelstein, Steven E.; Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J.; Gabrilovich, Dmitry I.

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  9. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  10. A limited overlap between intratumoral distribution of 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole and copper-diacetyl-bis[N(4)-methylthiosemicarbazone].

    PubMed

    Furukawa, Takako; Yuan, Qinghua; Jin, Zhao-Hui; Aung, Winn; Yoshii, Yukie; Hasegawa, Sumitaka; Endo, Hiroko; Inoue, Masahiro; Zhang, Ming-Rong; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-09-01

    Positron emission tomography (PET) imaging of tumor hypoxia provides valuable information for cancer treatment planning. Two types of PET tracers, nitroimidazole compounds and [62,64Cu] copper-diacetyl-bis[N(4)-methylthio- semicarbazone] (Cu-ATSM), have been used for imaging hypoxic tumors. High accumulation of these tracers in tumors was shown to predict poor prognosis. Both similar and different intratumoral distributions of these PET tracers have been reported with some studies questioning the dependence of the Cu-ATSM accumulation on hypoxia. In the present study, we compared the intratumoral distribution and cellular uptake of 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole (FAZA) and Cu-ATSM. Intratumoral distributions of FAZA and Cu-ATSM compared by double tracer autoradiography in xenografts of 8 cancer cell lines and 3 cancer tissue originated spheroids (CTOSs) showed that only a limited overlap was observed between the regions with high levels of FAZA and Cu-ATSM accumulation in all the xenografts. Immunohistochemistry in the regions enriched with FAZA and Cu-ATSM in xenografts demonstrated that pimonidazole adducts were in regions that accumulated high levels of FAZA, while HIF-1α was in areas enriched with either tracer. In addition, we examined the cellular uptake of FAZA and Cu-ATSM at different levels of oxygen concentration in 4 cell lines and revealed that cellular uptake of FAZA was increased with the decrease of oxygen concentration from 20 to 2 and from 2 to 1%, while the Cu-ATSM uptake increased with the decrease of oxygen concentration from 20 to 2%, but did not increase with the decrease from 2 to 1%. Our findings indicate that intratumoral distributions of FAZA and Cu-ATSM were essentially non-overlapping and although hypoxia affects the buildup of both tracers, the accumulation of Cu-ATSM occurred at milder hypoxia compared to the conditions required for the accumulation of FAZA. Therefore, accumulation levels of FAZA and

  11. Heterogeneous voter models

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Gibert, N.; Redner, S.

    2010-07-01

    We introduce the heterogeneous voter model (HVM), in which each agent has its own intrinsic rate to change state, reflective of the heterogeneity of real people, and the partisan voter model (PVM), in which each agent has an innate and fixed preference for one of two possible opinion states. For the HVM, the time until consensus is reached is much longer than in the classic voter model. For the PVM in the mean-field limit, a population evolves to a preference-based state, where each agent tends to be aligned with its internal preference. For finite populations, discrete fluctuations ultimately lead to consensus being reached in a time that scales exponentially with population size.

  12. Cycles of transient high-dose cyclophosphamide administration and intratumoral oncolytic adenovirus vector injection for long-term tumor suppression in Syrian hamsters.

    PubMed

    Dhar, D; Toth, K; Wold, W S M

    2014-04-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. With Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide (CP) to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long-term CP treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here, we employed three cycles of transient high-dose CP administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal of CP. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long-term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment.

  13. Design and Development of a Robotized System Coupled to µCT Imaging for Intratumoral Drug Evaluation in a HCC Mouse Model

    PubMed Central

    Bour, Gaétan; Martel, Fernand; Goffin, Laurent; Bayle, Bernard; Gangloff, Jacques; Aprahamian, Marc; Marescaux, Jacques; Egly, Jean-Marc

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice. PMID:25203629

  14. Impact of Aquifer Heterogeneities on Autotrophic Denitrification.

    NASA Astrophysics Data System (ADS)

    McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.

    2015-12-01

    Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.

  15. Self-attracting walk on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Kim, Kanghun; Kyoung, Jaegu; Lee, D.-S.

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  16. Self-attracting walk on heterogeneous networks.

    PubMed

    Kim, Kanghun; Kyoung, Jaegu; Lee, D-S

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human. PMID:27300913

  17. Microswimmers in Complex Environments with Heterogeneous Microstructure

    NASA Astrophysics Data System (ADS)

    Hyon, Yunkyong; Fu, Henry

    2011-11-01

    We will discuss the swimming of microorganisms in complex and heterogeneous environments. Microswimmers in biological complex fluids, for instance, bacteria and sperm, are often greatly influenced by heterogeneous medium microstructure with length scales comparable to themselves. We characterize the interaction between the microswimmer and the medium microstructure using the model Golestanian three-sphere swimmer, treating the hydrodynamic interaction with the microstructure through the Oseen tensor. In this investigation, the microstructure of the heterogeneous environment is modeled by fixed spheres representing obstacles, or chains consisting of spheres connected with elastic springs. We find that the swimming speed of the swimmer depends on the force and deformation exerted on micro-structure. Furthermore, we find that while short freely suspended chains and short chains anchored at their ends interact with swimmer quite differently, long enough chains interact similarly, that is, a long mobile chain acts like a anchored chain. We discuss the implications for swimmer interactions with polymer solutions and compliant networks.

  18. Quantifying lateral tissue heterogeneities in hadron therapy

    SciTech Connect

    Pflugfelder, D.; Wilkens, J. J.; Szymanowski, H.; Oelfke, U.

    2007-04-15

    In radiotherapy with scanned particle beams, tissue heterogeneities lateral to the beam direction are problematic in two ways: they pose a challenge to dose calculation algorithms, and they lead to a high sensitivity to setup errors. In order to quantify and avoid these problems, a heterogeneity number H{sub i} as a method to quantify lateral tissue heterogeneities of single beam spot i is introduced. To evaluate this new concept, two kinds of potential errors were investigated for single beam spots: First, the dose calculation error has been obtained by comparing the dose distribution computed by a simple pencil beam algorithm to more accurate Monte Carlo simulations. The resulting error is clearly correlated with H{sub i}. Second, the analysis of the sensitivity to setup errors of single beam spots also showed a dependence on H{sub i}. From this data it is concluded that H{sub i} can be used as a criterion to assess the risks of a compromised delivered dose due to lateral tissue heterogeneities. Furthermore, a method how to incorporate this information into the inverse planning process for intensity modulated proton therapy is presented. By suppressing beam spots with a high value of H{sub i}, the unfavorable impact of lateral tissue heterogeneities can be reduced, leading to treatment plans which are more robust to dose calculation errors of the pencil beam algorithm. Additional possibilities to use the information of H{sub i} are outlined in the discussion.

  19. Heterogeneous nucleation of ice on carbon surfaces.

    PubMed

    Lupi, Laura; Hudait, Arpa; Molinero, Valeria

    2014-02-26

    Atmospheric aerosols can promote the heterogeneous nucleation of ice, impacting the radiative properties of clouds and Earth's climate. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. It is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. Here we use molecular dynamics simulations to investigate the nucleation of ice from liquid water in contact with graphitic surfaces. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. Graphitic surfaces and other surfaces that promote ice nucleation induce layering in the interfacial water, suggesting that the order imposed by the surface on liquid water may play an important role in the heterogeneous nucleation mechanism. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. We conclude that a characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency.

  20. Unravelling mononuclear phagocyte heterogeneity

    PubMed Central

    Geissmann, Frédéric; Gordon, Siamon; Hume, David A.; Mowat, Allan M.; Randolph, Gwendalyn J.

    2011-01-01

    When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research. PMID:20467425

  1. Heterogeneous broadband network

    NASA Astrophysics Data System (ADS)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  2. Redox subpopulations and the risk of cancer progression: a new method for characterizing redox heterogeneity

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Li, Lin Z.

    2016-02-01

    It has been shown that a malignant tumor is akin to a complex organ comprising of various cell populations including tumor cells that are genetically, metabolically and functionally different. Our redox imaging data have demonstrated intra-tumor redox heterogeneity in all mouse xenografts derived from human melanomas, breast, prostate, and colon cancers. Based on the signals of NADH and oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and their ratio, i.e., the redox ratio, which is an indicator of mitochondrial metabolic status, we have discovered several distinct redox subpopulations in xenografts of breast tumors potentially recapitulating functional/metabolic heterogeneity within the tumor. Furthermore, xenografts of breast tumors with higher metastatic potential tend to have a redox subpopulation whose redox ratio is significantly different from that of tumors with lower metastatic potential and usually have a bi-modal distribution of the redox ratio. The redox subpopulations from human breast cancer samples can also be very complex with multiple subpopulations as determined by fitting the redox ratio histograms with multi- Gaussian functions. In this report, we present a new method for identifying the redox subpopulations within individual breast tumor xenografts and human breast tissues, which may be used to differentiate between breast cancer and normal tissue and among breast cancer with different risks of progression.

