Science.gov

Sample records for investigate molecular structure

  1. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  2. Molecular tools for investigating ANME community structure and function

    SciTech Connect

    Hallam, Steven J.; Page, Antoine P.; Constan, Lea; Song, Young C.; Norbeck, Angela D.; Brewer, Heather M.; Pasa-Tolic, Ljiljana

    2011-05-20

    Methane production and consumption in anaerobic marine sediments 1 is catalyzed by a series of reversible tetramethanopterin (H4MPT)-linked C1 transfer reactions. Although many of these reactions are conserved between one-carbon compound utilizing microorganisms, two remain diagnostic for archaeal methane metabolism. These include reactions catalyzed by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase and methyl coenzyme M reductase. The latter enzyme is central to C-H bond formation and cleavage underlying methanogenic and reverse methanogenic phenotypes. Here we describe a set of novel tools for the detection and functional analysis of H4MPT-linked C1 transfer reactions mediated by uncultivated anaerobic methane oxidizing archaea (ANME). These tools include polymerase chain reaction primers targeting ANME methyl coenzyme M reductase subunit A subgroups and protein extraction methods from marine sediments compatible with high-resolution mass spectrometry for profiling population structure and functional dynamics. [910, 1,043

  3. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  4. Theoretical and experimental investigations on molecular structure of bis(2-methoxy-4-allylphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2016-01-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new bis(2-methoxy-4-allylphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, bis(2-methoxy-4-allylphenyl)oxalate (I), (C22H22O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies have been calculated by B3LYP/6-311G(d,p) method using density functional theory (DFT). 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule have been investigated by the Gauge-Invariant Atomic Orbital (GIAO) method. The calculated results show that the predicted geometry can well reproduce structural parameters. To estimate chemical reactive sites of the molecule, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) have been calculated for the optimized geometry of the molecule. To investigate the NLO properties of the molecule, the electric dipole, the polarizability and the first hyperpolarizability have been calculated. In addition, thermodynamic properties have also been studied.

  5. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound–target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  6. Spectroscopic and structural investigation of interaction product of 8-mercaptoquinoline with molecular iodine

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Starikova, Zoya A.; Karginova, Anastasia O.; Kolesnikova, Tatiana S.; Tereznikov, Alexander Yu.

    2013-11-01

    The behavior of 8-mercaptoquinoline, which is a potential antithyroid drug toward molecular iodine was investigated. The ability of 8-mercaptoquinoline to form the outer-sphere charge-transfer complex C9H7NS·I2 with iodine molecular in dilute chloroform solution has been studied by UV/vis spectroscopy (lg β = 3.14). The crystal structure of the new salt 8-(quinoline-8-yldisulfonyl)quinolinium triiodide - product of irreversible oxidation of 8-mercaptoquinoline was determined by X-ray diffraction. Intramolecular hydrogen bond of N-H⋯N type is presented in the organic cation. The triiodide ion is the nearly centrosymmetrical anion. The 8-(quinoline-8-yldisulfanyl)quinolinium cations form dimers through π-π-stacking interaction between quinolinium rings. The reduced intramolecular interactions are observed between iodine - sulfur atoms and iodine-hydrogen atoms with shortened contacts (less of sum of van-der-waals contacts).

  7. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2010-09-01

    Folded polyproline peptides can exist as either left-(PPII) or right-handed (PPI) helices, depending on their environment. In this work, we have characterized the conformations and the free energy landscapes of Ace-(Pro)n-Nme, n =2,3,…,9, and 13 peptides both in vacuo and in an implicit solvent environment. In order to enhance the sampling provided by regular molecular dynamics simulations, we have used the recently developed adaptively biased molecular dynamics method—which provides an accurate description of the free energy landscapes in terms of a set of relevant collective variables—combined with Hamiltonian and temperature replica exchange molecular dynamics methods. The collective variables, which are chosen so as to reflect the stable structures and the "slow modes" of the polyproline system, were based primarily on properties of length and of the cis/trans isomerization associated with the prolyl bonds. Results indicate that the space of peptide structures is characterized not just by pure PPII and PPI structures, but rather by a broad distribution of stable minima with similar free energies. These results are in agreement with recent experimental work. In addition, we have used steered molecular dynamics methods in order to quantitatively estimate the free energy difference of PPI and PPII for peptides of the length n =2,…,5 in vacuo and implicit water and qualitatively investigate transition pathways and mechanisms for the PPII to PPI transitions. A zipper-like mechanism, starting from either the center of the peptide or the amidated end, appear to be the most likely mechanisms for the PPII→PPI transition for the longer peptides.

  8. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    NASA Astrophysics Data System (ADS)

    Owens, Jonathan R.

    properties of the IV curves of single molecule nano-junctions. Specifically, these systems consist of a zinc-porphyrin molecule coupled between two gold electrodes, i.e., a nano-gap. The first observation we want to explain is the asymmetric nature of the experimental IV curve for this porphyrin system, where the IV curve is skewed heavily to the negative bias region. Using a plane-wave DFT calculation, we present the density of states of the porphyrin molecule (both in the presence and absence of the electrodes) and indeed see highly delocalized states (as confirmed by site-projection of the DOS) only in the negative bias region, meaning that the channels with high transmission probability reside there, in agreement with experimental observation. The next problem studied pertains to observed switching in an experimentally-measured IV curve, this time of a longer zinc porphyrin molecule, still within a gold nano-gap. The switching behavior is observed only at 300K, not at 4.2K. The temperature-dependance of this problem renders our previous toolset of DFT calculations void; DFT is a ground-state theory. Instead, we employ a density functional-based tight-binding (DFTB) approach in a molecular dynamics simulation. Basically, the structural configuration evaluated at each time step is based on a tight-binding electronic structure calculation, instead of a typical MD force field. Trajectories are presented at varying temperatures and electric field strengths. Indeed, we observe a conformation of the porphyrin molecule between two configurations of the dihedral angle of the central nitrogen ring, ±15. {o} at 300K, but not 4.2K. These confirmations are equally likely, i.e., the structure assumes these configurations an equal number of teams, meaning the average structure has an angle of 0. {o}. After computing the DOS of all three aforementioned configurations (0. {text{o}} and ±15. {text{o}}), we indeed see a difference between the DOS curves at ±15. {text{o}} (which are

  9. Investigation of Molecular Structure of Porous Epoxy Thermosets via Swelling and Glass Transition Behavior

    NASA Astrophysics Data System (ADS)

    Sharifi, Majid; Ghorpade, Kaustubh; Raman, Vijay; Palmese, Giuseppe

    2014-05-01

    Many of the excellent properties of highly crosslinked polymers are due to their molecular structures. In this study, network structures of three epoxy systems, Epon828-PACM, Epon836-PACM, and Epon1001F-PACM were investigated via equilibrium swelling theory. Each systems separately cured in presence of an inert solvent, THF, ranging from 0 to 92% by volume fraction of solvent. Experimental results showed that the conventional swelling theory is valid for specimens polymerized in moderate dilute environments, i.e. up to around 60% solvent by vol. whereas in extremely dilute environments, i.e. above 60%, the computed Mc values are exponentially increasing. This drastic increase in Mc was investigated by Tg measurement of the polymer phase (on supercritically dried specimens). The measured Mc could not predict the corresponding Tg values according to Fox equation. Due to the highly porous nature of the resulting thermosets after supercritical drying, a modifying factor, based on the probability of finding elastic chains in a porous network, was incorporated in the conventional swelling model (Bray-Merrill equation). It was shown that the adjusted Mc values of each thermoset and the corresponding Tgs are acceptably match via the well-known Fox equation. The modified Mc values indicate that, polymer networks produced in presence of miscible inert phases have relatively uniform molecular weight between crosslinks, irrespective of the amount of that inert phase.

  10. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    NASA Astrophysics Data System (ADS)

    Owens, Jonathan R.

    properties of the IV curves of single molecule nano-junctions. Specifically, these systems consist of a zinc-porphyrin molecule coupled between two gold electrodes, i.e., a nano-gap. The first observation we want to explain is the asymmetric nature of the experimental IV curve for this porphyrin system, where the IV curve is skewed heavily to the negative bias region. Using a plane-wave DFT calculation, we present the density of states of the porphyrin molecule (both in the presence and absence of the electrodes) and indeed see highly delocalized states (as confirmed by site-projection of the DOS) only in the negative bias region, meaning that the channels with high transmission probability reside there, in agreement with experimental observation. The next problem studied pertains to observed switching in an experimentally-measured IV curve, this time of a longer zinc porphyrin molecule, still within a gold nano-gap. The switching behavior is observed only at 300K, not at 4.2K. The temperature-dependance of this problem renders our previous toolset of DFT calculations void; DFT is a ground-state theory. Instead, we employ a density functional-based tight-binding (DFTB) approach in a molecular dynamics simulation. Basically, the structural configuration evaluated at each time step is based on a tight-binding electronic structure calculation, instead of a typical MD force field. Trajectories are presented at varying temperatures and electric field strengths. Indeed, we observe a conformation of the porphyrin molecule between two configurations of the dihedral angle of the central nitrogen ring, ±15. {o} at 300K, but not 4.2K. These confirmations are equally likely, i.e., the structure assumes these configurations an equal number of teams, meaning the average structure has an angle of 0. {o}. After computing the DOS of all three aforementioned configurations (0. {text{o}} and ±15. {text{o}}), we indeed see a difference between the DOS curves at ±15. {text{o}} (which are

  11. The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates.

    PubMed

    Wilke, Manuel; Buzanich, Ana Guilherme; Reinholz, Uwe; Rademann, Klaus; Emmerling, Franziska

    2016-06-21

    We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(ii)(HO3PPh)2(H2O3PPh)2(H2O)2] (M = Mn (1), Co (2), Ni (3); Ph = C6H5) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. PMID:27188480

  12. Investigation of the structure of levan polysaccharide chains in water via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Turgut, Deniz; Coskunkan, Binnaz; Cem, Gulcin; Rende, Deniz; Arga, K. Yalcin; Bucak, Seyda; Baysal, Nihat; Toksoy-Oner, Ebru; Ozisik, Rahmi

    2014-03-01

    Levan is a biopolymer consisting of β-D-fructofuranose units with β (2-6) linkages between fructose rings. Investigation of the structure and behavior of levan in aqeous environments is necessary to understand its biological activity and its potential use in various applications such as carbohydrate-derived drug release. The use of different in vivo and in vitro bioactivity assays fail to relate the chemical structure and conformation to the observed biological activity. Therefore, considerable research has been directed on elucidating the biological activity mechanisms of polysaccharides by structure-function analysis. To overcome the inherent difficulties of experiments, molecular dynamics (MD) simulations have been used to retrieve comprehensive information regarding the conformations of polysaccharides and their dynamic properties. In the current study, the structure of levan is investigated in aqueous medium and in saline solutions via fully atomistic MD simulations at 298 and 310 K, representing room temperature and physiological temperatures, respectively. The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232 and 113M265.

  13. Structural investigation of lanthanoid coordination: a combined XANES and molecular dynamics study.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Mancini, Giordano; Persson, Ingmar; Chillemi, Giovanni

    2009-11-01

    This is the first systematic study exploring the potentiality of the X-ray absorption near edge structure (XANES) technique as a structural tool for systems containing lanthanoid(III) ions. A quantitative analysis of the XANES spectra at the K- and L(3)-edges has been carried out for three hydrated lanthanoid(III) ions, namely, Yb, Nd, and Gd, in aqueous solution and in the isostructural trifluoromethanesulfonate salts. The structural and dynamic properties of the hydrated lanthanoid(III) ions in aqueous solution have been investigated by a combined experimental-theoretical approach employing X-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the XANES spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. A comparative K- and L(3)-edge XANES data analysis is presented, demonstrating the clear advantages of the L(3)-edge XANES analysis over the K-edge studies for structural investigations of lanthanoid compounds. The second hydration shells provide a detectable contribution to the L(3)-edge spectra while the K-edge data are insensitive to the more distant coordination spheres because of the strong damping and broadening of the signal caused by the extremely large core hole widths. The XANES technique has been found to be a new valuable tool for the structural characterization of metal complexes both in the solid and in the liquid state, especially in the presence of low symmetry. PMID:19788258

  14. Molecular structure, linear and nonlinear optical properties of some cyclic phosphazenes: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Hadji, Djebar; Rahmouni, Ali

    2016-02-01

    We report ab initio and density functional theory calculations of structural data, dipole moment, diagonal vibrational and electronic contributions to polarizability, vibrational and electronic contributions to first hyperpolarizability of some cyclic phosphazenes. The electronic structure of substituted cyclic phosphazenes has been investigated using Hartree-Fock and density functional theory. The vibrational and electronic contributions to polarizabilities and first hyperpolarizability of these molecules were calculated with HF method, and different DFT levels used the traditional B3LYP and PBE functional and the long-range corrected functional like Coulomb-attenuating method CAM-B3LYP, LC-BLYP and wB97XD used different basis sets. These cyclic phosphazenes adopts a planar structure. The chosen level of theory was found to describe satisfactory the molecular structure (r. m. s. of the relative deviations). The study reveals that the cyclic phosphazenes derivatives have large vibrational contribution to static first hyperpolarizability values. The results obtained from this work will provide into the electronic properties of this important class of inorganic polymers.

  15. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  16. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  17. Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives.

    PubMed

    Sumimoto, Michinori; Yokogawa, Daisuke; Komeda, Masahiro; Yamamoto, Hidetoshi; Hori, Kenji; Fujimoto, Hitoshi

    2011-10-15

    The molecular geometries, electronic structures, and excitation energies of NPh(3), NPh(2)Me, NPhMe(2), and NMe(3), were investigated using DFT and post-Hartree Fock methods. When the structural stabilities of these compounds were compared to results obtained by using MP4(SDQ) method, it was confirmed that the optimized geometries by using MP2 method were sufficiently reliable. The excited states with large oscillator strengths consisted of transition components from the HOMO. It should be noted that the orbitals of the nitrogen atom mix with the π-orbital of the phenyl group in an anti-bonding way in the HOMO, and the orbital energy increases with this mixing. The unoccupied orbitals are generated from bonding and anti-bonding type interactions between the π-orbitals of the phenyl groups; therefore, the number of phenyl groups strongly affects the energy diagram of the compounds studied. The differences in the energy diagram cause a spectral change in these compounds in the ultraviolet region. PMID:21795108

  18. Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives

    NASA Astrophysics Data System (ADS)

    Sumimoto, Michinori; Yokogawa, Daisuke; Komeda, Masahiro; Yamamoto, Hidetoshi; Hori, Kenji; Fujimoto, Hitoshi

    2011-10-01

    The molecular geometries, electronic structures, and excitation energies of NPh 3, NPh 2Me, NPhMe 2, and NMe 3, were investigated using DFT and post-Hartree Fock methods. When the structural stabilities of these compounds were compared to results obtained by using MP4(SDQ) method, it was confirmed that the optimized geometries by using MP2 method were sufficiently reliable. The excited states with large oscillator strengths consisted of transition components from the HOMO. It should be noted that the orbitals of the nitrogen atom mix with the π-orbital of the phenyl group in an anti-bonding way in the HOMO, and the orbital energy increases with this mixing. The unoccupied orbitals are generated from bonding and anti-bonding type interactions between the π-orbitals of the phenyl groups; therefore, the number of phenyl groups strongly affects the energy diagram of the compounds studied. The differences in the energy diagram cause a spectral change in these compounds in the ultraviolet region.

  19. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  20. Mechanism of allosteric propagation across a β-sheet structure investigated by molecular dynamics simulations.

    PubMed

    Interlandi, Gianluca; Thomas, Wendy E

    2016-07-01

    The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27090060

  1. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation.

    PubMed

    Singh, Shailza; Mandlik, Vineetha

    2015-05-01

    Leishmania major is the causative agent of cutaneous leishmaniasis which affects over 1 million people in 88 different countries. The incidence of this disease is on the rise due to the current problems associated with the present chemotherapeutics. In addition, Leishmania confronts resistance to the traditional drugs like sodium stibogluconate and newer repurposed drugs like miltefosine. ABC transporters are involved in the development of drug resistance. Miltefosine, the drug used for the treatment of leishmaniasis, is effluxed by P4 ATPase and ABC transporter, which is the prime focus of our study in this paper. P4 ATPase (MDR1) along with an unnamed protein (cdc50) translocates miltefosine from the outer to the inner leaflet by the process of flipping which is ATP driven. In contrast, miltefosine also escapes from the cells by an energy dependent mechanism that involves the ABC transporter protein (ABC). It is known that certain genes in the parasite amplify the portions of a gene which encodes ABC transporter and P4 ATPase involved in translocating phospholipids and hence resistance to miltefosine. We observed the ABC and P4 ATPase genes, 39 T-box elements were observed in the ABC transporter protein and three elements were observed in the P4 ATPase gene suggesting its role in transcription regulation. To the best of our knowledge, there are no structural and regulatory reports on these two proteins in L. major. Computational structural biology tools may aid in understanding the interaction of miltefosine with the P4-ATPase-cdc50 complex and the ABC transporter. This can be achieved by modeling the target protein structures, studying the dynamics associated with the different domains of the protein and later using activators and inhibitors to alter the functioning of the protein. Molecular dynamics simulation with a lipid bilayer is performed to investigate the conformational changes and structure-activity relationship. As transporters are difficult to model

  2. Molecular polymorphism: microwave spectra, equilibrium structures, and an astronomical investigation of the HNCS isomeric family.

    PubMed

    McGuire, Brett A; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Brünken, Sandra; Lattanzi, Valerio; Neill, Justin L; Spezzano, Silvia; Yu, Zhenhong; Zaleski, Daniel P; Remijan, Anthony J; Pate, Brooks H; McCarthy, Michael C

    2016-08-10

    The rotational spectra of thioisocyanic acid (HNCS), and its three energetic isomers (HSCN, HCNS, and HSNC) have been observed at high spectral resolution by a combination of chirped-pulse and Fabry-Pérot Fourier-transform microwave spectroscopy between 6 and 40 GHz in a pulsed-jet discharge expansion. Two isomers, thiofulminic acid (HCNS) and isothiofulminic acid (HSNC), calculated here to be 35-37 kcal mol(-1) less stable than the ground state isomer HNCS, have been detected for the first time. Precise rotational, centrifugal distortion, and nitrogen hyperfine coupling constants have been determined for the normal and rare isotopic species of both molecules; all are in good agreement with theoretical predictions obtained at the coupled cluster level of theory. On the basis of isotopic spectroscopy, precise molecular structures have been derived for all four isomers by correcting experimental rotational constants for the effects of rotation-vibration interaction calculated theoretically. Formation and isomerization pathways have also been investigated; the high abundance of HSCN relative to ground state HNCS, and the detection of strong lines of SH using CH3CN and H2S, suggest that HSCN is preferentially produced by the radical-radical reaction HS + CN. A radio astronomical search for HSCN and its isomers has been undertaken toward the high-mass star-forming region Sgr B2(N) in the Galactic Center with the 100 m Green Bank Telescope. While we find clear evidence for HSCN, only a tentative detection of HNCS is proposed, and there is no indication of HCNS or HSNC at the same rms noise level. HSCN, and tentatively HNCS, displays clear deviations from a single-excitation temperature model, suggesting weak masing may be occurring in some transitions in this source. PMID:27478937

  3. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer.

    PubMed

    Tu, K; Tobias, D J; Blasie, J K; Klein, M L

    1996-02-01

    We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along the bilayer normal and the interlamellar spacing and electron density profile were in very good agreement with neutron and x-ray diffraction results. The area per lipid and the details of the in-plane hydrocarbon chain structure were in excellent agreement with wide-angle x-ray diffraction results. The only significant deviation is that the chains met in a pleated arrangement at the bilayer center, although they should be parallel. Novel discoveries made in the present work include the observation of a bimodal headgroup orientational distribution. Furthermore, we found that there are a significant number of gauche conformations near the ends of the hydrocarbon chains and, in addition to verifying a previous suggestion that there is partial rotational ordering in the hydrocarbon chains, that the two chains in a given molecule are inequivalent with respect to rotations. Finally, we have investigated the lipid/water interface and found that the water penetrates beneath the headgroups, but not as far as the carbonyl groups, that the phosphates are strongly hydrated almost exclusively at the nonesterified oxygen atoms, and that the hydration of the ammonium groups is more diffuse, with some water molecules concentrated in the grooves between the methyl groups. PMID:8789079

  4. Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-09-01

    In this study; spectroscopic investigation of adenosine having clinical importance was studied computationally and obtained results were compared with experimental ones. In this scope, geometric optimization and conformational analysis were studied and vibrational spectroscopic properties were studied on the most stable form. NMR and TD-DFT studies on the title compound were conducted with its experimental data. In addition atomic charge distribution, NBO, frontier molecular analysis, thermodynamic analysis and hyperpolarization features were studied.

  5. Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

    PubMed Central

    Natarajan, Sathishkumar; Thamilarasan, Senthil Kumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2015-01-01

    Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea) was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER) webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin. PMID:26703735

  6. Structural properties of coal metallic glasses investigated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xia, J. H.; Gao, Xue-Mei; Xiao, Xu-Yang; Cheng, Zheng-Fu

    2015-01-01

    Based on using molecular dynamics simulations, the structural transitions of Co25Al75 and Co75Al25 were studied during two different quenching processes. The pair-correlation function, the Honeycutt-Andersen (HA) pair analysis technique, Voronoi indices and structural snapshot are adopted in both rapid quenching processes. The results provide direct evidence of the liquid-crystal transition and the liquid Co75Al25 crystallizes into bcc phase at 300 K during the rapid quenching process r1 = 1 K/ps. While during the rapid quenching r2 = 10 K/ps the liquid is frozen into the glass state at 300 K. Meanwhile, the liquid Co25Al75 is frozen into the glass state at 300 K during the two rapid quenching processes. Our results show that the phase formation is strongly dependent on the cooling rates and the compositions.

  7. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Feng, Yuan; Huang, Jing; Kim, Seongheun; Shim, Ji Hyun; MacKerell, Alexander D; Ge, Nien-Hui

    2016-06-23

    We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared

  8. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures.

    PubMed

    Takemasa, Makoto; Nishinari, Katsuyoshi

    2016-03-31

    Although the intermolecular nuclear Overhauser effect (NOE) signal was valuable to elucidate molecular association structure, it could not always be observed for associated molecules due to the short spin-spin relaxation time T2 in NMR measurements, especially for high molar mass systems. While almost no study has been reported for high molar mass polymers (>1 × 10(6)), especially for polysaccharide-polysaccharide interactions, NOE signals were observed for the first time between two different types of polysaccharides, xanthan and galactomannan (locust bean gum), forming a synergistic gel, as a direct evidence of intermolecular binding of polysaccharides. The NOE peak was found between pyruvic acid in xanthan and anomeric proton of mannose of galactomannan. This NOE signal was observed only when mixing time >0.5 s, indicating indirect NOEs caused by spin diffusion. Therefore, this NOE could not be used to construct the molecular models. However, it is a direct evidence for the binding between two different types of polysaccharide to elucidate the synergistic gelation. This NOE signal was observed only for low molar mass galactomannans (1.4 × 10(4)). T2 of pyruvate methyl drastically decreased at low temperatures in the presence of synergistic interaction, suggesting that pyruvate group at terminal end of side chain in xanthan plays an essential role in synergistic interaction. PMID:26943259

  9. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  10. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Carnevale, V.; Raugei, S.

    2009-12-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  11. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  12. Investigation of mechanical strength of 2D nanoscale structures using a molecular dynamics based computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Garg, A.; Vijayaraghavan, V.; Wong, C. H.; Tai, K.; Singru, Pravin M.; Mahapatra, S. S.; Sangwan, K. S.

    2015-09-01

    A molecular dynamics (MD) based computational intelligence (CI) approach is proposed to investigate the Young modulus of two graphene sheets: Armchair and Zigzag. In this approach, the effect of aspect ratio, the temperature, the number of atomic planes and the vacancy defects on the Young modulus of two graphene sheets are first analyzed using the MD simulation. The data obtained using the MD simulation is then fed into the paradigm of a CI cluster comprising of genetic programming, which was specifically designed to formulate the explicit relationship of Young modulus of two graphene structures. We find that the MD-based-CI model is able to model the Young modulus of two graphene structures very well, which compiles in good agreement with that of experimental results obtained from the literature. Additionally, we also conducted sensitivity and parametric analysis and found that the number of defects has the most dominating influence on the Young modulus of two graphene structures.

  13. Dioxygen difluoride: Electron diffraction investigation of the molecular structure in the gas

    SciTech Connect

    Hedberg, L.; Hedberg, K.; Eller, P.G.; Ryan, R.R.

    1988-01-27

    An electron diffraction study of the structure of dioxygen difluoride (/sub 2/F/sub 2/) at /minus/42/degree/C has confirmed the results of an earlier microwave investigation. The molecule has C/sub 2/symmetry, a short O-O bond, and extraordinarily long O-F bonds: r/sub g/(O-O) = 1.216 (2) /angstrom/, r/sub g/(O-F) = 1.586 (2) /angstrom/. Other parameter values are /angle//sub /alpha//FOO = 109.2 (2)/degree/, /angle//sub /alpha//FOOF = 88.1 (4)/degree/, l(O-O) = 0.046 (3) /angstrom/, l(O-F) = 0.069 (3) /angstrom/, l(O/hor ellipsis/F) = 0.073 (4) /angstrom/, and l(F/hor ellipsis/F) = 0.113 (10) /angstrom/; the l values are rms amplitudes of vibration, and the parameter uncertainties are estimated 2/sigma/. The data are consistent with a high barrier to internal rotation. There is no evidence for the presence of a planar form. Attempts to detect O/sub 2/F radical or its dimer were unsuccessful. 23 refs., 2 figs., 2 tabs.

  14. Crystallographic approaches for the investigation of molecular materials: structure property relationships and reverse crystal engineering.

    PubMed

    Macchi, Piero

    2014-01-01

    This article discusses the connection between crystallography and material science. It sheds light on some of the research opportunities that are currently available and it critically reviews the directions taken by the scientific community in the field of crystal engineering. The focus is on materials formed by the assembly of organic and organometallic molecular building blocks. PMID:24801694

  15. Synthesis, molecular structure investigations and antimicrobial activity of 2-thioxothiazolidin-4-one derivatives

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Al-Najjar, Hany J.; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Mabkhot, Yahia Nasser; Al-Agamy, Mohamed H. M.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2015-02-01

    A variety of 2-thioxothiazolidin-4-one derivatives were prepared and their in vitro antimicrobial activities were studied. Most of these compounds showed significant antibacterial activity specifically against Gram-positive bacteria, among which compounds 4a,e,g, 5b,e,g,h and 6f exhibit high levels of antimicrobial activity against Bacillus subtilis ATCC 10400 with Minimum Inhibitory Concentration (MIC) value of 16 μg/mL. All compounds have antifungal activity against Candida albicans. Unfortunately, however, none of the compounds were active against Gram-negative bacteria. The chemical structure of 3 was confirmed by X-ray single crystal diffraction technique. DFT calculations of 3 have been performed on the free C10H7Cl2NO2S2, 3a and the H-bonded complex, C10H7Cl2NO2S2·H2O, 3b to explore the effect of the H-bonding interactions on the geometric and electronic properties of the studied systems. A small increase in bond length was observed in the C12-O6 due to the H-bonding interactions between 3a and water molecule. MEP study has been used to recognize the most reactive sites towards electrophilic and nucleophilic attacks as well as the possible sites for the H-bonding interactions. The TD-DFT calculations have been used to predict theoretically the electronic spectra of the studied compound. The most intense transition band is predicted at 283.9 nm due to the HOMO-2/HOMO-1 to LUMO transitions. NBO analyses were carried out to investigate the stabilization energy of the various intramolecular charge transfer interactions within the studied molecules.

  16. An investigation of molecular structure of copolymers using positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1985-01-01

    Positron lifetime measurements were made in copolyimides synthesized from linear 4,4 prime-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4 prime-diaminodiphenyl (ODA) and BDSDA/1,3-diaminobenzene (m-phenylene diamine) homopolymers. The probability of positronium formation as well as its subsequent lifetime are lower in the BDSDA/ODA/MPD (50-50) copolyimide, indicating the presence of a transition molecular architecture characterized by higher electron density and stronger bonds which permit both chemical as well as physical entry of water molecules into it. The presence of this transition region imparts unique physical and mechanical properties to the copolyimide.

  17. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-01

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions. PMID:25988812

  18. Theoretical investigation of the molecular structure of the pi kappa DNA base pair.

    PubMed

    Florián, J; Leszczyński, J

    1995-04-01

    The structure of the nonclassical pi kappa base pair (7-methyl-oxoformycin B. . .2,4-diaminopyrimidine) was studied at the ab initio Hartree-Fock (HF) and MP2 levels using the 6-31G* and 6-31G** basis sets. The pi kappa base pair is bound by three parallel hydrogen bonds with the donor-acceptor-donor recognition pattern. Recently, these bases were proposed as an extension of the genetic alphabet from four to six letters (Piccirilli et al, Nature 343,33 (1990)). By the HF/6-31G* method with full geometry optimization we calculated the 12 degree propeller twist for the minimum energy structure of this complex. The linearity of hydrogen bonds is preserved in the twisted structure by virtue of the pyramidal arrangement of the kappa-base amino groups. The rings of both the pi and kappa molecules remain nearly planar. This nonplanar structure of the pi kappa base pair is only 0.1 kcal/mol more stable than the planar (Cs) conformation. The HF/6-31G* level gas-phase interaction energy of pi kappa (-13.5 kcal/mol) calculated by us turned out to be nearly the same as the interaction energy obtained previously for the adenine-thymine base pair (-13.4 kcal/mol) at the same computational level. The inclusion of p-polarization functions on hydrogens, electron correlation effects (MP2/6-31G** level), and the correction for the basis set superposition error (BSSE) increase this energy to -14.0 kcal/mol. PMID:7626240

  19. Complementarity of real-time neutron and synchrotron radiation structural investigations in molecular biology

    SciTech Connect

    Aksenov, V. L.; Kiselev, M. A.

    2010-12-15

    General problems of the complementarity of different physical methods and specific features of the interaction between neutron and matter and neutron diffraction with respect to the time of flight are discussed. The results of studying the kinetics of structural changes in lipid membranes under hydration and self-assembly of the lipid bilayer in the presence of a detergent are reported. The possibilities of the complementarity of neutron diffraction and X-ray synchrotron radiation and developing a free-electron laser are noted.

  20. Molecular structure and vibrational spectroscopic investigation of secnidazole using density functional theory.

    PubMed

    Mishra, Soni; Chaturvedi, Deepika; Tandon, Poonam; Gupta, V P; Ayala, A P; Honorato, S B; Siesler, H W

    2009-01-01

    Secnidazole (alpha,2-dimethyl-5-nitro-1H-imidazole-1-ethanol) is an antimicrobical drug, and it is particularly effective in the treatment of amebiasis, giardiasis, trichomoniasis, and bacterial vaginosis. Secnidazole crystallizes as a hemihydrate, which belongs to a monoclinic system having space group P2(1)/c, with a = 12.424 A, b = 12.187 A, c = 6.662 A, and beta = 100.9 degrees. The optimized geometries and total energies of different conformers of the secnidazole molecule have been determined by the method of density functional theory (DFT). For both geometry and total energy, it has been combined with B3LYP functionals having extended basis sets 4-31G, 6-31G, and 6-311++G(d,p) for each of the three stable conformers of secnidazole. Using this optimized structure, we have calculated the infrared and Raman wavenumbers and compared them with the experimental data. The calculated wavenumbers are in an excellent agreement with the experimental values. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable conformer of secnidazole. A complete assignment is provided for the observed Raman and IR spectra. PMID:19072620

  1. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue

    SciTech Connect

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  2. Molecular monolayer structures formed on vicinal surfaces as investigated by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Avila-Bront, Lynna Gabriela

    The increasing demand for efficient cancer treatment inspired the researchers for new investigations about an alternative treatment of cancer. Microwave ablation is the newest ablation technique to cure cancer. This method is minimally noninvasive and inexpensive compared to the other methods. However, current microwave ablation systems suffer due to narrow band nature of the antenna (dipole or slot) placed at the tip of the probe. Therefore, this study developed an ultra-wide band ablation probe that operates from 300 MHz to 10 GHz. For this purpose, a small wide band antenna is designed to place at the tip of the probe and fabricated. These probes are tested at ISM frequencies (2.4 GHz and 5.8 GHz) in skin mimicking gels and pig liver. Microwave ablation probe design, simulation results, and experiment results are provided in this thesis.

  3. Molecular structure, intramolecular hydrogen bonding and vibrational spectral investigation of 2-fluoro benzamide - A DFT approach

    NASA Astrophysics Data System (ADS)

    Krishnakumar, V.; Murugeswari, K.; Surumbarkuzhali, N.

    2013-10-01

    The FTIR and FT-Raman spectra of 2-fluoro benzamide (2FBA) have been recorded in the region 4000-400 and 4000-100 cm-1, respectively. The structural analysis, hydrogen bonding, optimized geometry, frequency and intensity of the vibrational bands of 2FBA were obtained by the density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G** basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The 13C NMR spectra have been recorded and 13C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method and their respective linear correlations were obtained. The electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The change in electron density (ED) in the σ* antibonding orbitals and stabilization energies E(2) have been calculated by natural bond (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interactions.

  4. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities

    NASA Astrophysics Data System (ADS)

    Belal, Arafa A. M.; Zayed, M. A.; El-Desawy, M.; Rakha, Sh. M. A. H.

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and 1H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE∗, ΔH∗, ΔS∗ and ΔG∗ were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.

  5. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities.

    PubMed

    Belal, Arafa A M; Zayed, M A; El-Desawy, M; Rakha, Sh M A H

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and (1)H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential. PMID:25437844

  6. Structures, molecular orbitals and UV-vis spectra investigations on Br2C6H4: a computational study.

    PubMed

    Wang, Tsang-Hsiu; Hsu, Chen-Shuo; Huang, Wen-Lin; Lo, Yih-Hsing

    2013-11-01

    The dibromobenzenes (1,2-, 1,3- and 1,4-Br2C6H4) have been studied by theoretical methods. The structures of these species are optimized and the structural characteristics are determined by density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2) levels. The geometrical structures of Br2C6H4 show a little distortion of benzene ring due to the substitution of highly electronegativity of bromine atoms. The electronegativity of bromine atoms in 1,4-Br2C6H4 is predicted to be more negative than 1,2- and 1,3-Br2C6H4. In addition, dipole moment and frontier molecular orbitals (FMOs) of these Br2C6H4 are performed as well. The 1,4-Br2C6H4 is slightly more reactive than 1,2- and 1,3-Br2C6H4 because of its small HOMO-LUMO energy gap. The simulated UV-vis spectra are investigated by time-dependent density functional theory (TD-DFT) approach, which are in excellent agreement with the available experimental value. Our calculations show that a few of absorption features are between 140nm and 250nm, which is in ultraviolet C range, and the red shift of 1,3- and 1,4-Br2C6H4 are predicted. Moreover, the UV absorption features of these Br2C6H4 in water or methanol are predicted to be more intense than in gas phase due to solvent effect. PMID:23892349

  7. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

    PubMed

    Kim, Bitnara; Woo, Sohee; Park, Young-Soo; Hwang, Euijin; Moon, Myeong Hee

    2015-02-01

    This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure. PMID:25542570

  8. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  9. An investigation of G-quadruplex structural polymorphism in the human telomere using a combined approach of hydrodynamic bead modeling and molecular dynamics simulation.

    PubMed

    Le, Huy T; Dean, William L; Buscaglia, Robert; Chaires, Jonathan B; Trent, John O

    2014-05-22

    Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348

  10. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  11. Investigation of structural and dynamical properties of hafnium(IV) ion in liquid ammonia: An ab initio QM/MM molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Suwardi; Pranowo, Harno Dwi; Armunanto, Ria

    2015-09-01

    The structure and dynamics of Hf4+ ion in liquid ammonia have been investigated by an ab initio quantum mechanics molecular mechanics (QM/MM) molecular dynamics simulation. The structural data was obtained in terms of radial distribution, coordination number and angular distribution, and then the dynamics in mean ligand residence time. The Hf4+ ion is coordinated by five ammonia molecules in the first solvation shell showing a distorted square pyramidal structure with an average Hf4+-N distance of 2.38 Å. No ammonia ligand was observed for exchange processes between the first and second shells.