  3. Morphological and genetic heterogeneity in multifocal lung adenocarcinoma: The case of a never-smoker woman.

    PubMed

    Bonanno, Laura; Calabrese, Fiorella; Nardo, Giorgia; Calistri, Daniele; Tebaldi, Michela; Tedaldi, Gianluca; Polo, Valentina; Vuljan, Stefania; Favaretto, Adolfo; Conte, PierFranco; Amadori, Alberto; Rea, Federico; Indraccolo, Stefano

    2016-06-01

    Discrimination of multifocal primary lung cancers from lung metastases is crucial to allow for an appropriate clinical management. We report here a case of multifocal lung adenocarcinomas with different morphological and molecular patterns. Radical surgery of one lung nodule was performed at the time of diagnosis, and subsequently on two other lung nodules. At the time of distant relapse, biopsy was repeated for molecular characterization. The patient was treated with EGFR tyrosine kinase inhibitor according to the detection of EGFR exon 21 mutation in metastatic sample and in one of the three lung tumors, characterized by lower mutated allele frequency. The progression free survival was three months according to radiological criteria and the treatment was provided for six months, until clinical progression. Following the assessment of EGFR mutations by pyrosequencing, tumor samples were analyzed by a 30-gene next generation sequencing (NGS) panel, allowing to study intra- and inter-tumor heterogeneity and to confirm the three lung tumors as independent. Different molecular profiles of synchronous tumors and identical EGFR, PIK3CA and TP53 mutations in one of three primary lung tumors and the metachronous metastasis were identified. In conclusion, morphological and molecular characterization of multiple lung nodules by NGS may help to define synchronous and metachronous adenocarcinomas, thus affecting surgical indication and systemic treatment. Intratumor heterogeneity may be associated with differential sensitivity to targeted treatment. PMID:27133750

  4. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    PubMed Central

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  5. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  6. Heterogeneous OH oxidation of organic aerosols

    NASA Astrophysics Data System (ADS)

    Smith, J.; Kroll, J.; Cappa, C.; Che, D.; Ahmed, M.; Leone, S.; Worsnop, D.; Wilson, K.

    2008-12-01

    The hydroxyl radical (OH) is the most important reactive species in both clean and polluted atmospheres, and therefore gas-phase OH chemistry has been extensively studied for decades. Due to this enormous effort the rates and mechanism of OH reactions with gas phase organics are relatively well understood. However, it unclear whether these well established gas-phase chemical mechanisms apply to the more complex heterogeneous reactions of OH radicals with organic aerosols (OA). Although recent studies have begun to examine OH oxidation of OA, numerous outstanding questions still remain regarding both the rate and chemical mechanism of these reactions. Here we present an in depth investigation of the heterogeneous oxidation of organic squalane particles by OH radicals. By combining a photochemical aerosol flow reactor with a high-resolution aerosol mass spectrometer (AMS), with both electron impact and vacuum ultraviolet photoionization, we investigate OH heterogeneous chemistry in unprecedented detail. Employing elemental composition measurements with detailed kinetics we have arrived at a simple oxidation model which accurately accounts for the evolution of squalane and its" oxidation products. In addition, by exploring a large range of OH concentrations we are able to directly measure the role of secondary particle-phase chain chemistry which can significantly accelerate the oxidation of OA in the atmosphere. Based on these measurements we have arrived at an explicit chemical mechanism for heterogeneous OH oxidation of OA which accurately accounts for our observations over a wide range of reaction conditions.

  7. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-01-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method.

  8. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-01-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method. PMID

  9. Disordered hyperuniform heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2016-10-01

    Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space {{{R}}d} . Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be ‘multihyperuniform’. We then consider hyperuniformity for general two-phase media in {{{R}}d} . Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family of

  10. Disordered hyperuniform heterogeneous materials.

    PubMed

    Torquato, Salvatore

    2016-10-19

    Disordered hyperuniform many-body systems are distinguishable states of matter that lie between a crystal and liquid: they are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, quantum systems, and pure mathematics. Much of what we know theoretically about disordered hyperuniform states of matter involves many-particle systems. In this paper, we derive new rigorous criteria that disordered hyperuniform two-phase heterogeneous materials must obey and explore their consequences. Two-phase heterogeneous media are ubiquitous; examples include composites and porous media, biological media, foams, polymer blends, granular media, cellular solids, and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media in which one phase is a sphere packing in d-dimensional Euclidean space [Formula: see text]. Among other results, we rigorously establish the requirements for packings of spheres of different sizes to be 'multihyperuniform'. We then consider hyperuniformity for general two-phase media in [Formula: see text]. Here we apply realizability conditions for an autocovariance function and its associated spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint in order to derive new conditions. We show that some functional forms can immediately be eliminated from consideration and identify other forms that are allowable. Specific examples and counterexamples are described. Contact is made with well-known microstructural models (e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-type patterns. We also ascertain a family

  11. Modeling Mantle Heterogeneity Development in Earth's Mantle Using Multidisciplinary Approaches

    NASA Astrophysics Data System (ADS)

    de Silva, S. M. S.; Finlayson, V.; Gu, T.; Li, M.; Lithgow-Bertelloni, C. R.; Cormier, V. F.

    2014-12-01

    The process of subduction provides continuous chemical and thermal heterogeneity to Earth's mantle. How heterogeneity is stirred, stretched and distributed depends on the detail of mantle convection as well as chemical and physical properties of mantle materials. Seismic observations have revealed heterogeneities in Earth's mantle at varying scales. Seismic velocities are controlled by physical parameters such as density, bulk modulus and shear modulus, which are a function of temperature, pressure and composition. Thus, understanding the origin of seismic heterogeneities play an important role in understanding the thermal and chemical state of the present Earth's mantle. Originating from the CIDER 2014 workshop, our goal is to take a multidisciplinary approach to tackle a variety of questions, foremost what length scales of heterogeneity might we expect from the convecting process and how do they manifest themselves in seismic imaging. This touches upon fundamental issues such as the composition of the mantle, the nature of stirring and mixing, and the nature of large-scale mantle upwellings (LLSVPs). We will investigate the development of heterogeneity in response to various compositions and redox states using existing and new thermochemical mantle convection simulations, and test the sensitivity of seismic measurements to different length scales of chemical heterogeneity. We try to reconcile large differences in length scales of heterogeneity as well as fractional perturbations of seismic velocity and density predicted by tomography and scattering seismic experiments. Preliminary results from the CIDER workshop initiate with conversion of geodynamic models to profiles of seismic velocity and density which are then taken as input models to predict multiply scattered, high frequency, P wave coda envelopes synthesized by a radiative transport technique. The predicted sensitivity of P coda envelopes to varying chemical compositions and heterogeneity length scales

  12. Heterogeneity in Waardenburg syndrome.

    PubMed Central

    Hageman, M J; Delleman, J W

    1977-01-01

    Heterogeneity of Waardenburg syndrome is demonstrated in a review of 1,285 patients from the literature and 34 previously unreported patients in five families in the Netherlands. The syndrome seems to consist of two genetically distinct entities that can be differentiated clinically: type I, Waardenburg syndrome with dystopia canthorum; and type II, Waardenburg syndrome without dystopia canthorum. Both types have an autosomal dominant mode of inheritance. The incidence of bilateral deafness in the two types of the syndrome was found in one-fourth with type I and about half of the patients with type II. This difference has important consequences for genetic counseling. Images Fig. 7 Fig. 8 Fig. 9 PMID:331943

  13. Evaporation from heterogeneous soil surfaces

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Or, D.

    2009-04-01

    Evaporation rate is a key process of water exchange between soil surfaces and atmosphere and is controlled by both atmospheric demand and soil hydraulic properties. Initially high evaporation rates are sustained by capillary-induced water flow from receding drying front to evaporating surface. In heterogeneous soils air invades preferentially coarse-textured regions whereas fine textured surface regions remain water saturated. We investigated experimentally and numerically effects of hydraulic coupling on drying rate of heterogeneous porous media. Laboratory experiments with vertical contrasts between fine (0.1-0.5 mm) and coarse sand (0.3-0.9 mm) showed that the period of high drying rate was extended compared to evaporation from homogeneous materials. Water flow from coarse material to supply water evaporated from fine textured surface was monitored by neutron radiography imaging. Due to the high hydraulic conductivity of the coarse material the viscous head loss could be neglected for flow distances analyzed in the experiments (< 600 mm). We proposed a model to explore effects of hydraulic coupling on evaporation for a wide range of soil textural classes at plot scale. When the drying front in the coarse reaches a certain characteristic depth (defined by the pore size distribution) no water evaporates from the coarse surface, yet, subsurface flow from coarse to the fine textured inclusion persists and feeds enhanced evaporation rate. Assuming energy input was not limiting, evaporation from the fine textured inclusion may increase to compensate reduction of evaporating surface. For loam or silt as inclusion in sandy material, water was extracted from regions with more than 10 m in distance before flow was limited by viscous effects. In case of clay inclusions the radius of water extraction was smaller due to enhanced viscous resistance. The findings of the numerical study can be applied as well to assess the effect of shrubs or compacted trafficked zones on the

  14. Heterogeneous Reaction gaseous chlorine nitrate and solid sodium chloride

    NASA Technical Reports Server (NTRS)

    Timonen, Raimo S.; Chu, Liang T.; Leu, Ming-Taun

    1994-01-01

    The heterogeneous reaction of gaseous chlorine nitrate and solid sodium chloride was investigated over a temperature range of 220 - 300 K in a flow-tube reactor interfaced with a differentially pumped quadrupole mass spectrometer.

  15. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  16. Multipartite entanglement in heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Goyeneche, Dardo; Bielawski, Jakub; Życzkowski, Karol

    2016-07-01

    Heterogeneous bipartite quantum pure states, composed of two subsystems with a different number of levels, cannot have both reductions maximally mixed. In this work, we demonstrate the existence of a wide range of highly entangled states of heterogeneous multipartite systems consisting of N >2 parties such that every reduction to one and two parties is maximally mixed. Two constructions of generating genuinely multipartite maximally entangled states of heterogeneous systems for an arbitrary number of subsystems are presented. Such states are related to quantum error correction codes over mixed alphabets and mixed orthogonal arrays. Additionally, we show the advantages of considering heterogeneous systems in practical implementations of multipartite steering.

  17. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene.

    PubMed

    Morita, Norimasa; Hiratsuka, Junichi; Kondoh, Hirohumi; Uno, Masako; Asano, Tomoyuki; Niki, Yoko; Sakurai, Yoshinori; Ono, Koji; Harada, Tamotsu; Imajo, Yoshinari

    2006-04-01

    Boron neutron capture therapy (BNCT) is successful when there is a sufficient (10)B concentration in tumor cells. In melanoma, (10)B-para-boronophenylalanine (BPA) accumulation is proportional to melanin-producing activity. This study was done to confirm enhancement of the tumor-suppressive effect of BNCT on amelanotic melanoma by intratumoral injection of the tyrosinase gene. D178 or FF amelanotic melanomas were implanted s.c. in Syrian hamsters. One group of D178- or FF-bearing hamsters (TD178 or TFF group) received intratumoral injections of pcDNA-Tyrs constructed as a tyrosinase expression plasmid. The other hamsters (pD178 and pFF groups) were injected with pUC119, and control hamsters (D178 and FF groups) only with transfection reagents. All the groups underwent immunofluorescence analysis of tyrosinase expression and BPA biodistribution studies. BNCT experiments were done at the Kyoto University Research Reactor. Tyrosinase expression increased in the tumors of the TD178 and TFF groups but remained the same in the pD178 and pFF groups. Tumor boron concentrations in the TD178 and TFF groups increased significantly (TD178: 49.7 +/- 12.6 versus D178: 27.2 +/- 4.9 microg/g, P < 0.0001; TFF: 30.7 +/- 6.6 versus FF: 13.0 +/- 4.7 microg/g, P < 0.0001). The BNCT tumor-suppressive effect was marked in the TD178 and TFF groups. In vivo transfection with the tyrosinase gene increased BPA accumulation in the tumors, the BNCT tumor-suppressive effect on amelanotic melanoma being significantly enhanced. These findings suggest a potential new clinical strategy for the treatment of amelanotic melanoma with BNCT.

  18. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma

    PubMed Central

    Partlová, Simona; Bouček, Jan; Kloudová, Kamila; Lukešová, Eva; Zábrodský, Michal; Grega, Marek; Fučíková, Jitka; Truxová, Iva; Tachezy, Ruth; Špíšek, Radek; Fialová, Anna

    2015-01-01

    Human papillomavirus (HPV) infection is one of the most important etiologic causes of oropharyngeal head and neck squamous cell carcinoma (HNSCC). Patients with HPV-positive HNSCC were reported to have a better clinical outcome than patients with HPV-negative cancers. However, little is known about the possible causes of different clinical outcomes. In this study, we analyzed a detailed immune profile of tumor samples from HNSCC patients with respect to their HPV status. We analyzed the characteristics of immune cell infiltrates, including the frequency and distribution of antigen-presenting cells and naïve, regulatory and effector T cells and the cytokine and chemokine levels in tumor tissue. There was a profound difference in the extent and characteristics of intratumoral immune cell infiltrates in HNSCC patients based on their HPV status. In contrast to HPV-negative tumor tissues, HPV-positive tumor samples showed significantly higher numbers of infiltrating IFNγ+ CD8+ T lymphocytes, IL-17+ CD8+ T lymphocytes, myeloid dendritic cells and proinflammatory chemokines. Furthermore, HPV-positive tumors had significantly lower expression of Cox-2 mRNA and higher expression of PD1 mRNA compared to HPV-negative tumors. The presence of a high level of intratumoral immune cell infiltrates might play a crucial role in the significantly better response of HPV-positive patients to standard therapy and their favorable clinical outcome. Furthermore, characterization of the HNSCC immune profile might be a valuable prognostic tool in addition to HPV status and might help identify novel targets for therapeutic strategies, including cancer immunotherapy. PMID:25949860

  19. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice

    NASA Astrophysics Data System (ADS)

    Kettering, Melanie; Richter, Heike; Wiekhorst, Frank; Bremer-Streck, Sibylle; Trahms, Lutz; Alois Kaiser, Werner; Hilger, Ingrid

    2011-12-01

    Localized magnetic heating treatments (hyperthermia, thermal ablation) using superparamagnetic iron oxide nanoparticles (MNPs) continue to be an active area of cancer research. For generating the appropriate heat to sufficiently target cell destruction, adequate MNP concentrations need to be accumulated into tumors. Furthermore, the knowledge of MNP bio-distribution after application and additionally after heating is significant, firstly because of the possibility of repeated heating treatments if MNPs remain at the target region and secondly to study potential adverse effects dealing with MNP dilution from the target region over time. In this context, little is known about the behavior of MNPs after intra-tumoral application and magnetic heating. Therefore, the present in vivo study on the bio-distribution of intra-tumorally injected MNPs in mice focused on MNP long term monitoring of pre and post therapy over seven days using multi-channel magnetorelaxometry (MRX). Subsequently, single-channel MRX was adopted to study the bio-distribution of MNPs in internal organs and tumors of sacrificed animals. We found no distinct change of total MNP amounts in vivo during long term monitoring. Most of the MNP amounts remained in the tumors; only a few MNPs were detected in liver and spleen and less than 1% of totally injected MNPs were excreted. Apparently, the application of magnetic heating and the induction of apoptosis did not affect MNP accumulation. Our results indicate that MNP mainly remained within the injection side after magnetic heating over a seven-days-observation and therefore not affecting healthy tissue. As a consequence, localized magnetic heating therapy of tumors might be applied periodically for a better therapeutic outcome.

  20. Distributional Scaling in Heterogeneous Aquifers

    NASA Astrophysics Data System (ADS)

    Polsinelli, J. F.

    2015-12-01

    An investigation is undertaken into the fractal scaling properties of the piezometric head in a heterogeneous unconfined aquifer. The governing equations for the unconfined flow are derived from conservation of mass and the Darcy law. The Dupuit approximation will be used to model the dynamics. The spatially varying nature of the tendency to conduct flow (e.g. the hydraulic conductivity) is represented as a stochastic process. Experimental studies in the literature have indicated that the conductivity belongs to a class of non-stationary stochastic fields, called H-ss fields. The uncertainty in the soil parameters is imparted onto the flow variables; in groundwater investigations the potentiometric head will be a random function. The structure of the head field will be analyzed with an emphasis on the scaling properties. The scaling scheme for the modeling equations and the simulation procedure for the saturated hydraulic conductivity process will be explained, then the method will be validated through numerical experimentation using the USGS Modflow-2005 software. The results of the numerical simulations demonstrate that the head will exhibit multi-fractal scaling if the hydraulic conductivity exhibits multi-fractal scaling and the differential equations for the groundwater equation satisfy a particular set of scale invariance conditions.

  1. Query Expansion Using Heterogeneous Thesauri.

    ERIC Educational Resources Information Center

    Mandala, Rila; Tokunaga, Takenobu; Tanaka, Hozumi

    2000-01-01

    Proposes a method to improve the performance of information retrieval systems by expanding queries using heterogeneous thesauri. Experiments show that using heterogeneous thesauri with an appropriate weighting method results in better retrieval performance than using only one type of thesaurus. (Author/LRW)

  2. Constructing Scientific Applications from Heterogeneous Resources

    NASA Technical Reports Server (NTRS)

    Schichting, Richard D.

    1995-01-01

    A new model for high-performance scientific applications in which such applications are implemented as heterogeneous distributed programs or, equivalently, meta-computations, is investigated. The specific focus of this grant was a collaborative effort with researchers at NASA and the University of Toledo to test and improve Schooner, a software interconnection system, and to explore the benefits of increased user interaction with existing scientific applications.

  3. On Heterogeneous Covert Networks

    NASA Astrophysics Data System (ADS)

    Lindelauf, Roy; Borm, Peter; Hamers, Herbert

    Covert organizations are constantly faced with a tradeoff between secrecy and operational efficiency. Lindelauf, Borm and Hamers [13] developed a theoretical framework to determine optimal homogeneous networks taking the above mentioned considerations explicitly into account. In this paper this framework is put to the test by applying it to the 2002 Jemaah Islamiyah Bali bombing. It is found that most aspects of this covert network can be explained by the theoretical framework. Some interactions however provide a higher risk to the network than others. The theoretical framework on covert networks is extended to accommodate for such heterogeneous interactions. Given a network structure the optimal location of one risky interaction is established. It is shown that the pair of individuals in the organization that should conduct the interaction that presents the highest risk to the organization, is the pair that is the least connected to the remainder of the network. Furthermore, optimal networks given a single risky interaction are approximated and compared. When choosing among a path, star and ring graph it is found that for low order graphs the path graph is best. When increasing the order of graphs under consideration a transition occurs such that the star graph becomes best. It is found that the higher the risk a single interaction presents to the covert network the later this transition from path to star graph occurs.

  4. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  5. Measuring habitat heterogeneity reveals new insights into bird community composition.