  12. Molecular structure and conformational composition of 1,1-dichlorobutane: a gas-phase electron diffraction and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar

    1997-09-01

    Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å, = 1.106(6) Å, ∠C 1C 2C 3 = 114.4(13)°, ∠C 2C 3C 4 = 112.5(13)°, ∠CCCl 6 = 110.4(7)°, ∠CCCl 7 = 111.9(7)°, <∠CCH> = 108.9(47)°. Only average values for r(CC), r(CCl), r(CH), ∠CCC, ∠CCX and ∠CCH were determined in the least-square refinements; the differences between the values for these parameters in the same conformer and between the different conformers were kept constant at the values obtained from the ab initio molecular orbital calculations.

  13. A Combination of Hand-Held Models and Computer Imaging Programs Helps Students Answer Oral Questions about Molecular Structure and Function: A Controlled Investigation of Student Learning

    ERIC Educational Resources Information Center

    Harris, Michelle A.; Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Neto, Elias Chaibub; Kallio, Julie

    2009-01-01

    We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging…

  14. Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Investigation

    SciTech Connect

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.; Bowers, Geoffrey M.

    2012-05-22

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}O content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Atomic structures on a GaAs(001) surface grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bakhtizin, Raouf Z.; Hashizume, T.; Xue, Qi-Kun; Sakurai, Toshio

    1997-11-01

    A unique apparatus for in-situ atomic-resolution study of solid state structures grown by molecular beam epitaxy (MBE) is developed, in which a scanning tunneling microscope (STM) is combined with an MBE chamber within the same vacuum system. The utility of the apparatus is demonstrated by examining atomic structures on a molecular-beam-epitaxial GaAs(001) surface over a wide range of [As]/[Ga] ratios. By varying the As surface coverage, the 2×4 - α, β, γ and c(4×4) phases are examined in detail. High-resolution STM images indicate that 2×4 - α, β, and γ phases in the outermost surface layer have essentially the same unit cell consisting of two As dimers and two As dimer vacancies. Using the STM images, reflection high-energy electron diffraction (RHEED) patterns and dynamical RHEED calculations, the existing structural models for the 2×4 phases are analysed and a new model of the As-rich GaAs(001) surface is proposed, found to be consistent with most of the previous observations.

  16. INVESTIGATION OF MOLECULAR CLOUD STRUCTURE AROUND INFRARED BUBBLES: CARMA OBSERVATIONS OF N14, N22, AND N74

    SciTech Connect

    Sherman, Reid A.

    2012-11-20

    We present CARMA observations in 3.3 mm continuum and several molecular lines of the surroundings of N14, N22, and N74, three infrared bubbles from the GLIMPSE catalog. We have discovered 28 compact continuum sources and confirmed their associations with the bubbles using velocity information from HCO{sup +} and HCN. We have also mapped small-scale structures of N{sub 2}H{sup +} emission in the vicinity of the bubbles. By combining our data with survey data from GLIMPSE, MIPSGAL, BGPS, and MAGPIS, we establish about half of our continuum sources as star-forming cores. We also use survey data with the velocity information from our molecular line observations to describe the morphology of the bubbles and the nature of the fragmentation. We conclude from the properties of the continuum sources that N74 likely is at the near kinematic distance, which was previously unconfirmed. We also present tentative evidence of molecular clouds being more fragmented on bubble rims compared to dark clouds, suggesting that triggered star formation may occur, though our findings do not conform to a classic collect-and-collapse model.

  17. Structural investigations of E. Coli dihydrolipoamide dehydrogenase in solution: Small-angle X-ray scattering and molecular docking

    NASA Astrophysics Data System (ADS)

    Dadinova, L. A.; Rodina, E. V.; Vorobyeva, N. N.; Kurilova, S. A.; Nazarova, T. I.; Shtykova, E. V.

    2016-05-01

    Dihydrolipoamide dehydrogenase from Escherichia coli (LpD) is a bacterial enzyme that is involved in the central metabolism and shared in common between the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes. In the crystal structure, E. coli LpD is known to exist as a dimer. The present work is focused on analyzing the solution structure of LpD by small-angle X-ray scattering, molecular docking, and analytical ultracentrifugation. It was shown that in solution LpD exists as an equilibrium mixture of a dimer and a tetramer. The presence of oligomeric forms is determined by the multifunctionality of LpD in the cell, in particular, the required stoichiometry in the complexes.

  18. Validity assessment of the detection method of maize event Bt10 through investigation of its molecular structure.

    PubMed

    Milcamps, Anne; Rabe, Scott; Cade, Rebecca; De Framond, Anic J; Henriksson, Peter; Kramer, Vance; Lisboa, Duarte; Pastor-Benito, Susana; Willits, Michael G; Lawrence, David; Van den Eede, Guy

    2009-04-22

    In March 2005, U.S. authorities informed the European Commission of the inadvertent release of unauthorized maize GM event Bt10 in their market and subsequently the grain channel. In the United States measures were taken to eliminate Bt10 from seed and grain supplies; in the European Union an embargo for maize gluten and brewer's grain import was implemented unless certified of Bt10 absence with a Bt10-specific PCR detection method. With the aim of assessing the validity of the Bt10 detection method, an in-depth analysis of the molecular organization of the genetic modification of this event was carried out by both the company Syngenta, who produced the event, and the European Commission Joint Research Centre, who validated the detection method. Using a variety of molecular analytical tools, both organizations found the genetic modification of event Bt10 to be very complex in structure, with rearrangements, inversions, and multiple copies of the structural elements (cry1Ab, pat, and the amp gene), interspersed with small genomic maize fragments. Southern blot analyses demonstrated that all Bt10 elements were found tightly linked on one large fragment, including the region that would generate the event-specific PCR amplicon of the Bt10 detection method. This study proposes a hypothetical map of the insert of event Bt10 and concludes that the validated detection method for event Bt10 is fit for its purpose. PMID:19368351

  19. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1-Spinophilin-Inhibitor 2 Heterotrimeric Complex

    SciTech Connect

    Dancheck, B.; Allaire, M.; Ragusa, M.J.; Nairn, A.C.; Page, R.; Peti, W.

    2011-01-06

    Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.

  20. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1:Spinophilin:Inhibitor-2 Heterotrimeric Complex

    PubMed Central

    Dancheck, Barbara; Ragusa, Michael J.; Allaire, Marc; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang

    2011-01-01

    Regulation of the major ser/thr phosphatase Protein Phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes, and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry and small angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and Inhibitor-2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1:spinophilin:I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1:spinophilin and PP1:I2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1:I2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multi-functional PP1 holoenzymes. PMID:21218781

  1. A nuclear Overhauser effect investigation of the molecular and electronic structure of the heme crevice in lactoperoxidase

    SciTech Connect

    Thanabal, V.; La Mar, G.N. )

    1989-08-22

    The proton homonuclear nuclear Overhauser effect, NOE, in conjunction with paramagnetic-induced dipolar relaxation, is utilized to assign resonances and to probe the molecular and electronic structures of the heme cavity in the low-spin cyanide complex of resting-state bovine lactoperoxidase, LPO-CN. Predominantly primary NOEs were detected in spite of the large molecular weight of the enzyme, which demonstrates again the advantage of paramagnetism suppressing spin diffusion in large proteins. Both of the nonlabile ring protons of a coordinated histidine are located at resonance positions consistent with a deprotonated imidazole. Several methylene proton pairs are identified, of which the most strongly hyperfine-shifted pair is assigned to the unusual chemically functionalized 8-(mercaptomethylene) group of the prosthetic group. The large 8-(mercaptomethylene) proton contact shifts relative to that of the only resolved heme methyl signal are rationalized by the additive perturbations on the rhombic asymmetry of the functionalization of the 8-position and the alignment of the axial histidyl imidazole projection along a vector passing through pyrrole A and C of the prosthetic group. Such a stereochemistry is consistent with the resolution of only a single heme methyl group, 3-CH{sub 3}, as observed. A pair of hyperfine-shifted methylene protons, as well as a low-field hyperfine-shifted labile proton signal, exhibit dipolar connectivities similar to those previously reported for the distal arginine and histidine, respectively, of horseradish peroxidase suggesting that these catalytically relevant residues may also exist in LPO.

  2. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. PMID:21931906

  3. Molecular Dynamics Investigations of the Local Structural Characteristics of DNA Oligonucleotides: Studies of Helical Axis Deformations, Conformational Sequence Dependence and Modified Nucleoside Perturbations.

    NASA Astrophysics Data System (ADS)

    Louise-May, Shirley

    The present DNA studies investigate the local structure of DNA oligonucleotides in order to characterize helical axis deformations, sequence dependent fine structure and modified nucleoside perturbations of selected oligonucleotide sequences. The molecular dynamics method is used to generate an ensemble of energetically feasible DNA conformations which can then be analyzed for dynamical conformational properties, some of which can be compared to experimentally derived values. A theory and graphical presentation for the analysis of helical deformations of DNA based on the configurational statistics of polymers, called "Persistence Analysis", was designed. The results of the analysis on prototype forms, static crystal structures and two solvated MD simulations of the sequence d(CGCGAATTCGCG) indicate that all of the expected features of bending can be sensitively and systematically identified by this approach. Comparison of the relative performance of three molecular dynamics potential functions commonly used for dynamical modeling of biological macromolecules; CHARMm, AMBER and GROMOS was investigated via in vacuo MD simulations on the dodecamer sequence d(CGCGAATTCGCG)_2 with respect to the conformational properties of each dynamical model and their ability to support A and B families of DNA. Vacuum molecular dynamics simulations using the CHARMm force field carried out on simple homo- and heteropolymers of DNA led to the conclusion that sequence dependent fine structure appears to be well defined for adenine-thymine rich sequences both at the base pair and base step level whereas much of the the fine structure found in cytosine -guanine rich sequences appears to be context dependent. The local conformational properties of the homopolymer poly (dA) -poly (dT) revealed one dynamical model which was found in general agreement with fiber models currently available. Investigation of the relative structural static and dynamical effect of the misincorporation of

  4. Structure investigation of codeine drug using mass spectrometry, thermal analyses and semi-emperical molecular orbital (MO) calculations

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.

    2006-05-01

    Codeine is an analgesic with uses similar to morphine, but it has a mild sedative effect. It is preferable used as phosphate form and it is often administrated by mouth with aspirin or paracetamol. Therefore, it is important to investigate its structure to know the active groups and weak bonds responsible for its medical activity. Consequently in the present work, codeine was investigated by mass spectrometry and thermal analyses (TG, DTG and DTA) and confirming by semi-empirical MO-calculation (PM3 method) in the neutral and positively charged forms of the drug. Some results of studying the d-block element complexes of codeine were used to declare the relationship between drug structure and its chemical reactivity in vitro system. The mass spectra and thermal analyses fragmentation pathways were proposed and compared to each other to select the most suitable scheme representing the correct fragmentation of this drug. From EI mass spectra, the main primary cleavage site of the charged drug molecule is that due to β-cleavage to nitrogen atom in its skeleton. It occurs in two parallel mechanisms with the same possibility, i.e. no difference in appearance activation energy between them. In the neutral drug form the primary site cleavage is that occurs in the ether ring. Thermal analyses of the neutral form of the drug revealed the high response of the drug to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 200-600 °C. The initial thermal fragments are very similar to that obtained by mass spectrometric fragmentation. Therefore, comparison between mass and thermal helps in selection of the proper pathway representing the fragmentation of this drug. This comparison successfully confirmed by MOC. These calculations give the bond order, charge distribution, heat of formation and possible hybridization of some atoms in different position of the drug skeleton. This helps the successful choice of the weakest

  5. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO and NBO analysis of 5-chloro-2-((4-chlorophenoxy)methyl)benzimidazole

    NASA Astrophysics Data System (ADS)

    Mary, Y. Shyma; Jojo, P. J.; Panicker, C. Yohannan; Van Alsenoy, Christian; Ataei, Sanaz; Yildiz, Ilkay

    2014-03-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 5-chloro-2-((4-chlorophenoxy)methyl)benzimidazole have been investigated experimentally and theoretically using Gaussian09 software package. The energy and oscillator strength calculated by time dependent density functional theory results almost compliments with experimental findings. Gauge-including atomic orbital 1H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and the infrared intensities and Raman activities are reported. Mulliken's net charges have been calculated and compared with the atomic natural charges. Fist hyperpolarizability is calculated in order to find its role in non-linear optics.

  6. Investigation of the local structure of mixtures of an ionic liquid with polar molecular species through molecular dynamics: cluster formation and angular distributions.

    PubMed

    Carrete, Jesús; Méndez-Morales, Trinidad; Cabeza, Óscar; Lynden-Bell, Ruth M; Gallego, Luis J; Varela, Luis M

    2012-05-24

    In this work, we used molecular dynamics simulations to analyze in detail the spatial distributions of the different constituents in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with three polar molecular species: water and two alcohols of different chain lengths (methanol and ethanol). In particular, we report results regarding the influence of the chosen species and its concentration on the formation of ionic and molecular clusters over the whole miscibility range, as well as on the angular distribution of polar molecules around the anion and the cation in these systems. Both analyses showed that addition of a molecular species breaks down the polar network of the pure ionic liquid in clusters whose mean size decreases progressively as more molecules are added. At very high concentrations of the molecular species, the ions are found to be isolated in mixtures with water and methanol, but they tend to form pairs in ethanol. In mixtures with water we identified large clusters that form a water network at very high water concentrations, while at low water concentrations polar molecules tend to form smaller aggregates. In contrast, in mixtures with alkanols there is no evidence of the formation of large alcohol clusters at any concentration. Spatial order in alcohol was also studied by means of the Kirkwood G factor, reaching the conclusion that the angular correlations which appear in pure alcohols due to dipole interactions are destroyed by the ionic liquid, even when present only in tiny amounts. PMID:22587330

  7. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.

    PubMed

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C(6)H(3)B(OH)(2)F(2)) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, (1)H and (13)C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm(-1)) and the FT-Raman spectrum (3500-10 cm(-1)) in the solid phase were recorded for 2,3-DFPBA. The (1)H and (13)C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. (13)C and (1)H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra. PMID:22902933

  8. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M.; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C6H3B(OH)2F2) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm-1) and the FT-Raman spectrum (3500-10 cm-1) in the solid phase were recorded for 2,3-DFPBA. The 1H and 13C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. 13C and 1H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra.

  9. Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)n clusters

    NASA Astrophysics Data System (ADS)

    K. V., Jovan Jose; Gadre, Shridhar R.

    2008-10-01

    A molecular electrostatic potential (MESP)-guided method for building metal aggregates is proposed and tested on prototype lithium (Li)n clusters from n =4 to 58. The smaller clusters are subsequently subjected to direct density functional theory based geometry optimization, while the larger ones are optimized via molecular tailoring approach (MTA). The calculations are performed using PW91-PW91 as well as B3LYP functionals, and the trends in the interaction energies are found to be similar. The MESP-guided model for building metal clusters is validated by comparing the resulting cluster geometries with the ones reported in the literature up to n =20. A comparison of the ionization potential and polarizability (up to n =22) with their experimental counterparts shows a fairly good agreement. A new MTA-based scheme for calculating the ionization potential and polarizability values of large metal clusters is proposed and tested on Li40 and Li58 clusters. Further, the existence of "magic numbered clusters" up to n =22 is justified in terms of "maximum hardness principle" as well based on molecular electron density topography and distance descriptors.

  10. Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations.

    PubMed

    Schäfer, W; Friebe, W G; Leinert, H; Mertens, A; Poll, T; von der Saal, W; Zilch, H; Nuber, B; Ziegler, M L

    1993-03-19

    The structural features of a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors (3) are presented. Comparison of the structural and electronic properties with those of TIBO (1) and Nevirapine (2) yields a common three-dimensional model. This model permits the improvement of the lead compound 3 by chemical modification (5,6). Additionally, two new types of inhibitors (4, 7) with similar biological activity can be derived from this model. The structure of the new compounds, including their absolute configuration, are determined by X-ray crystallography. PMID:7681480

  11. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers. PMID:26212016

  12. A dynamic structural model of expanded RNA CAG repeats: a refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations.

    PubMed

    Yildirim, Ilyas; Park, HaJeung; Disney, Matthew D; Schatz, George C

    2013-03-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded CAG repeats can cause Huntington's and other disease through translation of toxic proteins. Herein, a crystal structure of r[5'UUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that shows both anti-anti and syn-anti orientations for 1 × 1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using AMBER force field in explicit solvent were run for over 500 ns on the model systems r(5'GCGCAGCGC)2 (MS1) and r(5'CCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti ↔ anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, an explicit solvent MD simulation over 800 ns was run on r[5'GGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1 × 1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and to develop small molecules that target RNA dynamic ensembles. PMID:23441937

  13. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  14. Investigation of torsional potentials, molecular structure, vibrational properties, molecular characteristics and NBO analysis of some bipyridines using experimental and theoretical tools

    NASA Astrophysics Data System (ADS)

    Prashanth, J.; Reddy, B. Venkatram; Rao, G. Ramana

    2016-08-01

    The Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectra of 2,2‧-bipyridine (2BPE); 4,4‧-bipyridine (4BPE); and 2,4‧-bipyridine (24BPE) were measured in the range 4000-450 cm-1 and 4000-50 cm-1, respectively. Torsional potentials were evaluated at various angles of rotation around the C-C inter-ring bond for the three molecules in order to arrive at the molecular conformation of lowest energy. This conformation was further optimized to get ground state geometry. Vibrational frequencies along with infrared and Raman intensities were computed. In the above calculations, DFT employing B3LYP functional with 6311++G(d,p) basis set was used. The rms error between observed and calculated frequencies was 10.0, 10.9 and 10.2 cm-1 for 2BPE, 4BPE and 24BPE, respectively. A 54-parameter modified valence force field was derived by solving inverse vibrational problem using Wilson's GF matrix method. The force constants were refined using 117 experimental frequencies of the three molecules in overlay least-squares technique. The average error between observed and computed frequencies was 12.44 cm-1. PED and eigen vectors calculated in the process were used to make unambiguous vibrational assignments of all the fundamental vibrations. The values of dipole moment, polarizability and hyperpolarizability were computed to determine the NLO behaviour of these molecules. The HOMO and LUMO energies, thermodynamic parameters and molecular electrostatic surface potentials (MESP) were also evaluated. Stability of the molecules arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis.

  15. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases.

    PubMed

    Banerjee, Antara; Chakraborty, Subhadip; Chakraborty, Abhijit; Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  16. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases

    PubMed Central

    Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  17. Spectroscopic and molecular structure investigation of the phosphorus-containing G‧2 dendrimer with terminal aldehyde groups using DFT method

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2015-02-01

    The FTIR and FT Raman spectra of the second generation dendrimer G‧2 built from thiophosphoryl core with terminal aldehyde groups have been recorded. The structural optimization and normal mode analysis were performed for model compound C, consisting of thiophosphoryl core, one branch with three repeated units, and four 4-oxybenzaldehyde terminal groups on the basis of the density functional theory (DFT) at the PBE/TZ2P level. The vibrational frequencies, infrared and Raman intensities for the t,g,g- and t,-g,g-conformers of the terminal groups were calculated. The t,g,g-conformer is 2.0 kcal/mol less stable compared to t,-g,g-conformer. A reliable assignment of the fundamental bands observed in the experimental IR and Raman spectra of dendrimer was achieved. For the low generations (G‧1 to G‧3) the disk form of studied dendrimer molecules is the most probable. For higher generations, the shape of dendrimer molecules will be that of a cauliflower.

  18. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology.

    PubMed

    Soheili, Vahid; Bazzaz, Bibi Sedigheh Fazly; Abdollahpour, Nooshin; Hadizadeh, Farzin

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and a common Gram-negative bacterium in hospital-acquired infections. It causes death in many burn victims, cystic-fibrosis and neutropenic-cancer patients. It is known that P. aeruginosa biofilm maturation and production of cell-associated and extracellular virulence factors such as pyocyanin, elastase and rhamnolipids are under the control of a quorum-sensing (QS) system. Among several proteins involved in the Pseudomonas QS mechanism, LasR and PqsE play an important role in its cascade signaling system. They can cause increases in QS factors, biofilm maturation, and the production of virulence factors. Therefore, inhibition of these proteins can reduce the pathogenicity of P. aeruginosa. According to the structure of corresponding auto-inducers bound to these proteins, in silico calculations were performed with some non-steroidal anti-inflammatory drugs (NSAIDs) to estimate possible interactions and find the co-inhibitors of LasR and PqsE. The results showed that oxicams (Piroxicam and Meloxicam) can interact well with active sites of both proteins with the Ki of 119.43 nM and 4.0 μM for Meloxicam and 201.39 nM and 4.88 μM against LasR and PqsE, respectively. These findings suggested that Piroxicam and Meloxicam can be used as potential inhibitors for control of the P. aeruginosa QS signaling system and biofilm formation, and may be used in the design of multiple inhibitors. PMID:26358567

  19. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components

    NASA Astrophysics Data System (ADS)

    Mao, Jingdong; Tremblay, Luc; Gagné, Jean-Pierre

    2011-12-01

    Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OC q, O-C q-O, OCH, and OCH 3 groups, but less non-polar alkyls, NCH, and mobile CH 2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized

  20. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2016-03-01

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  1. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    PubMed

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods. PMID:27319209

  2. Pressure-induced structural changes in the network-forming isostatic glass GeSe4: An investigation by neutron diffraction and first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bouzid, Assil; Pizzey, Keiron J.; Zeidler, Anita; Ori, Guido; Boero, Mauro; Massobrio, Carlo; Klotz, Stefan; Fischer, Henry E.; Bull, Craig L.; Salmon, Philip S.

    2016-01-01

    The changes to the topological and chemical ordering in the network-forming isostatic glass GeSe4 are investigated at pressures up to ˜14.4 GPa by using a combination of neutron diffraction and first-principles molecular dynamics. The results show a network built from corner- and edge-sharing Ge(Se1 /2)4 tetrahedra, where linkages by Se2 dimers or longer Sen chains are prevalent. These linkages confer the network with a local flexibility that helps to retain the network connectivity at pressures up to ˜8 GPa, corresponding to a density increase of ˜37 % . The network reorganization at constant topology maintains a mean coordination number n ¯≃2.4 , the value expected from mean-field constraint-counting theory for a rigid stress-free network. Isostatic networks may therefore remain optimally constrained to avoid stress and retain their favorable glass-forming ability over a large density range. As the pressure is increased to around 13 GPa, corresponding to a density increase of ˜49 % , Ge(Se1 /2)4 tetrahedra remain as the predominant structural motifs, but there is an appearance of 5-fold coordinated Ge atoms and homopolar Ge-Ge bonds that accompany an increase in the fraction of 3-fold coordinated Se atoms. The band gap energy decreases with increasing pressure, and midgap states appear at pressures beyond ˜6.7 GPa. The latter originate from undercoordinated Se atoms that terminate broken Sen chains.

  3. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  4. Investigation of coal structure

    SciTech Connect

    Not Available

    1993-01-01

    The method was applied to standard polymers under the same condition above. The particle size distribution with volume diameters of polyvinylpyrrolidone (average molecular mass; 10,000) was measured at sample/solvent = 0.50 g/100 ml. This polymer readily dissolve in methanol and water, while the polymer does not dissolve in n-hexane and toluene, and toluene is a slightly better solvent than n-hexane. Figure 3 shows the particle size distributions in n-hexane (a) and toluene (b-1 and -2). The distribution in toluene changed time to time, and two representative distributions are shown. The mean volume diameters-were 14 [mu]m in n-hexane and 18 and 31 [mu]m in toluene. The particle size distribution of cross-linked polyvinylpyrrolidone was further examined in methanol and n-hexane. Figure 4 compares these distributions with scanned counts at sample/solvent = 0.50 g/100 ml. As a significant portion of particles was over 250 [mu]m with volume diameters, the distributions are presented with scanned counts. Figure 4 compared the specific swelling ratio (Q') versus sample/solvent (w/w %) in the same solvents for this sample. It is seen that methanol is a good solvent than n-hexane and swells the sample. It is also seen that the swelling is dependent on the sample concentration. Therefore, the particle size in good solvent methanol is expected to be larger due to swelling. However, the particle size was smaller in methanol than in n-hexane (Figure 4). The dependence of sample concentration on solvent swelling in methanol (Figure 5) is interpreted as follows: Polymer particles disaggregated at low sample concentration and the interparticle voidage of the swollen polymer after centrifugation changed depending upon disaggregation.

  5. Interactive Modelling of Molecular Structures

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  6. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy.

    PubMed

    Yang, Ling; Christensen, David A; McKinnon, John J; Beattie, Aaron D; Xin, Hangshu; Yu, Peiqiang

    2013-11-27

    The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); β-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of β-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix. PMID:24156528

  7. 2004 Reversible Associations in Structure & Molecular Biology

    SciTech Connect

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  8. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach.

    PubMed

    Paital, Biswaranjan; Sablok, Gaurav; Kumar, Sunil; Singh, Sanjeev Kumar; Chainy, G B N

    2016-09-01

    Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide [Formula: see text], potassium cyanide, sodium dodecyl sulfate (SDS), [Formula: see text]-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD-SDS and [Formula: see text] complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors. PMID:26286009

  9. Molecular investigations of flaxseed mucilage polysaccharides.

    PubMed

    Roulard, Romain; Petit, Emmanuel; Mesnard, François; Rhazi, Larbi

    2016-05-01

    The molecular properties of flaxseed mucilage were determined using a multi-angle laser light scattering (MALLS) detector coupled on-line to size exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4). Water and salt solution were tested as mobile phases. The SEC-MALLS method gave partial information and enabled molecular characterization of disaggregated mucilage molecules. Regardless of the eluent used, the observed Mw ranged from about 1.6 × 10(6) to more than 10 × 10(6) g/mol for mucilage polysaccharides. The AF4-MALLS system enabled a complete analysis of mucilage carbohydrate aggregates in water, in which two populations were satisfactorily separated. The molecular weight distribution (MWD) of molecules ranged from 1.5 × 10(6) to more than 4 × 10(8) g/mol. Experiments showed that the conformational structure of mucilage molecules was strongly influenced by ionic strength. Mucilage carbohydrates exhibited a spherical and compact structure in NaCl solution while they displayed a random-coil conformation in water. PMID:26851358

  10. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene.

    PubMed

    Kose, E; Atac, A; Karabacak, M; Nagabalasubramanian, P B; Asiri, A M; Periandy, S

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, (1)H and (13)C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. (13)C and (1)H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule. PMID:23978748

  11. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene

    NASA Astrophysics Data System (ADS)

    Kose, E.; Atac, A.; Karabacak, M.; Nagabalasubramanian, P. B.; Asiri, A. M.; Periandy, S.

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, 1H and 13C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. 13C and 1H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule.

  12. 8B structure in Fermionic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Henninger, K. R.; Neff, T.; Feldmeier, H.

    2015-04-01

    The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.

  13. Students' understanding of molecular structure representations

    NASA Astrophysics Data System (ADS)

    Ferk, Vesna; Vrtacnik, Margareta; Blejec, Andrej; Gril, Alenka

    2003-10-01

    The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised 'Chemical Visualisation Test' was developed and applied. The research indicates that students' appreciation of three-dimensional molecular structures differs according to the kind of representation used. The best results were achieved with the use of concrete, and pseudo-concrete types of representations (e.g. three-dimensional models, their photographs, computer-generated models). However, the use of more abstract types (e.g. schematic representations, stereochemical formula) was less effective. A correlation between students' results on the Chemical Visualisation Test and their educational level, spatial visualisation, and spatial relations skills was shown statistically, but no statistically significant gender differences were observed.

  14. Molecular structure-optical property relationships of 1,3-bis (4-methoxyphenyl) prop-2-en-1-one: A DFT and TD-DFT investigation

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Aribi, I.; Ayachi, S.; Haj Said, A.; Alimi, K.

    2015-08-01

    Some fundamental properties of the 1,3-bis (4-methoxyphenyl) prop-2-en-1-one, as functional monomer, are measured as well as calculated. The combined results are used for modeling and predicting monomer structure-property relationships. Thus, theoretical calculations based on Density Functional Theory (DFT) and its Time-Dependent counterpart (TD-DFT) are performed to evaluate the vibrational frequencies [IR and Raman], magnetic shielding for nuclear magnetic resonance [1H and 13C NMR], electronic and optical properties of the studied material, respectively. The DFT/TD-DFT at B3LYP with 6-31G(d,p), 6-31G(d) and 3-21G(d) were employed to choose appropriate basis set that provides a more accurate molecular-property description. The simulated spectra are found to agree well, in shape, position, and relative intensity of peaks, with the available experimental measurements. In addition, frontier molecular orbitals, Mullikan charge and electron spin density distributions are carried out. Our results highlight the use of predictive calculations to provide an in-depth understanding evidence of the electrochemically-initiated monomer reactivity.

  15. Investigation of the structure of ethanol-water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs.

    PubMed

    Gereben, Orsolya; Pusztai, László

    2015-02-19

    Series of molecular dynamics simulations for ethanol-water mixtures with 20-80 mol % ethanol content, pure ethanol, and water were performed. In each mixture, for ethanol the OPLS force field was used, combined with three different water force fields, the SPC/E, the TIP4P-2005, and the SWM4-DP. Water potential models were distinguished on the basis of deviations between calculated and measured total scattering X-ray structure factors aided by ethanol-water pair binding energy comparison. No single water force field could provide the best agreement with experimental data at all concentrations: at the ethanol content of 80% the SWM-DP, for 60 mol % the SWM4-DP and the TIP4P-2005, whereas for the 40 and 20 mol % mixtures TIP4P-2005 water force field provided the closest match. Coordination numbers and hydrogen bonds/molecule values were calculated, revealing that the oxygen-oxygen first coordination numbers strongly overestimate the average number of hydrogen bonds/molecule. The center-of-molecule distributions indicate that the ethanol-ethanol first coordination sphere expands with increasing water concentration while the size of the first water-water coordination sphere does not change. Various two and three-dimensional distributions were calculated that reveal the differences between simulations with different water force fields. Detailed conformational analyses of the hydrogen-bonded pairs were performed; drawings of the characteristic molecular arrangements are provided. PMID:25635651

  16. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    , provide insight into possible molecular structure details of newly formed hydrocarbon-rich interstellar dust and its transformation into aged material that becomes resident in the interstellar medium. Specifically the presence of naphthalene-like and butadiene-like conjugated structures as chromophores for the 2175 angstroms ultraviolet extinction feature is indicated.

  17. Investigating Evolutionary Questions Using Online Molecular Databases.

    ERIC Educational Resources Information Center

    Puterbaugh, Mary N.; Burleigh, J. Gordon

    2001-01-01

    Recommends using online molecular databases as teaching tools to illustrate evolutionary questions and concepts while introducing students to public molecular databases. Provides activities in which students make molecular comparisons between species. (YDS)

  18. Synthesis, characterization and quantum chemical investigation of molecular structure and vibrational spectra of 2,5-dichloro-3,6-bis-(methylamino)1,4-benzoquinone

    NASA Astrophysics Data System (ADS)

    Gautam, Bhanu Pratap Singh; Srivastava, Mayuri; Prasad, R. L.; Yadav, R. A.

    2014-08-01

    2,5-Dichloro-3,6-bis-methylamino-[1,4]benzoquinone has been synthesized by condensing methyl amine hydrochloride with chloranil in presence of condensing agent sodium acetate. FT-IR (4000-400 cm-1) and FT-Raman (4000-400 cm-1) spectral measurements of dmdb have been done. Ab initio and DFT (B3LYP/6-311+G**) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, infrared intensities and Raman activities. The optimized molecular structure of the compound is found to possess C2h point group symmetry. A detailed interpretation of the observed IR and Raman spectra of dmdb is reported on the basis of the calculated potential energy distribution. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The thermodynamic functions of the title compound have also been computed.

  19. Synthesis, molecular structure, spectral investigation on (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Asiri, A. M.; Karabacak, M.; Sakthivel, S.; Al-youbi, A. O.; Muthu, S.; Hamed, S. A.; Renuga, S.; Alagesan, T.

    2016-01-01

    In this work, an organic nonlinear optical material (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (C17H16NOBr) was synthesized by reacting 4-bromoacetophenone and N,N-dimethyl benzaldehyde in ethanol in the presence of sodium hydroxide. FT-IR and FT-Raman spectra were recorded in the region 4000-500 cm-1 and 4000-50 cm-1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with 6-311++G(d,p) basis set. The vibrational frequencies were calculated and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. 1H NMR spectrum was recorded in CDCl3 and 1H NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in water in the range of 200-800 nm and the electronic properties were calculated by time-dependent density functional theory (TD-DFT) approach. Besides, Mulliken atomic charges, molecular electrostatic potential (MEP) were performed. Nonlinear optical features and thermodynamic properties were also outlined theoretically. The geometric parameters, energies, harmonic vibrational frequencies, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. Comprehensive theoretical and experimental structural studies on the molecule were carried out by FT-IR, FT-Raman, NMR and UV spectrometry.

  20. Theoretical and experimental investigations on molecular structure of 7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Rajendran; Shankar, Ramasamy; Kaminsky, Werner; Kalaiselvi, Sivalingam; Padma, Viswanadha Vijaya; Rajendra Prasad, Karnam Jayarampillai

    2016-04-01

    7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one (3) is synthesized from 2-amino-5-chlorobenzophenone (1) and 1,2-cyclohexanedione (2) in the presence of catalyst InCl3. FT-IR, FT-Raman and FT-NMR spectra of molecule 3 have been recorded and the structure was confirmed by single crystal X-ray diffraction. CDCl3 and DMSO-d6 FT-NMR spectra and 1H and 13C NMR chemical shifts have been measured in molecule 3 and calculated at the B3LYP/6-311G (d,p) and MO6-2x/6-311G (d,p) levels of theory. Similarly calculated vibrational frequencies were found in good agreement with experimental findings. The optimized geometry of molecule 3 was compared with experimental XRD values. DFT calculations of the molecular electrostatic potential (MEP) and HOMO - LUMO frontier orbitals identified chemically active sites of molecule 3 responsible for its bioactivity. The title compound, 3 exhibits higher cytotoxicity in Human breast cancer cells (MCF-7) compared to human lung adenocarcinoma cells (A549).

  1. Molecular dynamics investigation of nanoscale cavitation dynamics

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Keblinski, Pawel

    2014-12-01

    We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

  2. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline.

    PubMed

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E

    2015-10-01

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline. PMID:25965171

  3. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline

    NASA Astrophysics Data System (ADS)

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C.; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E.

    2015-10-01

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.

  4. Development of molecular markers and preliminary investigation of the population structure and mating system in one lineage of black morel (Morchella elata) in the Pacific Northwestern USA.

    PubMed

    Pagliaccia, Deborah; Douhan, Greg W; Douhan, LeAnn; Peever, Tobin L; Carris, Lori M; Kerrigan, Julia L

    2011-01-01

    Phylogenetic analysis of LSU/ITS sequence data revealed two distinct lineages among 44 morphologically similar fruiting bodies of natural black morels (Morchella elata group) sampled at three non-burn locations in the St Joe and Kanisku National Forests in northern Idaho. Most of the sampled isolates (n = 34) represented a dominant LSU/ITS haplotype present at all three sites and identical to the Mel-12 phylogenetic lineage (GU551425) identified in a previous study. Variation at 1-3 nucleotide sites was detected among a small number of isolates (n = 6) within this well supported clade (94%). Four isolates sampled from a single location were in a well supported clade (97%) distinct from the dominant haplotypes and may represent a previously un-sampled, cryptic phylogenetic species. Species-specific SNP and SCAR markers were developed for Mel-12 lineage isolates by cloning and sequencing AFLP amplicons, and segregation of AFLP markers were studied from single ascospore isolates from individual fruiting bodies. Based on the segregation of AFLP markers within single fruiting bodies, split decomposition analyses of two SCAR markers, and population genetic analyses of SNP, SCAR, and AFLP markers, it appears that members of the Morchella sp. Mel-12 phylogenetic lineage are heterothallic and outcross in nature similar to yellow morels. This is the first set of locus-specific molecular markers that has been developed for any Morchella species, to our knowledge. These markers will prove to be valuable tools to study mating system, gene flow and genetic structure of black morels at various spatial scales with field-collected fruiting bodies and eliminate the need to culture samples in vitro. PMID:21642339

  5. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-01

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion-1 and anion-2 conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1sbnd C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.

  6. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  7. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  8. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities

    NASA Astrophysics Data System (ADS)

    Zayed, Ehab M.; Zayed, M. A.; El-Desawy, M.

    2015-01-01

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2‧-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C18H20N6O2S2 of mole mass = 416.520, and IUPAC name ((N,N‧Z,N,N‧E)-N,N‧-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C20H16N4O2S of mole mass = 376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and 1H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ΔE*, ΔH*, ΔS* and ΔG* were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential.