    PubMed

    Stirnemann, Ingrid A; Ikin, Karen; Gibbons, Philip; Blanchard, Wade; Lindenmayer, David B

    2015-03-01

    Fine-scale vegetation cover is a common variable used to explain animal occurrence, but we know less about the effects of fine-scale vegetation heterogeneity. Theoretically, fine-scale vegetation heterogeneity is an important driver of biodiversity because it captures the range of resources available in a given area. In this study we investigated how bird species richness and birds grouped by various ecological traits responded to vegetation cover and heterogeneity. We found that both fine-scale vegetation cover (of tall trees, medium-sized trees and shrubs) and heterogeneity (of tall trees, and shrubs) were important predictors of bird richness, but the direction of the response of bird richness to shrub heterogeneity differed between sites with different proportions of tall tree cover. For example, bird richness increased with shrub heterogeneity in sites with high levels of tall tree cover, but declined in sites with low levels of tall tree cover. Our findings indicated that an increase in vegetation heterogeneity will not always result in an increase in resources and niches, and associated higher species richness. We also found birds grouped by traits responded in a predictable way to vegetation heterogeneity. For example, we found small birds benefited from increased shrub heterogeneity supporting the textual discontinuity hypothesis and non-arboreal (ground or shrub) nesting species were associated with high vegetation cover (low heterogeneity). Our results indicated that focusing solely on increasing vegetation cover (e.g. through restoration) may be detrimental to particular animal groups. Findings from this investigation can help guide habitat management for different functional groups of birds.

  6. Forecasting the failure of heterogeneous magmas

    NASA Astrophysics Data System (ADS)

    Vasseur, J.; Wadsworth, F. B.; Lavallée, Y.; Bell, A. F.; Main, I. G.; Dingwell, D. B.

    2015-12-01

    Eruption prediction is a long-sought-after goal of volcanology. Yet applying existing techniques retrospectively (hindcasting), we fail to predict events more often than we success. As much of the seismicity associated with intermediate to silicic volcanic eruptions comes from the brittle response of the ascending magma itself, we clearly require a good understanding of the parameters that control the ability to forecast magma failure itself. Here, we present suites of controlled experiments at magmatic temperatures using a range of synthetic magmas to investigate the control of microstructures on the efficacy of forecast models for material failure. We find that the failure of magmas with very little microstructural heterogeneity - such as melts - is very challenging to predict; whereas, the failure of very heterogeneous magmas is always well-predicted. To shed further light on this issue, we provide a scaling law based on the relationship between the microstructural heterogeneity in a magma and the error in the prediction of its failure time. We propose this method be used to elucidate the variable success rate of predicting volcanic predictions. We discuss this scaling in the context of the birth, life and death of structural heterogeneity during magma ascent with specific emphasis on obsidian-forming eruptions such as Chaitèn, 2008. During such eruptions, the repetitive creation and destruction of fractures filled with granular magma, which are thought to be the in situ remnants of seismogenic fracturing itself, are expressions of the life-cycle of heterogeneity in an otherwise coherent, melt-rich magma. We conclude that the next generation of failure forecast tools available to monitoring teams should incorporate some acknowledgment of the magma microstructure and not be solely based on the geophysical signals prior to eruption.

  7. Anatomical heterogeneity of Alzheimer disease

    PubMed Central

    Noh, Young; Jeon, Seun; Seo, Sang Won; Kim, Geon Ha; Cho, Hanna; Ye, Byoung Seok; Yoon, Cindy W.; Kim, Hee Jin; Chin, Juhee; Park, Kee Hyung; Heilman, Kenneth M.

    2014-01-01

    Objective: Because the signs associated with dementia due to Alzheimer disease (AD) can be heterogeneous, the goal of this study was to use 3-dimensional MRI to examine the various patterns of cortical atrophy that can be associated with dementia of AD type, and to investigate whether AD dementia can be categorized into anatomical subtypes. Methods: High-resolution T1-weighted volumetric MRIs were taken of 152 patients in their earlier stages of AD dementia. The images were processed to measure cortical thickness, and hierarchical agglomerative cluster analysis was performed using Ward's clustering linkage. The identified clusters of patients were compared with an age- and sex-matched control group using a general linear model. Results: There were several distinct patterns of cortical atrophy and the number of patterns varied according to the level of cluster analyses. At the 3-cluster level, patients were divided into (1) bilateral medial temporal–dominant atrophy subtype (n = 52, ∼34.2%), (2) parietal-dominant subtype (n = 28, ∼18.4%) in which the bilateral parietal lobes, the precuneus, along with bilateral dorsolateral frontal lobes, were atrophic, and (3) diffuse atrophy subtype (n = 72, ∼47.4%) in which nearly all association cortices revealed atrophy. These 3 subtypes also differed in their demographic and clinical features. Conclusions: This cluster analysis of cortical thickness of the entire brain showed that AD dementia in the earlier stages can be categorized into various anatomical subtypes, with distinct clinical features. PMID:25344382

  8. Node assignment in heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy

    1993-01-01

    A number of node assignment schemes, both static and dynamic, are explored for the Algorithm to Architecture Mapping Model (ATAMM). The architecture under consideration consists of heterogeneous processors and implements dataflow models of real-time applications. Terminology is developed for heterogeneous computing. New definitions are added to the ATAMM for token and assignment classifications. It is proved that a periodic execution is possible for dataflow graphs. Assignment algorithms are developed and proved. A design procedure is described for satisfying an objective function in an heterogeneous architecture. Several examples are provided for illustration.

  9. Holey random walks: optics of heterogeneous turbid composites.

    PubMed

    Svensson, Tomas; Vynck, Kevin; Grisi, Marco; Savo, Romolo; Burresi, Matteo; Wiersma, Diederik S

    2013-02-01

    We present a probabilistic theory of random walks in turbid media with nonscattering regions. It is shown that important characteristics such as diffusion constants, average step lengths, crossing statistics, and void spacings can be analytically predicted. The theory is validated using Monte Carlo simulations of light transport in heterogeneous systems in the form of random sphere packings and good agreement is found. The role of step correlations is discussed and differences between unbounded and bounded systems are investigated. Our results are relevant to the optics of heterogeneous systems in general and represent an important step forward in the understanding of media with strong (fractal) heterogeneity in particular. PMID:23496473

  10. Heterogeneous edge weights promote epidemic diffusion in weighted evolving networks

    NASA Astrophysics Data System (ADS)

    Duan, Wei; Song, Zhichao; Qiu, Xiaogang

    2016-08-01

    The impact that the heterogeneities of links’ weights have on epidemic diffusion in weighted networks has received much attention. Investigating how heterogeneous edge weights affect epidemic spread is helpful for disease control. In this paper, we study a Reed-Frost epidemic model in weighted evolving networks. Our results indicate that a higher heterogeneity of edge weights leads to higher epidemic prevalence and epidemic incidence at earlier stage of epidemic diffusion in weighted evolving networks. In addition, weighted evolving scale-free networks come with a higher epidemic prevalence and epidemic incidence than unweighted scale-free networks.

  11. Waves spontaneously generated by heterogeneity in oscillatory media.

    PubMed

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-04

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  12. Waves spontaneously generated by heterogeneity in oscillatory media

    PubMed Central

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-01-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated. PMID:27142730

  13. Waves spontaneously generated by heterogeneity in oscillatory media

    NASA Astrophysics Data System (ADS)

    Cui, Xiaohua; Huang, Xiaodong; Hu, Gang

    2016-05-01

    Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.

  14. Treatment of Organic Pollutants by Heterogeneous Photocatalysis

    NASA Astrophysics Data System (ADS)

    Feroz, S.; Jesil, A.

    2012-08-01

    An experimental investigation was carried out in the area of heterogeneous catalysis using TiO2 as a catalyst for the removal of the model organic compounds (benzoic acid and phenol) in three different photocatalytic reactors. Natural and artificial UV source of radiation were used and the performance of the reactors were studied in the present investigation. The extent of degradation/removal of the organic compounds was found by varying the initial concentration, flow rate, pipe diameter, TiO2 concentration and exposure time.

  15. Genetic Linkage Heterogeneity in Myotubular Myopathy

    PubMed Central

    Samson, F.; Mesnard, L.; Heimburger, M.; Hanauer, A.; Chevallay, M.; Mercadier, J. J.; Pelissier, J. F.; Feingold, N.; Junien, C.; Mandel, J.-L.; Fardeau, M.

    1995-01-01

    Myotubular myopathy is a severe congenital disease inherited as an X-linked trait (MTM1; McKusick 31040). It has been mapped to the long arm of chromosome X, to the Xq27-28 region. Significant linkage has subsequently been established for the linkage group comprised of DXS304, DXS15, DXS52, and F8C in several studies. To date, published linkage studies have provided no evidence of genetic heterogeneity in severe neonatal myotubular myopathy (XLMTM). We have investigated a family with typical XLMTM in which no linkage to these markers was found. Our findings strongly suggest genetic heterogeneity in myotubular myopathy and indicate that great care should be taken when using Xq28 markers in linkage studies for prenatal diagnosis and genetic counseling. ImagesFigure 1Figure 2Figure 3Figure 5 PMID:7611280

  16. Heterogeneous physicochemistry of the polar ozone hole

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1989-01-01

    Processes occurring in the polar winter stratosphere, which involve polar stratospheric clouds (PSCs), are investigated using observations from the Airborne Antarctic Ozone Experiment. In particular, data on the properties of PSCs and their physical chemistry, the microphysical processes and time constants for cloud processes, the heterogeneous chemical processes and their time constants, and nonlinearities in the long-term ozone trend associated with physical and chemical processes are examined. The chemical reactions leading to the depletion of the inert chlorine reservoir in a presence of type I PSCs are established, and it is shown that type II PSCs contribute to chemical processing that sustains the chemical imbalance of the polar stratosphere. It is shown that, using a simple model, the decadal evolution of the Antarctic ozone hole may be understood through nonlinearities in the heterogeneous chemistry, with possible contributing effects of variations in stratospheric temperatures and water vapor concentrations.

  17. Blind and myopic ants in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2014-11-01

    The diffusion processes on complex networks may be described by different Laplacian matrices due to heterogeneous connectivity. Here we investigate the random walks of blind ants and myopic ants on heterogeneous networks: While a myopic ant hops to a neighbor node every step, a blind ant may stay or hop with probabilities that depend on node connectivity. By analyzing the trajectories of blind ants, we show that the asymptotic behaviors of both random walks are related by rescaling time and probability with node connectivity. Using this result, we show how the small eigenvalues of the Laplacian matrices generating the two random walks are related. As an application, we show how the return-to-origin probability of a myopic ant can be used to compute the scaling behaviors of the Edwards-Wilkinson model, a representative model of load balancing on networks.

  18. Heterogeneous Oxidation of Catechol.

    PubMed

    Pillar, Elizabeth A; Zhou, Ruixin; Guzman, Marcelo I

    2015-10-15

    Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is

  19. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    ERIC Educational Resources Information Center

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  20. Heterogeneity in motor driven transport

    NASA Astrophysics Data System (ADS)

    Tabei, Ali

    2015-03-01

    I will discuss quantitative analysis of particle tracking data for motor driven vesicles inside an insulin secreting cell. We use this method to study the dynamical and structural heterogeneity inside the cell. I will discuss our effort to explain the origin of observed heterogeneity in intracellular transport. Finally, I will explain how analyzing directional correlations in transport trajectories reveals self-similarity in the diffusion media.

  1. PUNCH: Population Characterization of Heterogeneity.

    PubMed

    Tunc, Birkan; Ghanbari, Yasser; Smith, Alex R; Pandey, Juhi; Browne, Aaron; Schultz, Robert T; Verma, Ragini

    2014-09-01

    Neuropsychiatric disorders are notoriously heterogeneous in their presentation, which precludes straightforward and objective description of the differences between affected and typical populations that therefore makes finding reliable biomarkers a challenge. This difficulty underlines the need for reliable methods to capture sample characteristics of heterogeneity using a single continuous measure, incorporating the multitude of scores used to describe different aspects of functioning. This study addresses this challenge by proposing a general method of identifying and quantifying the heterogeneity of any clinical population using a severity measure called the PUNCH (Population Characterization of Heterogeneity). PUNCH is a decision level fusion technique to incorporate decisions of various phenotypic scores, while providing interpretable weights for scores. We provide applications of our framework to simulated datasets and to a large sample of youth with Autism Spectrum Disorder (ASD). Next we stratify PUNCH scores in our ASD sample and show how severity moderates findings of group differences in diffusion weighted brain imaging data; more severely affected subgroups of ASD show expanded differences compared to age and gender matched healthy controls. Results demonstrate the ability of our measure in quantifying the underlying heterogeneity of the clinical samples, and suggest its utility in providing researchers with reliable severity assessments incorporating population heterogeneity.

  2. Analysis of active renin heterogeneity.

    PubMed

    Katz, S A; Malvin, R L; Lee, J; Kim, S H; Murray, R D; Opsahl, J A; Abraham, P A

    1991-09-01

    Active renin is a heterogeneous enzyme that can be separated into multiple forms with high-resolution isoelectric focusing. The isoelectric heterogeneity may result from differences in glycosylation between the different forms. In order to determine the relationship between active renin heterogeneity and differences in composition or attachment of oligosaccharides, two separate experiments were performed: (i) Tunicamycin, which interferes with normal glycosylation processing, increased the proportion of relatively basic renin forms secreted into the incubation media by rat renal cortical slices. (ii) Endoglycosidase F, which enzymatically removes carbohydrate from some classes of glycoprotein, similarly increased the proportion of relatively basic forms when incubated with active human recombinant renin. In addition, further studies with inhibitors of human renin activity revealed that the heterogeneous renin forms were similarly inhibited by two separate renin inhibitors. These results are consistent with the hypothesis that renin isoelectric heterogeneity is due in part to differences in carbohydrate moiety attachment and that the heterogeneity of renin does not influence access of direct renin inhibitors to the active site of renin.

  3. Analysis of active renin heterogeneity.

    PubMed

    Katz, S A; Malvin, R L; Lee, J; Kim, S H; Murray, R D; Opsahl, J A; Abraham, P A

    1991-09-01

    Active renin is a heterogeneous enzyme that can be separated into multiple forms with high-resolution isoelectric focusing. The isoelectric heterogeneity may result from differences in glycosylation between the different forms. In order to determine the relationship between active renin heterogeneity and differences in composition or attachment of oligosaccharides, two separate experiments were performed: (i) Tunicamycin, which interferes with normal glycosylation processing, increased the proportion of relatively basic renin forms secreted into the incubation media by rat renal cortical slices. (ii) Endoglycosidase F, which enzymatically removes carbohydrate from some classes of glycoprotein, similarly increased the proportion of relatively basic forms when incubated with active human recombinant renin. In addition, further studies with inhibitors of human renin activity revealed that the heterogeneous renin forms were similarly inhibited by two separate renin inhibitors. These results are consistent with the hypothesis that renin isoelectric heterogeneity is due in part to differences in carbohydrate moiety attachment and that the heterogeneity of renin does not influence access of direct renin inhibitors to the active site of renin. PMID:1908097

  4. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro

    PubMed Central

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  5. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro.

    PubMed

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  6. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    SciTech Connect

    Yang, Hui Chen, Yun

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  7. Heterogeneity induces rhythms of weakly coupled circadian neurons

    PubMed Central

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H. T.

    2016-01-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle. PMID:26898574

  8. Heterogeneity induces rhythms of weakly coupled circadian neurons.

    PubMed

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H T

    2016-01-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle. PMID:26898574

  9. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    PubMed Central

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  10. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer.

    PubMed

    Morrison, Carl D; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C; Johnson, Candace S; Trump, Donald L

    2014-02-11

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.

  11. Altering Emulsion Stability with Heterogeneous Surface Wettability

    PubMed Central

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  12. Treatment Heterogeneity and Individual Qualitative Interaction

    PubMed Central

    Poulson, Robert S.; Gadbury, Gary L.; Allison, David B.

    2012-01-01

    Plausibility of high variability in treatment effects across individuals has been recognized as an important consideration in clinical studies. Surprisingly, little attention has been given to evaluating this variability in design of clinical trials or analyses of resulting data. High variation in a treatment’s efficacy or safety across individuals (referred to herein as treatment heterogeneity) may have important consequences because the optimal treatment choice for an individual may be different from that suggested by a study of average effects. We call this an individual qualitative interaction (IQI), borrowing terminology from earlier work - referring to a qualitative interaction (QI) being present when the optimal treatment varies across a“groups” of individuals. At least three techniques have been proposed to investigate treatment heterogeneity: techniques to detect a QI, use of measures such as the density overlap of two outcome variables under different treatments, and use of cross-over designs to observe “individual effects.” We elucidate underlying connections among them, their limitations and some assumptions that may be required. We do so under a potential outcomes framework that can add insights to results from usual data analyses and to study design features that improve the capability to more directly assess treatment heterogeneity. PMID:23204562

  13. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions–liquid droplets dispersed in another immiscible liquid–are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number–the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  14. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  15. Altering Emulsion Stability with Heterogeneous Surface Wettability.

    PubMed

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G H; Chen, Haosheng; Tsai, Peichun Amy

    2016-01-01

    Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability. PMID:27256703

  16. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients

    PubMed Central

    Radhakrishnan, Vinodh Kumar; Hernandez, Lorraine Christine; Anderson, Kendra; Tan, Qianwei; De León, Marino; De León, Daisy D.

    2015-01-01

    African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC. PMID:26448747

  17. Intratumoral INF-γ triggers an antiviral state in GL261 tumor cells: a major hurdle to overcome for oncolytic vaccinia virus therapy of cancer

    PubMed Central

    Kober, Christina; Weibel, Stephanie; Rohn, Susanne; Kirscher, Lorenz; Szalay, Aladar A

    2015-01-01

    Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible. PMID:27119106

  18. T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    PubMed Central

    Caron, Jonathan; Douguet, Laetitia; Garcette, Marylène; Kato, Masashi; Avril, Marie-Françoise; Abastado, Jean-Pierre; Bercovici, Nadège; Lucas, Bruno; Prévost-Blondel, Armelle

    2011-01-01

    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions. PMID:21633700

  19. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma

    PubMed Central

    Tseng, William W.; Chopra, Shefali; Engleman, Edgar G.; Pollock, Raphael E.