  9. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities.

    PubMed

    Zayed, Ehab M; Zayed, M A; El-Desawy, M

    2015-01-01

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C₁₈H₂₀N₆O₂S₂ of mole mass=416.520, and IUPAC name ((N,N'Z,N,N'E)-N,N'-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C₂₀H₁₆N₄O₂S of mole mass=376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and (1)H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ΔE(*), ΔH(*), ΔS(*) and ΔG(*) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential. PMID:25016203

  10. Investigation of glassy state molecular motions in thermoset polymers

    NASA Astrophysics Data System (ADS)

    Tu, Jianwei

    This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks. The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H NMR spectroscopy, which offers unrivaled power to monitor site-specific molecular motions. Three distinctive molecular groups on each isomeric network, i.e., the phenylene rings in the bisphenol A structure (BPA), the phenylene rings in the diaminodiphenylsulfone structure (DDS), and the hydroxypropoyl ether group (HPE) have been selectively deuterated for a comprehensive study of the structure-dynamics- property relationships in thermoset epoxies. Quadrupolar echo experiments and line shape simulations were employed as the main research approach to gain both qualitative and quantitative motional information of the epoxy networks in the glassy state. Quantitative information on the geometry and rate of the molecular motions allows the elucidation of the relationship between molecular motions and macro physical properties and the role of these motions in the mechanical relaxation. Specifically, it is revealed that both the BPA and HPE moieties in the isomeric networks have almost identical behaviors in the deep glassy state, which indicates that the molecular motions in the glassy state are localized, and the correlation length of the motions does not exceed the length of the DGEBA repeat unit. BPA ring motions contribute

  11. Ab initio investigation of the molecular structure of methyl methoxymethyl phosphonate, a promising nuclease-resistant alternative of the phosphodiester linkage.

    PubMed

    Strajbl, M; Florian, J

    1996-02-01

    Conformational flexibility of the methyl methoxymethyl phosphonate anion (CH3-O-PO2-CH2-O-CH3)-, a nuclease resistant alternative to the phosphodiester linkage in DNA, have been investigated by ab initio quantum mechanical calculations. The potential of backbone torsional degrees of freedom of methyl methoxymethyl phosphonate anion (MMP) was determined at the Hartree-Fock (HF) 3-21G* level using the adiabatic mapping technique. Energies, geometries, and effective atomic charges of different conformers were calculated at HF/6-31G* and MP2/6-31G* levels of theory. These were compared to the results obtained for dimethyl phosphate calculated at the same level. The impact on DNA structure from inserting a methylene group between phosphorus and oxygen of the nucleoside sugar moiety was examined via distance and angle-constrained geometry optimizations. Due to its high flexibility, MMP has been shown to be compatible with both A and B forms of DNA. PMID:8906889

  12. Break-junctions for investigating transport at the molecular scale

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Lörtscher, Emanuel

    2014-11-01

    Break-junctions (BJs) enable a pair of atomic-sized electrodes to be created and the relative position between them to be controlled with sub-nanometer accuracy by mechanical means—a level of microscopic control that is not yet achievable by top-down fabrication. Locally, a BJ consists of a single-atom contact, an arrangement that is ideal not only to study various types of quantum point contacts, but also to investigate transport through an individual molecule that can bridge such a junction. In this topical review, we will provide a broad overview on the field of single-molecule electronics, in which BJs serve as the main tool of investigation. To correlate the molecular structure and transport properties to gain a fundamental understanding of the underlying transport mechanisms at the molecular scale, basic experiments that systematically cover all aspects of transport by rational chemical design and tailored experiments are needed. The variety of fascinating transport mechanisms and intrinsic molecular functionalities discovered in the past range from nonlinear transport over conductance switching to quantum interference effects observable even at room temperature. Beside discussing these results, we also look at novel directions and the most recent advances in molecular electronics investigating simultaneously electronic transport and also the mechanical and thermal properties of single-molecule junctions as well as the interaction between molecules and light. Finally, we will describe the requirements for a stepwise transition from fundamental BJ experiments towards technology-relevant architectures for future nanoelectronics applications based on ultimately-scaled molecular building blocks.

  13. Algorithmic dimensionality reduction for molecular structure analysis

    PubMed Central

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062

  14. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  15. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okulič-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  16. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  17. (Structural investigation of curium bismuthide)

    SciTech Connect

    Haire, R.G.

    1990-10-12

    The primary objective of the collaborative studies with EITU was to study curium bismuthide using energy dispersive X-ray diffraction to monitor its structure as a function of pressure. This objective was accomplished and the material was investigated up to 0.48 megabars of pressure. These studies were a continuation of established and productive collaborations between ORNL and EITU. The study of this curium compound is significant in that it is the first 5f-element bismuthide to be studied under pressure. Bismuth has the highest Z and the largest radius of the pnictogen group of elements (important for Hill Plot assessments) and has the greatest potential to form f-p type bonding with actinides under pressure. From a preliminary assessment of our experimental data it has been determined that two structural transitions occurred in the curium bismuthide sample as a result of the applied pressure.

  18. The Molecular Structure of Penicillin

    NASA Astrophysics Data System (ADS)

    Bentley, Ronald

    2004-10-01

    The chemical structure of penicillin was determined between 1942 and 1945 under conditions of secrecy established by the U.S. and U.K. governments. The evidence was not published in the open literature but as a monograph. This complex volume does not present a structure proof that can be readily comprehended by a student. In this article, a basic structural proof for the penicillin molecule is provided, emphasizing the chemical work. The stereochemistry of penicillin is also described, and various rearrangements are considered on the basis of the accepted β-lactam structure.

  19. Adaptive modelling of structured molecular representations for toxicity prediction

    NASA Astrophysics Data System (ADS)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria

    2012-12-01

    We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.

  20. Molecular Contamination Investigation Facility (MCIF) Capabilities

    NASA Technical Reports Server (NTRS)

    Soules, David M.

    2013-01-01

    This facility was used to guide the development of ASTM E 1559 center dot Multiple Quartz Crystal Microbalances (QCMs), large sample and spectral effects capability center dot Several instrumented, high vacuum chamber systems are used to evaluate the molecular outgassing characteristics of materials, flight components and other sensitive surfaces. Test materials for spacecraft/instrument selection center.Test flight components for acceptable molecular outgas levels center dot Determine time/temperature vacuum bake-out requirements center. Data used to set limits for use of materials and specific components center. Provide Input Data to Contamination Transport Models -Applied to numerous flight projects over the past 20 years.

  1. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities

    PubMed Central

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M. Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.

    2016-01-01

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity PMID:27367666

  2. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities.

    PubMed

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2016-01-01

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity. PMID:27367666

  3. The Molecular Structure of Penicillin

    ERIC Educational Resources Information Center

    Bentley, Ronald

    2004-01-01

    Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.

  4. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  5. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  6. Investigation of superlattice device structures

    NASA Technical Reports Server (NTRS)

    Gergis, I. S.; Manasevit, H. M.; Lin, A. L.; Jones, A. B.

    1985-01-01

    This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film

  7. Investigation of the molecular structure of radical cation of s-trioxane: quantum chemical calculations and low-temperature EPR results

    NASA Astrophysics Data System (ADS)

    Janovský, I.; Naumov, S.; Knolle, W.; Mehnert, R.

    2003-06-01

    s-Trioxane radical cation was radiolytically generated in freon matrix and the changes of the EPR spectra with temperature, arising from conformational interconversion involving ring, were observed. The equilibration, leading to six equivalent protons (hfs splitting constant 5.9 mT) characteristic of the average planar geometry of the radical cation, occurs at ˜120 K in CF 3CCl 3. Supplementary experiments with 1,3-dioxane, which forms a radical cation with a similar electronic structure, were also performed. DFT quantum chemical calculations were used to support the experimental results.

  8. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue. Progress report, April 1, 1987--July 31, 1989

    SciTech Connect

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  9. Structures in Molecular Clouds: Modeling

    SciTech Connect

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  10. On the emergence of molecular structure

    SciTech Connect

    Matyus, Edit; Reiher, Markus; Hutter, Juerg; Mueller-Herold, Ulrich

    2011-05-15

    The structure of (a{sup {+-}},a{sup {+-}},b{sup {+-}})-type Coulombic systems is characterized by the effective ground-state density of the a-type particles, computed via nonrelativistic quantum mechanics without introduction of the Born-Oppenheimer approximation. A structural transition is observed when varying the relative mass of the a- and b-type particles, e.g., between atomic H{sup -} and molecular H{sub 2}{sup +}. The particle-density profile indicates a molecular-type behavior for the positronium ion, Ps{sup -}.

  11. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  12. Molecular structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione. An electron-diffraction investigation augmented by quantum mechanical and normal coordinate calculations.

    PubMed

    Costello, Luke L; Hedberg, Lise; Hedberg, Kenneth

    2015-03-01

    The structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione in the vapor at a temperature of 185 °C have been measured by gas-phase electron diffraction. The molecule exists in two forms, one of symmetry C2v with the methyl groups trans to the double bond, and one of Cs symmetry with a methyl group cis and the other trans to this bond (these forms hereafter designated as trans and cis). The molar ratio trans/cis is 68/32 with a 2σ uncertainty of about 24. Many of the parameter values for the two forms are very nearly alike and could not be measured experimentally. With the adoption of parameter differences calculated at the B3LYP/cc-pVTZ level, the following bond distances (r(g)/Å) and bond angles (∠/deg) with estimated 2σ uncertainties were obtained for trans/cis: C1═C2 = 1.381(9)/1.381, C1-C4 = 1.493(11)/1.495, C3-C4 = 1.543(20)/1.545, C═O = 1.203(4)/⟨1.200⟩, C1-O = 1.316(6)/⟨1.320⟩, O-CH3 = 1.444(9)/⟨1.443⟩, C═C-C3 = 93.1(5)/⟨93.1⟩, C3-C4═O = 136.7(29)/⟨136.9⟩, C═C-O = 131.0(23)/137.5, and 131.8, C-O-C = 117.2(12)/118.2 and 116.9; the individual angle values for the cis form listed as averages differ very little. The bond distances and bond angles are in excellent qualitative agreement with prediction based on conventional ideas about the effects of conjugation and hybridization, and their relative values agree very well with predictions from quantum mechanical calculations. PMID:25158151

  13. How We Teach Molecular Structure to Freshmen.

    ERIC Educational Resources Information Center

    Hurst, Michael O.

    2002-01-01

    Currently molecular structure is taught in general chemistry using three theories, this being based more on historical development rather than logical pedagogy. Electronegativity is taught with a confusing mixture of definitions that do not correspond to modern practice. Valence bond theory and VSEPR are used together in a way that often confuses…

  14. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  15. Molecular Structure of Human-Liver Glycogen

    PubMed Central

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  16. Structure investigations on oxygen fluorides.

    PubMed

    Marx, Rupert; Seppelt, Konrad

    2015-12-01

    The crystal structure of O2F2 is obtained at -180 °C. In the solid state the molecule has the typical hydrogen peroxide structure that has been established long ago by electron diffraction and microwave spectroscopy. OF2 melts at -223.8 °C, so its structure is determined by powder X-ray data. The structure differs from the solid state structures of ozone and Br2O. O2F in its dissolved form as O2(+) HnFn+1(-) oxidizes palladium to the four valence state, as found some time ago. The first product formed at low temperatures is (O2(+)H3Pd2F12(-))n. PMID:26351980

  17. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  18. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  19. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  20. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  1. Structural investigation of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Lo Celso, F.; Triolo, A.; Negroni, F.; Hainbuchner, M.; Baron, M.; Strunz, P.; Rauch, H.; Triolo, R.

    Ultra small (USANS) and small angle neutron scattering (SANS) techniques were employed to study an elastomer styrene-butadiene, where two kinds of silica fillers have been added in different amounts. Small silica-particle fillers are expected to modify morphological and mechanical properties when dispersed in the copolymer matrix. The USANS and SANS techniques can span a wide range of momentum transfer, investigating morphological properties of the filled elastomer over a number of decades in length scale. Surface and mass fractal behavior has been observed over different length scales.

  2. Investigation of a novel molecular descriptor for the lead optimization of 4-aminoquinazolines as vascular endothelial growth factor receptor-2 inhibitors: application for quantitative structure-activity relationship analysis in lead optimization.

    PubMed

    Kawakami, Joel K; Martinez, Yannica; Sasaki, Brandi; Harris, Melissa; Kurata, Wendy E; Lau, Alan F

    2011-03-01

    We investigated the use of infrared vibrational frequency of ligands as a potential novel molecular descriptor in three different molecular target and chemical series. The vibrational energy of a ligand was approximated from the sum of infrared (IR) absorptions of each functional group within a molecule and normalized by its molecular weight (MDIR). Calculations were performed on a set of 4-aminoquinazolines with similar docking scores for the VEGFR2/KDR receptor. 4-Aminoquinazolines with MDIR values ranging 192-196 provided compounds with KDR inhibitory activity. The correlation of KDR inhibitory activity was similarly observed in a separate chemical series, the pyrazolo[1,5-a]pyrimidines. Initial exploration of this molecular descriptor supports a tool for rapid lead optimization in the 4-aminoquinazoline chemical series and a potential method for scaffold hopping in pursuit of new inhibitors. PMID:21306896

  3. Investigation of a novel molecular descriptor for the lead optimization of 4-aminoquinazolines as vascular endothelial growth factor receptor – 2 inhibitors: Application for quantitative structure activity relationship analysis in lead optimization

    PubMed Central

    Kawakami, Joel K.; Martinez, Yannica; Sasaki, Brandi; Harris, Melissa; Kurata, Wendy E.; Lau, Alan F.

    2013-01-01

    We investigated the use of infrared vibrational frequency of ligands as a potential novel molecular descriptor in three different molecular target and chemical series. The vibrational energy of a ligand was approximated from the sum of infrared (IR) absorptions of each functional group within a molecule and normalized by its molecular weight (MDIR). Calculations were performed on a set of 4-aminoquinazolines with similar docking scores for the VEGFR2/KDR receptor. 4-Aminoquinazolines with MDIR values ranging 192–196 provided compounds with KDR inhibitory activity. The correlation of KDR inhibitory activity was similarly observed in a separate chemical series, the pyrazolo[1,5-a]pyrimidines. Initial exploration of this molecular descriptor supports a tool for rapid lead optimization in the 4-aminoquinazoline chemical series and a potential method for scaffold hopping in pursuit of new inhibitors. PMID:21306896

  4. Thermal and molecular investigation of laser tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  5. Investigation of high hole mobility In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum well structures grown by molecular beam epitaxy

    SciTech Connect

    Wang, Juan; Xing, Jun-Liang; Xiang, Wei; Wang, Guo-Wei; Xu, Ying-Qiang; Ren, Zheng-Wei; Niu, Zhi-Chuan

    2014-02-03

    Modulation-doped In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum-well (QW) structures were grown by molecular beam epitaxy. Cross-sectional transmission electron microscopy and atomic force microscopy studies show high crystalline quality and smooth surface morphology. X-ray diffraction investigations confirm 1.94% compressive strain within In{sub 0.41}Ga{sub 0.59}Sb channel. High room temperature hole mobility with high sheet density of 1000 cm{sup 2}/Vs, 0.877 × 10{sup 12}/cm{sup 2}, and 965 cm{sup 2}/Vs, 1.112 × 10{sup 12}/cm{sup 2} were obtained with different doping concentrations. Temperature dependent Hall measurements show different scattering mechanisms on hole mobility at different temperature range. The sheet hole density keeps almost constantly from 300 K to 77 K. This study shows great potential of In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb QW for high-hole-mobility device applications.

  6. Molecular Motions in (CH3)3XCl, X = Sn and Pb. NMR Investigations and Crystal Structure Study of (CH3)3PbCl and CH3SnBr3

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Dou, Shi-Qi; Weiss, Alarich

    1991-04-01

    The molecular motion in (CH3)3XCl, X = Sn and Pb has been investigated by measurement of the second moment M2(1H) as function of temperature in the range 95 < T,/K<345. The methyl groups in both compounds rotate freely over the whole temperature range studied. In (CH3)3SnCl the C'3-rotation of (CH3)3Sn-group about the Sn CI axis sets in above 273 K. To explain the NMR and INS results, the crystal structures of (CH3)3PbCl and CH3SnBr3 were determined by single X-ray diffraction. (CH3)3PbCl crystallizes in a monoclinic space group C32-C2, a = 1276.7(3) pm, b = 982.3(3) pm, c = 547.0(2) pm, ß = 91.12(1)°; Z = 4, R = 0.035. CH3SnBr3 crystallizes in an orthorhombic space group D162h-Pnma, a = 643.0(3) pm, b= 1005.3(4) pm, c= 1148.0(4) pm; Z = 4, R =0.057

  7. The Global Coronal Structure Investigation

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).

  8. The Global Coronal Structure Investigation

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1998-02-01

    During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).

  9. Explorations of molecular structure-property relationships.

    PubMed

    Seybold, P G

    1999-01-01

    The problem of the relationship between the structure of a molecule and its physical, chemical, and biological properties is one of the most fundamental in chemistry. Three molecular structure-property studies are discussed as illustrations of different approaches to this problem. In the first study the carcinogenic activities of polycyclic aromatic hydrocarbons and their derivatives are examined. Molecular orbital calculations of the presumptive activation steps and species for these compounds (based on the "bay region" theory of activation) are seen to yield a surprisingly good guide to the observed carcinogenic activities. Both activation and deactivation steps are considered. The second study reviews structure-property work on the tissue solubilities of halogenated hydrocarbons. Relatively simple structural descriptors give a good account of the solubilities of these compounds in blood, muscle, fat, and liver tissue. With the aid of principal components analysis it is shown that there are two dominant dimensions to this problem, which can be interpreted in terms of solubilities of the compounds in lipid and saline environments. The final study, which examines the boiling points of aliphatic alcohols, illustrates the value of using more than one descriptor set. The (perhaps surprising) conclusion is that a theoretical model can sometimes be more accurate than the data upon which it is based. Moreover, two models are better than one. PMID:10491848

  10. On calculating the equilibrium structure of molecular crystals.

    SciTech Connect

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.

  11. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, John; Langer, William D.; Stark, Antony A.; Wilson, Robert W.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed.

  12. Filamentary structure in the Orion molecular cloud

    SciTech Connect

    Bally, J.; Stark, A.A.; Wilson, R.W.; Langer, W.D.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed. 14 references.

  13. Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae.

    PubMed

    Li, Yiming; Syvitski, Ray T; Chu, Grace C; Ikeda-Saito, Masao; Mar, Gerd N La

    2003-02-28

    The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO. PMID:12480929

  14. The Molecular Structure of cis-FONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.

  15. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  16. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio

  17. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  18. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  19. Structure investigations on assembled astaxanthin molecules

    NASA Astrophysics Data System (ADS)

    Köpsel, Christian; Möltgen, Holger; Schuch, Horst; Auweter, Helmut; Kleinermanns, Karl; Martin, Hans-Dieter; Bettermann, Hans

    2005-08-01

    The carotenoid r,r-astaxanthin (3R,3‧R-dihydroxy-4,4‧-diketo-β-carotene) forms different types of aggregates in acetone-water mixtures. H-type aggregates were found in mixtures with a high part of water (e.g. 1:9 acetone-water mixture) whereas two different types of J-aggregates were identified in mixtures with a lower part of water (3:7 acetone-water mixture). These aggregates were characterized by recording UV/vis-absorption spectra, CD-spectra and fluorescence emissions. The sizes of the molecular assemblies were determined by dynamic light scattering experiments. The hydrodynamic diameter of the assemblies amounts 40 nm in 1:9 acetone-water mixtures and exceeds up to 1 μm in 3:7 acetone-water mixtures. Scanning tunneling microscopy monitored astaxanthin aggregates on graphite surfaces. The structure of the H-aggregate was obtained by molecular modeling calculations. The structure was confirmed by calculating the electronic absorption spectrum and the CD-spectrum where the molecular modeling structure was used as input.

  20. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  1. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field. PMID:23471316

  2. Growth mechanism, electronic spectral investigation and molecular orbital studies of L-prolinium phosphate.

    PubMed

    Liu, Xiaojing; Sun, Xin; Xu, Xijin; Sun, Ping

    2015-11-01

    By using atomic force microscopy, birth and spread has proved to be the primary growth mechanism for L-prolinium phosphate (LPP). The phenomenon of newly formed islands expanding to the edge of the preceding terrace was observed. The optimized molecular structure and the molecular properties were calculated by density functional theory method. Natural bond orbital analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of LPP leading to high NLO activity. Molecular electrostatic potential, frontier molecular orbital analysis and thermodynamic properties were investigated to get a better insight of the molecular properties. Global and local reactivity descriptors were computed to predict the reactivity and reactive sites on the molecules. Non-linear optical (NLO) properties such as the total dipole moment (μ) and first order hyperopolarizability (β) were also calculated to predict NLO behavior. PMID:26067937

  3. Plant sex chromosomes: molecular structure and function.

    PubMed

    Jamilena, M; Mariotti, B; Manzano, S

    2008-01-01

    Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes

  4. The crystal and molecular structure of triethanol-ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Bracuti, A. J.

    1992-12-01

    The liquid propellant used in the 155-mm regenerative liquid propellant gun is XM46. XM46 is a solution of 60 percent hydroxyl ammonium nitrate (HAN), 20 percent triethanolammonium nitrate (TEAN), and 20 percent water. This material exhibits rather unusual liquid properties that have been attributed to its being a 'molten eutectic' of fused salts rather than a normal aqueous solution of two different nitrate salts. A hydrogen-bonded liquid structure for eutectic LP1946 was proposed previously based on the known structures of neat HAN and water and a best-guess estimate of the TEAN structure. To verify this estimate, the molecular structure of neat TEAN was recently determined. This investigation revealed TEAN has very unusual and interesting bifurcated intermolecular and trifurcated intramolecular hydrogen bonding configurations within the crystal. If these hydrogen bonding configurations are retained in aqueous solution, they could be responsible in some part to the observed unusual liquid properties of liquid propellant XM46.

  5. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione

    NASA Astrophysics Data System (ADS)

    Al-Abdullah, Ebtehal S.; Mary, Y. Sheena; Panicker, C. Yohannan; El-Brollosy, Nasser R.; El-Emam, Ali A.; Van Alsenoy, Christian; Al-Saadi, Abdulaziz A.

    2014-12-01

    The FT-IR and FT-Raman spectra of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione were recorded. In this work, experimental and theoretical study on the molecular structure and vibrational wavenumbers of the title compound are presented. The vibrational wavenumbers were obtained theoretically at the DFT level and were compared with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential and first hyperpolarizability. The calculated first hyperpolarizability of the title compound is 9.15 times that of urea and hence the title compound and the series of compounds it represents are attractive candidates for further studies in non linear optical applications. In the title compound, the HOMO of π nature is delocalized over the phenyl ring while the LUMO is located over the pyrimidine ring. The inter-molecular hydrogen bonding at O7 and N1sbnd H25 positions in each monomer give rise to a C2-symmetry dimer which is predicted to be about 10 kcal mol-1 more stable than the monomeric form.

  6. A molecular investigation of adsorption onto mineral pigments

    NASA Astrophysics Data System (ADS)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  7. FTIR investigation of non-volatile molecular nanoparticles

    NASA Astrophysics Data System (ADS)

    Signorell, R.; Kunzmann, M. K.; Suhm, M. A.

    2000-10-01

    A new approach for the spectroscopic investigation of non-volatile molecular nanoparticles with diameters in the range between 10 and 100 nm is proposed. The nanoparticles are produced in an electrospray with subsequent solvent evaporation. The number size distribution of the generated aerosol is determined with a scanning mobility particle sizer. Fourier transform infrared spectroscopy is used to study the vibrational dynamics of the nanoparticles. As an example, we have investigated sucrose nanoparticles with six different diameters between 36 and 82 nm. From a comparison with different bulk phase spectra, we conclude that sucrose aerosols are formed in a solid amorphous state.

  8. Normal coordinate analysis, molecular structure, vibrational, electronic spectra and NMR investigation of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione by ab initio HF and DFT method

    NASA Astrophysics Data System (ADS)

    Bahgat, Khaled; Fraihat, Safwan

    2015-01-01

    In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of APTT were recorded in solid phase. The UV-Vis absorption spectrum of the APTT was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

  9. COMPUTER-ASSISTED STUDIES OF MOLECULAR STRUCTURE-BIOLOGICAL ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Computer-assisted methods can be used to investigate the relationships between the molecular structures of compounds and their biological activity. A number of approaches have been reported in the literature, including correlations of activity with substituent constants, conforma...

  10. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  11. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  12. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  13. [Molecular structure of luminal diuretic receptors].

    PubMed

    Gamba, G

    1995-01-01

    Since day to day sodium and water intake is more or less constant, the output by urinary sodium excretion is the key to maintain extracellular fluid volume within physiologic ranges. To achieve this goal, the kidneys ensure that most of the large quantities of filtered sodium are reabsorbed, a function that takes place in the proximal tubule, the loop of Henle and the distal tubule, and then the kidneys adjust the small amount of sodium that is excreted in urine in such a way that sodium balance is maintained. This adjustment occurs in the collecting duct. Three groups of diuretic-sensitive sodium transport mechanisms have been identified in the apical membranes of the distal nephron based on their different sensitivities to diuretics and requirements for chloride and potassium: 1) the sulfamoylbenzoic (or bumetanide)-sensitive Na+:K+:2CI- and Na+:CI- symporters in the thick ascending loop of Henle; 2) the benzothiadiazine (or thiazide)-sensitive Na+:CI- cotransporter in the distal tubule; and 3) the amiloride-sensitive Na+ channel in the collecting tubule. The inhibition of any one of these proteins by diuretics results in increased sodium urinary excretion. Recently, the use of molecular biology techniques, specially the functional expression cloning in Xenopus laevis oocytes, has led to the identification of cDNA's encoding members of the three groups of diuretic-sensitive transport proteins. The present paper reviews the primary structure and some aspects of the relationship between structure and function of these transporters as well as the new protein families emerging from these sequences. It also discusses the future implications of these discoveries on the physiology and pathophysiology of kidney disease and sodium retaining states. PMID:7569367

  14. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, J.; Dragovan, M.; Langer, W. D.; Stark, A. A.; Wilson, R. W.

    1986-10-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern portion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  15. Molecular structure of brown-dwarf disks

    NASA Astrophysics Data System (ADS)

    Wiebe, D. S.; Semenov, D. A.; Henning, T.

    2008-11-01

    We describe typical features of the chemical composition of proto-planetary disks around brown dwarfs. We model the chemical evolution in the disks around a low-mass T Tauri star and a cooler brown dwarf over a time span of 1 Myr using a model for the physical structure of an accretion disk with a vertical temperature gradient and an extensive set of gas-phase chemical reactions. We find that the disks of T Tauri stars are, in general, hotter and denser than the disks of lower-luminosity substellar objects. In addition, they have more pronounced vertical temperature gradients. The atmospheres of the disks around low-mass stars are more strongly ionized by UV and X-ray radiation, while less dense brown-dwarf disks have higher fractional ionizations in their midplanes. Nevertheless, in both cases, most molecules are concentrated in the so-called warm molecular layer between the ionized atmosphere and cold midplane, where grains with ice mantles are abundant.

  16. Filamentary structure in the Orion molecular cloud

    NASA Technical Reports Server (NTRS)

    Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.

    1986-01-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern protion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  17. The Determination of Molecular Structure from Rotational Spectra

    DOE R&D Accomplishments Database

    Laurie, V. W.; Herschbach, D. R.

    1962-07-01

    An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

  18. Investigating the Web Structure by Isolated Stars

    NASA Astrophysics Data System (ADS)

    Uno, Yushi; Ota, Yoshinobu; Uemichi, Akio

    The link structure of the Web is generally represented by the webgraph, and it is often used for web structure mining that mainly aims to find hidden communities on the Web. In this paper, we identify a common frequent substructure and give it a formal graph definition, which we call an isolated star (i-star), and propose an efficient enumeration algorithm of i-stars. We then investigate the structure of the Web by enumerating i-stars from real web data. As a result, we observed that most i-stars correspond to index structures in single domains, while some of them are verified to be candidates of communities, which implies the validity of i-stars as useful substructure for web structure mining and link spam detecting. We also observed that the distributions of i-star sizes show power-law, which is another new evidence of the scale-freeness of the webgraph.

  19. Polymorphism and disorder in caffeine: Dielectric investigation of molecular mobilities

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Decroix, A. A.

    2014-12-01

    Using dielectric relaxation data we have characterized the molecular mobilities of caffeine both in phase I (stable and metastable) and in phase II. In phase I effects of sublimation and phase transformation kinetics were carefully considered. In plane rotational motions were followed on a wide temperature range. A noticeable antiferroelectric short range order developing at the approach of the glass-like transition is characterized. Condition for occurrence of a critical-like behaviour is discussed. At high temperature the emergence of an additional ultra slow relaxation process is highlighted. Possible molecular mechanisms are proposed for both processes. In phase II the existence of a less intense relaxation process is confirmed. Close similarity with the main process developing in phase I hints at a common origin of the dipolar motions. Careful consideration of recent structure determinations leads to suggest that this process is associated to similar molecular in plane rotations but developing at the surface of crystalline samples. Lower cooperativity at the surface is reflected in the smaller activation entropy of the relaxation.

  20. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  1. Optical properties and structural investigations of (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; Mierry, Philippe de; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-14

    We have grown (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al{sub 0.5}Ga{sub 0.5}N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  2. Optical properties and structural investigations of (11-22)-oriented GaN/Al0.5Ga0.5N quantum wells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; de Mierry, Philippe; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-01

    We have grown (11-22)-oriented GaN/Al0.5Ga0.5N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al0.5Ga0.5N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  3. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  4. Nonlinear Optical Investigations of Vibrational Relaxation in Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Decola, Philip Lawrence

    Experimental studies of four-wave mixing have been used to obtain novel spectroscopic information in molecular crystals. This work can be separated into singly resonant and multiresonant investigations. One effort was to exploit the frequency and time domain capabilities of singly resonant coherent anti-Stokes Raman spectroscopy (CARS) to study vibrational dynamics in naphthalene and benzene single crystals at liquid Helium temperatures. To a large extent vibrational energy is chemical energy, so to understand the flow of vibrational energy in molecules and molecular aggregates can enhance our understanding of chemical reaction rates and pathways. Some of the salient results are: (1) the existence of motional narrowing in molecular crystals makes it possible for lifetime (T _1) broadening to dominate the linewidth of the vibrational transition even when the intrinsic disorder width is much larger than 1/T_1, (2) relaxation in molecular crystals can be surprisingly slow, ranging from subnanosecond to nanosecond, (3) substantial mode dependent contribution to relaxation from ^{13}C impurities in benzene, and (4) evidence of mode specific energy relaxation observed in a systematic study of benzene Raman active modes. The results obtained here are applied to the problems of understanding the contributions to residual low-temperature vibron linewidths and of developing simple mechanical intuitions to explain systematically the kinetic pathways for vibrational relaxation in molecular crystals. These results are discussed in light of the current theories of excitation dynamics in condensed phases. The other area of study was multiresonant nonlinear spectroscopic investigations of mixed organic crystals. The first multiresonant CARS and its Stokes analogue (CSRS) have been obtained in a mixed crystal of pentacene in benzoic acid allowing the simultaneous observation of ground and excited state Raman spectra. These spectra contain lines that are much sharper than expected

  5. Molecular-Level Understanding of Structural Changes of Organic Crystals Induced by Macroscopic Mechanical Stimulation.

    PubMed

    Seki, Tomohiro; Ito, Hajime

    2016-03-18

    Structural changes to molecular crystals upon mechanical stimulation have attracted attention for sensing, recording, and microactuation. Comprehensive structure information is required to understand relationships between the mechanical force applied, the crystal structure, and the bulk property changes in order to develop general design concepts for mechanoresponsive compounds. Unfortunately, mechanical stimulation of organic crystals typically deteriorates their integrity, preventing detailed structure analyses by single-crystal X-ray diffraction (XRD) methods. However, in the past three years, several interesting studies have been reported in which molecular crystals retain their integrity even after a mechanically induced crystalline structure change. These materials have allowed us to investigate how macroscopic mechanical forces affect the microscopic structures of molecular crystals by single-crystal XRD analyses. This Minireview summarizes current knowledge of mechanically induced structure changes in molecular crystals, which will facilitate research in this field. PMID:26748640

  6. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  7. Fee structure for investigational drug studies.

    PubMed

    Anandan, J V; Isopi, M J; Warren, A J

    1993-11-01

    The development and implementation of a fee structure for a pharmacy-coordinated investigational drug service is described. A pilot task and time study established specific time and cost elements for investigational drug services provided by the pharmacy department. To fully assess the costs in dispensing investigational drugs, each research study that used the investigational drug service was broken down into five phases of service. Each phase was further categorized by specific tasks or activities, and a time element to perform each activity or task was determined. Since some studies could require more elaborate randomization of patients, more extensive review of protocols, or more individualized dispensing procedures than others, a range of charges was derived: $2800 for standard protocols to $5700 for more complicated studies. An institutional drug therapy newsletter describing the services and costs was distributed to all medical staff members and principal investigators. The development of a fee structure for an investigational drug service coordinated by the pharmacy department has ensured that pharmacy services are adequately reimbursed and has allowed the department to allocate appropriate personnel to provide the services. PMID:8266958

  8. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62

    PubMed Central

    Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi

    2016-01-01

    Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type. PMID:27046024

  9. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  10. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  11. Quantum Theory of Atomic and Molecular Structures and Interactions

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos

    This dissertation consists of topics in two related areas of research that together provide quantum mechanical descriptions of atomic and molecular interactions and reactions. The first is the ab initio electronic structure calculation that provides the atomic and molecular interaction potential, including the long-range potential. The second is the quantum theory of interactions that uses such potentials to understand scattering, long-range molecules, and reactions. In ab initio electronic structure calculations, we present results of dynamic polarizabilities for a variety of atoms and molecules, and the long-range dispersion coefficients for a number of atom-atom and atom-molecule cases. We also present results of a potential energy surface for the triatomic lithium-ytterbium-lithium system, aimed at understanding the related chemical reactions. In the quantum theory of interactions, we present a multichannel quantum-defect theory (MQDT) for atomic interactions in a magnetic field. This subject, which is complex especially for atoms with hyperfine structure, is essential for the understanding and the realization of control and tuning of atomic interactions by a magnetic field: a key feature that has popularized cold atom physics in its investigations of few-body and many-body quantum systems. Through the example of LiK, we show how MQDT provides a systematic and an efficient understanding of atomic interaction in a magnetic field, especially magnetic Feshbach resonances in nonzero partial waves.

  12. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization.

    PubMed

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  13. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  14. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  15. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy.

    PubMed

    Schuler, Bruno; Meyer, Gerhard; Peña, Diego; Mullins, Oliver C; Gross, Leo

    2015-08-12

    Petroleum is one of the most precious and complex molecular mixtures existing. Because of its chemical complexity, the solid component of crude oil, the asphaltenes, poses an exceptional challenge for structure analysis, with tremendous economic relevance. Here, we combine atomic-resolution imaging using atomic force microscopy and molecular orbital imaging using scanning tunnelling microscopy to study more than 100 asphaltene molecules. The complexity and range of asphaltene polycyclic aromatic hydrocarbons are established in detail. Identifying molecular structures provides a foundation to understand all aspects of petroleum science from colloidal structure and interfacial interactions to petroleum thermodynamics, enabling a first-principles approach to optimize resource utilization. Particularly, the findings contribute to a long-standing debate about asphaltene molecular architecture. Our technique constitutes a paradigm shift for the analysis of complex molecular mixtures, with possible applications in molecular electronics, organic light emitting diodes, and photovoltaic devices. PMID:26170086

  16. Ab initio investigation of benzene clusters: Molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Mahadevi, A. Subha; Rahalkar, Anuja P.; Gadre, Shridhar R.; Sastry, G. Narahari

    2010-10-01

    An exhaustive study on the clusters of benzene (Bz)n, n =2-8, at MP2/6-31++G∗∗ level of theory is reported. The relative strengths of CH-π and π-π interactions in these aggregates are examined, which eventually govern the pattern of cluster formation. A linear scaling method, viz., molecular tailoring approach (MTA), is efficiently employed for studying the energetics and growth patterns of benzene clusters consisting up to eight benzene (Bz) units. Accuracy of MTA-based calculations is appraised by performing the corresponding standard calculations wherever possible, i.e., up to tetramers. For benzene tetramers, the error introduced in energy is of the order of 0.1 mH (˜0.06 kcal/mol). Although for higher clusters the error may build up, further corrections based on many-body interaction energy analysis substantially reduce the error in the MTA-estimate. This is demonstrated for a prototypical case of benzene hexamer. A systematic way of building up a cluster of n monomers (n-mer) which employs molecular electrostatic potential of an (n -1)-mer is illustrated. The trends obtained using MTA method are essentially identical to those of the standard methods in terms of structure and energy. In summary, this study clearly brings out the possibility of effecting such large calculations, which are not possible conventionally, by the use of MTA without a significant loss of accuracy.