    2016-01-01

    Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers. PMID:27376027

  20. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  1. Targeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer

    PubMed Central

    Maity, Sankar N.; Titus, Mark A.; Gyftaki, Revekka; Wu, Guanglin; Lu, Jing-Fang; Ramachandran, S.; Li-Ning-Tapia, Elsa M.; Logothetis, Christopher J.; Araujo, John C.; Efstathiou, Eleni

    2016-01-01

    Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the mineralocorticoid excess and cortisol depletion that result from hydroxylase inhibition. VT-464, a nonsteroidal small molecule, selectively inhibits CYP17A1 lyase and therefore does not require prednisone supplementation. Administration of VT-464 in a metastatic CRPC patient presenting with high tumoral expression of both androgen receptor (AR) and CYP17A1, showed significant reduction in the level of both dehydroepiandrosterone (DHEA) and serum PSA. Treatment of a CRPC patient-derived xenograft, MDA-PCa-133 expressing H874Y AR mutant with VT-464, reduced the increase in tumor volume in castrate male mice more than twice as much as the vehicle (P < 0.05). Mass spectrometry analysis of post-treatment xenograft tumor tissues showed that VT-464 significantly decreased intratumoral androgens but not cortisol. VT-464 also reduced AR signaling more effectively than abiraterone in cultured PCa cells expressing T877A AR mutant. Collectively, this study suggests that VT-464 therapy can effectively treat CRPC and be used in precision medicine based on androgen receptor mutation status. PMID:27748439

  2. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  3. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  4. Dealing with spatial heterogeneity

    NASA Astrophysics Data System (ADS)

    Marsily, Gh.; Delay, F.; Gonçalvès, J.; Renard, Ph.; Teles, V.; Violette, S.

    2005-03-01

    Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications. On peut aborder le problème de l'hétérogénéité en s'efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l'espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l'approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faci

  5. Heterogeneous processes: Laboratory, field, and modeling studies

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Kurylo, Michael J.; Jones, Rod L.; Wahner, Andreas; Calvert, Jack G.; Leu, M.-T.; Fried, A.; Molina, Mario J.; Hampson, Robert F.; Pitts, M. C.

    1991-01-01

    The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the

  6. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  7. Resource heterogeneity can facilitate cooperation.

    PubMed

    Kun, Ádám; Dieckmann, Ulf

    2013-01-01

    Although social structure is known to promote cooperation, by locally exposing selfish agents to their own deeds, studies to date assumed that all agents have access to the same level of resources. This is clearly unrealistic. Here we find that cooperation can be maintained when some agents have access to more resources than others. Cooperation can then emerge even in populations in which the temptation to defect is so strong that players would act fully selfishly if their resources were distributed uniformly. Resource heterogeneity can thus be crucial for the emergence and maintenance of cooperation. We also show that resource heterogeneity can hinder cooperation once the temptation to defect is significantly lowered. In all cases, the level of cooperation can be maximized by managing resource heterogeneity.

  8. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  9. Simulator for heterogeneous dataflow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    1993-01-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  10. Inferring the progression of multifocal liver cancer from spatial and temporal genomic heterogeneity

    PubMed Central

    Shi, Jie-Yi; Xing, Qingfeng; Duan, Meng; Wang, Zhi-Chao; Yang, Liu-Xiao; Zhao, Ying-Jun; Wang, Xiao-Ying; Liu, Yun; Deng, Minghua; Ding, Zhen-Bin; Ke, Ai-Wu; Zhou, Jian; Fan, Jia; Cao, Ya; Wang, Jiping; Xi, Ruibin; Gao, Qiang

    2016-01-01

    Multifocal tumors developed either as independent tumors or as intrahepatic metastases, are very common in primary liver cancer. However, their molecular pathogenesis remains elusive. Herein, a patient with synchronous two hepatocellular carcinoma (HCC, designated as HCC-A and HCC-B) and one intrahepatic cholangiocarcinoma (ICC), as well as two postoperative recurrent tumors, was enrolled. Multiregional whole-exome sequencing was applied to these tumors to delineate the clonality and heterogeneity. The three primary tumors showed almost no overlaps in mutations and copy number variations. Within each tumor, multiregional sequencing data showed varied intratumoral heterogeneity (21.6% in HCC-A, 20.4% in HCC-B, 53.2% in ICC). The mutational profile of two recurrent tumors showed obvious similarity with HCC-A (86.7% and 86.6% respectively), rather than others, indicating that they originated from HCC-A. The evolutionary history of the two recurrent tumors indicated that intrahepatic micro-metastasis could be an early event during HCC progression. Notably, FAT4 was the only gene mutated in two primary HCCs and the recurrences. Mutation prevalence screen and functional experiments showed that FAT4, harboring somatic coding mutations in 26.7% of HCC, could potently inhibit growth and invasion of HCC cells. In HCC patients, both FAT4 expression and FAT4 mutational status significantly correlated with patient prognosis. Together, our findings suggest that spatial and temporal dissection of genomic alterations during the progression of multifocal liver cancer may help to elucidate the basis for its dismal prognosis. FAT4 acts as a putative tumor suppressor that is frequently inactivated in human HCC. PMID:26672766

  11. Droplet condensation on chemically homogeneous and heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ashrafi, Amir; Moosavi, Ali

    2016-09-01

    Nucleation and growth of condensing droplets on horizontal surfaces are investigated via a 2-D double distribution function thermal lattice Boltzmann method. First, condensation on completely uniform surface is investigated and different mechanisms which cause dropwise and filmwise condensation are studied. The results reveal the presence of cooled vapor layer instability in the condensation on completely smooth surfaces. In the second step, condensation on chemically heterogeneous surfaces is investigated. Moreover, the effect of non-uniformity in the surface temperature is also studied. The results indicate that the vapor layer instability and the nucleation start from the heterogeneities. The effects of different numbers of heterogeneities, their distance, and hydrophobicity on the condensation are also inspected. It is shown that by increasing the hydrophobicity of the heterogeneities and considering an optimum space between the heterogeneities, maximum condensation performance can be achieved. Finally, condensation on wettability gradient surfaces is studied and the effects of the gradient form and contact angle of the core region on the condensation are studied. It is shown that hydrophobicity of the core region plays a key role in increasing the condensation performance. A heat transfer analysis and flow dynamics of dropwise condensation as a function of time is also presented and it is shown that the results are in good agreements with the previous theoretical and experimental results.

  12. Heterogeneity in the gingival fibromatoses.

    PubMed

    Takagi, M; Yamamoto, H; Mega, H; Hsieh, K J; Shioda, S; Enomoto, S

    1991-11-15

    Forty-nine cases of isolated familial and idiopathic gingival fibromatoses, consisting of 12 cases from six families and 37 cases of idiopathic gingival fibromatosis, were reviewed. Pedigrees of five families revealed various penetrances and genetic heterogeneity as suggested by the presence of both autosomal dominant and autosomal recessive inheritances. Ultrastructurally, the lesions were composed of fibroblast-like cells and myofibroblast-like cells, with the former being the predominant cell type. The 267 cases of familial and idiopathic gingival fibromatoses were analyzed, and they with or without hypertrichosis, mental retardation, and/or epilepsy. These included 49 cases seen by the authors, 50 cases from the Japanese literature, and 168 cases from non-Japanese literature. Isolated gingival fibromatosis occurred more frequently after age of 12 years (P less than 0.0074). There was no significant difference in age of onset between generalized and localized forms of the idiopathic gingival fibromatosis. Gingival fibromatosis with hypertrichosis and mental retardation and/or epilepsy occurred frequently before 12 years (P less than 0.069). It has been shown that heterogeneity of the gingival fibromatosis is a result of either histologic heterogeneity, genetic heterogeneity, or a combination with other systemic disorders.

  13. Social Capital and Community Heterogeneity

    ERIC Educational Resources Information Center

    Coffe, Hilde

    2009-01-01

    Recent findings indicate that more pronounced community heterogeneity is associated with lower levels of social capital. These studies, however, concentrate on specific aspects in which people differ (such as income inequality or ethnic diversity). In the present paper, we introduce the number of parties in the local party system as a more…

  14. Teaching about Heterogeneous Response Models

    ERIC Educational Resources Information Center

    Murray, Michael P.

    2014-01-01

    Individuals vary in their responses to incentives and opportunities. For example, additional education will affect one person differently than another. In recent years, econometricians have given increased attention to such heterogeneous responses and to the consequences of such responses for interpreting regression estimates, especially…

  15. A weighted U statistic for association analyses considering genetic heterogeneity.

    PubMed

    Wei, Changshuai; Elston, Robert C; Lu, Qing

    2016-07-20

    Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd.

  16. High performance simulation of environmental tracers in heterogeneous domains.

    PubMed

    Gardner, William P; Hammond, Glenn; Lichtner, Peter

    2015-04-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems. PMID:24372403

  17. High performance simulation of environmental tracers in heterogeneous domains.

    PubMed

    Gardner, William P; Hammond, Glenn; Lichtner, Peter

    2015-04-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow, and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, and the mean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2D and 3D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer to the tracer age limit. Age distributions in 3D domains differ significantly from 2D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3D systems.

  18. Computational Mechanics for Heterogeneous Materials

    SciTech Connect

    Lechman, Jeremy B.; Baczewski, Andrew David; Stephen Bond; Erikson, William W.; Lehoucq, Richard B.; Mondy, Lisa Ann; Noble, David R.; Pierce, Flint; Roberts, Christine; van Swol, Frank B.; Yarrington, Cole

    2013-11-01

    The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem

  19. Magnetic heterogeneity of biological systems.

    PubMed

    Piruzyan, L A; Kuznetsov, A A; Chikov, V M

    1980-01-01

    In biological systems nonuniformity of magnetic susceptibility, magnetic heterogeneity, is a reflection of their physical-chemical and morphological heterogeneity, A characteristic value of heterogeneity is delta K approximately 10(-6)-10(-7) CGS units, a quantitative measurement of susceptibility of cells and other small objects, may give qualitatively new information about their life processes. Patterns and features of movement of small biological objects and liquids affected by magnetic forces were studied. A method was developed for measuring magnetic susceptibility of single microobjects based on observation of movement of the objects in a strong heterogeneous field with parameters (formula: see text) grad H2/2 approximately 10(9)-10(10) Oe2/cm. This method does not require knowing the distribution of the field along the path of movement of the particles, and does not require preliminary calibration. Movement of human erythrocytes, rat hepatocytes, and starch granules in liquids at a point of entry into a gap with the field was observed experimentally. With sufficiently large fields Ho approximately (1-2) x 10(4) Oe, the value of the magnetic force was enough to change the rate of sedimentation movement of the objects appreciably (up to stopping it). This made it possible to compute the value delta K for cells approximately 10(-7)-10(-8) CGS units and to obtain the value of K for starch granules (-0.80 x 10(-6) cGS units). In connection with the fact that sensitivity to gravity in plants is coupled with a disturbance of the intracellular starch granules under the influence of gravity, certain problems of stimulating the effect of gravity on plants by magnetic forces were studied. Noncontact force effect on magnetically heterogeneous biological objects is a promising instrument for biophysical studies.