  17. Structural investigation of californium under pressure

    NASA Astrophysics Data System (ADS)

    Heathman, S.; Le Bihan, T.; Yagoubi, S.; Johansson, B.; Ahuja, R.

    2013-06-01

    The high-pressure structural behavior of californium has been studied experimentally and theoretically up to 100 GPa. A valence change from divalent to trivalent forms was observed under modest pressure revealing californium to be the only actinide to exhibit more than one metallic valence at near to ambient conditions as is the case for cerium in the lanthanide series. Three metallic valencies and four different crystallographic phases were observed in californium as a function of pressure. High-pressure techniques, synchrotron radiation, and ab initio electronic structure calculations of total energies were used to investigate the material and to determine the role which californium's 5f electrons play in influencing these transitions. The crystallographic structures observed are similar to those found in the preceding actinide elements, curium and americium, with the initially localized 5f states becoming completely delocalized under the influence of high pressure.

  18. A Survey of Quantitative Descriptions of Molecular Structure

    PubMed Central

    Guha, Rajarshi; Willighagen, Egon

    2013-01-01

    Numerical characterization of molecular structure is a first step in many computational analysis of chemical structure data. These numerical representations, termed descriptors, come in many forms, ranging from simple atom counts and invariants of the molecular graph to distribution of properties, such as charge, across a molecular surface. In this article we first present a broad categorization of descriptors and then describe applications and toolkits that can be employed to evaluate them. We highlight a number of issues surrounding molecular descriptor calculations such as versioning and reproducibility and describe how some toolkits have attempted to address these problems. PMID:23110530

  19. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  20. Molecular structural order and anomalies in liquid silica.

    PubMed

    Shell, M Scott; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2002-07-01

    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water. PMID:12241346

  1. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  2. Molecular structural studies of human factor VIII.

    PubMed

    McKee, P A; Andersen, J C; Switzer, M E

    1975-01-20

    Neither normal nor hemophilic factor VIII protein enters a 5% sosium dodecyl sulfate gel; on reduction, however, a single 195 000-molecular-weight peptide is observed. Hemophilic and normal factor VIII contain carbohydrate and appear identical in subunit molecular weight, electrical charge, and major antigenic determinants. Thrombin activation and inactivation of factor VIII does not detectably change the subunit molecular weight. Trypsin causes similar activity changes and obviously cleaves the factor VIII subunit. Human plasmin destroys factor VIII procoagulant activity and degrades the factor VIII subunit to 103 000-, 88 000-, and 17 000-molecular-weight peptides. Both normal and hemophilic factor VIII as well as thrombin-inactivated factor VIII support ristocetin-induced platelet aggregation. Purified factor VIII chromatographed on 4% agarose in 1.0 M sodium chloride shows no dissociation of the procoagulant activity from the void volume protein. Gel chromatography on 4% agarose in 0.25 M calcium chloride results in a procoagulant activity peak removed from the void volume protein; both peaks contain protein which does not enter a 5% SDS gel, but on reduction a 195 000-molecular-weight subunit band is observed for each. Both the void volume protein peak and the procoagulant activity peak from the 0.25 M calcium chloride-agarose gel column support ristocetin-induced platelet aggregation. After removal of calcium, a small amount of procoagulant activity is present only in the void volume peak. These data suggest that both the procoagulant and von Willebrand activities are on the same molecule. Thus our previous conclusion remains the same: human factor VIII is a large glycoprotein composed of identical 195 000-molecular-weight subunits jointed by disulfide bonds and is responsible for both antihemophilic and von Willebrand activities in human plasma. PMID:122889

  3. Molecular structures, charge distributions, and vibrational analyses of the tetracoordinate Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine investigated by density functional theory in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Bardakçı, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-07-01

    The Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine have been studied with B3LYP calculations by using def2-TZVP basis set at the metal atoms and using def2-TZVP and 6-311G+(d,p) basis sets at the remaining atoms. Both basis set combinations give analogous results, which validate the use of quickly converging 6-311G+(d,p) basis set in future studies. The molecular structures, atomic charge and spin distributions, and harmonic vibrational frequencies of the complexes have been calculated. The Zn, Cd and Hg complexes have been found to have distorted tetrahedral environments around the metal atoms whereas Cu complex has a square planar geometry. The NBO charge analysis have been found more accurate and less misleading compared with the Mulliken scheme. The present vibrational spectra calculations allow accurate assignment of the vibrational bands, which otherwise assigned tentatively in previous experimental-only studies.

  4. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  5. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

  6. Structural investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies.

    PubMed

    Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Costagli, Chiara; Galli, Alessandro; Ghelardini, Carla; Galeotti, Nicoletta; Gratteri, Paola; Sgrignani, Jacopo; Deflorian, Francesca; Moro, Stefano

    2006-10-01

    In this paper, the study of new 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione derivatives, designed as AMPA and kainate (KA) receptor antagonists, is reported. Some derivatives bear different carboxy-containing alkyl chains on the 3-hydroxy group, while various heterocyclic rings or amide moieties are present at the 6-position of other compounds. Binding data at Gly/NMDA, AMPA, and high-affinity KA receptors showed that the presence of the free 3-hydroxy group is of paramount importance for a good affinity at all three investigated receptors, while introduction of some 6-heterocyclic moieties yielded AMPA-selective antagonists. The most significant result was the finding of the 6-(2-carboxybenzoylamino)-3-hydroxy-1H-quinazolin-2,4-dione 12, which possesses good affinity for high-affinity and low-affinity KA receptors (Ki=0.62 microM and 1.6 microM, respectively), as well as good selectivity. To rationalize the trend of affinities of the reported derivatives, an intensive molecular modeling study was carried out by docking compounds to models of the Gly/NMDA, AMPA, and KA receptors. PMID:17004715

  7. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.

    PubMed

    Papaleo, Elena; Riccardi, Laura; Villa, Chiara; Fantucci, Piercarlo; De Gioia, Luca

    2006-08-01

    Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes. PMID:16920043

  8. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  9. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  10. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  11. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  12. Imaging radar investigations of the Sudbury structure

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Singhroy, V. H.; Slaney, V. R.

    1992-01-01

    This paper reports preliminary results of airborne imaging radar studies of the Sudbury structure carried out in preparation for a CCRS European Remote Sensing Satellite (ERS-1) investigation. The data used were synthetic aperture radar (SAR) C-band (5.66 cm) images acquired from about 6 km altitude in 1987. They cover the Sudbury area in both wide and narrow swath modes, with east-west flight paths and north-south illumination directions. Narrow swath resolution is 6 m in range and azimuth; wide swath resolution is 20 m in range and 10 m in azimuth. The STAR imagery has proven highly effective for field use, providing excellent rendition of topography and topographically expressed structure. Reasons for this include the illumination geometry, notably the look azimuth normal to the long axis of the Sudbury structure and Penokean fold axes, the good spatial resolution, and the short wavelength. Forested areas in the Sudbury area tend to be uniformly rough at C-band wavelength, with backscatter dominated by local incidence angle (i.e., topography). Field work using the SAR imagery has to date been concentrated in the North Range and Superior Province as far north as the Benny greenstone belt. This area was chosen for initial investigation of the original size and shape of the Sudbury structure because the effects of the Penokean Orogeny were minimal there. Field work using SAR indicates that there has been little postimpact deformation of the North Range or adjacent Superior Province rock. There appears to be no evidence for an outer ring concentric with the North Range as indicated by early Landsat imagery. The apparent ring shown by Landsat is visible on the SAR imagery as the intersection of two regional fracture patterns not related to the Sudbury structure. There is no outer ring visible southwest of the structure. This can reasonably be explained by Penokean deformation, but there is no outer ring to the northeast cutting the relatively undeformed Huronian

  13. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale

    PubMed Central

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale.

  14. Colour Chemistry, Part I, Principles, Colour, and Molecular Structure

    ERIC Educational Resources Information Center

    Hallas, G.

    1975-01-01

    Discusses various topics in color chemistry, including the electromagnetic spectrum, the absorption and reflection of light, additive and subtractive color mixing, and the molecular structure of simple colored substances. (MLH)

  15. Molecular Modeling and Experimental Investigations of Nonlinear Optical Compounds Monosubstituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Nesterov, Vladimir N.; Antipin, Mikhail Yu.; Clark, Ronald D.; Sanghadasa, Mohan; Cardelino, Beatriz H.; Moore, Craig E.; Frazier, Donald O.

    1999-01-01

    A search for potential nonlinear optical compounds was performed using the Cambridge Structure Database and molecular modeling. We investigated a series of monosubstituted derivatives of dicyanovinylbenzene, since the nonlinear optical (NLO) properties of such derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were studied earlier. The molecular geometry of these compounds was investigated with x-ray analysis and discussed along with the results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the planarity of the molecules of this series has been revealed. Two new compounds from the series studied, ortho-F and para-Cl-dicyanovinylbenzene, according to powder measurements, were found to be NLO compounds in the crystal state about 10 times more active than urea. The peculiarities of crystal structure formation in the framework of balance between van der Waals and electrostatic interactions have been discussed. The crystal shape of DIVA and two new NLO compounds have been calculated on the basis of the known crystal structure.

  16. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.

    PubMed

    Beran, Gregory J O

    2016-05-11

    Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed. PMID:27008426

  17. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  18. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level

    NASA Astrophysics Data System (ADS)

    Hu, Xinxin; Yu, Zehua; Liu, Rutao

    2013-05-01

    The toxicity of hydroxyl group of isopropanol to trypsin in aqueous solution was investigated by techniques including UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, enzyme activity assay and molecular docking technology. The results of UV-visible absorption spectroscopy and CD spectra indicate that isopropanol could change the secondary structure of trypsin by increasing the content of α-helix and decreasing the content of β-sheet. The tertiary structure of trypsin was also changed owing to the loss of environmental asymmetry of amino acid residues. Isopropanol bound into a hydrophobic cavity on the surface of trypsin by a hydrogen bond located between the hydrogen atom on the hydroxyl of isopropanol and the oxygen atoms on SER 214 and hydrophobic interaction, as the molecular docking results showed. In addition, isopropanol could affect the function of trypsin by increasing its catalytic activity.

  19. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    PubMed

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  20. Molecular dynamics investigations of PRODAN in a DLPC bilayer.

    PubMed

    Nitschke, William K; Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Stassen, Hubert

    2012-03-01

    Molecular dynamics computer simulations have been performed to identify preferred positions of the fluorescent probe PRODAN in a fully hydrated DLPC bilayer in the fluid phase. In addition to the intramolecular charge-transfer first vertical excited state, we considered different charge distributions for the electronic ground state of the PRODAN molecule by distinct atomic charge models corresponding to the probe molecule in vacuum as well as polarized in a weak and a strong dielectric solvent (cyclohexane and water). Independent on the charge distribution model of PRODAN, we observed a preferential orientation of this molecule in the bilayer with the dimethylamino group pointing toward the membrane's center and the carbonyl oxygen toward the membrane's interface. However, changing the charge distribution model of PRODAN, independent of its initial position in the equilibrated DLPC membrane, we observed different preferential positions. For the ground state representation without polarization and the in-cyclohexane polarization, the probe maintains its position close to the membrane's center. Considering the in-water polarization model, the probe approaches more of the polar headgroup region of the bilayer, with a strong structural correlation with the choline group, exposing its oxygen atom to water molecules. PRODAN's representation of the first vertical excited state with the in-water polarization also approaches the polar region of the membrane with the oxygen atom exposed to the bilayer's hydration shell. However, this model presents a stronger structural correlation with the phosphate groups than the ground state. Therefore, we conclude that the orientation of the PRODAN molecule inside the DLPC membrane is well-defined, but its position is very sensitive to the effect of the medium polarization included here by different models for the atomic charge distribution of the probe. PMID:22329741

  1. Molecular dynamics simulation investigations of atomic-scale wear

    NASA Astrophysics Data System (ADS)

    Shao, Yuchong; Falk, Michael

    2013-03-01

    Frictional running-in and material transfer in wear take place at the micro- and nano-scale but the fundamental physics remain poorly understood. Here we intend to investigate wear and running-in phenomena in silicon based materials, which are widely utilized in micro/nano electromechanical systems(MEMS/NEMS). We use an atomic force microscopy (AFM) model composed of a crystalline silicon tip and substrate coated with native oxide layers. Molecular dynamics simulation has been performed over a range of temperatures, external loads and slip rates. Results show that adhesive wear takes place across the interface in an atom-by-atom fashion which remodels the tip leading to a final steady state. We quantify the rate of material transfer as a function of the coverage of non-bridging oxygen (NBO) atoms, which has a pronounced change of the system's tribological and wear behaviors. A constitutive rate and state model is proposed to predict the evolution of frictional strength and wear. This work is supported by the National Science Foundation under Award No. 0926111.

  2. Investigation of synthetic molecular recognition for biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; McMasters, Sun; Sooter, Letha J.; Pellegrino, Paul M.

    2007-04-01

    A fundamental understanding of the factors which influence binding performance is critical to any technology or methodology relying on molecular recognition of a specific target species. For the Army, there is a growing need for a basic understanding of these interactions with traditional recognition elements (e.g., antibodies) in non-traditional environmental conditions, such as with new and emerging threats. There is a similar need for building a base of knowledge on non-traditional affinity ligands that are biomimetic or biosynthetic in nature. In this paper, specific research at the Army Research Laboratory towards the development, evaluation and use of synthetic affinity ligands for sensing applications is discussed. This includes the results of our investigations of aptamer-based affinity ligands targeting Campylobacter jejuni. Using capillary electrophoretic techniques, the relative binding affinities of the aptamer ligands towards the target pathogen as well as the degree of cross-reactivity with other food borne-pathogens (i.e., Escherichia coli O157:H7 and Salmonella typhimurium) were evaluated. Current progress towards the development of synthetic affinity ligands for sensing applications will also be discussed.

  3. Investigating molecular dynamics-guided lead optimization of EGFR inhibitors.

    PubMed

    Lavecchia, Martin J; Puig de la Bellacasa, Raimon; Borrell, José I; Cavasotto, Claudio N

    2016-02-15

    The epidermal growth factor receptor (EGFR) is part of an extended family of proteins that together control aspects of cell growth and development, and thus a validated target for drug discovery. We explore in this work the suitability of a molecular dynamics-based end-point binding free energy protocol to estimate the relative affinities of a virtual combinatorial library designed around the EGFR model inhibitor 6{1} as a tool to guide chemical synthesis toward the most promising compounds. To investigate the validity of this approach, selected analogs including some with better and worse predicted affinities relative to 6{1} were synthesized, and their biological activity determined. To understand the binding determinants of the different analogs, hydrogen bonding and van der Waals contributions, and water molecule bridging in the EGFR-analog complexes were analyzed. The experimental validation was in good qualitative agreement with our theoretical calculations, while also a 6-dibromophenyl-substituted compound with enhanced inhibitory effect on EGFR compared to the reference ligand was obtained. PMID:26810832

  4. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGESBeta

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  5. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  6. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  7. Synthesis and molecular structure of gold triarylcorroles.

    PubMed

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine; Ghosh, Abhik

    2011-12-19

    A number of third-row transition-metal corroles have remained elusive as synthetic targets until now, notably osmium, platinum, and gold corroles. Against this backdrop, we present a simple and general synthesis of β-unsubstituted gold(III) triarylcorroles and the first X-ray crystal structure of such a complex. Comparison with analogous copper and silver corrole structures, supplemented by extensive scalar-relativistic, dispersion-corrected density functional theory calculations, suggests that "inherent saddling" may occur for of all coinage metal corroles. The degree of saddling, however, varies considerably among the three metals, decreasing conspicuously along the series Cu > Ag > Au. The structural differences reflect significant differences in metal-corrole bonding, which are also reflected in the electrochemistry and electronic absorption spectra of the complexes. From Cu to Au, the electronic structure changes from noninnocent metal(II)-corrole(•2-) to relatively innocent metal(III)-corrole(3-). PMID:22111600

  8. Structure of Lambda Hypernuclei with Antisymmetrized Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Isaka, Masahiro

    2014-09-01

    In this talk, we will discuss the structure change caused by a Λ particle and structure of neutron-rich (n-rich) and sd shell Λ hypernuclei based on the antisymmetrized molecular dynamics (AMD). One of the unique and interesting aspects of hypernuclei is structure change caused by a hyperon(s) as an impurity in nuclei. In light Λ hypernuclei, experimental and theoretical studies have revealed a couple of interesting structure changes such as shrinkage of the inter-cluster distance. In n-rich and sd shell Λ hypernuclei, it is expected that the variety of structure and structure changes will appear in the low energy regions, because n-rich and sd shell nuclei have various structures. For example, the n-rich nucleus 11Be has the parity-inverted ground-state 1/2+, which is inconsistent with the ordinary shell model picture. In sd shell nuclei, it has been discussed that various deformations appear in the ground and low-lying states. For example, 24Mg is a candidate of triaxially deformed nuclei with the presence of the low-lying 2nd 2+ state. To reveal the structure of the corresponding Λ hypernuclei, we have extended the AMD model for hypernuclei (HyperAMD) and applied it to n-rich and sd shell Λ hypernuclei. The AMD model can describe various nuclear structures without assumptions on clustering and symmetry of nuclear deformations. Combined with the generator coordinate method (GCM), the HyperAMD model succeeded to describe the low-lying structure of p-sd shell Λ hypernuclei. In this study, we investigate several n-rich and sd shell Λ hypernuclei such as Λ12Be and Λ25Mg. In this talk, we will discuss the changes of the parity-inverted ground state of 11Be by adding a Λ particle. Furthermore, in Λ25Mg, we will discuss a possibility to identify the nuclear (triaxial) deformation of Mg by using Λ as a probe.

  9. Investigating Student Understanding of the Universe: Structure

    NASA Astrophysics Data System (ADS)

    Hayes, Virginia; Coble, K.; Nickerson, M.; Cochran, G.; Camarillo, C. T.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Chicago State University (CSU) offers an introductory astronomy course that services students from a variety of majors including pre-service teachers. At CSU, we have been investigating methods and tools that will improve student conceptual understanding in astronomy for this diverse group of students. We have analyzed pre-course surveys, pre-course essays, exams, and interviews in an effort to better understand the ideas and difficulties in understanding that students have in regards to the structure of the universe. Analysis of written essays has revealed that our students do have some knowledge of the objects in the universe, but interviews inform us that their understanding of the structure of the universe is superficial. This project is a part of a larger study; also see our posters on student ideas about dark matter, the age and expansion of the universe, and perceptions of astronomical sizes and distances. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  10. Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2006-02-01

    The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates. PMID:16471802

  11. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  12. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  13. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  14. Molecular gymnastics: serpin structure, folding and misfolding.

    PubMed

    Whisstock, James C; Bottomley, Stephen P

    2006-12-01

    The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding. PMID:17079131

  15. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  16. Molecular-structure variation of organic materials irradiated with atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Miyazaki, A.; Setsuhara, Y.

    2014-06-01

    The effect of atmospheric pressure He plasma on the molecular structure of polyethylene terephthalate (PET) has been investigated. The plasma composition was analyzed using optical emission spectroscopy. In addition to strong He emission lines, lines due to O and N radicals were also detected. The change in the molecular structure of the PET film surface was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. It was found that plasma irradiation led to oxidation and degradation of the surface due to chemical and physical effects of the active species. The results demonstrate the feasibility of observing the interaction of plasma with organic material on a local scale.

  17. Complementary molecular information changes our perception of food web structure

    PubMed Central

    Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas

    2014-01-01

    How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902

  18. DFT study of the effect of substitution on the molecular structure of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.

    2016-05-01

    To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.

  19. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Molecular structure-adsorption study on current textile dyes.

    PubMed

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models. PMID:25529487

  1. Electronic and molecular structure of carbon grains

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Luethi, Hans-Peter

    1990-01-01

    Clusters of carbon atoms have been studied with large-scale ab initio calculations. Planar, single-sheet graphite fragments with 6 to 54 atoms were investigated, as well as the spherical C(sub 60) Buckminsterfullerene molecule. Polycyclic aromatic hydrocarbons (PAHs) have also been considered. Thermodynamic differences between diamond- and graphite-like grains have been studied in particular. Saturation of the peripheral bonds with hydrogen is found to provide a smooth and uniform convergence of the properties with increasing cluster size. For the graphite-like clusters the convergence to bulk values is much slower than for the three-dimensional complexes.

  2. An Investigation of College Chemistry Students' Understanding of Structure-Property Relationships

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Corley, Leah M.; Underwood, Sonia M.

    2013-01-01

    The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although…

  3. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  4. Investigation of Structural Phase Transitions on Wurtzite Gallium Nitride Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Tianjiao; Chinchore, Abhijit; Liu, Yinghao; Wang, Kangkang; Lin, Wenzhi; Smith, Arthur

    2009-03-01

    Surface structures of wurtzite gallium nitride (w-GaN) have been investigated previously,[1][2] and it is well known that above 300K there exist order-disorder phase transitions. For N-polar w-GaN (000-1) at 300K, a family of surface reconstructions occurs, including 1x1, 3x3, 6x6, and c(6x12). Not much is known, however, about what happens to these structures as they are cooled below 300K. We have recently developed a new epitaxy/analysis system, including a sample stage which can be both heated and cooled. The N-polar w-GaN surfaces are prepared using rf N-plasma-assisted molecular beam epitaxy, and monitored in-situ using reflection high energy electron diffraction (RHEED). The approach is to monitor the [11-20] and [10-10] RHEED diffractions during cryogenic cooling, starting with the 1x1 or 3x3 structures. A critical issue to explore is the interrelationship between surface gallium concentration and structural deformation. This study may provide the missing link to new reconstructions of w-GaN recently observed using LT scanning tunneling microscopy.[3] This work is supported by NSF (Grant No. 0730257). [1] A. R. Smith et al., Phys. Rev. Lett. 79, 3934 (1997). [2] A. R. Smith et al., Surface Science 423, 70 (1999). [3] D. Acharya, S.-W. Hla et al., unpublished.

  5. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  6. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    SciTech Connect

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  7. Structural investigation of a new antimicrobial thiazolidine compound

    SciTech Connect

    Cozar, I. B.; Pîrnău, A.; Vedeanu, N.; Nastasă, C.

    2013-11-13

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, {sup 1}H, {sup 13}C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  8. DFT investigation on the electronic structure of Faujasite

    SciTech Connect

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-13

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  9. DFT investigation on the electronic structure of Faujasite

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-01

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  10. Structural investigation of a new antimicrobial thiazolidine compound

    NASA Astrophysics Data System (ADS)

    Cozar, I. B.; Pırnǎu, A.; Vedeanu, N.; Nastasǎ, C.

    2013-11-01

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, 1H, 13C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  11. Comprehensive Molecular Structure of the Eukaryotic Ribosome

    PubMed Central

    Taylor, Derek J.; Devkota, Batsal; Huang, Andrew D.; Topf, Maya; Narayanan, Eswar; Sali, Andrej; Harvey, Stephen C.; Frank, Joachim

    2009-01-01

    Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than bacterial ribosomes, which are implicated in extra-ribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial and novel interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2. PMID:20004163

  12. Investigation of the torsional barrier of EDOT using molecular mechanics and DFT methods.

    PubMed

    Durães, Jussara A; da Silva Filho, Demétrio A; Ceschin, Artemis M; Sales, Maria J A; Martins, João B L

    2014-08-01

    When heterocyclic monomers are polymerized by electrochemical or chemical methods, they form fully conjugated polymers which have a wide range of applications due to their outstanding electronic properties. Among this class of compounds, thiophene derivatives are widely used due to their chemical stability and synthesis flexibility. With the goal to investigate the torsion barrier of polymer chains, a few units of 3,4-ethylenedioxythiophene (EDOT) were chosen and submitted to molecular mechanics (MM), density functional theory (DFT) and coupled cluster CCSD(T) calculations. This study helps to understand the performance and transferability of force fields used in molecular mechanics and molecular dynamics simulations often used to describe structure-property relationships of those systems. Determination of inter-ring torsion angle was performed in a comparative study using both force field, DFT and CCSD(T) methods. A good agreement was noticed between MM and QC results and highlights the importance of the description of the interactions involving the oxygen atoms present in the structure of EDOT. These observations are related to the α,α-coupling that occurs between the monomer units and yields a linear polymer. DFT HOMO and LUMO orbitals were also presented. Finally, UV-vis spectra of EDOT units were obtained using several levels of theory by means of time-dependent DFT calculations (TD-DFT). PMID:25116151

  13. Synthesis, crystal structure analysis, spectral investigations, DFT computations, Biological activities and molecular docking of methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(4-fluorophenyl)prop-2-enoate, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri Velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-03-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-fluorophenyl) prop-2-enoate (MFMSF) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. The grown crystals were characterized by FTIR, 1H NMR, 13C NMR, and single crystal X-ray diffraction. In the crystal, molecules are linked by intermolecular C-H…O hydrogen bonds forming a two-dimensional supramolecular network along [110] direction. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, NLO, MEP, Mulliken, thermodynamic properties, HOMO and LUMO energy gap were theoretically predicted. The global chemical reactivity descriptors are calculated for MFMSF and used to predict their relative stability and reactivity. The antibacterial activity of the compound was also tested against various pathogens. The molecular docking studies concede that title compound may exhibit PBP-2X inhibitor activity.

  14. Structural and dipolar fluctuations in liquid water: A Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Skarmoutsos, Ioannis; Masia, Marco; Guardia, Elvira

    2016-03-01

    A Car-Parrinello molecular dynamics simulation was performed to investigate the local tetrahedral order, molecular dipole fluctuations and their interrelation with hydrogen bonding in liquid water. Water molecules were classified in three types, exhibiting low, intermediate and high tetrahedral order. Transitions from low to high tetrahedrally ordered structures take place only through transitions to the intermediate state. The molecular dipole moments depend strongly on the tetrahedral order and hydrogen bonding. The average dipole moment of water molecules with a strong tetrahedral order around them comes in excellent agreement with previous estimations of the dipole moment of ice Ih molecules.

  15. Connecting the density structure of molecular clouds and star formation.

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    2015-08-01

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds in the ISM. This density structure is essentially encapsulated in the probability distribution function of volume densities (rho-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the rho-PDF function and its evolution have remained virtually unconstrained by observations. I describe in this contribution our recent progress in attaining observational constraints for the rho-PDFs of molecular clouds. Specifically, I review our first systematic determination of the rho-PDFs in Solar neighborhood molecular clouds. I will also present new evidence of the time evolution of the projected rho-PDFs, i.e., column density PDFs. These results together enable us to build the first observationally constrained link between the evolving density structure of molecular clouds and the star formation within. Finally, I discuss our work to expand the analysis into a Galactic context and to observationally connect the physical processes acting at the scale of molecular clouds with star formation at the scale of galaxies.

  16. Determination of structure parameters in molecular tunnelling ionisation model

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Zhao, Song-Feng; Zhang, Cai-Rong; Li, Wei; Zhou, Xiao-Xin

    2014-04-01

    We extracted the accurate structure parameters in a molecular tunnelling ionisation model (the so-called MO-ADK model) for 23 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behaviour are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model. We show that the orientation-dependent ionisation rate reflects the shape of the ionising orbitals in general. The influences of the Stark shifts of the energy levels on the orientation-dependent ionisation rates of the polar molecules are studied. We also examine the angle-dependent ionisation rates (or probabilities) based on the MO-ADK model by comparing with the molecular strong-field approximation calculations and with recent experimental measurements.

  17. Molecular dynamics simulation study on the molecular structures of the amylin fibril models.

    PubMed

    Xu, Weixin; Su, Haibin; Zhang, John Z H; Mu, Yuguang

    2012-12-01

    The structural characterization of amyloid fibers is one of the most investigated areas in structural biology. Recently, protofibril models for amylin, i.e., the 37-residue human islet amyloid polypeptide or hIAPP were suggested by two groups based on NMR (Biochemistry 2007, 46, 13505-13522) and X-ray (Protein Sci. 2008, 17, 1467-1474) techniques. However, there are significant differences in the two models which maybe originate from the polymorphic nature of amylin fibrils. To obtain further insights into the packing and stability features of the different models, we performed a series of molecular dynamics simulations on them. Our analysis showed that even pairs of β-sheets composed of a limited number of β-strands are stable in the 100-ns simulations, which suggests that steric zipper interactions at a β-sheet-β-sheet interface strongly contribute to the stability of these amyloid aggregates. For both models, outer strands are more flexible, which might coincide with the dynamical requirement that outer strands act as growing sites facilitating conformational changes of new incoming chains. Moreover, simulation results showed that the X-ray models are structurally more compact than the NMR models and have more intimate patterns, which lead to more rigid amyloid models. As a result, the X-ray models are energetically more stable than the NMR models. Further modeling analyses verify the most likely amylin fibril model among both NMR and X-ray models. Upon further study of the force-induced dissociation of a single chain from the protofibrils, the binding energy and the mechanical stability of the fibril models are revealed. On these bases, it is possible to reconcile the crystallographic and the NMR data on the basic amylin fiber unit. PMID:23145779

  18. [Structure and molecular mechanisms of infection and replication of HIV].

    PubMed

    Sato, Hironori; Ode, Hirotaka; Motomura, Kazushi; Yokoyama, Masaru

    2009-01-01

    Studies on molecular structure and mechanisms of replication of a pathogen are important from both scientific and clinical viewpoints. The replication study allows us to identify key molecules to regulate life cycle of the pathogen and to screen rationally anti-pathogen drugs. The structural study helps understand how the key molecules work at atomic levels and to design adequately the drugs. In this article, we review important findings on structural and replication studies of human immunodeficiency virus (HIV). We also summarize the latest methods for the structural study, mainly focusing on computational simulation technology (in silico analysis). Finally, we summarize briefly standard methods to study replication of viruses. PMID:19177750

  19. From non-random molecular structure to life and mind

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1989-01-01

    The evolutionary hierarchy molecular structure-->macromolecular structure-->protobiological structure-->biological structure-->biological functions has been traced by experiments. The sequence always moves through protein. Extension of the experiments traces the formation of nucleic acids instructed by proteins. The proteins themselves were, in this picture, instructed by the self-sequencing of precursor amino acids. While the sequence indicated explains the thread of the emergence of life, protein in cellular membrane also provides the only known material basis for the emergence of mind in the context of emergence of life.

  20. Supramolecular interactions of nonsteroidal anti-inflammatory drug in nanochannels of molecular containers: a spectroscopic, thermogravimetric and microscopic investigation.

    PubMed

    Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata

    2014-11-10

    Supramolecular host-guest complexation between the nonsteroidal anti-inflammatory drug indomethacin (IMC) and molecular containers were investigated. The weakly fluorescent drug molecule becomes highly fluorescent on complexation with different molecular containers, and time-resolved fluorescence emission spectroscopy reveals that the lifetime components of IMC significantly increase in the presence of molecular containers, compared with the lifetimes in neat water. The respective solid host-guest complexes were synthesised and characterised by Fourier transform infrared and (1) H nuclear magnetic resonance spectroscopic analysis. Microscopy techniques were used to analyse modifications of the surface morphology, owing to the formation of supramolecular complexes. The effect of the molecular container on the optical properties of IMC has also been investigated to determine the effect of nanochannels of different size and structure. PMID:25146319

  1. Fluorescence characteristics of size-fractionated dissolved organic matter: implications for a molecular assembly based structure?

    PubMed

    Romera-Castillo, Cristina; Chen, Meilian; Yamashita, Youhei; Jaffé, Rudolf

    2014-05-15

    Surface freshwater samples from Everglades National Park, Florida, were used to investigate the size distributions of natural dissolved organic matter (DOM) and associated fluorescence characteristics along the molecular weight continuum. Samples were fractionated using size exclusion chromatography (SEC) and characterized by spectroscopic means, in particular Excitation-Emission Matrix fluorescence modeled with parallel factor analysis (EEM-PARAFAC). Most of the eight components obtained from PARAFAC modeling were broadly distributed across the DOM molecular weight range, and the optical properties of the eight size fractions for all samples studied were quite consistent among each other. Humic-like components presented a similar distribution in all the samples, with enrichment in the middle molecular weight range. Some variability in the relative distribution of the different humic-like components was observed among the different size fractions and among samples. The protein like fluorescence, although also generally present in all fractions, was more variable but generally enriched in the highest and lowest molecular weight fractions. These observations are in agreement with the hypothesis of a supramolecular structure for DOM, and suggest that DOM fluorescence characteristics may be controlled by molecular assemblies with similar optical properties, distributed along the molecular weight continuum. This study highlights the importance of studying the molecular structure of DOM on a molecular size distribution perspective, which may have important implications in understanding the environmental dynamics such materials. PMID:24602859

  2. Human Lactate Dehydrogenase A Inhibitors: A Molecular Dynamics Investigation

    PubMed Central

    Shi, Yun; Pinto, B. Mario

    2014-01-01

    Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors. PMID:24466056

  3. Molecular structure, spectroscopic assignments and other quantum chemical calculations of anticancer drugs - A review.

    PubMed

    Ghasemi, A S; Deilam, M; Sharifi-Rad, J; Ashrafi, F; Hoseini-Alfatemi, S M

    2015-01-01

    In many texts, both theoretical and experimental studies on molecular structure and spectroscopic assignments of anticancer medicines have been reported. Molecular geometry parameters have been experimentally obtained by x-ray structure determination method and optimized using computational chemistry method like density functional theory. In this review, we consider calculations based on density function theory at B3LYP/6-31G (d,p) and B3LYP/6-311++G (d,p) levels of theory. Based on optimized geometric parameters of the molecules, molecular structures (length of bonds, bond angles and torsion angles) and vibrational assignments have been obtained. Molecular stability and bond strength have been investigated by applying natural bond orbital (NBO) analysis. Other molecular properties such as mulliken population analysis, thermodynamic properties and polarizabitities of these drugs have been reported. Calculated energies of HOMO and LUMO show that charge transfer occurs in the molecular. Information about the size, shape, charge density distribution and site of molecular chemical reactivity has been obtained by mapping electron density isosurface of electrostatic and compared with experiment data. PMID:26638891

  4. Molecular structure of DNA by scanning tunneling microscopy.

    PubMed

    Cricenti, A; Selci, S; Felici, A C; Generosi, R; Gori, E; Djaczenko, W; Chiarotti, G

    1989-09-15

    Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed. PMID:2781279

  5. Molecular Structure of DNA by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G.

    1989-09-01

    Uncoated DNA molecules marked with an activated tris(1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 and 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  6. Investigation of the hybrid molecular probe for intracellular studies

    PubMed Central

    Martinez, Karen; Medley, Colin D.; Yang, Chaoyong James; Tan, Weihong

    2009-01-01

    Monitoring gene expression in vivo is essential to the advancement of biological studies, medical diagnostics, and drug discovery. Adding to major efforts in developing molecular probes for mRNA monitoring, we have recently developed an alternative tool, the hybrid molecular probe (HMP). To optimize the probe, a series of experiments were performed to study the properties of HMP hybridization kinetics and stability. The results demonstrated the potential of the HMP as a prospective tool for use in both hybridization studies and in vitro and in vivo analyses. The HMP has shown no tendency to produce false positive signals, which is a major concern for living cell studies. Moreover, HMP has shown the ability to detect the mRNA expression of different genes inside single cells from both basal and stimulated genes. As an effective alternative to conventional molecular probes, the proven sensitivity, simplicity, and stability of HMPs show promise for their use in monitoring mRNA expression in living cells. PMID:18421445

  7. Relating Soil Organic Matter Dynamics to its Molecular Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of the dynamics of soil organic matter (SOM) must be integrated with a sound knowledge of it biochemical complexity. The molecular structure of SOM was determined in 98% sand soils to eliminate the known protective effects of clay on the amount and turnover rate of the SOM constitu...

  8. Structure and photochromic properties of molybdenum-containing silica gels obtained by molecular-lamination method

    SciTech Connect

    Belotserkovskaya, N.G.; Dobychin, D.P.; Pak, V.N.

    1992-05-10

    The structure and physicochemical properties of molybdenum-containing silica gels obtained by molecular lamination have been studied quite extensively. Up to the present, however, no studies have been made of the influence of the pore structure of the original silica gel on the structure and properties of molybdenum-containing silica gels (MSG). The problem is quite important, since molybdenum silicas obtained by molecular lamination may find applications in catalysis and as sensors of UV radiation. In either case, the structure of the support is not a factor to be ignored. Here, the authors are reporting on an investigation of the structure of MSG materials with different pore structures and their susceptibility to reduction of the Mo(VI) oxide groupings when exposed to UV radiation. 16 refs., 2 figs., 2 tabs.

  9. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation

    PubMed Central

    Cui, Fengchao; Yang, Kecheng; Li, Yunqi

    2015-01-01

    To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485

  10. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation.

    PubMed

    Cui, Fengchao; Yang, Kecheng; Li, Yunqi

    2015-01-01

    To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189-195, 214-220 and 225-228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485

  11. Molecular structure, spectral constants, and fermi resonances in chlorine nitrate

    NASA Astrophysics Data System (ADS)

    Petkie, Douglas T.; Butler, Rebecca A. H.; Helminger, Paul; De Lucia, Frank C.

    2004-06-01

    Chlorine nitrate has two low-lying vibrational modes that lead to a series of Fermi resonances in the 9 υ97 υ7 family of levels that include the 9 2⇔7 1 and 9 3⇔7 19 1 dyads and the 9 4⇔9 27 1⇔7 2 and 9 5⇔9 37 1⇔9 17 2 triads. These states, along with the ground and 9 1 vibrational states, have been previously analyzed with millimeter and submillimeter wave spectroscopy and provide a substantial body of data for the investigation of these resonances and their impact on calculated spectroscopic constants and structural parameters. Due to fitting indeterminacies, these previous analyses did not include the main Fermi resonance interaction term. Consequently, the fitted rotational constants are linear combinations of the unmixed rotational constants of the basis vibrational states. In this paper, we have calculated the contributions of the Fermi resonances to the observed rotational constants in a model that determines the vibrational-rotational constants, the Fermi term and the mixing between interacting vibrational states, the cubic potential constant ( φ997) that connects interacting levels through a Fermi resonance, and the inertial defects. These results agree with predictions from ab initio and harmonic force field calculations and provide further experimental information for the determination of the fundamental molecular properties of chlorine nitrate.

  12. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers. PMID:26752623

  13. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  14. Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin.

    PubMed

    Wang, Jing; Wang, Jinhu; Song, Wei; Yang, Xinping; Zong, Wansong; Liu, Rutao

    2016-02-01

    Cadmium adversely affects the biological function of the liver. Transferrin might be involved in the detoxification system of cadmium. However, owing to the lack of investigation of the molecular mechanism of cadmium conjugating to transferrin, the role of transferrin in cadmium detoxification in the liver and how transferrin undergoes conformational and functional changes upon cadmium binding are not clear. In this article, we demonstrated the potential role of transferrin in the protection of the mouse primary hepatocytes against cadmium toxicity. After the incubation of hepatocytes with 10 and 100 μM CdCl2, pretreatment with transferrin significantly attenuated the reduction of cell viability in comparison with the samples treated with CdCl2 alone. Furthermore, a detailed molecular mechanism investigation of the interaction of CdCl2 with transferrin was reported using biophysical methods. Multi-spectroscopic measurements showed that CdCl2 formed complexes with transferrin and caused structural and conformational changes of transferrin. Isothermal titration calorimetry measurements revealed that transferrin has two classes of binding sites with different binding constants for CdCl2 binding. Hydrophobic forces and electrostatic forces are the major driving forces of the interaction. Preferred specific binding sites on transferrin were identified by dialysis experiments, molecular docking studies and molecular dynamics simulations. Upon low CdCl2 concentration exposure, no content of iron was released from transferrin because CdCl2 preferentially binds to the surface of transferrin molecules. Upon higher CdCl2 concentration exposure, the release of iron content from transferrin was observed due to the interaction of CdCl2 with the key residues around iron binding sites. PMID:26750974

  15. Single Molecule Switches and Molecular Self-Assembly: Low Temperature STM Investigations and Manipulations

    SciTech Connect

    Iancu, Violeta

    2006-08-01

    This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-popphyrin. The molecules are absorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the det

  16. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Song-Feng, Zhao; Fang, Huang; Guo-Li, Wang; Xiao-Xin, Zhou

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  17. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov-Popov-Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  18. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  19. Molecular Population Genetic Structure in the Piping Plover

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.

    2009-01-01

    The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect

  20. AMASS: a database for investigating protein structures

    PubMed Central

    Mielke, Clinton J.; Mandarino, Lawrence J.; Dinu, Valentin

    2014-01-01

    Motivation: Modern techniques have produced many sequence annotation databases and protein structure portals, but these Web resources are rarely integrated in ways that permit straightforward exploration of protein functional residues and their co-localization. Results: We have created the AMASS database, which maps 1D sequence annotation databases to 3D protein structures with an intuitive visualization interface. Our platform also provides an analysis service that screens mass spectrometry sequence data for post-translational modifications that reside in functionally relevant locations within protein structures. The system is built on the premise that functional residues such as active sites, cancer mutations and post-translational modifications within proteins may co-localize and share common functions. Availability and implementation: AMASS database is implemented with Biopython and Apache as a freely available Web server at amass-db.org. Contact: clinton.mielke@gmail.com PMID:24497503

  1. Molecular solids of actinide hexacyanoferrate: Structure and bonding

    NASA Astrophysics Data System (ADS)

    Dupouy, G.; Dumas, T.; Fillaux, C.; Guillaumont, D.; Moisy, P.; Den Auwer, C.; Le Naour, C.; Simoni, E.; Fuster, E. G.; Papalardo, R.; Sanchez Marcos, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.; Shuh, D. K.; Tyliszczak, T.

    2010-03-01

    The hexacyanometallate family is well known in transition metal chemistry because the remarkable electronic delocalization along the metal-cyano-metal bond can be tuned in order to design systems that undergo a reversible and controlled change of their physical properties. We have been working for few years on the description of the molecular and electronic structure of materials formed with [Fe(CN)6]n- building blocks and actinide ions (An = Th, U, Np, Pu, Am) and have compared these new materials to those obtained with lanthanide cations at oxidation state +III. In order to evaluate the influence of the actinide coordination polyhedron on the three-dimensional molecular structure, both atomic number and formal oxidation state have been varied : oxidation states +III, +IV. EXAFS at both iron K edge and actinide LIII edge is the dedicated structural probe to obtain structural information on these systems. Data at both edges have been combined to obtain a three-dimensional model. In addition, qualitative electronic information has been gathered with two spectroscopic tools : UV-Near IR spectrophotometry and low energy XANES data that can probe each atom of the structural unit : Fe, C, N and An. Coupling these spectroscopic tools to theoretical calculations will lead in the future to a better description of bonding in these molecular solids. Of primary interest is the actinide cation ability to form ionic — covalent bonding as 5f orbitals are being filled by modification of oxidation state and/or atomic number.

  2. Molecular design for growth of supramolecular membranes with hierarchical structure.

    PubMed

    Zha, R Helen; Velichko, Yuri S; Bitton, Ronit; Stupp, Samuel I

    2016-02-01

    Membranes with hierarchical structure exist in biological systems, and bio-inspired building blocks have been used to grow synthetic analogues in the laboratory through self-assembly. The formation of these synthetic membranes is initiated at the interface of two aqueous solutions, one containing cationic peptide amphiphiles (PA) and the other containing the anionic biopolymer hyaluronic acid (HA). The membrane growth process starts within milliseconds of interface formation and continues over much longer timescales to generate robust membranes with supramolecular PA-HA nanofibers oriented orthogonal to the interface. Computer simulation indicates that formation of these hierarchically structured membranes requires strong interactions between molecular components at early time points in order to generate a diffusion barrier between both solutions. Experimental studies using structurally designed PAs confirm simulation results by showing that only PAs with high ζ potential are able to yield hierarchically structured membranes. Furthermore, the chemical structure of such PAs must incorporate residues that form β-sheets, which facilitates self-assembly of long nanofibers. In contrast, PAs that form low aspect ratio nanostructures interact weakly with HA and yield membranes that exhibit non-fibrous fingering protrusions. Furthermore, experimental results show that increasing HA molecular weight decreases the growth rate of orthogonal nanofibers. This result is supported by simulation results suggesting that the thickness of the interfacial contact layer generated immediately after initiation of self-assembly increases with polymer molecular weight. PMID:26649980

  3. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  4. Structure factor and rheology of chain molecules from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Castrejón-González, Omar; Castillo-Tejas, Jorge; Manero, Octavio; Alvarado, Juan F. J.

    2013-05-01

    Equilibrium and non-equilibrium molecular dynamics were performed to determine the relationship between the static structure factor, the molecular conformation, and the rheological properties of chain molecules. A spring-monomer model with Finitely Extensible Nonlinear Elastic and Lennard-Jones force field potentials was used to describe chain molecules. The equations of motion were solved for shear flow with SLLOD equations of motion integrated with Verlet's algorithm. A multiple time scale algorithm extended to non-equilibrium situations was used as the integration method. Concentric circular patterns in the structure factor were obtained, indicating an isotropic Newtonian behavior. Under simple shear flow, some peaks in the structure factor were emerged corresponding to an anisotropic pattern as chains aligned along the flow direction. Pure chain molecules and chain molecules in solution displayed shear-thinning regions. Power-law and Carreau-Yasuda models were used to adjust the generated data. Results are in qualitative agreement with rheological and light scattering experiments.

  5. Molecular structures and protonation state of 2-Mercaptopyridine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Eckert, S.; Miedema, P. S.; Quevedo, W.; O'Cinneide, B.; Fondell, M.; Beye, M.; Pietzsch, A.; Ross, M.; Khalil, M.; Föhlisch, A.

    2016-03-01

    The speciation of 2-Mercaptopyridine in aqueous solution has been investigated with nitrogen 1s Near Edge X-ray Absorption Fine Structure spectroscopy and time dependent Density Functional Theory. The prevalence of distinct species as a function of the solvent basicity is established. No indications of dimerization towards high concentrations are found. The determination of different molecular structures of 2-Mercaptopyridine in aqueous solution is put into the context of proton-transfer in keto-enol and thione-thiol tautomerisms.

  6. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  7. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  8. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  9. MOLVIE: an interactive visualization environment for molecular structures.

    PubMed

    Sun, Huandong; Li, Ming; Xu, Ying

    2003-05-01

    A Molecular visualization interactive environment (MOLVIE), is designed to display three-dimensional (3D) structures of molecules and support the structural analysis and research on proteins. The paper presents the features, design considerations and applications of MOLVIE, especially the new functions used to compare the structures of two molecules and view the partial fragment of a molecule. Being developed in JAVA, MOLVIE is platform-independent. Moreover, it may run on a webpage as an applet for remote users. MOLVIE is available at http://www.cs.ucsb.edu/~mli/Bioinf/software/index.html. PMID:12725967

  10. Semifluorinated Alkanes at the Air-Water Interface: Tailoring Structure and Rheology at the Molecular Scale.

    PubMed

    Theodoratou, Antigoni; Jonas, Ulrich; Loppinet, Benoit; Geue, Thomas; Stangenberg, Rene; Keller, Rabea; Li, Dan; Berger, Rüdiger; Vermant, Jan; Vlassopoulos, Dimitris

    2016-04-01

    Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure. PMID:26978461

  11. Spatially resolved dynamic structure factor of finite systems from molecular dynamics simulations

    SciTech Connect

    Raitza, Thomas; Roepke, Gerd; Reinholz, Heidi; Morozov, Igor

    2011-09-15

    The dynamical response of metallic clusters up to 10{sup 3} atoms is investigated using the restricted molecular dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy, and the width of the eigenmodes have been investigated for various values of electron density, temperature, cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of collective excitations is discussed.

  12. Molecular spectroscopy and molecular structure - Selected communications presented at the 1st International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013)

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Fausto, Rui; Ünsalan, Ozan; Bayarı, Sevgi; Kuş, Nihal; Ildız, Gülce Ö.

    2016-01-01

    The First International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013) took place at the Harbiye Cultural Center & Museum, Istanbul, Turkey, September 15-20, 2013. The main aim of the congress was to encourage the exchange of scientific ideas and collaborations all around the world, introduce new techniques and instruments, and discuss recent developments in the field of molecular spectroscopy. Among the different subjects covered, particular emphasis was given to the relevance of spectroscopy to elucidate details of the molecular structure and the chemical and physical behavior of systems ranging from simple molecules to complex biochemical molecules. Besides experimental spectroscopic approaches, related computational and theoretical methods were also considered. In this volume, selected contributions presented at the congress were put together.

  13. A Structural and Molecular Approach for the Study Biomarkers

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie; Vali, Hojatollah; Sears, S. Kelly; Roh, Yul

    2001-01-01

    Investigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life

  14. Investigation of the molecular similarity in closely related protein systems: The PrP case study.

    PubMed

    Storchi, Loriano; Paciotti, Roberto; Re, Nazzareno; Marrone, Alessandro

    2015-10-01

    The amyloid conversion is a massive detrimental modification affecting several proteins upon specific physical or chemical stimuli characterizing a plethora of diseases. In many cases, the amyloidogenic stimuli induce specific structural features to the protein conferring the propensity to misfold and form amyloid deposits. The investigation of mutants, structurally similar to their native isoform but inherently prone to amyloid conversion, may be a viable strategy to elucidate the structural features connected with amyloidogenesis. In this article, we present a computational protocol based on the combination of molecular dynamics (MD) and grid-based approaches suited for the pairwise comparison of closely related protein structures. This method was applied on the cellular prion protein (PrP(C)) as a case study and, in particular, addressed to the quali/quantification of the structural features conferred by either E200K mutations and treatment with CaCl(2), both able to induce the scrapie conversion of PrP. Several schemes of comparison were developed and applied to this case study, and made up suitable of application to other protein systems. At this purpose an in-house python codes has been implemented that, together with the parallelization of the GRID force fields program, will spread the applicability of the proposed computational procedure. PMID:26018750

  15. Synthesis, molecular structure, FT-IR, FT-Raman and XRD spectroscopic investigations of (E)-1-(5-((4-bromophenyl)diazenyl)-2- hydroxyphenyl)ethanone: A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Agar, Erbil; Alver, Ozgur; Koroglu, Ahmet; Gumus, Sedat; Kazak, Canan

    2015-10-01

    The (E)-2-acethyl-4-(4-bromophenyldiazenyl) phenol compound was synthesized and analysed by elemental analysis, single-crystal X-ray diffraction (XRD), FT-IR and FT-Raman spectroscopies. Furthermore, vibrational spectra of this compound have been assigned by using scaled quantum mechanical force field approximation from density functional method (B3LYP) with 6-31G(d) basis set. A well-agreement has been attained between the calculated and observed spectra. Moreover, NBO analysis indicates there are strong conjugate interactions inside the molecule. Apart from this, the single-crystal structure from X-ray study has showed that this compound has a strong intramolecular O-H … O hydrogen bond and π - π stacking.

  16. A molecular dynamics investigation of surface reconstruction on magnetite (001)

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.

    1999-07-01

    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  17. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    NASA Astrophysics Data System (ADS)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The molecular structure of fullerene (C60) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  18. Molecular investigation into outbreak of HIV in a Scottish prison.

    PubMed Central

    Yirrell, D. L.; Robertson, P.; Goldberg, D. J.; McMenamin, J.; Cameron, S.; Leigh Brown, A. J.

    1997-01-01

    OBJECTIVES: To support already established epidemiological links between inmates of Glenochil prison positive for HIV infection by using molecular techniques and thus provide evidence of the extent of acquisition during a recent outbreak of the disease resulting from needle sharing. To identify possible sources of the outbreak, and to demonstrate the ability of the methodology to make further links beyond the original outbreak. DESIGN: Viral sequences obtained from the blood of HIV positive prisoners previously identified by standard epidemiological methods were compared with each other and with sequences from other Scottish patients. SETTING: Glenochil prison for men, central Scotland. SUBJECTS: Adult inmates and their possible contacts. RESULTS: Phylogenetic analysis of viral sequences in two different genomic regions showed that 13 of the 14 HIV positive prisoners had been infected from a common source. Previous research had shown that six of these had acquired their infection in Glenochil; molecular evidence suggests that more than double this number were infected while incarcerated. Virus from two long term HIV positive patients who were in the prison at the time of the outbreak but who were not identified in the original or subsequent surveys was sufficiently different to make it unlikely that they were the source. A viral sequence from heterosexual transmission from one inmate showed the ability of these techniques to follow the infection through different routes of infection. CONCLUSION: The number of prisoners infected with HIV during the 1993 outbreak within Glenochil prison was more than twice that previously shown. This shows the potential for the spread of bloodborne diseases within prisons by injecting drugs. PMID:9167560

  19. Alternative Radioligands for Investigating the Molecular Pharmacology of Melatonin Receptors.

    PubMed

    Legros, Céline; Brasseur, Chantal; Delagrange, Philippe; Ducrot, Pierre; Nosjean, Olivier; Boutin, Jean A

    2016-03-01

    Melatonin exerts a variety of physiologic activities that are mainly relayed through the melatonin receptors MT1 and MT2 Low expressions of these receptors in tissues have led to widespread experimental use of the agonist 2-[(125)I]-iodomelatonin as a substitute for melatonin. We describe three iodinated ligands: 2-(2-[(2-iodo-4,5-dimethoxyphenyl)methyl]-4,5-dimethoxy phenyl) (DIV880) and (2-iodo-N-2-[5-methoxy-2-(naphthalen-1-yl)-1H-pyrrolo[3,2-b]pyridine-3-yl])acetamide (S70254), which are specific ligands at MT2 receptors, and N-[2-(5-methoxy-1H-indol-3-yl)ethyl]iodoacetamide (SD6), an analog of 2-[(125)I]-iodomelatonin with slightly different characteristics. Here, we further characterized these new ligands with regards to their molecular pharmacology. We performed binding experiments, saturation assays, association/dissociation rate measurements, and autoradiography using sheep and rat tissues and recombinant cell lines. Our results showed that [(125)I]-S70254 is receptor, and can be used with both cells and tissue. This radioligand can be used in autoradiography. Similarly, DIV880, a partial agonist [43% of melatonin on guanosine 5'-3-O-(thio)triphosphate binding assay], selective for MT2, can be used as a tool to selectively describe the pharmacology of this receptor in tissue samples. The molecular pharmacology of both human melatonin receptors MT1 and MT2, using a series of 24 ligands at these receptors and the new radioligands, did not lead to noticeable variations in the profiles. For the first time, we described radiolabeled tools that are specific for one of the melatonin receptors (MT2). These tools are amenable to binding experiments and to autoradiography using sheep or rat tissues. These specific tools will permit better understanding of the role and implication in physiopathologic processes of the melatonin receptors. PMID:26759496

  20. Structural investigation of the potassium vanadomolybdate crystal

    SciTech Connect

    Mucha, D.; Olszewski, P.K.; Napruszewska, B.

    1999-08-01

    Potassium vanadomolybdate KVMoO{sub 6} crystallizes in the orthorhombic system (space group Pnma, a = 10.3478(1) {angstrom}, b = 3.6967(1) {angstrom}, c = 13.3769(2) {angstrom}, Z = 4). With an X-ray powder diffraction technique, its structure was solved and refined by direct and Rietveld methods, respectively (R{sub F} = 3.33, R{sub 1} = 4.70, R{sub wp} = 12.44). The crystals are isostructural with PbV{sub 2}O{sub 6}. Octahedra of two types build chains parallel to the b direction; there is disorder in the octahedra described by different occupation numbers of V and Mo atoms: 0.721(4) and 0.279(4), respectively. Potassium atoms occupy the space between the octahedra chains. They play a decisive role, due to the large ionic radius, in generating both KVMoO{sub 6} and pseudobrannerite, K{sub x}V{sub x}Mo{sub 2{minus}x}O{sub 6} (0.76 {le} x {le} 0.82) structures, contrary to other alkali-metal vanadomolybdates of the brannerite structure type. The melting point of KVMoO{sub 6} was detected at 480 C using the DTA method.

  1. A dynamic data structure for flexible molecular maintenance and informatics

    PubMed Central

    Bajaj, Chandrajit; Chowdhury, Rezaul Alam; Rasheed, Muhibur

    2011-01-01

    Motivation: We present the ‘Dynamic Packing Grid’ (DPG), a neighborhood data structure for maintaining and manipulating flexible molecules and assemblies, for efficient computation of binding affinities in drug design or in molecular dynamics calculations. Results: DPG can efficiently maintain the molecular surface using only linear space and supports quasi-constant time insertion, deletion and movement (i.e. updates) of atoms or groups of atoms. DPG also supports constant time neighborhood queries from arbitrary points. Our results for maintenance of molecular surface and polarization energy computations using DPG exhibit marked improvement in time and space requirements. Availability: http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml Contact: bajaj@cs.utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21115440

  2. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  3. Molecular dynamics simulations of soliton-like structures in a dusty plasma medium

    SciTech Connect

    Tiwari, Sanat Kumar Das, Amita; Sen, Abhijit; Kaw, Predhiman

    2015-03-15

    The existence and evolution of soliton-like structures in a dusty plasma medium are investigated in a first principles approach using molecular dynamic (MD) simulations of particles interacting via a Yukawa potential. These localized structures are found to exist in both weakly and strongly coupled regimes with their structures becoming sharper as the correlation effects between the dust particles get stronger. A surprising result, compared to fluid simulations, is the existence of rarefactive soliton-like structures in our non-dissipative system, a feature that arises from the charge conjugation symmetry property of the Yukawa fluid. Our simulation findings closely resemble many diverse experimental results reported in the past.

  4. Molecular structure in soil humic substances: The new view

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison

    2005-04-21

    A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.

  5. Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders.

    PubMed

    Xu, M K; Gaysina, D; Barnett, J H; Scoriels, L; van de Lagemaat, L N; Wong, A; Richards, M; Croudace, T J; Jones, P B

    2015-01-01

    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations. PMID:26125156

  6. Molecular-Level Investigations of Nucleation Mechanisms and Kinetics of Formation of Environmental Nanoparticles

    SciTech Connect

    Young-Shin Jun; Glenn A. Waychunas

    2007-04-19

    Environmental nanoparticles are often poorly-crystalline or metastable structures, whose kinetics of formation and growth are poorly understood. Further, the sorption or growth of nanoparticles on mineral surfaces may control the mineral surface's reactivity and modify its ability to influence contaminant transport. Due to the characteristic length scale, a holistic understanding of the nucleation mechanisms and kinetics of nanoparticle formation on mineral surfaces is difficult to achieve with traditional methodology. In this work, our intent is to determine the molecular nature of nucleation on surfaces, the kinetics of surface nucleation and growth, and the effect of crystal surface topology using new synchrotron-based techniques. We have approached these objectives by: (1) combining state-of-the-art crystal-truncation rod diffraction (CTR) and grazing incidence x-ray absorption fine structure spectroscopy (GIXAS) techniques to investigate the three-dimensional molecular-scale geometry of silicate monomer sorption on the r-plane of hematite; and (2) developing a new grazing-incidence small angle x-ray scattering (GISAXS) setup at SSRL (0.08 nm{sup -1} < q < 8 nm{sup -1}) to explore the initial development of environmental nanoparticles on various mineral surfaces. This study also includes complementary techniques such as atomic force microscopy (AFM), bulk SAXS, dynamic light scattering (DLS), XRD, and TEM.

  7. Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane.

    PubMed

    Zhang, Wei; Zhang, Zhennan; Wang, Xinping

    2009-05-01

    A simple method of changing pre-treatment temperature in the course of film formation was used to tune the surface structures of PVA membranes. Surface structure and property of the resulting membranes were characterized by X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and contact angle measurements. The results show that PVA have different molecular conformations at the membrane surface while those membranes were prepared at different pre-treatment temperature. At higher pre-treatment temperatures, polar acetoxyl residues and hydroxyl groups of the PVA chains oriented in a more orderly fashion, as induced by the faster evaporation of water. When the membranes were in air, CH(3) groups adjacent to the acetoxyl groups covered the surface in order to minimize the surface free energy, while backbones of the PVA were rarely observed. These surfaces exhibited a hydrophilic nature upon contact with water due to rapid surface reconstruction. Conversely, at lower pre-treatment temperatures, the backbone CH(2) groups dominated the surface, forming a less hydrophilic surface. When the PVA membranes were employed to separate ethanol/water mixtures, it was found that the PVA membranes with more hydrophilic surface exhibited higher water selectivity. Our investigation indicates that molecular conformations on the membrane surface have considerable influence on pervaporation performance. PMID:19249794

  8. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: a combined experimental and quantum chemical approach.

    PubMed

    Li, Linwei; Cai, Tiancheng; Wang, Zhiqiang; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2014-01-01

    In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively. 13C and 1H NMR spectra were recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule were calculated based on the gauge-independent atomic orbital (GIAO) method. Finally all of the calculation results were applied to simulate IR, Raman, 1H NMR and 13C NMR spectrum of the title compound which showed excellent agreement with observed spectrum. Furthermore, reliable vibrational assignments which have been made on the basis of potential energy distribution (PED) and characteristic vibratinonal absorption bands of the title compound in IR and Raman have been figured out. HOMO-LUMO energy and Mulliken atomic charges have been evaluated, either. PMID:24177877

  9. Structural and Molecular Modeling Features of P2X Receptors

    PubMed Central

    Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos

    2014-01-01

    Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936

  10. Application of machine learning to structural molecular biology.

    PubMed

    Sternberg, M J; King, R D; Lewis, R A; Muggleton, S

    1994-06-29

    A technique of machine learning, inductive logic programming implemented in the program GOLEM, has been applied to three problems in structural molecular biology. These problems are: the prediction of protein secondary structure; the identification of rules governing the arrangement of beta-sheets strands in the tertiary folding of proteins; and the modelling of a quantitative structure activity relationship (QSAR) of a series of drugs. For secondary structure prediction and the QSAR, GOLEM yielded predictions comparable with contemporary approaches including neural networks. Rules for beta-strand arrangement are derived and it is planned to contrast their accuracy with those obtained by human inspection. In all three studies GOLEM discovered rules that provided insight into the stereochemistry of the system. We conclude machine learning used together with human intervention will provide a powerful tool to discover patterns in biological sequences and structures. PMID:7800706

  11. Molecular Modeling of Nucleic Acid Structure: Electrostatics and Solvation

    PubMed Central

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E.

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand the structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as means to sample conformational space for a better understanding of the relevance of a given model. From this discussion, the major limitations with modeling, in general, were highlighted. These are the difficult issues in sampling conformational space effectively—the multiple minima or conformational sampling problems—and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These are discussed in detail in this unit. PMID:18428877

  12. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. PMID:25631536

  13. A Structural and Molecular Approach for the Study Biomarkers

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie; Vali, Hojatollah; Sears, S. Kelly; Roh, Yul

    2001-01-01

    Investigation of the nucleation and growth of crystals in both abiotic and biotic systems is critical to seemingly diverse disciplines of geology, biology, environmental science, and astrobiology. While there are abundant studies devoted to the determination of the structure and composition of inorganic crystals, as well as to the development of thermodynamic and kinetic models, it is only recently that research efforts have been directed towards understanding mineralization in biological systems (i.e., biomineralization). Biomineralization refers to the processes by which living organisms form inorganic solids. Studies of the processes of biomineralization under low temperature aqueous conditions have focused primarily on magnetite forming bacteria and shell forming marine organisms. Many of the biological building materials consist of inorganic minerals (calcium carbonate, calcium phosphate, silica or iron oxide) intricately combined with organic polymers (like proteins). More recently, efforts have been undertaken to explore the nature of biological activities in ancient rocks. In the absence of well-preserved microorganisms or genetic material required for the polmerase chain reaction (PCR) method in molecular phylogenetic studies, using biominerals as biomarkers offers an alternative approach for the recognition of biogenic activity in both terrestrial and extraterrestrial environments. The primary driving force in biomineralization is the interaction between organic and inorganic phases. Thus, the investigation of the ultrastructure and the nature of reactions at the molecular level occurring at the interface between inorganic and organic phases is essential to understanding the processes leading to the nucleation and growth of crystals. It is recognized that crystal surfaces can serve as the substrate for the organization of organic molecules that lead to the formation of polymers and other complex organic molecules, and in discussions of the origins of life

  14. Prediction of reactive hazards based on molecular structure.

    PubMed

    Saraf, S R; Rogers, W J; Mannan, M S

    2003-03-17

    There is considerable interest in prediction of reactive hazards based on chemical structure. Calorimetric measurements to determine reactivity can be resource consuming, so computational methods to predict reactivity hazards present an attractive option. This paper reviews some of the commonly employed theoretical hazard evaluation techniques, including the oxygen-balance method, ASTM CHETAH, and calculated adiabatic reaction temperature (CART). It also discusses the development of a study table to correlate and predict calorimetric properties of pure compounds. Quantitative structure-property relationships (QSPR) based on quantum mechanical calculations can be employed to correlate calorimetrically measured onset temperatures, T(o), and energies of reaction, -deltaH, with molecular properties. To test the feasibility of this approach, the QSPR technique is used to correlate differential scanning calorimeter (DSC) data, T(o) and -deltaH, with molecular properties for 19 nitro compounds. PMID:12628775

  15. Molecular modelling of miraculin: Structural analyses and functional hypotheses.

    PubMed

    Paladino, Antonella; Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2008-02-29

    Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies. PMID:18158914

  16. Molecular structure by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Freeman, R.

    Two examples are presented of the use of two-dimensional NMR spectroscopy to solve molecular structure problems. The first is called correlation spectroscopy (COSY) and it allows us to disentangle a complex network of spin-spin couplings. By dispersing the NMR information in two frequency dimensions, it facilitates the analysis of very complex spectra of organic and biochemical molecules, normally too crowded to be tractable. The second application exploits the special properties of multiple-quantum coherence to explore the molecular framework one CC linkage at a time. The natural product panamine is used as a test example; with some supplementary evidence, the structure of this six-ringed heterocyclic molecule is elucidated from the double-quantum filtered two-dimensional spectrum.

  17. Advances in multimodality molecular imaging of bone structure and function

    PubMed Central

    Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2012-01-01

    The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622

  18. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance. PMID:17661440

  19. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    NASA Astrophysics Data System (ADS)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe3C- (cementite-), Fe23C6- and Cr23C6-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr23C6 carbide and the experimentally non-existing Fe23C6 carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe-C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  20. First-principles investigation of electronic structures and properties of impurities in molecular solids and semiconductors: I. Muon and muonium in organic ferromagnets. II. Erbium in silicon-optoelectronic system

    NASA Astrophysics Data System (ADS)

    Jeong, Junho

    The first-principles Hartree-Fock theory is used to obtain the electronic structures and properties of three different systems. For the TEMPO system, the trapping sites were obtained near NO group site for muonium singlet and near chlorine and bridge nitrogen for muon. The calculated hyperfine interactions including relaxation and vibrational effect were used to compare the observed zero field muSR frequency 3.2 MHz. It has been concluded that the two trapping centers that can best explain the observed muSR frequency is trapped singlet muonium near the radical oxygen and a trapped muon site near the chlorine. The direction for the easy axis is determined to be the b-axis of the monoclinic lattice and also is obtained using the magnetic moment distributions in the ferromagnetic state in the absence of muon and muonium. The nuclear quadrupole coupling constants and asymmetry parameters (eta) have studied for the 35Cl, 17O, and 14N nuclei in the TEMPO system for the bare system and systems with trapped muon and muonium. Substantial influence of the muon and muonium on the coupling constants and eta for the nuclei close to the trapping sites have been observed for the systems with trapped muon and muonium. For the beta-NPNN, the observed muSR signal at zero field with frequency 2.1 MHz is assigned to the singlet muonium sites near the two oxygens of the two NO groups and the high frequency signal ascribed to an isotropic hyperfine constant of 400MHz is assigned to the trapped muon sites near the oxygen atoms of the NO groups. Er3+-Si material which emits 1.54 mum wavelength has led to interest in optoelectronic system. Using first-principles HF procedure, the locations of Er3+ in silicon cluster without codopant were determined. Since covalent radius of Er3+ is bigger than that of silicon, the first nearest and second nearest silicon of Er3+ for Hi (Er3+Si14H18), Ti (Er3+ Si10H16, Er3+Si26H 48), and Substitutional site (Er3+Si18H 36) applied relaxation effect. The

  1. The Venus SAGE Atmospheric Structure Investigation

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Crisp, Dave; LaBaw, Clayton; Morse, Stephanie

    2005-01-01

    Experiment goals and objectives are: a) To accurately define the state properties as a function of altitude from below the 10(exp -4) mb level (approx.150 km) to 92 bars (surface); b) To measure the stability of the atmosphere, and identify convective layers and stable layers, where they exist; c) To detect cloud levels from changes in the lapse rate at their boundaries; d) To provide state properties within the cloud levels, and thus provide supplementary information on cloud composition; e) To search for and characterize wave structure within the atmosphere; f) To search for and measure the intensity and scale of turbulence; g) To measure descent and surface wind speed and direction; h) To provide Lander altitude and attitude during decent for descent imaging analysis; and i) To provide a back-up landing sensor.

  2. Toxicological implications of esterases-From molecular structures to functions

    SciTech Connect

    Satoh, Tetsuo . E-mail: satohbri@peach.ifnet.or.jp

    2005-09-01

    This article reports on a keynote lecture at the 10th International Congress of Toxicology sponsored by the International Union of Toxicology and held on July 2004. Current developments in molecular-based studies into the structure and function of cholinesterases, carboxylesterases, and paraoxonases are described. This article covers mechanisms of regulation of gene expression of the various esterases by developmental factors and xenobiotics, as well as the interplay between physiological and chemical regulation of the enzyme activity.

  3. Structural Changes of a Doubly Spin-Labeled Chemically Driven Molecular Shuttle Probed by PELDOR Spectroscopy.

    PubMed

    Franchi, Paola; Bleve, Valentina; Mezzina, Elisabetta; Schäfer, Christian; Ragazzon, Giulio; Albertini, Marco; Carbonera, Donatella; Credi, Alberto; Di Valentin, Marilena; Lucarini, Marco

    2016-06-20

    Gaining detailed information on the structural rearrangements associated with stimuli-induced molecular movements is of utmost importance for understanding the operation of molecular machines. Pulsed electron-electron double resonance (PELDOR) was employed to monitor the geometrical changes arising upon chemical switching of a [2]rotaxane that behaves as an acid-base-controlled molecular shuttle. To this aim, the rotaxane was endowed with stable nitroxide radical units in both the ring and axle components. The combination of PELDOR data and molecular dynamic calculations indicates that in the investigated rotaxane, the ring displacement along the axle, caused by the addition of a base, does not alter significantly the distance between the nitroxide labels, but it is accompanied by a profound change in the geometry adopted by the macrocycle. PMID:27123774

  4. Structural organization of surfactant aggregates in vacuo: a molecular dynamics and well-tempered metadynamics study.

    PubMed

    Longhi, Giovanna; Fornili, Sandro L; Turco Liveri, Vincenzo

    2015-07-01

    Experimental investigations using mass spectrometry have established that surfactant molecules are able to form aggregates in the gas phase. However, there is no general consensus on the organization of these aggregates and how it depends on the aggregation number and surfactant molecular structure. In the present paper we investigate the structural organization of some surfactants in vacuo by molecular dynamics and well-tempered metadynamics simulations to widely explore the space of their possible conformations in vacuo. To study how the specific molecular features of such compounds affect their organization, we have considered as paradigmatic surfactants, the anionic single-chain sodium dodecyl sulfate (SDS), the anionic double-chain sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and the zwitterionic single-chain dodecyl phosphatidyl choline (DPC) within a wide aggregation number range (from 5 to 100). We observe that for low aggregation numbers the aggregates show in vacuo the typical structure of reverse micelles, while for large aggregation numbers a variety of globular aggregates occur that are characterized by the coexistence of interlaced domains formed by the polar or ionic heads and by the alkyl chains of the surfactants. Well-tempered metadynamics simulations allows us to confirm that the structural organizations obtained after 50 ns of molecular dynamics simulations are practically the equilibrium ones. Similarities and differences of surfactant aggregates in vacuo and in apolar media are also discussed. PMID:26050747

  5. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  6. Molecular and immunodiagnostic investigations on bovine neosporosis in Switzerland.