  20. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model.

    PubMed

    Knuuttila, Matias; Yatkin, Emrah; Kallio, Jenny; Savolainen, Saija; Laajala, Teemu D; Aittokallio, Tero; Oksala, Riikka; Häkkinen, Merja; Keski-Rahkonen, Pekka; Auriola, Seppo; Poutanen, Matti; Mäkelä, Sari

    2014-08-01

    Androgens are key factors involved in the development and progression of prostate cancer (PCa), and PCa growth can be suppressed by androgen deprivation therapy. In a considerable proportion of men receiving androgen deprivation therapy, however, PCa progresses to castration-resistant PCa (CRPC), making the development of efficient therapies challenging. We used an orthotopic VCaP human PCa xenograft model to study cellular and molecular changes in tumors after androgen deprivation therapy (castration). Tumor growth was monitored through weekly serum prostate-specific antigen measurements, and mice with recurrent tumors after castration were randomized to treatment groups. Serum prostate-specific antigen concentrations showed significant correlation with tumor volume. Castration-resistant tumors retained concentrations of intratumoral androgen (androstenedione, testosterone, and 5α-dihydrotestosterone) at levels similar to tumors growing in intact hosts. Accordingly, castration induced up-regulation of enzymes involved in androgen synthesis (CYP17A1, AKR1C3, and HSD17B6), as well as expression of full-length androgen receptor (AR) and AR splice variants (AR-V1 and AR-V7). Furthermore, AR target gene expression was maintained in castration-resistant xenografts. The AR antagonists enzalutamide (MDV3100) and ARN-509 suppressed PSA production of castration-resistant tumors, confirming the androgen dependency of these tumors. Taken together, the findings demonstrate that our VCaP xenograft model exhibits the key characteristics of clinical CRPC and thus provides a valuable tool for identifying druggable targets and for testing therapeutic strategies targeting AR signaling in CRPC.

  1. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.

    PubMed

    Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V

    2016-01-01

    Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma. PMID:26646850

  2. The dangers of heterogeneous network computing: heterogeneous networks considered harmful

    SciTech Connect

    Demmel, J.; Stanley, K.; Dongarra, J.; Hammarling, S.; Osstrouchov, S.

    1996-12-31

    This report addresses the issue of writing reliable numerical software for networks of heterogeneous computers. Much software has been written for distributed memory parallel computers and in principal such software could readily be ported to networks of machines, such as a collection of workstations connected by Ethernet, but if such a network is not homogeneous there are special challenges that need to be addressed. The symptoms can range from erroneous results returned without warning to deadlock. Some of the problems are straightforward to solve, but for others the solutions are not so obvious and indeed in some cases, such as the method of bisection which we shall discuss in the report, we have not yet decided upon a satisfactory solution that does not incur an unacceptable overhead. Making software robust on heterogeneous systems often requires additional communication. In this report we describe and illustrate the problems and, where possible, suggest solutions so that others may be aware of the potential pitfalls and either avoid them or, if that is not possible, ensure that their software is not used on heterogeneous networks.

  3. A rare case of solitary brain Langerhans cell histiocytosis with intratumoral hemorrhage in a patient affected by Turner syndrome

    PubMed Central

    Granata, Francesca; Morabito, Rosa; Grasso, Giovanni; Alafaci, Elisabetta; Salpietro, Francesco M.; Alafaci, Concetta

    2016-01-01

    Background: Langerhans cell histiocytosis (LCH) is a rare disease involving clonal proliferation of cells with characteristics similar to bone marrow-derived Langerhans cells. The case of a young woman, affected by Turner syndrome and a solitary intraparenchymal LCH associated with an osteolytic lesion of the overlying skull, is presented. Case Description: The patient, with an insidious history of headache and a growing soft mass in the left frontal region, presented with a sudden generalized tonic-clonic epileptic seizure. Neuroradiological investigations showed an osteolytic lesion of the left frontal bone and an underlying brain lesion associated with recent signs of bleeding. The patient was operated on with a complete removal of the lesion. The postoperative course was uneventful. Conclusions: The clinical, neuroradiological, and intraoperative findings are presented, along with a review of the literature. Although rare, LCH should be considered in the differential diagnosis when a scalp lesion occurs with a progressive growing. PMID:27127696

  4. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  5. An alternative covariance estimator to investigate genetic heterogeneity in populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic predictions and GWAS have used mixed models for identification of associations and trait predictions. In both cases, the covariance between individuals for performance is estimated using molecular markers. Mixed model properties indicate that the use of the data for prediction is optimal if ...

  6. Heterogeneous, weakly coupled map lattices

    NASA Astrophysics Data System (ADS)

    Sotelo Herrera, M.a. Dolores; San Martín, Jesús; Porter, Mason A.

    2016-07-01

    Coupled map lattices (CMLs) are often used to study emergent phenomena in nature. It is typically assumed (unrealistically) that each component is described by the same map, and it is important to relax this assumption. In this paper, we characterize periodic orbits and the laminar regime of type-I intermittency in heterogeneous weakly coupled map lattices (HWCMLs). We show that the period of a cycle in an HWCML is preserved for arbitrarily small coupling strengths even when an associated uncoupled oscillator would experience a period-doubling cascade. Our results characterize periodic orbits both near and far from saddle-node bifurcations, and we thereby provide a key step for examining the bifurcation structure of heterogeneous CMLs.

  7. NASA GSFC Perspective on Heterogeneous Processing

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.

    2016-01-01

    This presentation provides an overview of NASA GSFC, our onboard processing applications, the applicability heterogeneous processing to these applications, and necessary developments to enable heterogeneous processing to be infused into our missions.

  8. Analyzing and modeling heterogeneous behavior

    NASA Astrophysics Data System (ADS)

    Lin, Zhiting; Wu, Xiaoqing; He, Dongyue; Zhu, Qiang; Ni, Jixiang

    2016-05-01

    Recently, it was pointed out that the non-Poisson statistics with heavy tail existed in many scenarios of human behaviors. But most of these studies claimed that power-law characterized diverse aspects of human mobility patterns. In this paper, we suggest that human behavior may not be driven by identical mechanisms and can be modeled as a Semi-Markov Modulated Process. To verify our suggestion and model, we analyzed a total of 1,619,934 records of library visitations (including undergraduate and graduate students). It is found that the distribution of visitation intervals is well fitted with three sections of lines instead of the traditional power law distribution in log-log scale. The results confirm that some human behaviors cannot be simply expressed as power law or any other simple functions. At the same time, we divided the data into groups and extracted period bursty events. Through careful analysis in different groups, we drew a conclusion that aggregate behavior might be composed of heterogeneous behaviors, and even the behaviors of the same type tended to be different in different period. The aggregate behavior is supposed to be formed by "heterogeneous groups". We performed a series of experiments. Simulation results showed that we just needed to set up two states Semi-Markov Modulated Process to construct proper representation of heterogeneous behavior.

  9. Heterogeneous nucleation or homogeneous nucleation?

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    2000-06-01

    The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.

  10. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208

    PubMed Central

    Ji, Xi-wei; Chen, Guang-ping; Song, Yan; Hua, Ming; Wang, Li-jie; Li, Liang; Yuan, Yin; Wang, Si-yuan; Zhou, Tian-yan; Lu, Wei

    2015-01-01

    Aim: Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. Methods: The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg−1·d−1) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity. Uterotropic bioassay was used to examine the uterine estrogen responses. Results: Treatment with TM208 (10, 15 and 20 μmol/L) concentration-dependently increased EST expression in MCF-7 cells in vitro. Co-treatment with triclosan, an inhibitor of sulfonation, abolished TM208-induced cytotoxicity in MCF-7 cells. TM208 exhibited an apparent anti-estrogenic property: it exerted more potent cytotoxicity in E2-treated MCF-7 cells. In the nude mice bearing MCF-7 cells, TM208 administration time-dependently increased the expression and activity of EST, and blocked the gradual increase of E2 concentration in the xenograft tumors. Furthermore, TM208 administration blocked the estrogens-stimulated uterine enlargement. Tamoxifen, a positive control drug, produced similar effects on the expression and activity of EST in vitro and in vivo. Conclusion: The induction of EST and reduction of estrogen concentration contribute to the anti-breast cancer action of TM208 and tamoxifen. TM208 may be developed as anticancer drug for the treatment of estrogen receptor-positive breast cancer. PMID:25937633

  11. The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Brannon, Elizabeth M.

    2006-01-01

    We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…

  12. Scaling properties of induction times in heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Shneidman, Vitaly A.; Weinberg, Michael C.

    1991-01-01

    The heterogeneous-to-homogeneous induction time ratio is obtained as a function of the contact angle in the asymptotic limit of a high nucleation barrier. Model-dependent corrections to t(ind) are investigated, particularly in cases of the Turnbull-Fisher model used in numerical simulations by Greer et al. (1990).

  13. The Heterogeneous Effects of Income Changes on Happiness

    ERIC Educational Resources Information Center

    Becchetti, Leonardo; Corrado, Luisa; Rossetti, Fiammetta

    2011-01-01

    We investigate the relationship between money and happiness across the waves of the British Household Panel Study by using a latent class approach which accounts for slope heterogeneity. Our findings reveal the presence of a vast majority of "Easterlin-type" individuals with positive but very weak relationship between changes in income and changes…

  14. Deformation field heterogeneity in punch indentation

    PubMed Central

    Murthy, Tejas G.; Saldana, Christopher; Hudspeth, Matthew; M'Saoubi, Rachid

    2014-01-01

    Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described. PMID:24910521

  15. Resistance to change within heterogeneous response sequences.

    PubMed

    Reid, Alliston K

    2009-07-01

    Three experiments investigated how instrumental and Pavlovian contingencies contribute to resistance to change (RTC) in different ordinal response positions within heterogeneous response sequences in pigeons. RTC in the initial and terminal response positions of a three-response sequence were compared in Experiment 1, which presented three colored key lights in succession in each trial; and in Experiment 2, which severely degraded Pavlovian contingencies by presenting the lights simultaneously at each ordinal position. Experiment 3 eliminated the instrumental contingency in a high-order sign-tracking procedure. When the instrumental contingency was in effect, RTC of the initial position was greater than the terminal position (Initial RTC > Terminal RTC) when the Pavlovian contingencies were strong and when they were degraded. When the instrumental contingency was eliminated, RTC patterns reversed, producing a graded pattern of RTC (Initial < Middle < Terminal). Current theoretical approaches (e.g., behavioral momentum theory, conditioned reinforcement, and motivational control of instrumental conditioning) cannot account for these results. An alternative approach (a gradient model) shows that obtained measures of RTC in heterogeneous sequences may reflect a combination of three dissociable processes.

  16. Genetic heterogeneity of familial hemiplegic migraine

    SciTech Connect

    Ophoff, R.A.; Van Eijk, R.; Sandkuijl, L.A.

    1994-07-01

    Familial hemiplegic migraine (FHM) is a distinctive form of migraine with an autosomal dominant mode of inheritance. The migraine-like attacks are associated with transient hemiparesis. A locus for FHM has recently been assigned to chromosome 19 by linkage mapping. In the present study, five unrelated pedigrees with multiple members suffering from hemiplegic migraine were investigated. In two of the pedigrees additional symptoms, cerebellar ataxia and benign neonatal convulsions, respectively, were observed in affected members. Three pedigrees showed linkage to loci D19S391, D19S221, and D19S226 at chromosome 19p13. Haplotyping suggested a location of a FHM gene between D19S391 and D19S221. In the two remaining families, evidence against linkage was found. These results confirm the localization of a gene for familial hemiplegic migraine to the short arm of chromosome 19, but locus heterogeneity not corresponding to the observed clinical heterogeneity is likely to exist. 19 refs., 3 figs., 3 tabs.

  17. Resistance to change within heterogeneous response sequences.

    PubMed

    Reid, Alliston K

    2009-07-01

    Three experiments investigated how instrumental and Pavlovian contingencies contribute to resistance to change (RTC) in different ordinal response positions within heterogeneous response sequences in pigeons. RTC in the initial and terminal response positions of a three-response sequence were compared in Experiment 1, which presented three colored key lights in succession in each trial; and in Experiment 2, which severely degraded Pavlovian contingencies by presenting the lights simultaneously at each ordinal position. Experiment 3 eliminated the instrumental contingency in a high-order sign-tracking procedure. When the instrumental contingency was in effect, RTC of the initial position was greater than the terminal position (Initial RTC > Terminal RTC) when the Pavlovian contingencies were strong and when they were degraded. When the instrumental contingency was eliminated, RTC patterns reversed, producing a graded pattern of RTC (Initial < Middle < Terminal). Current theoretical approaches (e.g., behavioral momentum theory, conditioned reinforcement, and motivational control of instrumental conditioning) cannot account for these results. An alternative approach (a gradient model) shows that obtained measures of RTC in heterogeneous sequences may reflect a combination of three dissociable processes. PMID:19594277

  18. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  19. Interfractional Position Variation of Pancreatic Tumors Quantified Using Intratumoral Fiducial Markers and Daily Cone Beam Computed Tomography

    SciTech Connect

    Horst, Astrid van der; Wognum, Silvia; Dávila Fajardo, Raquel; Jong, Rianne de; Hooft, Jeanin E. van; Fockens, Paul; Tienhoven, Geertjan van; Bel, Arjan

    2013-09-01

    Purpose: The aim of this study was to quantify interfractional pancreatic position variation using fiducial markers visible on daily cone beam computed tomography (CBCT) scans. In addition, we analyzed possible migration of the markers to investigate their suitability for tumor localization. Methods and Materials: For 13 pancreatic cancer patients with implanted Visicoil markers, CBCT scans were obtained before 17 to 25 fractions (300 CBCTs in total). Image registration with the reference CT was used to determine the displacement of the 2 to 3 markers relative to bony anatomy and to each other. We analyzed the distance between marker pairs as a function of time to identify marker registration error (SD of linear fit residuals) and possible marker migration. For each patient, we determined the mean displacement of markers relative to the reference CT (systematic position error) and the spread in displacements (random position error). From this, we calculated the group systematic error, Σ, and group random error, σ. Results: Marker pair distances showed slight trends with time (range, −0.14 to 0.14 mm/day), possibly due to tissue deformation, but no shifts that would indicate marker migration. The mean SD of the fit residuals was 0.8 mm. We found large interfractional position variations, with for 116 of 300 (39%) fractions a 3-dimensional vector displacement of >10 mm. The spread in displacement varied significantly (P<.01) between patients, from a vector range of 9.1 mm to one of 24.6 mm. For the patient group, Σ was 3.8, 6.6, and 3.5 mm; and σ was 3.6, 4.7 and 2.5 mm, in left–right, superior–inferior, and anterior–posterior directions, respectively. Conclusions: We found large systematic displacements of the fiducial markers relative to bony anatomy, in addition to wide distributions of displacement. These results for interfractional position variation confirm the potential benefit of using fiducial markers rather than bony anatomy for daily online

  20. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  1. Simulating residual saturation and relative permeability in heterogeneous formations

    SciTech Connect

    Paterson, L.; Painter, S.; Zhang, Xiaodong

    1996-12-31

    Network models are used to investigate the effect of correlated heterogeneity on capillary dominated displacements in porous media. Residual saturations and relative permeabilities are shown to be sensitive to the degree of correlation and anisotropy but not variability. The network models reproduce the experimental observation that relative permeability is greater in the direction parallel to the bedding compared to perpendicular to the bedding. The scatter commonly observed in core measurements of residual saturation is attributed to the presence of correlated heterogeneity in actual reservoir rocks.

  2. Stochastic modeling of macrodispersion in unsaturated heterogeneous porous media

    SciTech Connect

    Yeh, T.C.J.

    1992-01-01

    The objectives of the proposed study are: (1) to investigate factors controlling the fate and transport of contaminants in heterogeneous unsaturated soils, and (2) to develop a computationally feasible methodology for predicting chemical movements in large-scale unsaturated zone. The proposed study will provide ways to estimate uncertainties in chemical transport due to spatial variability of soil hydrologic parameters. The uncertainty analysis is essential to interpretation of any field experiment of transport of chemically reactive tracers. Without eliminating the uncertainty due to heterogeneity in hydrologic parameters, mechanisms and principles controlling chemical behaviors of contaminants in the field condition may be misinterpreted.

  3. Synchronization in weighted complex networks: Heterogeneity and synchronizability

    NASA Astrophysics Data System (ADS)

    Lu, Xin Biao; Wang, Xiao Fan; Li, Xiang; Fang, Jin Qing

    2006-10-01

    Synchronization in different types of weighted networks based on a scale-free weighted network model is investigated. It has been argued that heterogeneity suppresses synchronization in unweighted networks [T. Nishikawa, A.E. Motter, Y.C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 91 (2003) 014101]. However, it is shown in this work that as the network becomes more heterogeneous, the synchronizability of Type I symmetrically weighted networks, and Type I and Type II asymmetrically weighted networks is enhanced, while the synchronizability of Type II symmetrically weighted networks is weakened.

  4. Evolution of cooperation among mobile agents with heterogenous view radii

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wang, Wei-Ye; Du, Wen-Bo; Cao, Xian-Bin

    2011-06-01

    In this paper, we study cooperative behavior among mobile agents; the agents have heterogenous view radii and they play the prisoner’s dilemma game with those being within their vision fields. It is found that the cooperation level is remarkably promoted when the heterogeneity of view radii is considered, and the degree distribution of the system is investigated to explain this interesting phenomenon. Moreover, we report that the cooperative behavior is best favored by low density, moderate view radius, and small moving speed. Our findings may be helpful in understanding cooperative behavior in natural and social systems consisting of mobile agents.

  5. Laboratory Studies of Heterogeneous Chemical Processes of Atmospheric Importance

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    2004-01-01

    The objective of this study is to conduct measureme