    PubMed

    Gottstein, B; Hentrich, B; Wyss, R; Thür, B; Busato, A; Stärk, K D; Müller, N

    1998-04-01

    Neospora caninum has gained considerable attention through its role in the aetiology of bovine abortion. Due to its close phylogenetic relationship with Toxoplasma gondii, respective unequivocal differential diagnosis deserves special consideration. In order to evaluate the diagnostic performance of molecular and immunodiagnostic techniques and to provide insights into the epidemiological significance of bovine neosporosis in Switzerland, we conducted a study on 83 cases of bovine abortion: of these, 24 (29%) foetal brains were positive by Neospora-PCR, six of these foetuses were simultaneously seropositive in Neospora-IFAT and/or somatic antigen-ELISA. Conversely, four (5%) foetal brains were considered positive by Toxoplasma-PCR, two of which were also seropositive in the Toxoplasma-P30-ELISA and/or direct agglutination test. The seroprevalence in 1689 cattle sera obtained from 113 diary farms was 11.5% (95% confidence interval: 9.2-13.8) by Neospora-somatic antigen-ELISA were and 10.7% (95% confidence interval: 8.3-12.6) by Toxoplasma-P30-ELISA. From the same samples, 1.1%, less than statistically expected, were positive in both ELISA. Within selected groups of cow-calf farms, the seroprevalence determined using the Neospora-somatic antigen-ELISA was 14% (95% confidence interval 5.0-23.0) for dams and 15% (95% confidence interval: 3.0-28.0) for offspring calves. Seroprevalences determined by Toxoplasma-P30-ELISA were 8% (95% confidence interval: 4.0-12.0) for dams and 3% (95% confidence interval: 0.3-6.0) for calves. None of the sera gave a positive reaction in both ELISA. Our data indicated that prenatal neosporosis appears as an important cause of bovine abortion in Switzerland. PMID:9602392

  7. Copromicroscopic and molecular investigations on intestinal parasites in kenneled dogs.

    PubMed

    Simonato, Giulia; Frangipane di Regalbono, Antonio; Cassini, Rudi; Traversa, Donato; Beraldo, Paola; Tessarin, Cinzia; Pietrobelli, Mario

    2015-05-01

    Intestinal parasites are common in dogs worldwide, and their importance has recently increased for a renewed awareness on the public health relevance that some of them have. In this study, the prevalence of helminths and protozoa was evaluated by microscopy in 318 canine faecal samples collected from eight rescue shelters in the North-eastern Italy; 285 of them were also submitted to the molecular characterization of Giardia duodenalis and Cryptosporidium spp. isolates. An analysis was performed to evaluate the prevalence rates in relation to canine individual data, shelter provenance and anthelmintic treatments. Overall, 52.5% (167/318) of faecal samples were positive for at least one parasite. Trichuris vulpis showed the highest overall prevalence rate (29.2%), followed by G. duodenalis (15.1%), Toxocara canis (9.7%), ancylostomatids (8.2%) and Cystoisospora (5.7%). The prevalence of G. duodenalis, evaluated by real-time PCR, was 57.9% (165/285), and 79 isolates were characterized by nested PCR on the β-giardin gene. The assemblages found were mainly the host-specific genotypes C and D, while only one assemblage was identified as the human-specific genotype B1. Isolates of Cryptosporidium spp., recorded in 3/285 (1.1%) stool samples, were Cryptosporidium parvum based on the characterization of the Cryptosporidium oocyst wall protein (COWP) gene. Although the results describe a relatively limited risk of dog-originating zoonoses, there is the need to improve the quality of shelter practices towards better health managements for safe pet-adoption campaigns and a minimization of the environmental faecal pollution with canine intestinal parasites. PMID:25687526

  8. Diagnostic utility of molecular investigation in extraskeletal myxoid chondrosarcoma.

    PubMed

    Benini, Stefania; Cocchi, Stefania; Gamberi, Gabriella; Magagnoli, Giovanna; Vogel, Daniela; Ghinelli, Cristina; Righi, Alberto; Picci, Piero; Alberghini, Marco; Gambarotti, Marco

    2014-05-01

    Extraskeletal myxoid chondrosarcoma is characterized by the reciprocal chromosomal translocation t(9;22) and the resultant fused gene EWS RNA-binding protein 1 and nuclear receptor subfamily 4, group A, member 3 (EWSR1-NR4A3). A second cytogenetic rearrangement t(9;17) involves the genes NR4A3 and TAF 15 RNA polymerase II, TATA box binding protein (TBP)-associated factor (TAF15). Less frequent fusion transcript variants of the NR4A3 gene, transcription factor 12 (TCF12)-NR4A3 and TRK-fused gene (TFG)-NR4A3, are associated with t(9;15) and t(9;3) respectively. The samples from 42 patients with extraskeletal myxoid chondrosarcoma were examined for the presence of EWSR1-NR4A3, TAF15-NR4A3, TCF12-NR4A3, and TFG-NR4A3 fusion transcripts by using RT-PCR. Fluorescence in situ hybridization was performed to analyze the status of EWSR1 and NR4A3 genes. The fusion transcripts were detected in 34 of 42 samples (81%); the presence of an EWSR1 or NR4A3 gene rearrangements were detected in 8 of 42 samples (19%) which had tested negative for all fusion transcripts detected by RT-PCR. Of the 34 samples evaluable for fusion transcripts, 23 yielded positive results for EWSR1-NR4A3, 10 for TAF15-NR4A3, and 1 for TCF12-NR4A3. The combination of RT-PCR and fluorescence in situ hybridization on frozen and paraffin-embedded tissue is a sensitive and specific method for molecular detection of recurrent translocations and is an important ancillary method to establish the diagnosis of extraskeletal myxoid chondrosarcoma. PMID:24508382

  9. FilFinder: Filamentary structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2016-08-01

    FilFinder extracts and analyzes filamentary structure in molecular clouds. In particular, it is capable of uniformly extracting structure over a large dynamical range in intensity. It returns the main filament properties: local amplitude and background, width, length, orientation and curvature. FilFinder offers additional tools to, for example, create a filament-only image based on the properties of the radial fits. The resulting mask and skeletons may be saved in FITS format, and property tables may be saved as a CSV, FITS or LaTeX table.

  10. Optimization techniques in molecular structure and function elucidation.

    PubMed

    Sahinidis, Nikolaos V

    2009-12-01

    This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866

  11. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    PubMed Central

    Chen, Haobin; Yuan, Zhen; Wu, Changfeng

    2015-01-01

    Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT), a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development. PMID:26609534

  12. A co-axially configured submillimeter spectrometer and investigations of hydrogen bound molecular complexes

    NASA Astrophysics Data System (ADS)

    McElmurry, Blake Anthony

    The development of a co-axially configured submillimeter spectrometer is reported. The spectrometer has been constructed to observe molecular complexes that exhibit non-covalent interactions with energies much less than that of a traditional covalent bond. The structure of molecular complexes such as those formed between a rare gas and a hydrogen halide, Rg:HX where Rg is a rare gas (Rg=Ne, Ar and Kr) and HX (X=F, Cl, Br and I) can be determined directly and accurately. The center of mass interaction distance, RCM, as well as the angle of the hydrogen halide is determined, along with direct evaluation of the intermolecular vibrations as well as accurate isomerization energies between the hydrogen bound and van der Waals forms. The accuracy of the frequency determination of rovibrational transitions using the submillimeter spectrometer is also evaluated by direct comparison with the state-of-the-art pulsed nozzle Fourier transform microwave spectrometer, and this accuracy is estimated to be less than 1 kHz at 300 GHz. The tunneling or geared bending vibration of a dimer of hydrogen bromide or hydrogen iodide has been investigated. The selection rules, nuclear statistics and intensity alternation for transitions observed in these dimmers, which is a consequence of interchanging two identical nuclei in the low frequency geared bending vibration of the molecular complex, are reported. Furthermore, the rotation and quadrupole coupling constants are used to determine a vibrationally averaged structure of the complex. The energy of the low frequency bending vibration can then be compared with ab initio based potential energy surfaces. A study of the multiple isomeric forms of the molecular complex OC:HI is also presented. Multiple isotopic substitutions are used to determine the relevant ground state structures and data reported evidence for an anomalous isotope effect supporting a ground state isotopic isomerization effect. All spectroscopic data that has been reported

  13. Structural investigation into physiological DNA phosphorothioate modification

    PubMed Central

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CGPXGCCGCCGA) with its complementary strand d(TCGGCGPXGCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn’t change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  14. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  15. Investigating Galactic Structure with COBE/DIRBE

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1999-01-01

    In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE. The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic back-ground. Arendt et al. constructed their "Faint Source Model" (FSM) to remove Galactic foreground stars from the ZSMA products. The FSM mimics SKY version 1 but Arendt et al.'s concluded that it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support Arendt et al.'s conclusion, namely that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result. On the positive side, our knowledge of the fundamental parameters of stars is increasing through the legacy of the Hipparcos mission. These parameters are critical inputs to any model of the stellar sky and it is my hope to revisit the problem once the new values are for visual-absolute magnitudes and stellar, space densities. I also hope to make progress through an independent analysis of Pioneer optical starlight with SKY, under a NASA Heliospheric Mission Guest Investigator proposal.

  16. Molecular Dynamics Investigation of Adhesion between TATB Surfaces and Amorphous Fluoropolymers

    SciTech Connect

    Gee, R H; Maiti, A; Bastea, S; Fried, L

    2007-01-25

    Atomistic simulations are used to study the adhesion properties of amorphous perfluoro- and fluoro-polymers onto two different crystal surfaces of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Properties of the bulk amorphous polymer melts are also investigated. The fluoropolymers studied in this article include Kel-F 800, Teflon{reg_sign} AF, Hyflon AD{reg_sign}, and Cytop{reg_sign}. Simulations of the bulk polymer melts were performed over a wide range of temperatures including the volumetric glass transition temperature, so as to validate the interaction parameters used. The computed glass transition temperatures and densities compare well with experiment. The solubility parameters for the various polymers also compare well with calculations based on group additive methods. The local molecular structure at the TATB interface, as well as the degree of adhesion varies from one polymer to another. All polymers except Hyflon show a propensity to readily wet the two TATB surfaces studied.

  17. Structural investigation into physiological DNA phosphorothioate modification.

    PubMed

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CG(PX)GCCGCCGA) with its complementary strand d(TCGGCG(PX)GCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn't change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  18. Observation and modeling of conformational molecular structures driving the self-assembly of tri-adamantyl benzene on Ag(111).

    PubMed

    Calmettes, Bastien; Estrampes, Nicolas; Coudret, Christophe; Roussel, Thomas J; Faraudo, Jordi; Coratger, Roland

    2016-07-27

    The self-organization of tri-adamantyl (TAB) benzene molecules has been investigated using low temperature scanning tunneling microscopy (LT-STM). The molecular structures have also been studied using molecular modeling. In particular, these calculations have been performed on large areas (1000 nm(2)) from the atomic structure of the molecular building block, combining molecular dynamics (MD) and Monte-Carlo (MC) approaches. These investigations show that the structure of the molecule and its flexibility allow for the formation of different networks as a function of surface coverage. The calculations demonstrate that the stability of the largest structures is obtained through the increase of the interfacial energy induced by the rotation of the adamantyl groups, a behavior whose consequences explain the subtle contrasts observed in the experimental STM images. PMID:26667964

  19. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  20. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization

  1. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  2. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    ERIC Educational Resources Information Center

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  3. Aggregation-Induced Emission Mechanism of Dimethoxy-Tetraphenylethylene in Water Solution: Molecular Dynamics and QM/MM Investigations.

    PubMed

    Sun, Guangxu; Zhao, Yi; Liang, WanZhen

    2015-05-12

    Molecular dynamics simulations and combined quantum mechanics and molecular mechanics calculations are employed to investigate dimethoxy-tetraphenylethylene (DMO-TPE) molecules in water solution for their detailed aggregation process and the mechanism of aggregation-induced emission. The molecular dynamics simulations show that the aggregates start to appear in the nanosecond time scale, and small molecular aggregates appear at low concentration; whereas the large aggregates with a chain-type structure appear at high concentration, and the intramolecular rotation is largely restricted by a molecular aggregated environment. The average radical distribution demonstrates that the waters join the aggregation process and that two types of hydrogen bonds between DMO-TPE and water molecules are built with the peaks at about 0.5 and 0.7 nm, respectively. The spectral features further reveal that the aggregates dominantly present J-type aggregation although they fluctuate between J-type and H-type at a given temperature. The statistical absorption, emission spectra, and the aggregation-induced emission enhancement with respect to the solution concentration agree well with the experimental measurements, indicating the significant effect of molecular environments on the molecular properties. PMID:26574424

  4. First-principles study of the electronic and molecular structure of protein nanotubes

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Takeda, Kyozaburo; Shiraishi, Kenji

    2001-09-01

    The electronic and molecular structures of protein nanotubes (PNT's) have been investigated theoretically by first-principles electronic structure calculations. The results have been discussed in comparison to those of the polypeptide open chains (POC's) and polypeptide closed rings (PCR's) in order to give a systematic understanding. Focusing on the intra-ring and inter-ring hydrogen bonds (HB's), we also investigate the PCR stacking mechanism. The present calculation reveals that PNT's are semiconductors and that an extra proton in the tube interior has the potential to be an electron acceptor.

  5. Conductance switching and organization of two structurally related molecular wires on gold.

    PubMed

    Stan, Razvan C; Kros, Alexander; Akkilic, Namik; Appel, Jeroen; Sanghamitra, Nusrat J M

    2015-01-27

    The self-assembly and electron transfer properties of adsorbed organic molecules are of interest for the construction of miniaturized molecular circuitries. We have investigated with scanning probe microscopy the self-organization of two structurally related molecular wires embedded within a supportive alkanethiol matrix. Our results evidence heterogeneous adsorption patterns of the molecular wires on gold with either incommensurate unit cells driven into assembly by lateral interactions or a dynamic, commensurate distribution on gold, along with formation of distinct 2D phases. We also observed diffusion-based conductance switching for one of the molecular wires, due to its propensity toward weaker lateral interactions and Au-S adatom formation. We have further demonstrated through the use of scanning tunneling spectroscopy differential current-voltage response for each molecular wire, despite their close structural similarity. Such molecular wires embedded in alkanethiol matrix and exhibiting conductance-switching phenomena have the potential to be used for the functionalization of electrodes in bioelectronic devices. PMID:25590414

  6. The structural biology of molecular recognition by vancomycin.

    PubMed

    Loll, P J; Axelsen, P H

    2000-01-01

    Vancomycin is the archetype among naturally occurring compounds known as glycopeptide antibiotics. Because it is a vital therapeutic agent used world-wide for the treatment of infections with gram-positive bacteria, emerging bacterial resistance to vancomycin is a major public health threat. Recent investigations into the mechanisms of action of glycopeptide antibiotics are driven by a need to understand their detailed mechanism of action so that new agents can be developed to overcome resistance. These investigations have revealed that glycopeptide antibiotics exhibit a rich array of complex cooperative phenomena when they bind target ligands, making them valuable model systems for the study of molecular recognition. PMID:10940250

  7. Multi-Probe Investigation of Proteomic Structure of Pathogens

    SciTech Connect

    Malkin, A J; Plomp, M; Leighton, T J; Vogelstein, B; Wheeler, K E

    2008-01-24

    Complete genome sequences are available for understanding biotransformation, environmental resistance and pathogenesis of microbial, cellular and pathogen systems. The present technological and scientific challenges are to unravel the relationships between the organization and function of protein complexes at cell, microbial and pathogens surfaces, to understand how these complexes evolve during the bacterial, cellular and pathogen life cycles, and how they respond to environmental changes, chemical stimulants and therapeutics. In particular, elucidating the molecular structure and architecture of human pathogen surfaces is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance and development of countermeasures against bioterrorist agents. The objective of this project was to investigate the architecture, proteomic structure, and function of bacterial spores through a combination of high-resolution in vitro atomic force microscopy (AFM) and AFM-based immunolabeling with threat-specific antibodies. Particular attention in this project was focused on spore forming Bacillus species including the Sterne vaccine strain of Bacillus anthracis and the spore forming near-neighbor of Clostridium botulinum, C. novyi-NT. Bacillus species, including B. anthracis, the causative agent of inhalation anthrax are laboratory models for elucidating spore structure/function. Even though the complete genome sequence is available for B. subtilis, cereus, anthracis and other species, the determination and composition of spore structure/function is not understood. Prof. B. Vogelstein and colleagues at the John Hopkins University have recently developed a breakthrough bacteriolytic therapy for cancer treatment (1). They discovered that intravenously injected Clostridium novyi-NT spores germinate exclusively within the avascular regions of tumors in mice and destroy advanced cancerous lesions. The bacteria were also

  8. The diamond pyramid structure in electroless copper deposit, its atomic model and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, X.; Sha, W.

    2008-12-01

    In this paper, we report the discovery of the diamond pyramid structures in the electroless copper deposits on both epoxy and stainless steel substrates. The surface morphology of the structure was characterized with scanning electron microscope (SEM). According to the morphological feature of the structure, an atom model was brought forward in order to describe the possible mechanism of forming such structure. Molecular dynamics (MD) simulations were then carried out to investigate the growing process of the diamond pyramid structure. The final structures of the simulation were compared with the SEM images and the atomic model. The radial distribution function of the final structures of the simulation was compared with that calculated from the X-ray diffraction pattern of the electroless copper deposit sample.

  9. Molecular dynamics investigation of the adhesion mechanism acting between dopamine and the surface of dopamine-processed aramid fibers.

    PubMed

    Chai, Dongliang; Xie, Zhimin; Wang, Youshan; Liu, Li; Yum, Young-Jin

    2014-10-22

    Dopamine, as a universal material for surface treatment, can effectively improve the surface performance of aramid fibers. However, directly processing the surface of aramid fibers using dopamine currently incurs a high cost. To seek dopamine substitutes, one must first explore the adhesion mechanism responsible for binding the dopamine to the surface of the fiber. In this study, we construct an all-atomic molecular dynamics model of an aramid fiber before and after surface modification using dopamine. A force field based on condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) is used. Using it, we analyze the surface adhesion mechanism of polydopamines aggregated by 21 kinds of molecular structures typically found on the surface of aramid fibers. The results show that a clear and smooth interface is formed between the polydopamine nanofilm layer and the surface of the aramid fiber. The high atomic density of the polydopamine in the small interface region is found to be conducive to noncovalent bonds of polydopamines with the surface of the aramid fiber. In addition, we investigate the works of adhesion of the 21 molecular structures typically found on the surface of aramid fibers. The results suggest that the work of adhesion of 5,6-indolequinone is the highest, followed by annular eumelanin molecules with annular planar structure. Straight-chain shaped dimers proved to be the molecules with the highest adhesion ability of the dihydroxyindole chain oligomers. Therefore, there is reason to suppose that more molecular structures (as above) can be formed by processing the surface of aramid fibers using dopamine by controlling the processing conditions. These molecular structures help improve the adhesion ability of the dopamine on the surface of the aramid fiber. Additionally, if these polydopamine molecules with high adhesion ability can be synthesized on a large scale, then new surface-processing materials are possible. PMID

  10. Filamentary Structure in Orion and Monoceros Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lahaise, W. H.; Bhavsar, S. P.

    1994-05-01

    The filamentary structure in 13CO radio maps of the Orion A, Orion B and Monoceros R2 molecular clouds was analyzed using the Minimal Spanning Tree. This represents the first time the MST has been applied to an extended region such as maps of molecular clouds. The method of preparing and analyzing the data is presented. Integrated maps over a range of velocities were examined as well as a velocity cube constructed from individual 0.5 km s-1 wide channel maps. The results show that there is overwhelming objective and statistical evidence that the filamentary structure does exist in all three of these regions. Previous techniques to identify filaments were generally visual, and therefore subjective. The major filaments in Orion A show linear features extending throughout the entire length. The structure in the velocity cube clearly shows the continuous velocity gradient. Orion B cloud shows distinct regions with north to south orientations. The velocity cube contains a number of filaments at greatly differing velocities, with little evidence of large scale velocity gradients. Mon R2 cloud exhibits two main filamentary components, one of which is associated with both bright condensed regions. The velocity structure reveals an overall velocity gradient.

  11. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  12. Energy-weighted sum rules and the analysis of vibrational structure in molecular spectra

    NASA Astrophysics Data System (ADS)

    Smith, W. L.

    2015-10-01

    The energy-weighted sum SV = Σn (E‧n - E″m)|<ψ″m|ψ‧n>|2 = <ψ″m|ΔV|ψ″m> for the vibrational potential functions V‧, V″ associated with transitions between two electronic states of diatomic molecular species is investigated and specific formulae are given using Morse functions for V‧ and V″. It is found that these formulae are useful approximations which provide a convenient way to analyse the vibrational structure of real spectra to give estimates of molecular parameters such as the change in internuclear distance accompanying a transition.

  13. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    PubMed

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  14. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    PubMed Central

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  15. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P < 0.05) in the CH 2 asymmetric to CH 3 asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects ( P < 0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH 2 asymmetric to CH 3 asymmetric stretching vibration intensity. Autoclaving had no significant effect ( P > 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study

  16. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    PubMed

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P < 0.001) contents of oil (44.54 vs 41.42% dry matter (DM)) and CP (24.94 vs 20.91% DM) compared to those of the brown-seeded varieties. The CP in yellow seeds contained lower (P < 0.01) contents of true protein subfraction (81.31 vs 92.71% CP) and more (P < 0.001) extensively degraded (70.8 vs 64.9% CP) in rumen resulting in lower (P < 0.001) content of RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value. PMID:24931851

  17. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations

    SciTech Connect

    Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.

    2013-12-12

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  18. Structural and spectral characterizations of C1C2 channelrhodopsin and its mutants by molecular simulations

    NASA Astrophysics Data System (ADS)

    Kamiya, Motoshi; Kato, Hideaki E.; Ishitani, Ryuichiro; Nureki, Osamu; Hayashi, Shigehiko

    2013-01-01

    Molecular dynamics (MD) simulations and excitation energy calculations of C1C2 chimera channelrhodopsin, a light-gated ion channel protein utilized as a biotechnological tool for optogenetics, based on a protein structure determined recently by X-ray crystallography were performed to investigate its structural and spectral properties. The MD simulations showed stability of hydrogen-bonds responsible for the channel gating observed in the crystallographic structural model. Analysis of electrostatic contribution of the surrounding protein groups to the absorption energy proposes several site-specific mutations that shift absorption maxima significantly, and provides a clear and controlled guide for engineering design of color variant proteins utilized in optogenetics.

  19. Holographic investigations of azobenzene-containing low-molecular-weight compounds in pure materials and binary blends with polystyrene.

    PubMed

    Audorff, Hubert; Walker, Roland; Kador, Lothar; Schmidt, Hans-Werner

    2011-11-01

    This paper reports on the synthesis and the thermal and optical properties of photochromic low-molecular-weight compounds, especially with respect to the formation of holographic volume gratings in the pure materials and in binary blends with polystyrene. Its aim is to provide a basic understanding of the holographic response with regard to the molecular structure, and thus to show a way to obtain suitable rewritable materials with high sensitivity for holographic data storage. The photoactive low-molecular-weight compounds consist of a central core with three or four azobenzene-based arms attached through esterification. Four different cores were investigated that influence the glass transition temperature and the glass-forming properties. Additional structural variations were introduced by the polar terminal substituent at the azobenzene chromophore to fine-tune the optical properties and the holographic response. Films of the neat compounds were investigated in holographic experiments, especially with regard to the material sensitivity. In binary blends of the low-molecular-weight compounds with polystyrene, the influence of a polymer matrix on the behavior in holographic experiments was studied. The most promising material combination was also investigated at elevated temperatures, at which the holographic recording sensitivity is even higher. PMID:21956207

  20. Molecular Investigations into the Mechanics of a Muscle Anchoring Complex

    PubMed Central

    Bodmer, Nicholas K.; Theisen, Kelly E.; Dima, Ruxandra I.

    2015-01-01

    The titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT). By following the mechanical response of the complex on experimental timescales, we found that the mechanical stability of titin-telethonin is modulated primarily by the strength of contacts between telethonin and the two titin chains, and secondarily by the timescales of conformational excursions inside telethonin and the pulled titin domains. Importantly, the conformational transitions executed by telethonin in simulations support its proposed role in mechanosensing. Our SOP-AT computational approach thus provides a powerful tool for the exploration of the link between conformational diversity and the broadness of the mechanical response, which can be applied to other multidomain complexes. PMID:25954889

  1. Investigation of molecular interaction between cefpodoxime acid and human mixtard insulin by ultrasonic and spectral methods.

    PubMed

    Ganesh, T; Kannappan, V; Mohamed Kamil, M G; Kumar, R

    2016-09-10

    This paper deals with the extensive investigation of molecular interaction between third generation cephalosporin antibiotic, Cefpodoxime Acid (CA) and Human Mixtard Insulin (HMI) in an aqueous medium through ultrasonic, dilute solution viscometric (DSV) and spectral [UV-vis, Attenuated total reflection (ATR)-FT IR] methods at various blend compositions of the drug and insulin at three different (303K, 310K and 313K) temperatures. This is an attempt to unravel the possibility of drug induced hypoglycemic effect. The existence of solute-solute interaction in aqueous solutions of CA and HMI is established from the variation of ultrasonic velocity and other acoustical parameters with blend composition. DSV method is used to confirm the range of blend composition at which the molecular interaction is significant. The conclusions drawn from ultrasonic and DSV methods are further established by the UV-vis and ATR- FT IR spectral studies of ternary mixtures at different blend compositions. Further, the existing interactions suggest the possibility of cefpodoxime acid induced hypoglycemia which is discussed based on the structural aspects of the two components. PMID:27442885

  2. The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations.

    PubMed

    Teng, Yue; Liu, Rutao; Li, Chao; Xia, Qing; Zhang, Pengjun

    2011-06-15

    4-Aminoantipyrine (AAP) is widely used in the pharmaceutical industry, in biochemical experiments and in environmental monitoring. AAP as an aromatic pollutant in the environment poses a great threat to human health. To evaluate the toxicity of AAP at the protein level, the effects of AAP on bovine serum albumin (BSA) were investigated by multiple spectroscopic techniques and molecular modeling. After the inner filter effect was eliminated, the experimental results showed that AAP effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites, the binding constant, the thermodynamic parameters and binding subdomain were measured, and indicated that AAP could spontaneously bind with BSA on subdomain IIIA through electrostatic forces. Molecular docking results revealed that AAP interacted with the Glu 488 and Glu 502 residues of BSA. Furthermore, the conformation of BSA was demonstrably changed in the presence of AAP. The skeletal structure of BSA loosened, exposing internal hydrophobic aromatic ring amino acids and peptide strands to the solution. PMID:21497437

  3. Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

    PubMed Central

    Mohammad Hosseini Naveh, Zeynab; Malliavin, Therese E.; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2014-01-01

    Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit. PMID:24551117

  4. Biophysical Investigations with MARCKS-ED: Dissecting the Molecular Mechanism of Its Curvature Sensing Behaviors

    PubMed Central

    de Jesus, Armando J.; Espinoza, Arianna; Yin, Hang

    2014-01-01

    Curved membranes are a common and important attribute in cells. Protein and peptide curvature sensors are known to activate signaling pathways, initiate vesicle budding, trigger membrane fusion, and facilitate molecular transport across cell membranes. Nonetheless, there is little understanding how these proteins and peptides achieve preferential binding of different membrane curvatures. The current study is to elucidate specific factors required for curvature sensing. As a model system, we employed a recently identified peptide curvature sensor, MARCKS-ED, derived from the effector domain of the myristoylated alanine-rich C-kinase substrate protein, for these biophysical investigations. An atomistic molecular dynamics (MD) simulation suggested an important role played by the insertion of the Phe residues within MARCKS-ED. To test these observations from our computational simulations, we performed electron paramagnetic resonance (EPR) studies to determine the insertion depth of MARCKS-ED into differently curved membrane bilayers. Next, studies with varied lipid compositions revealed their influence on curvature sensing by MARCKS-ED, suggesting contributions from membrane fluidity, rigidity, as well as various lipid structures. Finally, we demonstrated that the curvature sensing by MARCKS-ED is configuration independent. In summary, our studies have shed further light to the understanding of how MARCKS-ED differentiates between membrane curvatures, which may be generally applicable to protein curvature sensing behavior. PMID:25195712

  5. Discovering structural alerts for mutagenicity using stable emerging molecular patterns.

    PubMed

    Métivier, Jean-Philippe; Lepailleur, Alban; Buzmakov, Aleksey; Poezevara, Guillaume; Crémilleux, Bruno; Kuznetsov, Sergei O; Le Goff, Jérémie; Napoli, Amedeo; Bureau, Ronan; Cuissart, Bertrand

    2015-05-26

    This study is dedicated to the introduction of a novel method that automatically extracts potential structural alerts from a data set of molecules. These triggering structures can be further used for knowledge discovery and classification purposes. Computation of the structural alerts results from an implementation of a sophisticated workflow that integrates a graph mining tool guided by growth rate and stability. The growth rate is a well-established measurement of contrast between classes. Moreover, the extracted patterns correspond to formal concepts; the most robust patterns, named the stable emerging patterns (SEPs), can then be identified thanks to their stability, a new notion originating from the domain of formal concept analysis. All of these elements are explained in the paper from the point of view of computation. The method was applied to a molecular data set on mutagenicity. The experimental results demonstrate its efficiency: it automatically outputs a manageable number of structural patterns that are strongly related to mutagenicity. Moreover, a part of the resulting structures corresponds to already known structural alerts. Finally, an in-depth chemical analysis relying on these structures demonstrates how the method can initiate promising processes of chemical knowledge discovery. PMID:25871768

  6. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes

    NASA Astrophysics Data System (ADS)

    Myasnikov, Alexander G.; Afonina, Zhanna A.; Ménétret, Jean-François; Shirokov, Vladimir A.; Spirin, Alexander S.; Klaholz, Bruno P.

    2014-11-01

    During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.

  7. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  8. The Filamentary Structure of the Lupus 3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Benedettini, Milena

    We present the column density map of the Lupus 3 molecular cloud derived from the Herschel photometric maps. We compared the Herschel continuum maps, tracing the dense and cold dust emission, with the CS (2-1) map observed with the Mopra 22-m antenna, tracing the dense gas. Both the continuum and the CS maps show a well defined filamentary structure, with most of the dense cores being on the filaments. The CS (2-1) line shows a double peak in the central part of the longest filament due to the presence of two distinct gas components along this line of sight. Therefore, what seems a single filament in the Herschel map is actually the overlap of two kinematically distinct filaments. This case clearly shows that kinematical information is essential for the correct interpretation of filaments in molecular clouds.

  9. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.

    PubMed

    Mammucari, Cristina; Raffaello, Anna; Vecellio Reane, Denis; Rizzuto, Rosario

    2016-10-01

    Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26968367

  10. Molecular structures of carotenoids as predicted by MNDO-AM1 molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Yoda, Takeshi; Kobayashi, Takayoshi; Young, Andrew J.

    2002-02-01

    Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed for a number of biologically important carotenoid molecules, namely all- trans-β-carotene, all- trans-zeaxanthin, and all- trans-violaxanthin (found in higher plants and algae) together with all- trans-canthaxanthin, all- trans-astaxanthin, and all- trans-tunaxanthin in order to predict their stable structures. The molecular structures of all- trans-β-carotene, all- trans-canthaxanthin, and all- trans-astaxanthin predicted based on molecular orbital calculations were compared with those determined by X-ray crystallography. Predicted bond lengths, bond angles, and dihedral angles showed an excellent agreement with those determined experimentally, a fact that validated the present theoretical calculations. Comparison of the bond lengths, bond angles and dihedral angles of the most stable conformer among all the carotenoid molecules showed that the displacements are localized around the substituent groups and hence around the cyclohexene rings. The most stable conformers of all- trans-zeaxanthin and all- trans-violaxanthin gave rise to a torsion angle around the C6-C7 bond to be ±48.7 and -84.8°, respectively. This difference is a key factor in relation to the biological function of these two carotenoids in plants and algae (the xanthophyll cycle). Further analyses by calculating the atomic charges and using enpartment calculations (division of bond energies between component atoms) were performed to ascribe the cause of the different observed torsion angles.

  11. Structural and molecular modeling studies of quinazolinone anticonvulsants.

    PubMed

    Duke, N E; Codding, P W

    1993-08-01

    Studies of derivatives of the anticonvulsant methaqualone led to the discovery that unsaturation in the 2-substituent produced active but less toxic compounds; accordingly, 2-arylethanone derivatives have been developed. The crystal structures of five 2-arylethanone derivatives of methaqualone were determined to probe structure-activity relationships. Although these compounds display different activities, the solid-state and calculated structures are similar: each compound is observed as the neamine tautomer containing an intramolecular hydrogen bond between the ethanone and the amine N atom and the molecular conformations are the same. These studies conclude that recognition of the anticonvulsants arises from specific binding of an ortho substituent on the N(3) phenyl substituent, rather than from binding of a particular conformation or tautomeric form adopted by the compound containing an ortho substituent, and that such recognition is characteristic of a broad range of anticonvulsant drugs. Crystal data: [see text]. PMID:8397980

  12. The molecular scale structure of water at interfaces

    NASA Astrophysics Data System (ADS)

    Salmeron, Miquel

    2004-03-01

    The molecular scale structure of water at surfaces and interfaces is an unresolved and fundamental topic in many areas of science and technology, and determines its wetting properties. In our studies of this very interesting topic we used scanning probes (STM, AFM), and electron and vibrational spectroscopies. STM studies on Pd(111) reveal that at low temperature (below 130K) water adsorbs as an intact molecule, forming clusters of dimers, trimers, etc. and finally H-bonded hexagonal structures with a V3xV3R30º periodicity. When the temperature is below 100K the O-H bonds in this structure are nearly parallel to the substrate except at the island edges where they point down towards the substrate or up leaving dangling bonds. Above 130K other structures form with molecules having unsaturated H bonds that point outwards from the surface and forming a superstructure of the V3xV3 structure. We have also studied the formation of dangling bonds in other water interfaces, including ice-vapor and on insulating substrates. On the ice surface, a thin layer exists that contains many H-dangling bonds near 0ºC. The thickness of this layer is less than a nanometer below -1ºC. On the basal plane of mica (an alumino silicate) water forms hexagonal structures with no unsaturated H-bonds and with the molecular dipole pointing on average towards the surface. On subsequent layers below 0ºC, the dipolar orientation persist and gives rise to ferroelectric ice. Above 0ºC however water layers above the first have free, unsaturated H-bonds pointing outwards from the surface as in the liquid form. On alkali halide surfaces water adsorbs preferentially at step edges at low humidity solvating the cations first. At higher humidity both cations and anions are solvated and finally, at deliquescence, when the salt dissolves, the anions segregate preferentially at the surface.

  13. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  14. Roles in Modulation of Molecular Structures on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Gao, H.-J.

    2007-03-01

    We studied the adsorption of organic molecules, their growth behavior, and their physical properties on silver and gold surfaces at the single molecule or sub-molecular scale by using low-temperature scanning tunneling microscopes. Combined with low energy electron diffraction and first-principles density functional theory calculations, the key parameters in modulating molecular structures on metals are analyzed. It is found that the alkyl chains of quinacridone derivatives (QA) determine the orientation of molecular overlayers on an Ag(110) substrate. The interaction of QA and the Ag substrate is primarily due to chemical bonding of oxygen to specific positions at the silver substrate, determining the molecular orientation and preferred adsorption site. However, the intermolecular arrangement can be adjusted via the length of attached alkyl chains. We are thus able to fabricate uniform QA films with very well controlled physical properties. Furthermore, by thermal and chemical control, we are able to self-assemble three dimensional molecular nanostructures, e.g. ordered PTCDA structures exclusively on flat Ag(111) facets, or DMe-DCNQI structures exclusively on stepped Ag(221) facets. It is demonstrated that bonding, the key factor for selectivity, occurs via the end-atoms, while the molecule's mid-region arches away from the substrate. Theoretical results, obtained by high-level theory, are consistent with the experimental observations, which have previously been interpreted in terms of bonding through the mid-region. In collaboration with D.X. Shi, S.X. Du, W. Ji, Z.T. Deng, L. Gao, Institute of Physics, and X. Lin, Chinese Academy of Sciences, China; C. Seidel and H. Fuchs, Universit"at M"unster, Germany; W.A. Hofer, The University of Liverpool, Britain; and S. T. Pantelides, Vanderbilt University, USA. [1] D.X. Shi et al., Phys. Rev. Lett. 96, 226101(2006). [2] S.X. Du et al., Phys. Rev. Lett. 96, 226101(2006). [3] L. Gao et al., Phys. Rev. B 73, 075424(2006).

  15. Investigating Effects of Task Structure on EFL Learner's Oral Performance

    ERIC Educational Resources Information Center

    Rahimpour, Massoud; Mehrang, Faezeh

    2010-01-01

    It is argued that tasks with different structures yield different performances in terms of accuracy, fluency and complexity. The present study is thus an attempt to investigate the impact of task structure on second language task performance. Thirty two upper-intermediate Iranian learners of English performed two narrative tasks (Structured vs.…

  16. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  17. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  18. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Melnikov, V. V.

    2015-06-01

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H2 in Si, and the obtained dispersion law is analyzed.

  19. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    SciTech Connect

    Melnikov, V. V.

    2015-06-15

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H{sub 2} in Si, and the obtained dispersion law is analyzed.

  20. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  1. Ab initio quantum chemical investigation of arsenic sulfide molecular diversity from As4S6 and As4

    NASA Astrophysics Data System (ADS)

    Kyono, Atsushi

    2013-10-01

    The structural diversity of arsenic sulfide molecules in compositions between As4S6 and As4 was investigated using ab initio quantum chemical calculations. The As4S6 molecule consists of four trigonal pyramid coordinations of As atoms bonding to three S atoms. In the As4S5 composition, only one type of molecular configuration corresponds to an uzonite-type molecule. In the As4S4 composition, two molecular configurations exist with realgar-type and pararealgar-type molecules. Three molecular configurations are in the As4S3 composition. The first configuration comprises trigonal pyramidal As atom coordinations of two types: bonding to two S atoms and one As atom, and bonding to one S atom and two As atoms. The second is the molecular configuration of dimorphite. The third comprises trigonal pyramidal As atom coordinations of two types: bonding to three As atoms, and bonding to one As atom and two S atoms. The As4S2 composition allows molecular configurations of two types. One is comprised of trigonal pyramidal As atom configurations of one type bonding to two As atoms and one S atom. The other comprises trigonal pyramidal As atom coordinations of three types: bonding to two S atoms and one As atoms, bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S molecule has trigonal pyramidal As atom coordinations of two types: bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S composition permits only one molecular configuration, which suggests that the mineral duranusite comprises the As4S molecular geometry. In all, ten molecular configurations are predicted in the molecular hierarchy of the arsenic sulfide binary system. The simulated Raman spectral profiles are helpful in searching for undiscovered arsenic sulfide minerals.

  2. Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions

    PubMed Central

    Haubenreisser, Stefan; Wöste, Thorsten H.; Martínez, Claudio; Ishihara, Kazuaki

    2015-01-01

    Abstract Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis. PMID:26596513

  3. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  4. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    PubMed

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  5. Structural Assembly of Molecular Complexes Based on Residual Dipolar Couplings

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2010-01-01

    We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDC) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDC’s sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex based solely on experimental RDC data and the prediction of the alignment tensor from three-dimensional structures. Thus, despite the purely angular nature of residual dipolar couplings, they can be converted into intermolecular distance/translational constraints. Additionally we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of the protein complexes. PMID:20550109

  6. Solid state structural and theoretical investigations of a biologically active chalcone

    NASA Astrophysics Data System (ADS)

    Abbas, Asghar; Gökce, Halil; Bahceli, Semiha; Bolte, Michael; Naseer, Muhammad Moazzam

    2016-05-01

    The computational methods are presently emerging as an efficient and reliable tool for predicting structural properties of biologically important compounds. In the present manuscript, the solid state structural and theoretical investigations of a biologically active chalcone i-e (E)-3-(4-(hexyloxy)phenyl)-1-phenylprop-2-en-1-one (6c) have been reported. The solid state structure of 6c was measured by X-ray crystallographic technique whereas the optimized molecular geometry, vibrational frequencies, the simulated UV-vis spectra (in gas and in methanol solvent), 1H and 13C NMR chemical shift (in gas and in chloroform solvent) values, HOMO-LUMO analysis, the molecular electrostatic potential (MEP) surface and thermodynamic parameters were calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The results of the theoretical investigations were found to be in good agreement with experimental data.

  7. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    PubMed

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-01

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. PMID:27235585

  8. Investigation of structural behavior of candidate Space Station structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Miller, Richard K.

    1989-01-01

    Quantitative evaluations of the structural loads, stiffness and deflections of an example Space Station truss due to a variety of influences, including manufacturing tolerances, assembly operations, and operational loading are reported. The example truss is a dual-keel design composed of 5-meter-cube modules. The truss is 21 modules high and 9 modules wide, with a transverse beam 15 modules long. One problem of concern is the amount of mismatch which will be expected when the truss is being erected on orbit. Worst-case thermal loading results in less than 0.5 inch of mismatch. The stiffness of the interface is shown to be less than 100 pounds per inch. Thus, only moderate loads will be required to overcome the mismatch. The problem of manufacturing imperfections is analyzed by the Monte Carlo approach. Deformations and internal loads are obtained for ensembles of 100 example trusses. All analyses are performed on a personal computer. The necessary routines required to supplement commercially available programs are described.

  9. Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations.

    PubMed

    Jee, Sang Eun; Zhou, Jienfeng; Tan, Jianquo; Breschi, Lorenzo; Tay, Franklin R; Grégoire, Geneviève; Pashley, David H; Jang, Seung Soon

    2016-05-01

    The purpose of this study is to investigate the interaction of neat ethanol with bound and non-bound water in completely demineralized dentin that is fully hydrated, using molecular dynamics (MD) simulation method. The key to creating ideal resin-dentin bonds is the removal of residual free water layers and its replacement by ethanol solvent in which resin monomers are soluble, using the ethanol wet-bonding technique. The test null hypotheses were that ethanol cannot remove any collagen-bound water, and that ethanol cannot infiltrate into the spacing between collagen triple helix due to narrow interlayer spacing. Collagen fibrillar structures of overlap and gap regions were constructed by aligning the collagen triple helix of infinite length in hexagonal packing. Three layers of the water molecules were specified as the layers of 0.15-0.22nm, 0.22-0.43nm and 0.43-0.63nm from collagen atoms by investigating the water distribution surrounding collagen molecules. Our simulation results show that ethanol molecules infiltrated into the intermolecular spacing in the gap region, which increased due to the lateral shrinkage of the collagen structures in contact with ethanol solution, while there was no ethanol infiltration observed in the overlap region. Infiltrated ethanol molecules in the gap region removed residual water molecules via modifying mostly the third water layer (50% decrease), which would be considered as a loosely-bound water layer. The first and second hydration layers, which would be considered as tightly bound water layers, were not removed by the ethanol molecules, thus maintaining the helical structures of the collagen molecules. PMID:26969524

  10. Structure-Directed Exciton Dynamics in Templated Molecular Nanorings

    PubMed Central

    2015-01-01

    Conjugated polymers with cyclic structures are interesting because their symmetry leads to unique electronic properties. Recent advances in Vernier templating now allow large shape-persistent fully conjugated porphyrin nanorings to be synthesized, exhibiting unique electronic properties. We examine the impact of different conformations on exciton delocalization and emission depolarization in a range of different porphyrin nanoring topologies with comparable spatial extent. Low photoluminescence anisotropy values are found to occur within the first few hundred femtoseconds after pulsed excitation, suggesting ultrafast delocalization of excitons across the nanoring structures. Molecular dynamics simulations show that further polarization memory loss is caused by out-of-plane distortions associated with twisting and bending of the templated nanoring topologies. PMID:25960822

  11. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    NASA Astrophysics Data System (ADS)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  12. Molecular structure of uranium carbides: Isomers of UC3

    NASA Astrophysics Data System (ADS)

    Zalazar, M. Fernanda; Rayón, Víctor M.; Largo, Antonio

    2013-03-01

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  13. Molecular structure of uranium carbides: isomers of UC3.

    PubMed

    Zalazar, M Fernanda; Rayón, Víctor M; Largo, Antonio

    2013-03-21

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density. PMID:23534639

  14. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  15. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  16. Molecular studies of the structural ecology of natural occlusal caries.

    PubMed

    Dige, Irene; Grønkjær, Lene; Nyvad, Bente

    2014-01-01

    Microbiological studies of occlusal dental biofilms have hitherto been hampered by inaccessibility to the sampling site and demolition of the original biofilm architecture. This study shows for the first time the spatial distribution of bacterial taxa in vivo at various stages of occlusal caries, applying a molecular methodology involving preparation of embedded hard dental tissue slices for fluorescence in situ hybridization (FISH) and confocal microscopy. Eleven freshly extracted teeth were classified according to their occlusal caries status. The teeth were fixed, embedded, sectioned and decalcified before FISH was performed using oligonucleotide probes for selected abundant species/genera associated with occlusal caries including Streptococcus, Actinomyces, Veillonella, Fusobacterium, Lactobacillus and Bifidobacterium. The sites showed distinct differences in the bacterial composition between different ecological niches in occlusal caries. Biofilm observed along the entrance of fissures showed an inner layer of microorganisms organized in palisades often identified as Actinomyces, covered by a more loosely structured bacterial layer consisting of diverse genera, similar to supragingival biofilm. Biofilm within the fissure proper seemed less metabolically active, as judged by low fluorescence signal intensity and presence of material of non-bacterial origin. Bacterial invasion (often Lactobacillus and Bifidobacterium spp.) into the dentinal tubules was seen only at advanced stages of caries with manifest cavity formation. It is concluded that the molecular methodology represents a valuable supplement to previous methods for the study of microbial ecology in caries by allowing analysis of the structural composition of the undisturbed biofilm in caries lesions in vivo. PMID:24852305

  17. Molecular dynamics simulations of structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces.

    PubMed

    He, Guangzhi; Zhang, Meiyi; Zhou, Qin; Pan, Gang

    2015-09-01

    Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding CaCl2 to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl2 enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent Ca(2+) substituted for monovalent K(+) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale. PMID:25966457

  18. The investigation of solid-solid phase transformation at CuAlNi alloy using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kazanc, Sefa; Ahmet Celik, Fatih; Ozgen, Soner

    2013-12-01

    In this study the thermodynamic and structural properties of a CuAlNi model alloy (3A) system were investigated using a molecular dynamics (MD) simulation method. The interactions between atoms were modelled by the Sutton-Chen embedded atom method (SCEAM) based on many-body interactions. It was observed that at the end of thermal process the thermo-elastic phase transformation occurred in the model alloy system. In order to analyse the structures obtained from MD simulation, techniques such as thermodynamic parameters and radial distribution function (RDF) were used. The local atomic order in the model alloy was analysed using Honeycutt-Andersen (HA) method.

  19. Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Derenne, Sylvie; Robert, François

    2010-09-01

    The molecular structure of the insoluble organic matter (IOM) from Murchison meteorite has been investigated by our group for several years using a large set of analytical methods including various spectroscopies (Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, X-ray absorption near-edge spectroscopy), high resolution electron microscopy, and thermal (pyrolyses in the presence or not of tetramethylammonium hydroxide) and chemical (RuO4 oxidation) degradations. Taken together, these techniques provided a wealth of qualitative and quantitative information, from which we derived 11 elemental and molecular parameters on the same IOM residue. In addition to the basic elemental composition, these parameters describe the distribution of the different types of carbon, nitrogen, and sulfur atoms as well as the size of the polyaromatic units. For this molecular structure, we therefore propose a model which fits with these 11 molecular quantitative parameters. Several cosmochemical implications are derived from this structure. Based on the fact that aromatic moieties are highly substituted and aliphatic chains highly branched, it can be anticipated that the synthesis of this IOM occurred through successive additions of single carbon units in the gas-phase ending by a spontaneous cyclization for chain length ≥7 C. As a whole, these observations favor an organosynthesis in the solar T-Tauri disk.

  20. Formation of metal nano-particles on and in polymer films investigated by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rozas, Roberto; Kraska, Thomas

    2007-04-01

    The formation of platinum nano-particles on a polyethylene substrate is investigated by molecular dynamics simulation. As initial configuration, a polymer film is put in contact with a supersaturated platinum vapour. Argon is added in the vapour phase as carrier gas that transfers heat from the vapour phase to the polymer surface. The simulations provide a deep insight into cluster formation at the atomic level. The presence of the polymer affects cluster growth significantly. Surface growth and agglomeration are limited by the polymer matrix. The influence of supersaturation on the cluster size distribution is also different to the particle formation in the gas phase. In addition, the structure of the polymer substrate is modified during the embedding of platinum. These effects are analysed and compared to experimental investigations of the formation of metal-polymer composites. The resulting distribution of metal clusters on the surface and inside the polymer is in general agreement with available experimental results of similar polymer-metal systems.

  1. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    PubMed Central

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  2. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors

    PubMed Central

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors. PMID:26580609

  3. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors. PMID:26580609

  4. Maintain rigid structures in Verlet based Cartesian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R.

    2012-10-01

    An algorithm is presented to maintain rigid structures in Verlet based Cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any Cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  5. Docking Studies and Molecular Dynamic Simulations Reveal Different Features of IDO1 Structure.

    PubMed

    Greco, Francesco Antonio; Bournique, Answald; Coletti, Alice; Custodi, Chiara; Dolciami, Daniela; Carotti, Andrea; Macchiarulo, Antonio

    2016-09-01

    In the last decade, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted a great deal of attention being recognized as key regulator of immunosuppressive pathways in the tumor immuno-editing process. Several classes of inhibitors have been developed as potential anticancer agents, but only few of them have advanced in clinical trials. Hence, the quest of novel potent and selective inhibitors of the enzyme is still active and mostly pursued by structure-based drug design strategies based on early and more recent crystal structures of IDO1. Combining docking studies and molecular dynamic simulations, in this work we have comparatively investigated the structural features of each crystal structure of IDO1. The results pinpoint different features in specific crystal structures of the enzyme that may benefit the medicinal chemistry arena aiding the design of novel potent and selective inhibitors of IDO1. PMID:27546049

  6. Structural investigations into the interaction of hemoglobin and part structures with bacterial endotoxins.

    PubMed

    Howe, Jörg; Garidel, Patrick; Roessle, Manfred; Richter, Walter; Alexander, Christian; Fournier, Karin; Mach, Jean Pierre; Waelli, Thierry; Gorczynski, Reginald M; Ulmer, Artur J; Zähringer, Ulrich; Hartmann, Alfred; Rietschel, Ernst Th; Brandenburg, Klaus

    2008-02-01

    An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb. PMID:18387918

  7. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  8. Molecular Clouds in the North American and Pelican Nebulae: Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  9. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. PMID:26362600

  10. Molecular structure and vibrational spectra of Irinotecan: A density functional theoretical study

    NASA Astrophysics Data System (ADS)

    Chinna Babu, P.; Sundaraganesan, N.; Sudha, S.; Aroulmoji, V.; Murano, E.

    2012-12-01

    The solid phase FTIR and FT-Raman spectra of Irinotecan have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d) as basis set. The vibrational frequencies were calculated for Irinotecan by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared spectrum was also simulated from the calculated intensities. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  11. Molecular Structures of Polymer/Sulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life

    SciTech Connect

    Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Schwenzer, Birgit; Engelhard, Mark H.; Saraf, Laxmikant V.; Nie, Zimin; Exarhos, Gregory J.; Liu, Jun

    2013-04-26

    Vulcanizedpolyaniline/sulfur (SPANI/S) nanostructures were investigated for Li-S battery applications, but the detailed molecular structures of such composites have not been fully illustrated. In this paper, we synthesize SPANI/S composites with different S content in a nanorod configuration. FTIR, Raman, XPS, XRD, SEM and elemental analysis methods are used to characterize the molecular structure of the materials. We provide clear evidence that a portion of S was grafted on PANI during heating and connected the PANI chains with disulfide bonds to form a crosslinked network and the rest of S was encapsulated within it.. Polysulfides and elementary sulfur nanoparticles are physically trapped inside the polymer network and are not chemically bound to the polymer. The performance of the composites is further improved by reducing the particle size. Even after 500 cycles a capacity retention rate of 68.8% is observed in the SPANI/S composite with 55% S content.

  12. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  13. A new parametrizable model of molecular electronic structure

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2011-10-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure - making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost.

  14. A new parametrizable model of molecular electronic structure.

    PubMed

    Laikov, Dimitri N

    2011-10-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure--making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost. PMID:21992295

  15. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ritwiset, Aksornnarong; Krongsuk, Sriprajak; Johns, Jeffrey Roy

    2016-09-01

    Niosomes are non-ionic surfactant vesicles having a bilayer structure formed by self-assembly of hydrated surfactants, usually with cholesterol incorporation. Stability and mechanical properties of niosomes strongly depend on type of non-ionic surfactants and compositions used. In this study we present the structural and dynamical properties of niosome bilayers composed of sorbitan monostearate (Span60) with 0% and 50% cholesterol compositions which are investigated by using molecular dynamics simulations. The simulations reveal that niosome bilayer without cholesterol prefer to form in the gel phase with a higher order structure, while in the presence of cholesterol the bilayer exhibits more fluidity having a less ordered structure. The niosome bilayer with 50% cholesterol inclusion shows an increase of area per lipid (∼11%) and thickness (∼39%) compared with the niosome bilayer without cholesterol. The Span60 tailgroup orientation of the niosome bilayers without cholesterol exhibits more tilt (34.5o ± 0.5) than that of the bilayer with 50% cholesterol (15.4o ± 0.8). Additionally, our results show that the addition of cholesterol to the bilayer causes the higher in lateral and transverse diffusion, as well as an increase in the hydrogen bond number between Span60 and water. Such characteristics not only enhance the niosome stability but also increase the fluidity, which are necessary for the niosomal drug delivery.

  16. How does the molecular network structure influence PDMS elastomer wettability?

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  17. Stochastic Molecular Transport on Microtubule Bundles with Structural Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, M. W.; Tabei, S. M. Ali

    Intracellular transport involves complex coordination of multiple components such as: the cytoskeletal network and molecular motors. Perturbations in this process can amplify over time and space, thereby affecting transport. One little studied component of transport are structural defects in the cytoskeletal network. In this talk we will present a stochastic model of the interaction of the molecular motor, kinesin-1, and a bundled cystoskeletal network of microtubules, and explicitly explore the role of microtubule ends (a type of defect) on long-range transport. We will show how different types of end distributions can ultimately result in the same observed transport behavior for bundles. We compare transport on completely uniform bundles, found in the axon, to completely random bundles, found in dendrites. Because of the un-biased random bundle nature, defects affect transport on dendrite bundles more than on uniform bundles in the axon. Further, defects act as large spatial-scale traps that result in random wait-times which have been assumed in previous models.

  18. Cluster and Shell Structures in the Fermionic Molecular Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    Nuclei in the p- and sd-shell are studied within the Fermionic Molecular Dynamics (FMD) model that uses Gaussian wave packets as single-particle states. Intrinsic many-body basis states are given by Slater determinants which have to be projected on parity, angular momentum and total linear momentum to restore the symmetries of the Hamiltonian. The flexibility of the Gaussian basis allows to economically describe states with shell structures as well as states featuring clustering or halos. The same effective interaction derived from the realistic Argonne V18 interaction in the Unitary Correlation Operator Method (UCOM) framework is used for all nuclei. We discuss the spectrum of 12C with a special emphasis on the structure of the first excited 0+ state, the famous Hoyle state. In the FMD approach the Hoyle state is found to be dominated by dilute α-cluster configurations. Recent measurements of the charge radii of Neon isotopes show an intriguing behaviour. This can be explained in FMD calculations by a structure change from 17Ne and 18Ne which can be essentially considered as an 15O or 16O core plus two protons in s2 or d2 configurations, respectively. For the heavier isotopes we find that the admixture of 3He and 4He cluster configurations in the ground states leads to much larger charge radii than obtained in a mean-field calculation.

  19. Electronic Structure and Molecular Dynamics Calculations for KBH4

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, Dimitrios; Shabaev, Andrew; Hoang, Khang; Mehl, Michael; Kioussis, Nicholas

    2012-02-01

    In the search for hydrogen storage materials, alkali borohydrides MBH4 (M=Li, Na, K) are especially interesting because of their light weight and the high number of hydrogen atoms per metal atom. Electronic structure calculations can give insights into the properties of these complex hydrides and provide understanding of the structural properties and of the bonding of hydrogen. We have performed first-principles density-functional theory (DFT) and tight-binding (TB) calculations for KBH4 in both the high temperature (HT) and low temperature (LT) phases to understand its electronic and structural properties. Our DFT calculations were carried out using the VASP code. The results were then used as a database to develop a tight-binding Hamiltonian using the NRL-TB method. This approach allowed for computationally efficient calculations of phonon frequencies and elastic constants using the static module of the NRL-TB, and also using the molecular dynamics module to calculate mean-square displacements and formation energies of hydrogen vacancies.

  20. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  1. Molecular-dynamics study of structure II hydrogen clathrates.

    PubMed

    Alavi, Saman; Ripmeester, J A; Klug, D D

    2005-07-01

    Molecular-dynamics simulations are used to study the stability of structure II hydrogen clathrates with different H2 guest occupancies. Simulations are done at pressures of 2.5 kbars and 1.013 bars and for temperatures ranging from 100 to 250 K. For a structure II unit cell with 136 water molecules, H2 guest molecule occupancies of 0-64 are studied with uniform occupancies among each type of cage. The simulations show that at 100 K and 2.5 kbars, the most stable configurations have single occupancy in the small cages and quadruple occupancy in the large cages. The optimum occupancy for the large cages decreases as the temperature is raised. Double occupancy in the small cages increases the energy of the structures and causes tetragonal distortion in the unit cell. The spatial distribution of the hydrogen guest molecules in the cages is determined by studying the guest-water and guest-guest radial distribution functions at various temperatures. PMID:16050759

  2. Structural and molecular interrogation of intact biological systems.

    PubMed

    Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S; Davidson, Thomas J; Mirzabekov, Julie J; Zalocusky, Kelly A; Mattis, Joanna; Denisin, Aleksandra K; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl

    2013-05-16

    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631

  3. Investigation of laser holographic interferometric techniques for structure inspection

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1973-01-01

    The application of laser holographic interferometric techniques for nondestructive inspection of material structures commonly used in aerospace works is investigated. Two types of structures, composite plate and solid fuel rocket engine motor casing, were examined. In conducting the experiments, both CW HeNe gas lasers and Q-switched ruby lasers were used as light sources for holographic recording setups. Different stressing schemes were investigated as to their effectiveness in generating maximum deformation at regions of structural weakness such as flaws and disbonds. Experimental results on stressing schemes such as thermal stressing, pressurized stressing, transducer excitation, and mechanical impact are presented and evaluated.

  4. Investigations of the plasma and structure based accelerators

    SciTech Connect

    Shvets, Gennady

    2012-08-30

    The objective of our research during the reported period was three-fold: (a) theoretical investigation of novel mechanisms of injection into laser wake field accelerators; (b) theoretical investigation of single-shot frequency domain diagnostics of relativistic plasma wakes, specifically in the context of spatio-temporal evolution of the plasma bubble;(c) experimental and theoretical investigation of laser-driven accelerating structure, specifically in the context of the Surface Wave Accelerator Based on SiC (SWABSIC).

  5. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  6. The Influence of the Molecular Structure of Cyanine Dye on the Component Composition of Molecular Layers

    NASA Astrophysics Data System (ADS)

    Kaliteevskaya, E. N.; Krutyakova, V. P.; Razumova, T. K.; Starovoitov, A. A.

    2016-03-01

    The formation of the component composition of symmetric cationic cyanine dyes on glass is studied. The absorption spectra of layers of three homologous series of dyes with end heterocyclic groups of different spatial and chemical compositions are measured, and the absorption spectra of monomer components and aggregates are separated. The component compositions of layers of different thicknesses are compared. It is shown that the widening of the absorption spectra of molecular layers against the spectra of ethanol solutions of these compounds is caused mainly by the formation of various monomer stereoisomers and molecular aggregates and their interaction with the substrate surface and the neighborhood. The number of isomer forms and their relative concentrations depend on the layer thickness, the electron donor ability and spatial structure of end groups, and the cation conjugation chain length. The influence of the anion manifests itself only in the concentration ratio of the formed monomers and a small shift of the maxima of their absorption bands. The increase in the number of monomer forms produced in the layer corresponds to the increase in the conjugation chain length. Spatial obstacles created by heterocyclic groups inhibit the formation of definite stereoisomers, which reduces the number of components of the layer.

  7. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    PubMed

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. PMID:25233034

  8. Molecular structure, spectroscopic properties and DFT calculations of 2-(methylthio)nicotinic acid

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Bahçeli, Semiha

    2013-10-01

    The analyses of possible conformations, molecular structures, vibrational and electronic properties of 2-(methylthio)nicotinic acid molecule, C7H7NO2S, with the synonym 2-(methylsulfanyl)nicotinic acid have been first presented theoretically. At the same time, FT-IR and micro-Raman spectra of 2-(methylthio)nicotinic acid were recorded in the regions 400-4000 cm-1 and 100-4000 cm-1, respectively. In our calculations, the DFTB3LYP method with 6-311G(d, p) basis set was used to have the structural and spectroscopic data about the mentioned molecule in the ground state and the results obtained were compared with experimental values. Furthermore, gauge invariant atomic orbital (GIAO) 1H and 13C NMR chemical shifts in different solvents, UV-vis TD-DFT calculations, the highest occupied molecular orbitals (HOMO-2, HOMO-1, HOMO), lowest unoccupied molecular orbital (LUMO), molecular electrostatic potantial (MEP) surface, atomic charges and thermodynamic properties of molecule have been theoretically verified and simulated at the mentioned level. The energetic behavior of title molecule in different solvent media was investigated by using DFT/B3LYP method with 6-311G(d, p) basis set in terms of integral equation formalism polarizable continuum model (IEFPCM). In addition, the calculated infrared intensities, Raman activities, reduce masses and force constants of the compound under study have been also reported.

  9. Investigations of the effects of photocatalysis on the molecular assembly behavior of titanium alkoxide materials

    NASA Astrophysics Data System (ADS)

    Musgraves, Jonathan David

    The present work focuses on the use of engineered, photoactive metal alkoxide precursors in the sol-gel processing of metal-oxide materials. The strategy under investigation seeks to integrate photoinduced structural modification with conventional sol-gel chemical preparations to enable the selective photo-activation of reaction points about the metal center during material formation. The approach thus has the potential to influence the development of intermolecular bonding geometry and to provide an opportunity to enforce or bias longer range structural development processes and resulting network topology. This ability to bias the long range structural development has been shown to provide opportunities both for photoinduced material formation and the potential to control multi-length scale structural characteristics of these materials. The response of a mononuclear, heteroleptic titanium alkoxide (OPy) 2Ti(4MP)2 [where OPy = pyridine carbinoxide and 4MP = 4-mercaptophenoxide] to ultraviolet (UV) irradiation in dilute solution and in solid-state samples has been measured. Vibrational spectroscopy (FTIR absorption and Raman scattering) was used to monitor changes in molecular structure upon exposure to 337.1 and 365 nm light. Assignment of spectral features to vibrational modes of the molecule was aided by a normal-mode analysis of the energy-minimized molecular structure within a density functional theory (DFT) framework. Photoinduced decreases in peak areas were observed in both FTIR spectra of the precursor solutions and Raman data collected from solution-cast films of the precursor material. These changes were associated with vibrational modes localized at the 4MP ligands. Conversely, no significant modification of vibrational structure associated with the OPy moiety was observed under the excitation conditions examined. Excitation, with 248 nm light, of a solution of (OPy)2Ti(TAP) 2 [where OPy = pyridine carbinoxide and TAP = 2,4,6 tris

  10. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    EPA Science Inventory

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  11. Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method.

    PubMed

    Jeong, Hyunhak; Kim, Dongku; Kwon, Hyukwoo; Hwang, Wang-Taek; Jang, Yeonsik; Min, Misook; Char, Kookrin; Xiang, Dong; Jeong, Heejun; Lee, Takhee

    2016-03-01

    We fabricated and analyzed the electrical transport characteristics of vertical type alkanethiolate molecular junctions using the high-yield fabrication method that we previously reported. The electrical characteristics of the molecular electronic junctions were statistically collected and investigated in terms of current density and transport parameters based on the Simmons tunneling model, and we determined representative current-voltage characteristics of the molecular junctions. In particular, we examined the statistical variations in the length-dependent electrical characteristics, especially the Gaussian standard deviation σ of the current density histogram. From the results, we found that the magnitude of the σ value can be dependent on the individual molecular length due to specific microscopic structures in the molecular junctions. The probable origin of the molecular length-dependent deviation of the electrical characteristics is discussed. PMID:26871992

  12. Statistical investigation of the length-dependent deviations in the electrical characteristics of molecular electronic junctions fabricated using the direct metal transfer method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunhak; Kim, Dongku; Kwon, Hyukwoo; Hwang, Wang-Taek; Jang, Yeonsik; Min, Misook; Char, Kookrin; Xiang, Dong; Jeong, Heejun; Lee, Takhee

    2016-03-01

    We fabricated and analyzed the electrical transport characteristics of vertical type alkanethiolate molecular junctions using the high-yield fabrication method that we previously reported. The electrical characteristics of the molecular electronic junctions were statistically collected and investigated in terms of current density and transport parameters based on the Simmons tunneling model, and we determined representative current-voltage characteristics of the molecular junctions. In particular, we examined the statistical variations in the length-dependent electrical characteristics, especially the Gaussian standard deviation σ of the current density histogram. From the results, we found that the magnitude of the σ value can be dependent on the individual molecular length due to specific microscopic structures in the molecular junctions. The probable origin of the molecular length-dependent deviation of the electrical characteristics is discussed.

  13. Investigation of Mixed Surfactant Films at Water Surface Using Molecular Dynamics Simulations.

    PubMed

    Habartová, Alena; Roeselová, Martina; Cwiklik, Lukasz

    2015-10-27

    Multicomponent Langmuir monolayers are important models of organic coatings of naturally occurring water-vapor interfaces such as the surfaces of oceans or aerosol particles. We investigated mixed monolayers comprised of palmitic acid, C15H31COOH (PA) and 1-bromoalkanes of different chain length (C5, C10, and C16) at the air-water interface employing classical molecular dynamics simulations. Different composition ratios and lateral compression of the monolayers were considered. The structural parameters, such as density profiles, and deuterium order parameter, evaluated as functions of composition and the lateral film packing, provide microscopic information about organization and dynamics of the mixed monolayers. Simulations demonstrate that stable and well mixed monolayers are formed by the mixtures of PA and BrC16H33 (BrCl6), whereas the two considered shorter bromoalkanes, BrC5H11 (BrC5) and BrC10H21 (BrC10), do not form stable films. This is in accord with earlier experimental studies. Under high lateral pressures, in PA/BrC10 mixed systems molecules of the bromoalkane readily flip in the monolayer and subsequently leave the film, while the molecules of the longer BrC16 are expelled from the PA film but no flipping occurs. These results suggest that the film collapse under pressure is preceded by squeezing-out of bromoalkanes from the PA monolayer. PMID:26439598

  14. Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Chengzhi; Bai, Minli; Lv, Jizu; Liu, Hao; Li, Xiaojie

    2014-12-01

    This study investigated the effect of copper (Cu) nanoparticles on the solid contact between friction surfaces by applying a molecular dynamics method to reveal the mechanisms responsible for the favorable friction properties of nanoparticles. Two models were built, which were named model A (without Cu) and model B (with Cu), respectively. The differences in the mechanical properties between these two models were compared. The simulation results demonstrated that the improvement in friction properties by Cu nanoparticles was more obvious at low velocity than at high velocity. At low velocity, a Cu nano-film was formed on the friction surface, which accommodated the velocity gradient and plastic deformation. Due to the good lubrication effect of the nano-film, the plastic deformation, defect structures and friction force of model B were improved compared with model A. Under high velocity conditions, a transfer layer appeared adjacent to the interface in both models. Because of this, the friction forces of the two models decreased with increased velocity. The fluid mechanics theory was used to explain why the friction force in model B was lower than that in model A at high velocity. The effect of the load on friction properties was also analyzed and the results showed that the mechanisms of anti-wear and friction reduction by Cu nanoparticles under a low load were the same as those under a high load.

  15. Laboratory spectra of C60 and related molecular structures

    NASA Technical Reports Server (NTRS)

    Janca, J.; Solc, M.; Vetesnik, M.

    1994-01-01

    The electronic spectra of fullerene structures in high frequency discharge are studied in the plasma chemistry laboratory of the Faculty of Science of Masaryk University in Brno. The ultraviolet and visual spectra are investigated in order to be compared with the diffuse interstellar bands and interpreted within the theory of quantum mechanics. The preliminary results of the study are presented here in the form of a poster.

  16. Molecular Structure-Affinity Relationship of Bufadienolides and Human Serum Albumin In Vitro and Molecular Docking Analysis

    PubMed Central

    Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  17. Molecular structure-affinity relationship of bufadienolides and human serum albumin in vitro and molecular docking analysis.

    PubMed

    Zhou, Jing; Lu, Guodi; Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  18. Investigation on the structural effect of lignin during the hydrogenolysis process.

    PubMed

    Shu, Riyang; Long, Jinxing; Xu, Ying; Ma, Longlong; Zhang, Qi; Wang, Tiejun; Wang, Chenguang; Yuan, Zhengqiu; Wu, Qingyun

    2016-01-01

    Structure has a significant effect on the lignin degradation, so the investigation of structural effect on the lignin depolymerization is important and imperative. In this study, hydrogenolysis of three typical lignins with different structures, dealkaline lignin, sodium lignosulfonate and organosolv lignin, was intensively compared over the synergistic catalyst of CrCl3 and Pd/C. The effects of reaction temperature, time, hydrogen pressure and catalyst dosage on the catalytic performance of lignin species were investigated. The structure evolution of lignins during the hydrogenolysis process was also compared. The results showed that organosolv lignin was more sensitive for hydrogenolysis than others due to its high unsaturation degree and low molecular weight. Further analysis indicated that the hydrogenolysis, hydrodeoxygenation and repolymerization reactions took place and competed intensely. Wherein, the depolymerization products with unsaturated carbonyl groups were prone to repolymerize. And the methylation was helpful to stabilize the depolymerization products and suppress the further repolymerization. PMID:26476159

  19. IRT in the investigation of buildings and historic structures

    NASA Astrophysics Data System (ADS)

    Avdelidis, Nicolas P.; Moropoulou, Antonia

    2004-04-01

    Although, the efficiency of IRT (infrared thermography) as a NDT & E technique in the literature it is well documented, in the investigation of historic structures, where a restoration or conservation treatment can cause irreversible damage to the structure, it is considered to be of most importance. IRT is a non-destructive investigation technique that can be widely used due to the outstanding advantages that offers in a number of applications and specifically in the assessment of structural materials and techniques. In the present work, both IRT approaches, passive and active, were used, depending on the application, for the investigation of traditional-historical materials and structures. IRT was applied on restoration and traditional-historic materials and structures for the evaluation of conservation interventions (materials and techniques) concerning cleaning of architectural surfaces, restoration of masonries by repair mortars, as well as the disclosure of tesserae on plastered mosaic surfaces. For this reason, diagnostic studies on historical sites and structures took place. Wherever necessary, the emissivity values of the investigated materials were taken into account, after their determination in the laboratory on representative samples. Furthermore, in order to obtain useful information from the IRT surveys various properties (thermal, optical, physical) of the examined materials were taken into account. The outcome of this work provides strong evidence that IRT is an effective technique for the evaluation of historic buildings and sites.

  20. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  1. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties. PMID:18459791

  2. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  3. Nuclear structure and reactions in the fermionic molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Neff, T.; Feldmeier, H.

    2008-05-01

    The Fermionic Molecular Dynamics (FMD) model uses Gaussian wave packets as single-particle states. Intrinsic many-body basis states are constructed as Slater determinants which have to be projected on parity, angular momentum and total linear momentum to restore the symmetries of the Hamiltonian. The flexibility of the Gaussian basis allows to economically describe states with shell structures as well as states featuring clustering or halos. We use an effective interaction that is derived from the realistic Argonne V18 interaction by means of the Unitary Correlation Operator Method (UCOM). A phenomenological momentum-dependent two-body correction simulates contributions from missing three-body forces and three-body correlations. We discuss 12C with a special emphasis on the structure of the excited 0+ and 2+ states. We analyze the degree of α-clustering and confirm, taking inelastic electron scattering data into account, the conjecture that the Hoyle state has to be understood as a loosely bound system of alpha particles. We will also present first results on the application of FMD for the calculation of scattering phase shifts in 3He — 4He.

  4. Molecular Structure and Mobility in Ultrasonically Treated Unfilled Polybutadiene Rubber

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Oh, J.-S.; Wagler, T.; Rinaldi, P.; Isayev, A. I.

    2003-10-01

    Ultrasound can change the molecular structure of rubbery polymers in several ways at once, including network formation (crosslinking) and degradation (devulcanization). We have used wide-line proton and spectroscopic 13C transverse NMR relaxation, and the proton pulsed-gradient spin echo method, to examine sonicated unfilled polybutadiene gum rubber. Results correlate well with ultrasound amplitude. The proton T2 relaxation at 70.5 deg. C exhibits three discrete components, due to entangled sol and network; unentangled (light) sol plus dangling chain ends; and oligomer remnants. The 25 deg. C carbon T2 values show no effects of sonication. The diffusivity spectrum of the light sol displays a wide rate distribution, including a fast component from oligomers. Ultrasound exposure increases all diffusion rates, and substantially lowers the relative contribution of the two fastest proton T2 decay components with only small decreases in relaxation times. Ultrasound treatment results in significant isomerization; the cis/trans ratio decreases sharply for samples subjected to the highest amplitudes. The structural implications of these findings will be discussed.

  5. Bonding and structure in dense multi-component molecular mixtures.

    PubMed

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers. PMID:26520533

  6. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGESBeta

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  7. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  8. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  9. Investigating the inner structure of irregular β -lactoglobulin spherulites

    NASA Astrophysics Data System (ADS)

    Domike, K. R.; Hardin, E.; Armstead, D. N.; Donald, A. M.

    2009-06-01

    When β -lactoglobulin in low p H aqueous solutions is exposed to high temperature for extended time, spherulites composed of amyloid fibrils of the β -lactoglobulin protein form. Many of these spherulites have fibrils that radiate out from a centre and, under crossed polarisers, exhibit a symmetric Maltese Cross structure. However, a significant fraction (50 of the 101 observed spherulites) of β -lactoglobulin spherulites formed under these conditions demonstrate various forms of irregularity in apparent structure. The irregularities of spherulites structures were qualitatively investigated by comparing optical microscopy images observed under crossed polarisers to computationally produced images of various internal structures. In this way, inner spherulite structures are inferred from microscopy images. Modelled structures that were found to produce computed images similar to some of the experimentally viewed images include fibrils curving as they radiate from a single nucleation point; multiple spherulites nucleating in close proximity to one another; and fibrils curving in opposite directions above and below a single nucleation point.

  10. Molecular clouds in the North American and Pelican Nebulae: structures

    SciTech Connect

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg{sup 2} area toward the North American and Pelican Nebulae in the J = 1-0 transitions of {sup 12}CO, {sup 13}CO, and C{sup 18}O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M {sub ☉} pc{sup –2} and a mean H{sub 2} column density of 5.8, 3.4, and 11.9 × 10{sup 21} cm{sup –2} for {sup 12}CO, {sup 13}CO, and C{sup 18}O, respectively. We obtain a total mass of 5.4 × 10{sup 4} M {sub ☉} ({sup 12}CO), 2.0 × 10{sup 4} M {sub ☉} ({sup 13}CO), and 6.1 × 10{sup 3} M {sub ☉} (C{sup 18}O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (∼10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of {sup 13}CO emission range within 2-10 pc{sup 2} with mass of (1-5) × 10{sup 3} M {sub ☉} and line width of a few km s{sup –1}. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the {sup 13}CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  11. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols.

    PubMed

    Wikarek, M; Pawlus, S; Tripathy, Satya N; Szulc, A; Paluch, M

    2016-06-30

    Primary alcohols have been an active area of research since the beginning of the 20th century. The main problem in studying monohydroxy alcohols is the molecular origin of the slower Debye relaxation, whereas the faster process, recognized as structural relaxation, remains much less investigated. This is because in many primary alcohols the structural process is strongly overlapped by the dominating Debye relaxation. Additionally, there is still no answer for many fundamental questions concerning the origin of the molecular characteristic properties of these materials. One of them is the role of molecular architecture in the formation of hydrogen-bonded structures and its potential connection to the relaxation dynamics of Debye and structural relaxation processes. In this article, we present the results of ambient and high-pressure dielectric studies of monohydroxy alcohols with similar chemical structures but different carbon chain lengths (2-ethyl-1-butanol and 2-ethyl-1-hexanol) and positions of the OH- group (2-methyl-2-hexanol and 2-methyl-3-hexanol). New data are compared with previously collected results for 5-methyl-2-hexanol. We note that differences in molecular architecture have a significant influence on the formation of hydrogen-bonded structures, which is reflected in the behavior of the Debye and structural relaxation processes. Intriguingly, studying the relaxation dynamics in monohydroxy alcohols at high pressures of up to p = 1700 MPa delivers a fundamental bridge to understand the potential connection between molecular conformation and its response to the characteristic properties of these materials. PMID:27254726

  12. The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure

    PubMed Central

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.

    2015-01-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560

  13. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire A.; Bailey, Nicholas P.; Todd, Billy D.; Daivis, Peter J.; Hansen, Jesper S.

    2015-06-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates are immersed in a solvent of saturated hydrocarbon molecules. At a fixed temperature, the shear-shinning behavior is related not only to the inter- and intramolecular alignments of the solvent molecules but also to the decrease of the average size of the nanoaggregates at high shear rates. The variation of the viscosity with temperature at different shear rates is also related to the size and relative composition of the nanoaggregates. The slight anisotropy of the whole sample due to the nanoaggregates is considered and quantified. Finally, the position of bitumen mixtures in the broad literature of complex systems such as colloidal suspensions, polymer solutions, and associating polymer networks is discussed.

  14. Molecular modeling of nucleic Acid structure: setup and analysis.

    PubMed

    Galindo-Murillo, Rodrigo; Bergonzo, Christina; Cheatham, Thomas E

    2014-01-01

    The last in a set of units by the same authors, this unit addresses some important remaining questions about molecular modeling of nucleic acids. The unit describes how to choose an appropriate molecular mechanics force field; how to set up and equilibrate the system for accurate simulation of a nucleic acid in an explicit solvent by molecular dynamics or Monte Carlo simulation; and how to analyze molecular dynamics trajectories. PMID:25606980

  15. Investigating the Structural Evolution of the Western Baltic

    NASA Astrophysics Data System (ADS)

    Hübscher, C.; Lykke-Anderson, H.; Hansen, M. Bak; Reicherter, K.

    2004-03-01

    The western Baltic Sea, located along the northern margin of the Central European Basin System (CEBS), is a world-class site for investigating the dynamics and stratigraphic evolution of a continental basin with marine geophysical data acquisition techniques. The universities of Aarhus and Hamburg have joined forces to investigate the post-Permian-to-recent structural evolution of the western Baltic, with special emphasis on neotectonic re-activation along major structural lineaments. Deep crustal structures of the CEBS are well established from previous studies. However, no systematic and localized research has yet been carried out to investigate the neotectonic activity in this region. In fact, the limited seismic resolution of previously available data prevented detailed research on Mesozoic and Cenozoic evolution or neotectonics.

  16. Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Rémond, Yves

    2012-06-01

    In this paper, we employed classical molecular dynamics simulations using the Tersoff potential for the evaluation of thermal conductivity and tensile response of single-layer boron-nitride sheets (SBNS). By carrying out uniaxial tension simulations, the elastic moduli of SBNS structures are predicted to be close to those of boron-nitride nanotubes in a range between 0.8 and 0.85 TPa for different chirality directions. Performing non-equilibrium molecular dynamics simulations, the thermal conductivity of SBNS is predicted to be around 80 W/m-K, which is shown to be independent of chirality directions.

  17. Structure of liquid phosphorus: A liquid-liquid phase transition via constant-pressure first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2001-12-01

    Constant-pressure first-principles molecular dynamics simulations have been carried out to study structural phase transitions of liquid black phosphorus. By compressing the tetrahedral molecular liquid (a low-pressure phase), a structural phase transition from the molecular to polymeric liquid (a high-pressure phase) was successfully realized just as observed in the recent experiment by Katayama et al. [Nature 170 (2000) 403]. Structural properties in the polymeric liquid were investigated and it is found that the covalent p-state bonds are dominant within the first nearest neighbors of each atom. However, further compression of the polymeric liquid shows that the covalent bonding is weakened as pressure is increased. As a result, liquid phosphorus becomes similar to the simple liquid in which atoms form a close-packed structure at very high pressure.

  18. Structural molecular biology: Recent results from neutron diffraction

    NASA Astrophysics Data System (ADS)

    Timmins, Peter A.

    1995-02-01

    Neutron diffraction is of importance in structural biology at several different levels of resolution. In most cases the unique possibility arising from deuterium labelling or contrast variation is of fundamental importance in providing information complementary to that which can be obtained from X-ray diffraction. At high resolution, neutron crystallography of proteins allows the location of hydrogen atoms in the molecule or of the hydration water, both of which may be central to biological activity. A major difficulty in this field has been the poor signal-to-noise ratio of the data arising not only from relatively low beam intensities and small crystals but, most importantly from the incoherent background due to hydrogen atoms in the sample. Modern methods of molecular biology now offer ways of producing fully deuterated proteins by cloning in bacteria grown on fully deuterated media. At a slightly lower resolution, there are a number of systems which may be ordered in one or two dimensions. This is the case in the purple membrane where neutron diffraction with deuterium labelling has complemented high resolution electron diffraction. Finally there is a class of very large macromolecular systems which can be crystallised and have been studied by X-ray diffraction but in which part of the structure is locally disordered and usually has insufficient contrast to be seen with X-rays. In this case the use of H 2O/D 2O contrast variation allows these components to be located. Examples of this are the nucleic acid in virus structures and detergent bound to membrane proteins.

  19. Human haptoglobin structure and function--a molecular modelling study.

    PubMed

    Polticelli, F; Bocedi, A; Minervini, G; Ascenzi, P

    2008-11-01

    Hemoglobin is the most prominent protein in blood, transporting O(2) and facilitating reactive oxygen and nitrogen species detoxification. Hemoglobin metabolism leads to the release of extra-erythrocytic hemoglobin, with potentially severe consequences for health. Extra-erythrocytic hemoglobin is complexed to haptoglobin for clearance by tissue macrophages. The human gene for haptoglobin consists of three structural alleles: Hp1F, Hp1S and Hp2. The products of the Hp1F and Hp1S alleles differ by only one amino acid, whereas the Hp2 allele is the result of a fusion of the Hp1F and Hp1S alleles, is present only in humans and gives rise to a longer alpha-chain. Haptoglobin consists of a dimer of alphabeta-chains covalently linked by a disulphide bond between the Cys15 residue of each alpha-chain. However, the presence of the Hp1 and Hp2 alleles in humans gives rise to HPT1-1 dimers (covalently linked by Cys15 residues), HPT1-2 hetero-oligomers and HPT2-2 oligomers. In fact, the HPT2 variant displays two free Cys residues (Cys15 and Cys74) whose participation in intermolecular disulphide bonds gives rise to higher-order covalent multimers. Here, the complete modelling of both haptoglobin variants, together with their basic quaternary structure arrangements (i.e. HPT1 dimer and HPT2 trimer), is reported. The structural details of the models, which represent the first complete view of the molecular details of human haptoglobin variants, are discussed in relation to the known haptoglobin function(s). PMID:18959750

  20. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    SciTech Connect

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  1. Integrated structure investigation in complex networks by label propagation

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Guo, Yuxiao; Chen, Leiting; Liu, Yanbing

    2016-04-01

    The investigation of network structure has important significance to understand the functions of various complex networks. The communities with hierarchical and overlapping structures and the special nodes like hubs and outliers are all common structure features to the networks. Network structure investigation has attracted considerable research effort recently. However, existing studies have only partially explored the structure features. In this paper, a label propagation based integrated network structure investigation algorithm (LINSIA) is proposed. The main novelty here is that LINSIA can uncover hierarchical and overlapping communities, as well as hubs and outliers. Moreover, LINSIA can provide insight into the label propagation mechanism and propose a parameter-free solution that requires no prior knowledge. In addition, LINSIA can give out a soft-partitioning result and depict the degree of overlapping nodes belonging to each relevant community. The proposed algorithm is validated on various synthetic and real-world networks. Experimental results demonstrate that the algorithm outperforms several state-of-the-art methods.

  2. Biological, molecular, and structural analysis of a cytopathic variant from a molecularly cloned simian immunodeficiency virus.

    PubMed Central

    LaBranche, C C; Sauter, M M; Haggarty, B S; Vance, P J; Romano, J; Hart, T K; Bugelski, P J; Hoxie, J A

    1994-01-01

    Some isolates of simian immunodeficiency virus (SIV) have been shown to infect Sup-T1 cells with slow kinetics and in the absence of cytopathic effects, including cell fusion or CD4 down-modulation (J. A. Hoxie, B. S. Haggarty, S. Bonser, J. Rackowski, H. Shan, and P. Kanki, J. Virol. 62:2557-2568, 1988). In the present study, we describe the isolation and characterization of a SIVmac variant, derived from the BK28 infectious molecular clone, that became highly cytopathic for Sup-T1 cells. This variant, termed CP-MAC, exhibited a number of differences from BK28, including (i) an altered tropism which largely restricted its host range to Sup-T1 cells, (ii) the ability to induce cell fusion and CD4 down-modulation, and (iii) a highly stable interaction of its external (SU) and transmembrane (TM) envelope glycoproteins. In addition, a marked increase in the level of surface envelope glycoproteins was observed both on CP-MAC-infected cells and on virions. The CP-MAC env gene was PCR amplified from infected cells, and sequence analysis identified five amino acid changes in SU and six in TM compared with BK28. The introduction of these changes into BK28 was shown to fully reconstitute the biological and morphological properties of CP-MAC. The limited number of mutations in CP-MAC should enable the molecular determinants to be more precisely defined and help to identify the underlying mechanisms responsible for the striking biological and structural alterations exhibited by this virus. Images PMID:8057433

  3. Pure and Modified Co-Poly(amide-12-b-ethylene oxide) Membranes for Gas Separation Studied by Molecular Investigations

    PubMed Central

    De Lorenzo, Luana; Tocci, Elena; Gugliuzza, Annarosa; Drioli, Enrico

    2012-01-01

    This paper deals with a theoretical investigation of gas transport properties in a pure and modified PEBAX block copolymer membrane with N-ethyl-o/p-toluene sulfonamide (KET) as additive molecules. Molecular dynamics simulations using COMPASS force field, Gusev-Suter Transition State Theory (TST) and Monte Carlo methods were used. Bulk models of PEBAX and PEBAX/KET in different copolymer/additive compositions were assembled and analyzed to evaluate gas permeability and morphology to characterize structure-performance relationships. PMID:24958285

  4. Acid-catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties

    SciTech Connect

    Kim, Taejin; Assary, Rajeev A.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2011-07-22

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  5. Acid-catalyzed furfurly alcohol polymerization : characterizations of molecular structure and thermodynamic properties.

    SciTech Connect

    Kim, T.; Assary, R. S.; Marshall, C. L.; Gosztola, D. J.; Curtiss, L. A.; Stair, P. C.

    2011-01-01

    The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction.

  6. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauchy, M.

    2012-07-01

    Structural, vibrational, and thermal properties of densified sodium silicate (close to NS2) are investigated with classical molecular dynamics simulations of the glass and the liquid state. A systematic investigation of the glass structure with respect to density was performed. We observe a repolymerization of the network manifested by a transition from a tetrahedral to an octahedral silicon environment, the decrease of the amount of non-bridging oxygen atoms and the appearance of threefold coordinated oxygen atoms (triclusters). Anomalous changes in the medium range order are observed, the first sharp diffraction peak showing a minimum of its full-width at half maximum according to density. Generic vibrational trends are observed, such as the shift of the Boson peak intensity to higher frequencies and the decrease of its intensity. Finally, we show that the thermal behavior of the liquid can be reproduced by the Birch-Murnaghan equation of states, thus allowing us to compute the isothermal compressibility.

  7. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  8. Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy.

    PubMed

    Gulino, Antonino

    2013-02-01

    Molecular monolayers and similar nanoarchitectures are indicative of the promising future of nanotechnology. Therefore, many scientists recently devoted their efforts to the synthesis, characterization, and properties of mono- and multilayer-based systems. In this context, X-ray photoelectron spectroscopy is an important technique for the in-depth chemical and structural characterization of nanoscopic systems. In fact, it is a surface technique suitable for probing thicknesses of the same order of the photoelectron inelastic mean free paths (a few tens of ångströms) and allows one to immediately obtain qualitative and quantitative data, film thickness, surface coverage, molecule footprint, oxidation states, and presence of functional groups. Nevertheless, other techniques are important in obtaining a complete spectroscopic characterization of the investigated systems. Therefore, in the present review we report on X-ray photoelectron spectroscopy of self-assembled molecular mono- and multilayer materials including some examples on which other characterization techniques produced important results. PMID:23014858

  9. Electronic excitation transport in photosynthesis and crystal and molecular structures of porphyrin compounds

    SciTech Connect

    Yang, Shumei.

    1991-04-22

    The excitation energy transfer in three photosynthetic organism samples, Bacteriochlorophyll a-protein from Prosthecochloris aestuarii, and enriched photosystem I particles from spinach chloroplasts, have been investigated by pump-probe ultrafast spectroscopy. The isotropic photobleaching profiles were best described by two exponential decay components in one Bchl a-protein complex, and three exponential decay components in another. The experimental results from the three samples show that nonrandom chromophore orientations exist and Sauer's pebble mosaic'' model is an appropriate one for excitation transfer in these samples. The polarized pump-probe transients have been analyzed in terms of an exciton hopping model that incorporates the known geometry of the Bchl a-protein. The crystal and molecular structures of four metalloporphyrins have been determined by X-ray diffraction and molecular mechanics. 207 refs., 44 figs., 15 tabs.

  10. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  11. Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Clérouin, J.; Mazevet, S.

    2006-09-01

    We use a model combining, in a consistent way, orbital-free density functional theory (OF-DFT) and molecular dynamics (MD), to compute the thermodynamical, structural and dynamical properties of Fe and Au plasmas at conditions relevant to astrophysics and inertial confinement fusion (ICF). The newly developed parallel numerical scheme presented here allows to propagate hundreds of particles and to obtain accurate transport properties. This allows us to investigate the validity of the commonly used one-component plasma (OCP) model in predicting the pair correlation, the diffusion and viscosity coefficients for these two high-temperature high-density plasmas.

  12. Theoretical studies on the molecular structure, conformational preferences, topological and vibrational analysis of allicin

    NASA Astrophysics Data System (ADS)

    Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław

    2016-01-01

    The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.

  13. Tracing planet-induced structures in circumstellar disks using molecular lines

    NASA Astrophysics Data System (ADS)

    Ober, F.; Wolf, S.; Uribe, A. L.; Klahr, H. H.

    2015-07-01

    Context. Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. Aims: We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Methods: Based on 3D hydrodynamic simulations of planet-disk interactions obtained with the PLUTO code, we perform self-consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, five disk masses, seven disk radii, and two different typical pre-main-sequence host stars (T Tauri, Herbig Ae) at a distance of 140 pc. We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques (12C16O, 12C18O, HCO+, HCN, and CS) in a total of 32 rotational transitions to investigate the frequency dependence of the structures indicated above. Results: We find that the majority of protoplanetary disks in our parameter space could be detected in the molecular lines considered. However, unlike the continuum case, gap detection is not straightforward in lines. For example, gaps are not seen in symmetric rings but are masked by the pattern caused by the global (Keplerian) velocity field. By comparison with simulated observations of undisturbed disks we identify specific regions in the velocity-channel maps that are characteristic of planet-induced structures. Conclusions: Simulations of high angular resolution molecular line observations demonstrate the potential of ALMA to provide complementary information about the planet-disk interaction as compared to continuum observations. In particular, the detection

  14. Biodegradation of starch films: the roles of molecular and crystalline structure.

    PubMed

    Li, Ming; Witt, Torsten; Xie, Fengwei; Warren, Frederick J; Halley, Peter J; Gilbert, Robert G

    2015-05-20

    The influences of molecular, crystalline and granular structures on the biodegradability of compression-molded starch films were investigated. Fungal α-amylase was used as model degradation agent. The substrates comprised varied starch structures obtained by different degrees of acid hydrolysis, different granular sizes using size fractionation, and different degrees of crystallinity by aging for different times (up to 14 days). Two stages are identified for unretrograded films by fitting degradation data using first-order kinetics. Starch films containing larger molecules were degraded faster, but the rate coefficient was independent of the granule size. Retrograded films were degraded much slower than unretrograded ones, with a similar rate coefficient to that in the second stage of unretrograded films. Although initially the smaller molecules or the easily accessible starch chains on the amorphous film surface were degraded faster, the more ordered structure (resistant starch) formed from retrogradation, either before or during enzymatic degradation, strongly inhibits film biodegradation. PMID:25817650

  15. Crystal and molecular structure of the antimalarial agent enpiroline.

    PubMed

    Karle, J M; Karle, I L

    1989-07-01

    To identify common spatial and structural features of amino alcohol antimalarial agents with the eventual goal of designing more effective drugs and a better understanding of the mechanism of action of this class of antimalarial agents, the three-dimensional crystal and molecular structure of enpiroline, a new antimalarial agent active against chloroquine-resistant Plasmodium falciparum, was determined by X-ray crystallography and compared with the crystal structures of the cinchona alkaloids and of the new antimalarial agent WR 194,965. The aromatic rings of the phenyl-pyridine ring system of enpiroline are twisted from each other by approximately 18 degrees. The intramolecular aliphatic N-O distance in enpiroline was 2.80 A (1 A = 0.1 nm), which is close to the N-O distance found in the antimalarial cinchona alkaloids. Enpiroline contains both an intramolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms and an intermolecular hydrogen bond between the aliphatic nitrogen and oxygen atoms of two neighboring molecules. One enantiomer of enpiroline superimposed best with quinine, and the other enantiomer of enpiroline superimposed best with quinidine, suggesting that both enantiomers of enpiroline possess antimalarial activity. Since a common feature of the crystal structures of the amino alcohol antimalarial agents is the formation of intermolecular hydrogen bonds, the common spatial direction of hydrogen bond formation indicates the potential ability of these antimalarial agents to bind to a common receptor site. The crystallographic parameters were as follows: C19H18F6N5O; Mr = 404.3; symmetry of unit cell, monoclinic; space group, P2(1)/a; parameters of unit cell---a = 9.454 +/- 0.004 A, b = 18.908 +/- 0.008 A, c = 10.300 +/- 0.004 A, and beta = 96.55 +/- 0.03 degrees: V (volume of unit cell) = 1829.2 A3; Z (number of molecules per unit cell) = 4; Dchi (calculated density) = 1.46 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu

  16. Investigation of RNA structure in satellite panicum mosaic virus

    SciTech Connect

    Makino, D.L. E-mail: dmakino@berkeley.edu; Day, J. E-mail: jsday@uci.edu; Larson, S.B. E-mail: slarson@uci.edu; McPherson, A. E-mail: amcphers@uci.edu

    2006-08-01

    Three new crystal forms of satellite panicum mosaic virus (SPMV) were grown and their structures solved from X-ray diffraction data using molecular replacement techniques. The crystals were grown under conditions of pH and ionic strength that were appreciably different then those used for the original structure determination. In rhombohedral crystals grown at pH 8.5 and low ionic strength PEG 3350 solutions, Fourier syntheses revealed segments, ten amino acid residues long, of amino-terminal polypeptides not previously seen, as well as masses of electron density within concavities on the interior of the capsid, which appeared in the neighborhoods of icosahedral five- and threefold axes. The densities were compatible with secondary structural domains of RNA, and they included a segment of double helical RNA of about four to five base pairs oriented, at least approximately, along the fivefold axes. The distribution of RNA observed for SPMV appears to be distinctly different than the encapsidated nucleic acid conformation previously suggested for another satellite virus, satellite tobacco mosaic virus. This study further shows that analysis of viruses in crystals grown under different chemical conditions may reveal additional information regarding the structure of encapsidated RNA.

  17. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    ERIC Educational Resources Information Center

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  18. Investigation of the Binding Profiles of AZD2184 and Thioflavin T with Amyloid-β(1-42) Fibril by Molecular Docking and Molecular Dynamics Methods.

    PubMed

    Kuang, Guanglin; Murugan, N Arul; Tu, Yaoquan; Nordberg, Agneta; Ågren, Hans

    2015-09-01

    Detecting deposits of amyloid β fibrils in the brain is of paramount importance for an early diagnosis of Alzheimer's disease. A number of PET tracers have been developed for amyloid imaging, but many suffer from poor specificity and large signal to background ratio. Design of tracers with specificity and improved binding affinity requires knowledge about various potential binding sites in the amyloid β fibril available for the tracers and the nature of the local microenvironment of these sites. In this study we investigate the local structure of fibrils using two important probes, namely, thioflavin T (a fluorescent probe) and AZD2184 (a PET tracer). The target structures for amyloid-β(1-42) fibril are based on reported NMR solution models. By explicitly considering the effect of fibril flexibility on the available binding sites for all these models, the binding affinity of these probes has been investigated. The binding profiles of AZD2184 and thioflavin T were studied by molecular docking and molecular dynamics simulation methods. The two compounds were found to bind at the same sites of the fibril: three of which are within the fibril, and one is on the two sides of the Met35 residue on the surface. The binding affinity of AZD2184 and thioflavin T is found to be higher at the core sites than on the surface due to more contact residues. The binding affinity of AZD2184 is much higher than that of thioflavin T at every site due to electrostatic interaction and spatial restriction, which is in good agreement with experimental observation. However, the structural change of thioflavin T is much more significant than that of AZD2184, which is the chemical basis for its usage as a fluorescent probe. The ramifications of these results for the design and optimization of PET radioligands and fluorescent probes are briefly discussed. PMID:26266837

  19. Molecular structure of the Menkes disease gene (ATP7A)

    SciTech Connect

    Dierick, H.A.; Glover, T.W.; Ambrosini, L.

    1995-08-10

    We report a detailed molecular analysis of the genomic structure of the Menkes disease gene (MNK; ATP7A). There are 23 exons in ATP7A covering a genomic region of approximately 140 kb. The size of the individual coding exons varies between 77 and 726 bp, and introns vary in size between 196 bp and approximately 60 kb. All of the splice sites obey the consensus GT-AG rule except the splice donor of intron 9, which is GC instead of GT. The exon following this rare splice donor variant is alternatively spliced. A PGAM pseudogene and two highly polymorphic CA repeats map to introns within the gene. The structure is very similar to that of the closely related Wilson disease gene (WND; ATP7B). From exon 5 (exon 3 in ATP7B) to the end, all of the splice sites occur at exactly the same nucleotide positions as in the WND gene, except for the boundary between exons 17 and 18 (exons 15 and 16 in ATP7B) and a single codon difference at the boundary between exons 4 and 5 of the MNK gene (exons 2 and 3 in ATP7B). In contrast to the WND gene, in which the first four of six metal binding domains are contained in 1 exon, metal binding domains 1 to 4 are divided over 3 exons. The striking similarity of the MNK and WND genes at the genomic level is consistent with their relatively recent divergence from a common ancestral gene. 39 refs., 4 figs., 1 tab.

  20. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  1. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  2. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    NASA Astrophysics Data System (ADS)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  3. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    NASA Astrophysics Data System (ADS)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  4. Molecular Investigations of a Locally Acquired Case of Melioidosis in Southern AZ, USA

    PubMed Central

    Engelthaler, David M.; Bowers, Jolene; Schupp, James A.; Pearson, Talima; Ginther, Jennifer; Hornstra, Heidie M.; Dale, Julia; Stewart, Tasha; Sunenshine, Rebecca; Waddell, Victor; Levy, Craig; Gillece, John; Price, Lance B.; Contente, Tania; Beckstrom-Sternberg, Stephen M.; Blaney, David D.; Wagner, David M.; Mayo, Mark; Currie, Bart J.; Keim, Paul; Tuanyok, Apichai

    2011-01-01

    Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification. PMID:22028940

  5. Development of laser desorption imaging mass spectrometry methods to investigate the molecular composition of latent fingermarks.

    PubMed

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering. PMID:25846823

  6. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-xin; Xiong, Hang-xing; Li, Li-wei

    2016-05-01

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔHθ) and entropy change (ΔSθ) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy.

  7. Investigation on the protein-binding properties of icotinib by spectroscopic and molecular modeling method.

    PubMed

    Zhang, Hua-Xin; Xiong, Hang-Xing; Li, Li-Wei

    2016-05-15

    Icotinib is a highly-selective epidermal growth factor receptor tyrosine kinase inhibitor with preclinical and clinical activity in non-small cell lung cancer, which has been developed as a new targeted anti-tumor drug in China. In this work, the interaction of icotinib and human serum albumin (HSA) were studied by three-dimensional fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra, molecular probe and molecular modeling methods. The results showed that icotinib binds to Sudlow's site I in subdomain IIA of HSA molecule, resulting in icotinib-HSA complexes formed at ground state. The number of binding sites, equilibrium constants, and thermodynamic parameters of the reaction were calculated at different temperatures. The negative enthalpy change (ΔH(θ)) and entropy change (ΔS(θ)) indicated that the structure of new complexes was stabilized by hydrogen bonds and van der Waals power. The distance between donor and acceptor was calculated according to Förster's non-radiation resonance energy transfer theory. The structural changes of HSA caused by icotinib binding were detected by synchronous spectra and circular dichroism (CD) spectra. Molecular modeling method was employed to unfold full details of the interaction at molecular level, most of which could be supported by experimental results. The study analyzed the probability that serum albumins act as carriers for this new anticarcinogen and provided fundamental information on the process of delivering icotinib to its target tissues, which might be helpful in understanding the mechanism of icotinib in cancer therapy. PMID:26963729

  8. Mineral-Biochar Composites: Molecular Structure and Porosity.

    PubMed

    Rawal, Aditya; Joseph, Stephen D; Hook, James M; Chia, Chee H; Munroe, Paul R; Donne, Scott; Lin, Yun; Phelan, David; Mitchell, David R G; Pace, Ben; Horvat, Joseph; Webber, J Beau W

    2016-07-19

    Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species. The porosity of the biochar, as measured by NMR cryoporosimetry, is altered by the iron-clay pretreatment. In the presence of the clay, at lower pyrolysis temperatures, the biochar develops a higher pore volume, while at higher temperature, the presence of clay causes a reduction in the biochar pore volume. The most dramatic reduction in pore volume is observed in the kaolinite-infiltrated biochar at 550 °C, which is attributed to the blocking of the mesopores (2-50 nm pore) by the nonporous metakaolinite formed from kaolinite. PMID:27284608

  9. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  10. Molecular structure from a single NMR sequence (fast-PANACEA)

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2010-09-01

    The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature is the rate-determining step, being limited by the low natural abundance of directly coupled 13C sbnd 13C pairs. This new version, fast-PANACEA, speeds up this measurement by two alternative schemes. In the first, the individual 13C sites are excited by selective radiofrequency pulses acting on double-quantum coherence, and encoded according to the rows of a Hadamard matrix. The columns of this matrix are used to decode the experimental data into separate F 2 spectra. This reduction in the number of required scans secures a faster result than the conventional stepwise exploration of the evolution dimension where the Nyquist condition and the resolution requirements must both be satisfied. The second scheme makes use of multiple aliasing in the evolution dimension. Significant speed improvements are achieved by either technique, illustrated by measurements made on samples of menthol and cholesterol. A new stabilization scheme (i-lock) is introduced. This is a software program that corrects the final NMR frequencies based on the observed frequency of a strong X-spin signal. It replaces the conventional deuterium lock, permitting measurements on neat liquids such as peanut oil and silicone oil, and offering advantages where deuterated solvents are undesirable.

  11. The Influence of Molecular Cooling in Pregalactic Structure Formation

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Abel, T.; Lepp, S.; Dalgarno, A.

    1999-12-01

    The detailed chemistry and cooling in collapsing primordial clouds will be presented for total baryonic densities up to 106 cm-3. The model consists of 160 reactions of 23 species including H2, HD, HeH+, and LiH, and accounts for 8 different cooling and heating mechanisms. The hydrodynamic evolution of the gas is modeled under the assumptions of free-fall, isothermal, and isobaric collapse as well as for the central regions of 105 M⊙ objects in hierarchical scenarios. The latter being drawn from three-dimensional cosmological hydrodynamical simulations. The dominant processes in the reaction network are identified and a minimal model that accurately predicts the full chemistry will be presented. It is found that radiative cooling due to collisional excitation of HD can lower the temperature in a primordial cloud below that reachable through H2 cooling alone. Further, the temperature evolution is influenced by the choice of the adopted H2 radiative cooling function. Implications for globular cluster and primordial star formation, as well as structure formation on small scales and the importance of molecular cooling in general will be discussed. The work of P.C.S. was supported by the DoE ORNL LDRD Seed Money Fund. T.A. acknowledges support from NSF Grant ASC--9318185. The work of S.L. and A.D. was supported by NSF Cooperative Agreement OSR-9353227 and Astronomical Sciences Grant AST-93-01099, respectively.

  12. Free ion yields in liquids: Molecular structure and track effects

    SciTech Connect

    Holroyd, R.

    1992-05-01

    The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

  13. Free ion yields in liquids: Molecular structure and track effects

    SciTech Connect

    Holroyd, R.

    1992-01-01

    The signal generated in a liquid-filled ionization chamber is proporational to the ions that escape, the free ion yield or, G{sub fi}. Recent results show how molecular structure, rate of energy loss (dE/dx) and pressure affect G{sub fi} and give further insight into the ionization process in liquids. As a consequence of the passage of high energy charged particles through a liquid, molecules are ionized and excited. The electrons have kinetic energy initially which allow them to travel some distance away from their geminate cations. The electrons may lose energy to vibrational modes but a significant fraction of the separation occurs while the electrons have subvibrational (near thermal) energy. When the electron finally thermalizes it is within the coulombic field of its parent cation and the two ions constitute a geminate pair. The free ion yield is determined by the fraction of geminate pairs which separate to form free ions as against those that recombine to form excited states.

  14. Automatic molecular structure perception for the universal force field.

    PubMed

    Artemova, Svetlana; Jaillet, Léonard; Redon, Stephane

    2016-05-15

    The Universal Force Field (UFF) is a classical force field applicable to almost all atom types of the periodic table. Such a flexibility makes this force field a potential good candidate for simulations involving a large spectrum of systems and, indeed, UFF has been applied to various families of molecules. Unfortunately, initializing UFF, that is, performing molecular structure perception to determine which parameters should be used to compute the UFF energy and forces, appears to be a difficult problem. Although many perception methods exist, they mostly focus on organic molecules, and are thus not well-adapted to the diversity of systems potentially considered with UFF. In this article, we propose an automatic perception method for initializing UFF that includes the identification of the system's connectivity, the assignment of bond orders as well as UFF atom types. This perception scheme is proposed as a self-contained UFF implementation integrated in a new module for the SAMSON software platform for computational nanoscience (http://www.samson-connect.net). We validate both the automatic perception method and the UFF implementation on a series of benchmarks. PMID:26927616

  15. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution

    SciTech Connect

    Franca, Eduardo D.; Lins, Roberto D.; Freitas, Luiz C.; Straatsma, t. P.

    2008-11-08

    Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atom of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.

  16. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy

    PubMed Central

    Jarvis, Samuel Paul

    2015-01-01

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions. PMID:26307976

  17. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    PubMed

    Jarvis, Samuel Paul

    2015-01-01

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions. PMID:26307976

  18. Weak links between fast mobility and local structure in molecular and atomic liquids

    SciTech Connect

    Bernini, S.; Puosi, F.; Leporini, D.

    2015-03-28

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  19. Investigation on a new scleroglucan/borax hydrogel: structure and drug release.

    PubMed

    Palleschi, Antonio; Coviello, Tommasina; Bocchinfuso, Gianfranco; Alhaique, Franco

    2006-09-28

    The aim of this work is to elucidate the structure of the new hydrogel prepared with scleroglucan (Sclg) and borax, suitable for drug delivery, applying theoretical approaches, and to explain its very peculiar swelling. The possible linkages with borate ions have been investigated and original parameters for the 4,6-gluco-borate moiety have been introduced. The structures relative to the Sclg chains in the presence of borax and the possible mutual arrangements among the triple helices are given. According to molecular dynamics simulations, the most probable assembly of the chains in the network is proposed, without and in the presence of three tested model drugs with different molecular dimensions: theophylline (TPH), Vitamin B12 (Vit. B12) and myoglobin (MGB). The hydrogel supramolecular structure, formed via chemical and physical linkages among the polysaccharidic chains, is built up taking into account the steric hindrance of the entrapped molecules. It is shown that molecular dynamics analysis can be a useful tool capable to shed some light on the anomalous swelling of the hydrogel, suitable for drug release, giving a new insight on the network structure and the release rate of the guest molecules. PMID:16806759

  20. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal