A mesh regeneration method using quadrilateral and triangular elements for compressible flows
NASA Technical Reports Server (NTRS)
Vemaganti, G. R.; Thornton, E. A.
1989-01-01
An adaptive remeshing method using both triangular and quadrilateral elements suitable for high-speed viscous flows is presented. For inviscid flows, the method generates completely unstructured meshes. For viscous flows, structured meshes are generated for boundary layers, and unstructured meshes are generated for inviscid flow regions. Examples of inviscid and viscous adaptations for high-speed flows are presented.
Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.
1995-01-01
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.
Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Hansen, E. C.
1980-01-01
The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.
Nonexistence of compressible irrotational inviscid flows along infinite protruding corners
NASA Astrophysics Data System (ADS)
Elling, Volker
2018-06-01
We consider inviscid flow with isentropic coefficient greater than one. For flow along smooth infinite protruding corners, we attempt to impose a nonzero limit for velocity at infinity at the upstream wall. We prove that the problem does not have any irrotational uniformly subsonic solutions, whereas rotational flows do exist. This can be considered a case of a slip-condition solid "generating" vorticity in inviscid flow.
Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number
NASA Technical Reports Server (NTRS)
Warpinski, N. R.; Chow, W. L.
1977-01-01
An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.
Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow
NASA Technical Reports Server (NTRS)
Howlett, J. T.
1985-01-01
An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flows.
Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow
NASA Technical Reports Server (NTRS)
Howlett, J. T.
1985-01-01
An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.
1980-01-01
A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.
Computation of viscous flows over airfoils, including separation, with a coupling approach
NASA Technical Reports Server (NTRS)
Leballeur, J. C.
1983-01-01
Viscous incompressible flows over single or multiple airfoils, with or without separation, were computed using an inviscid flow calculation, with modified boundary conditions, and by a method providing calculation and coupling for boundary layers and wakes, within conditions of strong viscous interaction. The inviscid flow is calculated with a method of singularities, the numerics of which were improved by using both source and vortex distributions over profiles, associated with regularity conditions for the fictitious flows inside of the airfoils. The viscous calculation estimates the difference between viscous flow and inviscid interacting flow, with a direct or inverse integral method, laminar or turbulent, with or without reverse flow. The numerical method for coupling determines iteratively the boundary conditions for the inviscid flow. For attached viscous layers regions, an underrelaxation is locally calculated to insure stability. For separated or separating regions, a special semi-inverse algorithm is used. Comparisons with experiments are presented.
Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction
NASA Technical Reports Server (NTRS)
Vemuru, C. S.; Tiwari, S. N.
1988-01-01
The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
Application of viscous-inviscid interaction methods to transonic turbulent flows
NASA Technical Reports Server (NTRS)
Lee, D.; Pletcher, R. H.
1986-01-01
Two different viscous-inviscid interaction schemes were developed for the analysis of steady, turbulent, transonic, separated flows over axisymmetric bodies. The viscous and inviscid solutions are coupled through the displacement concept using a transpiration velocity approach. In the semi-inverse interaction scheme, the viscous and inviscid equations are solved in an explicitly separate manner and the displacement thickness distribution is iteratively updated by a simple coupling algorithm. In the simultaneous interaction method, local solutions of viscous and inviscid equations are treated simultaneously, and the displacement thickness is treated as an unknown and is obtained as a part of the solution through a global iteration procedure. The inviscid flow region is described by a direct finite-difference solution of a velocity potential equation in conservative form. The potential equation is solved on a numerically generated mesh by an approximate factorization (AF2) scheme in the semi-inverse interaction method and by a successive line overrelaxation (SLOR) scheme in the simultaneous interaction method. The boundary-layer equations are used for the viscous flow region. The continuity and momentum equations are solved inversely in a coupled manner using a fully implicit finite-difference scheme.
An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Chapman, Dean R
1951-01-01
In the first part of the investigation an analysis is made of base pressure in an inviscid fluid, both for two-dimensional and axially symmetric flow. It is shown that for two-dimensional flow, and also for the flow over a body of revolution with a cylindrical sting attached to the base, there are an infinite number of possible solutions satisfying all necessary boundary conditions at any given free-stream Mach number. For the particular case of a body having no sting attached only one solution is possible in an inviscid flow, but it corresponds to zero base drag. Accordingly, it is concluded that a strictly inviscid-fluid theory cannot be satisfactory for practical applications. An approximate semi-empirical analysis for base pressure in a viscous fluid is developed in a second part of the investigation. The semi-empirical analysis is based partly on inviscid-flow calculations.
An analysis for high Reynolds number inviscid/viscid interactions in cascades
NASA Technical Reports Server (NTRS)
Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.
1993-01-01
An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.
NASA Technical Reports Server (NTRS)
Howlett, James T.; Bland, Samuel R.
1987-01-01
A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.
Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles
NASA Technical Reports Server (NTRS)
DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)
2001-01-01
Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.
The drift force on an object in an inviscid weakly-varying rotational flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallis, G.B.
The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.
Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations
NASA Technical Reports Server (NTRS)
Gordnier, R. E.; Rubin, S. G.
1986-01-01
Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Howlett, James T.
1992-01-01
This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.
A Test of the Validity of Inviscid Wall-Modeled LES
NASA Astrophysics Data System (ADS)
Redman, Andrew; Craft, Kyle; Aikens, Kurt
2015-11-01
Computational expense is one of the main deterrents to more widespread use of large eddy simulations (LES). As such, it is important to reduce computational costs whenever possible. In this vein, it may be reasonable to assume that high Reynolds number flows with turbulent boundary layers are inviscid when using a wall model. This assumption relies on the grid being too coarse to resolve either the viscous length scales in the outer flow or those near walls. We are not aware of other studies that have suggested or examined the validity of this approach. The inviscid wall-modeled LES assumption is tested here for supersonic flow over a flat plate on three different grids. Inviscid and viscous results are compared to those of another wall-modeled LES as well as experimental data - the results appear promising. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively, with the current LES application. Recommendations are presented as are future areas of research. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Base pressure associated with incompressible flow past wedges at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Warpinski, N. R.; Chow, W. L.
1979-01-01
A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.
The inviscid stability of supersonic flow past axisymmetric bodies
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).
NASA Technical Reports Server (NTRS)
Lund, T. S.; Tavella, D. A.; Roberts, L.
1985-01-01
A viscous-inviscid interaction methodology based on a zonal description of the flowfield is developed as a mean of predicting the performance of two-dimensional thrust augmenting ejectors. An inviscid zone comprising the irrotational flow about the device is patched together with a viscous zone containing the turbulent mixing flow. The inviscid region is computed by a higher order panel method, while an integral method is used for the description of the viscous part. A non-linear, constrained optimization study is undertaken for the design of the inlet region. In this study, the viscous-inviscid analysis is complemented with a boundary layer calculation to account for flow separation from the walls of the inlet region. The thrust-based Reynolds number as well as the free stream velocity are shown to be important parameters in the design of a thrust augmentor inlet.
Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes
NASA Astrophysics Data System (ADS)
Dash, S. M.; Pergament, H. S.; Thorpe, R. D.
1980-05-01
Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Thorpe, R. D.
1980-01-01
Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.
Boundary condition computational procedures for inviscid, supersonic steady flow field calculations
NASA Technical Reports Server (NTRS)
Abbett, M. J.
1971-01-01
Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.
Computer programs for predicting supersonic and hypersonic interference flow fields and heating
NASA Technical Reports Server (NTRS)
Morris, D. J.; Keyes, J. W.
1973-01-01
This report describes computer codes which calculate two-dimensional shock interference patterns. These codes compute the six types of interference flows as defined by Edney (Aeronaut. Res. Inst. of Sweden FAA Rep. 115). Results include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point.
Two inviscid computational simulations of separated flow about airfoils
NASA Technical Reports Server (NTRS)
Barnwell, R. W.
1976-01-01
Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.
Computational methods for internal flows with emphasis on turbomachinery
NASA Technical Reports Server (NTRS)
Mcnally, W. D.; Sockol, P. M.
1981-01-01
Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
The inviscid axisymmetric stability of the supersonic flow along a circular cylinder
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1989-01-01
The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary layer flow (i.e., the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so called doubly generalized inflexion condition is derived, which is a condition for the existence of so called subsonic neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two freestream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
AOFA- THREE-DIMENSIONAL SUPERSONIC VISCOUS FLOW
NASA Technical Reports Server (NTRS)
Rakich, J. V.
1994-01-01
This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
Theoretical Calculation of Viscous-Inviscid Transonic Flows.
1980-08-01
Taylor Naval Ship Research and Development Center Aviation and Surface Effects Department / (See reverse side) Bethesda, Maryland 20084 ! CONTROLLING...Interactions ... .......... ... 46 18 -ffect of Boundary Layer on Blade Surface Pressures in a Transonic Fan Rotor Tip Section Cascade...complicated by the viscous effect . The strong viscous-inviscid interaction caused by the shock wave thickens the boundary layer rapidly, and the flow eventually
GRUMFOIL: A computer code for the viscous transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Mead, H. R.; Melnik, R. E.
1985-01-01
A user's manual which describes the operation of the computer program, GRUMFOIL is presented. The program computes the viscous transonic flow over two dimensional airfoils using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by a multigrid method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency
NASA Astrophysics Data System (ADS)
Aikens, Kurt; Craft, Kyle; Redman, Andrew
2015-11-01
The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1984-01-01
An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.
Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar; Whitfield, Dave
1989-01-01
The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1981-01-01
A computational technique for computing the three-dimensional inviscid flow over blunt bodies having large regions of embedded subsonic flow is detailed. Results, which were obtained using the CDC Cyber 203 vector processing computer, are presented for several analytic shapes with some comparison to experimental data. Finally, windward surface pressure computations over the first third of the Space Shuttle vehicle are compared with experimental data for angles of attack between 25 and 45 degrees.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Adamczyk, J. J.
1986-01-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Astrophysics Data System (ADS)
Chang, S.-C.; Adamczyk, J. J.
1986-08-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
NASA Technical Reports Server (NTRS)
Vogel, J. M.
1973-01-01
The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.
Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel
NASA Technical Reports Server (NTRS)
Tokarcik-Polsky, Susan; Cambier, Jean-Luc
1993-01-01
The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.
NASA Technical Reports Server (NTRS)
Lordi, J. A.; Vidal, R. J.; Johnson, C. B.
1973-01-01
A theoretical study was made to delineate the effects of thermochemical nonequilibrium in the inviscid flow field of a representative space shuttle orbiter configuration. The study was based on experimental pressure data which was used as an input to a stream tube computer program. The pressure data from two configurations are tabulated. Calculations were restricted to the windward plane of symmetry and the calculations covered an altitude range from 200,000 to 250,000 feet at velocities of 16,000 to 24,000 feet per second respectively. Angles of attack of 20 and 40 degrees were included. The calculations show that the nonequilibrium effects are confined largely to the entropy layer expect at the highest altitude, where significant nonequilibrium effects are observed in the entire inviscid flow field.
NASA Technical Reports Server (NTRS)
Putnam, L. E.
1979-01-01
A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.
NASA Technical Reports Server (NTRS)
Koenig, Keith
1986-01-01
The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
High speed inviscid compressible flow by the finite element method
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Loehner, R.; Morgan, K.
1984-01-01
The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.
Numerical optimization of conical flow waveriders including detailed viscous effects
NASA Technical Reports Server (NTRS)
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Aerodynamic Analysis of a Hale Aircraft Joined-Wing Configuration
NASA Astrophysics Data System (ADS)
Sivaji, Rangarajan; Ghia, Urmila; Ghia, Karman; Thornburg, Hugh
2003-11-01
Aerodynamic analysis of a high-aspect ratio, joined wing of a High-Altitude Long Endurance (HALE) aircraft is performed. The requirement of high lift over extended flight periods for the HALE aircraft leads to high-aspect ratio wings experiencing significant deflections necessitating consideration of aeroelastic effects. The finite-volume solver COBALT, with Reynolds-averaged Navier-Stokes (RANS) and Detached Eddy Simulation (DES) capabilities, is used for the flow simulations. Calculations are performed at á = 0° and 12° for M = 0.6, at an altitude of 30,000 feet, at a Re per unit length of 5.6x106. The wing cross sections are NACA 4421 airfoils. Because of the high lift-to-drag ratio wings, an inviscid flow analysis is also performed. The inviscid surface pressure coefficient (Cp) is compared with the corresponding viscous Cp to examine the feasibility of the use of the inviscid pressure loads as an estimate of the total fluid loads on the structure. The viscous and inviscid Cp results compare reasonably only at á = 0°. The viscous flow is examined in detail via surface and field velocity vectors, vorticity, density and pressure contours. For á = 12°, the unsteady DES solutions show a weak shock at the aft-wing trailing edge. Also, the flow near the joint exhibits a region of mild separation.
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram
1990-01-01
Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.
An approximate method for calculating three-dimensional inviscid hypersonic flow fields
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Dejarnette, Fred R.
1990-01-01
An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.
Design applications for supercomputers
NASA Technical Reports Server (NTRS)
Studerus, C. J.
1987-01-01
The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.
An Upwind Multigrid Algorithm for Calculating Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl L.
1993-01-01
An algorithm is described that calculates inviscid, laminar, and turbulent flows on triangular meshes with an upwind discretization. A brief description of the base solver and the multigrid implementation is given, followed by results that consist mainly of convergence rates for inviscid and viscous flows over a NACA four-digit airfoil section. The results show that multigrid does accelerate convergence when the same relaxation parameters that yield good single-grid performance are used; however, larger gains in performance can be realized by doing less work in the relaxation scheme.
NASA Astrophysics Data System (ADS)
Meng, ZhuXuan; Fan, Hu; Peng, Ke; Zhang, WeiHua; Yang, HuiXin
2016-12-01
This article presents a rapid and accurate aeroheating calculation method for hypersonic vehicles. The main innovation is combining accurate of numerical method with efficient of engineering method, which makes aeroheating simulation more precise and faster. Based on the Prandtl boundary layer theory, the entire flow field is divided into inviscid and viscid flow at the outer edge of the boundary layer. The parameters at the outer edge of the boundary layer are numerically calculated from assuming inviscid flow. The thermodynamic parameters of constant-volume specific heat, constant-pressure specific heat and the specific heat ratio are calculated, the streamlines on the vehicle surface are derived and the heat flux is then obtained. The results of the double cone show that at the 0° and 10° angle of attack, the method of aeroheating calculation based on inviscid outer edge of boundary layer parameters reproduces the experimental data better than the engineering method. Also the proposed simulation results of the flight vehicle reproduce the viscid numerical results well. Hence, this method provides a promising way to overcome the high cost of numerical calculation and improves the precision.
Existence of the passage to the limit of an inviscid fluid.
Goldobin, Denis S
2017-11-24
In the dynamics of a viscous fluid, the case of vanishing kinematic viscosity is actually equivalent to the Reynolds number tending to infinity. Hence, in the limit of vanishing viscosity the fluid flow is essentially turbulent. On the other hand, the Euler equation, which is conventionally adopted for the description of the flow of an inviscid fluid, does not possess proper turbulent behaviour. This raises the question of the existence of the passage to the limit of an inviscid fluid for real low-viscosity fluids. To address this question, one should employ the theory of turbulent boundary layer near an inflexible boundary (e.g., rigid wall). On the basis of this theory, one can see how the solutions to the Euler equation become relevant for the description of the flow of low-viscosity fluids, and obtain the small parameter quantifying accuracy of this description for real fluids.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.
1978-01-01
The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its incorporation in an existing methodology for the prediction of nozzle boattail pressures, is discussed. The model accounts for the detailed turbulence and thermochemical processes occurring in the mixing layer formed between a jet exhaust and surrounding external stream while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the BOAT model to analyze simple free shear flows is assessed by comparisons with fundamental laboratory data. The overlaid procedure for incorporating variable pressures into BOAT and the entrainment correction employed to yield an effective plume boundary for the inviscid external flow are demonstrated. This is accomplished via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid methodology for determining nozzle boattail drag for subsonic/transonic external flows.
Inviscid Design of Hypersonic Wind Tunnel Nozzles for a Real Gas
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A straightforward procedure has been developed to quickly determine an inviscid design of a hypersonic wind tunnel nozzle when the test crash is both calorically and thermally imperfect. This real gas procedure divides the nozzle into four distinct parts: subsonic, throat to conical, conical, and turning flow regions. The design process is greatly simplified by treating the imperfect gas effects only in the source flow region. This simplification can be justified for a large class of hypersonic wind tunnel nozzle design problems. The final nozzle design is obtained either by doing a classical boundary layer correction or by using this inviscid design as the starting point for a viscous design optimization based on computational fluid dynamics. An example of a real gas nozzle design is used to illustrate the method. The accuracy of the real gas design procedure is shown to compare favorably with an ideal gas design based on computed flow field solutions.
Inviscid criterion for decomposing scales
NASA Astrophysics Data System (ADS)
Zhao, Dongxiao; Aluie, Hussein
2018-05-01
The proper scale decomposition in flows with significant density variations is not as straightforward as in incompressible flows, with many possible ways to define a "length scale." A choice can be made according to the so-called inviscid criterion [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009]. It is a kinematic requirement that a scale decomposition yield negligible viscous effects at large enough length scales. It has been proved [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009] recently that a Favre decomposition satisfies the inviscid criterion, which is necessary to unravel inertial-range dynamics and the cascade. Here we present numerical demonstrations of those results. We also show that two other commonly used decompositions can violate the inviscid criterion and, therefore, are not suitable to study inertial-range dynamics in variable-density and compressible turbulence. Our results have practical modeling implication in showing that viscous terms in Large Eddy Simulations do not need to be modeled and can be neglected.
On the instability of hypersonic flow past a wedge
NASA Technical Reports Server (NTRS)
Cowley, Stephen; Hall, Philip
1988-01-01
The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to the Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. Indeed, an infinite discrete spectrum of unstable waves is induced by the shock, but these modes are unstable over relatively small but high frequency ranges. The shock is shown to have little effect on the inviscid modes considered by previous authors and an asymptotic description of inviscid modes in the hypersonic limit is given.
Validation of CFD Codes for Parawing Geometries in Subsonic to Supersonic Flows
NASA Technical Reports Server (NTRS)
Cruz-Ayoroa, Juan G.; Garcia, Joseph A.; Melton, John E.
2014-01-01
Computational Fluid Dynamic studies of a rigid parawing at Mach numbers from 0.8 to 4.65 were carried out using three established inviscid, viscous and independent panel method codes. Pressure distributions along four chordwise sections of the wing were compared to experimental wind tunnel data gathered from NASA technical reports. Results show good prediction of the overall trends and magnitudes of the pressure distributions for the inviscid and viscous solvers. Pressure results for the panel method code diverge from test data at large angles of attack due to shock interaction phenomena. Trends in the flow behavior and their effect on the integrated force and moments on this type of wing are examined in detail using the inviscid CFD code results.
Computation of transonic viscous-inviscid interacting flow
NASA Technical Reports Server (NTRS)
Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.
1983-01-01
Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829
Investigation of the Flow Over Simple Bodies at Mach Numbers of the Order of 20
NASA Technical Reports Server (NTRS)
Henderson, Arthur, Jr.
1960-01-01
It is shown that adequate means are available for calculating inviscid direct and induced pressures on simple axisymmetric bodies at zero angle of attack. The extent to which viscous effects can alter these predictions is indicated. It is also shown that inviscid induced pressures can significantly affect the stability of blunt, two-dimensional flat wings at low angles of attack. However, at high angles of attack, the inviscid induced pressure effects are negligible.
On the Singular Incompressible Limit of Inviscid Compressible Fluids
NASA Astrophysics Data System (ADS)
Secchi, P.
We consider the Euler equations of barotropic inviscid compressible fluids in a bounded domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In this paper we discuss, for the boundary case, the different kinds of convergence under various assumptions on the data, in particular the weak convergence in the case of uniformly bounded initial data and the strong convergence in the norm of the data space.
The Baldwin-Lomax model for separated and wake flows using the entropy envelope concept
NASA Technical Reports Server (NTRS)
Brock, J. S.; Ng, W. F.
1992-01-01
Implementation of the Baldwin-Lomax algebraic turbulence model is difficult and ambiguous within flows characterized by strong viscous-inviscid interactions and flow separations. A new method of implementation is proposed which uses an entropy envelope concept and is demonstrated to ensure the proper evaluation of modeling parameters. The method is simple, computationally fast, and applicable to both wake and boundary layer flows. The method is general, making it applicable to any turbulence model which requires the automated determination of the proper maxima of a vorticity-based function. The new method is evalulated within two test cases involving strong viscous-inviscid interaction.
CAG12 - A CSCM based procedure for flow of an equilibrium chemically reacting gas
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.; Lombard, C. K.
1985-01-01
The Conservative Supra Characteristic Method (CSCM), an implicit upwind Navier-Stokes algorithm, is extended to the numerical simulation of flows in chemical equilibrium. The resulting computer code known as Chemistry and Gasdynamics Implicit - Version 2 (CAG12) is described. First-order accurate results are presented for inviscid and viscous Mach 20 flows of air past a hemisphere-cylinder. The solution procedure captures the bow shock in a chemically reacting gas, a technique that is needed for simulating high altitude, rarefied flows. In an initial effort to validate the code, the inviscid results are compared with published gasdynamic and chemistry solutions and satisfactorily agreement is obtained.
Theoretical and Numerical Studies of a Vortex - Interaction Problem
NASA Astrophysics Data System (ADS)
Hsu, To-Ming
The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
The inviscid stability of supersonic flow past a sharp cone
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Shaw, Stephen J.
1990-01-01
The effects of lateral curvature on the development of supersonic laminar inviscid boundary-layer flow on a sharp cone with adiabatic wall conditions are investigated analytically, with a focus on the linear temporal inviscid stability properties. The derivation of the governing equations and of a 'triply generalized' inflexion condition is outlined, and numerical results for freestream Mach number 3.8 are presented in extensive graphs and characterized in detail. A third instability mode related to the viscous mode observed by Duck and Hall (1990) using triple-deck theory is detected and shown to be more unstable and to have larger growth rates than the second mode in some cases. It is found that the 'sonic' neutral mode is affected by the lateral curvature and becomes a supersonic neutral mode.
Supersonic minimum length nozzle design for dense gases
NASA Technical Reports Server (NTRS)
Aldo, Andrew C.; Argrow, Brian M.
1993-01-01
Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours.
Test problems for inviscid transonic flow
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1979-01-01
Solving of test problems with the TRANDES program is discussed. This method utilizes the full, inviscid, perturbation potential flow equation in a Cartesian grid system that is stretched to infinity. This equation is represented by a nonconservative system of finite difference equations that includes at supersonic points a rotated difference scheme and is solved by column relaxation. The solution usually starts from a zero perturbation potential on a very coarse grid (typically 13 by 7) followed by several grid halvings until a final solution is obtained on a fine grid (97 by 49).
Interactive boundary-layer calculations of a transonic wing flow
NASA Technical Reports Server (NTRS)
Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel
1989-01-01
Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).
An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl Lawrence
1993-01-01
A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.
Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Back, L. H.; Crawford, D. W.
1983-01-01
In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.
Inverse design of centrifugal compressor vaned diffusers in inlet shear flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zangeneh, M.
1996-04-01
A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called ``Secondary Flow Approximation`` in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniformmore » inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton`s three-dimensional inviscid Euler solver and Dawes` three-dimensional Navier-Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.« less
A computational study of thrust augmenting ejectors based on a viscous-inviscid approach
NASA Technical Reports Server (NTRS)
Lund, Thomas S.; Tavella, Domingo A.; Roberts, Leonard
1987-01-01
A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flow field is subdivided into a viscous region that contains the turbulent jet and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher-order panel method, while an integral method is used for the description of the viscous part. The strong viscous-inviscid interaction present within the ejector is simulated in an iterative process where the two regions influence each other en route to a converged solution. The model is applied to a variety of parametric and optimization studies involving ejectors having either one or two primary jets. The effects of nozzle placement, inlet and diffuser shape, free stream speed, and ejector length are investigated. The inlet shape for single jet ejectors is optimized for various free stream speeds and Reynolds numbers. Optimal nozzle tilt and location are identified for various dual-ejector configurations.
Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder
NASA Astrophysics Data System (ADS)
Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan
2017-11-01
We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.
Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Wilcox, D. C.
1977-01-01
Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.
A variational principle for compressible fluid mechanics. Discussion of the one-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The second law of thermodynamics is used as a variational statement to derive a numerical procedure to satisfy the governing equations of motion. The procedure, based on numerical experimentation, appears to be stable provided the CFL condition is satisfied. This stability is manifested no matter how severe the gradients (compression or expansion) are in the flow field. For reasons of simplicity only one dimensional inviscid compressible unsteady flow is discussed here; however, the concepts and techniques are not restricted to one dimension nor are they restricted to inviscid non-reacting flow. The solution here is explicit in time. Further study is required to determine the impact of the variational principle on implicit algorithms.
NASA Technical Reports Server (NTRS)
Hwang, D. P.; Boldman, D. R.; Hughes, C. E.
1994-01-01
An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.
A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1979-01-01
A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Seasholtz, R. G.
1982-01-01
Experimental measurements of the velocity components in the blade to blade (axial tangential) plane were obtained with an axial flow turbine stator passage and were compared with calculations from three turbomachinery computer programs. The theoretical results were calculated from a quasi three dimensional inviscid code, a three dimensional inviscid code, and a three dimensional viscous code. Parameter estimation techniques and a particle dynamics calculation were used to assess the accuracy of the laser measurements, which allow a rational basis for comparison of the experimenal and theoretical results. The general agreement of the experimental data with the results from the two inviscid computer codes indicates the usefulness of these calculation procedures for turbomachinery blading. The comparison with the viscous code, while generally reasonable, was not as good as for the inviscid codes.
Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Kleb, William L.; Alter, Steven J.
1998-01-01
Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.
Multiple-grid convergence acceleration of viscous and inviscid flow computations
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1983-01-01
A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
Some experiences with the viscous-inviscid interaction approach
NASA Technical Reports Server (NTRS)
Vandalsem, W. R.; Steger, J. L.; Rao, K. V.
1987-01-01
Methods for simulating compressible viscous flow using the viscid-inviscid interaction approach are described. The formulations presented range from the more familiar full-potential/boundary-layer interaction schemes to a method for coupling Euler/Navier-Stokes and boundary-layer algorithms. An effort is made to describe the advantages and disadvantages of each formulation. Sample results are presented which illustrate the applicability of the methods.
Viscous wing theory development. Volume 2: GRUMWING computer program user's manual
NASA Technical Reports Server (NTRS)
Chow, R. R.; Ogilvie, P. L.
1986-01-01
This report is a user's manual which describes the operation of the computer program, GRUMWING. The program computes the viscous transonic flow over three-dimensional wings using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by an approximate factorization (AFZ)method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
Advances in Engineering Science, Volume 4
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas of flight science are discussed in detail; (1) inviscid flow, (2) viscous flow, (3) aircraft aerodynamics, (4) fluid mechanics, (5) propulsion and combustion, and (6) flight dynamics and control.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
The finite element method in low speed aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1975-01-01
The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
NASA Technical Reports Server (NTRS)
Marconi, F.; Salas, M.; Yaeger, L.
1976-01-01
A numerical procedure has been developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second order accurate finite difference scheme is used to integrate the three dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
Navier-Stokes and viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Vandalsem, William R.
1989-01-01
Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.
NASA Technical Reports Server (NTRS)
Marconi, F.; Yaeger, L.
1976-01-01
A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions. Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts. Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Fu, Yibin; Hall, Philip
1992-01-01
The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).
Large-scale disruptions in a current-carrying magnetofluid
NASA Technical Reports Server (NTRS)
Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.
1986-01-01
Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.
NASA Astrophysics Data System (ADS)
Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team
2014-11-01
The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.
NASA Technical Reports Server (NTRS)
Gorton, C. A.; Lakshminarayana, B.
1974-01-01
The effort conducted to gather additional understanding of the complex inviscid and viscid effects existing within the passages of a three-bladed axial flow inducer operating at a flow coefficient of 0.065 is summarized. The experimental investigations included determination of the blade static pressure and blade limiting streamline angle distributions, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. Analytical investigations were conducted to predict the three-dimensional inviscid flow in the inducer by numerically solving the exact equations of motion, and to approximately predict the three-dimensional viscid flow by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate.
A turbulence model for iced airfoils and its validation
NASA Technical Reports Server (NTRS)
Shin, Jaiwon; Chen, Hsun H.; Cebeci, Tuncer
1992-01-01
A turbulence model based on the extension of the algebraic eddy viscosity formulation of Cebeci and Smith developed for two dimensional flows over smooth and rough surfaces is described for iced airfoils and validated for computed ice shapes obtained for a range of total temperatures varying from 28 to -15 F. The validation is made with an interactive boundary layer method which uses a panel method to compute the inviscid flow and an inverse finite difference boundary layer method to compute the viscous flow. The interaction between inviscid and viscous flows is established by the use of the Hilbert integral. The calculated drag coefficients compare well with recent experimental data taken at the NASA-Lewis Icing Research Tunnel (IRT) and show that, in general, the drag increase due to ice accretion can be predicted well and efficiently.
The computation of three-dimensional flows using unstructured grids
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.
1991-01-01
A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.
A transonic interactive boundary-layer theory for laminar and turbulent flow over swept wings
NASA Technical Reports Server (NTRS)
Woodson, Shawn H.; Dejarnette, Fred R.
1988-01-01
A 3-D laminar and turbulent boundary-layer method is developed for compressible flow over swept wings. The governing equations and curvature terms are derived in detail for a nonorthogonal, curvilinear coordinate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith eddy-viscosity formulation. The governing equations are descretized using the second-order accurate, predictor-corrector finite-difference technique of Matsuno, which has the advantage that the crossflow difference formulas are formed independent of the sign of the crossflow velocity component. The method is coupled with a full potential wing/body inviscid code (FLO-30) and the inviscid-viscous interaction is performed by updating the original wing surface with the viscous displacement surface calculated by the boundary-layer code. The number of these global iterations ranged from five to twelve depending on Mach number, sweep angle, and angle of attack. Several test cases are computed by this method and the results are compared with another inviscid-viscous interaction method (TAWFIVE) and with experimental data.
NASA Technical Reports Server (NTRS)
Ferguson, D. R.
1972-01-01
The streamtube curvature program (STC) has been developed to predict the inviscid flow field and the pressure distribution about nacelles at transonic speeds. The effects of boundary layer are to displace the inviscid flow and effectively change the body shape. Thus, the body shape must be corrected by the displacement thickness in order to calculate the correct pressure distribution. This report describes the coupling of the Stratford and Beavers boundary layer solution with the inviscid STC analysis so that all nacelle pressure forces, friction drag, and incipient separation may be predicted. The usage of the coupled STC-SAB computer program is outlined and the program input and output are defined. Included in this manual are descriptions of the principal boundary layer tables and other revisions to the STC program. The use of the viscous option is controlled by the engineer during program input definition.
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.
2011-01-01
Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.
The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves.
Developments in the simulation of compressible inviscid and viscous flow on supercomputers
NASA Technical Reports Server (NTRS)
Steger, J. L.; Buning, P. G.
1985-01-01
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Civinskas, K. C.
1985-01-01
The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Civinskas, K. C.
1985-01-01
The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.
NASA Technical Reports Server (NTRS)
Pierzga, M. J.
1981-01-01
The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
The role of density discontinuity in the inviscid instability of two-phase parallel flows
NASA Astrophysics Data System (ADS)
Behzad, M.; Ashgriz, N.
2014-02-01
We re-examine the inviscid instability of two-phase parallel flows with piecewise linear velocity profiles. Although such configuration has been theoretically investigated, we employ the concept of waves resonance to physically interpret the instability mechanism as well as the essential role of density discontinuity in the flow. Upon performing linear stability analysis, we demonstrate the existence of neutrally stable "density" and "density-vorticity" waves which are emerged due to the density jump in the flow, in addition to the well-known vorticity waves. Such waves are capable of resonating with each other to form unstable modes in the flow. Although unstable modes in this study are classified as the "shear instability" type, we demonstrate that they are not necessarily of the Rayleigh type. The results also show that the density can have both stabilizing and destabilizing effects on the flow stability. We verify that the difference in the resonating pair of neutral waves leads to such distinct behavior of the density variation.
Radiant heat fluxes in supersonic flow of an inviscid gas past three-dimensional bodies
NASA Astrophysics Data System (ADS)
Apshtein, E. Z.; Vartanian, N. V.; Sakharov, V. I.; Tirskii, G. A.
Supersonic flow of an inviscid non-heat-conducting gas past three-dimensional bodies of various shapes (spheres, ellipsoids, hyperboloids, paraboloids, and power-law bodies of revolution) in the earth atmosphere is investigated numerically in the velocity range 10-18 km/s for heights of 40-80 km and densities of the incoming flow ranging from 0.003 to 0.00017 kg/cu m. It is shown that, at a constant flight velocity, the ratio of the radiant heat flux to the flux at the critical point is largely determined by the angle of the shock wave and is practically independent of the body dimensions and flight height. The results are used to develop a simplified method for determining radiant fluxes toward the nose section of three-dimensional bodies.
NASA Technical Reports Server (NTRS)
Jordan, Keith J.
1998-01-01
This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.
NASA Technical Reports Server (NTRS)
Kleb, W. L.
1994-01-01
Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.
NASA Technical Reports Server (NTRS)
Harp, J. L., Jr.
1977-01-01
A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.
NASA Technical Reports Server (NTRS)
Grossman, B.; Garrett, J.; Cinnella, P.
1989-01-01
Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Unsteady viscous effects in the flow over an oscillating surface. [mathematical model
NASA Technical Reports Server (NTRS)
Lerner, J. I.
1972-01-01
A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.
NASA Astrophysics Data System (ADS)
van de Wall, Allan George
The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. A transport model assuming incompressible flow and using linear theory was developed to take this process into account in the computation of time-average multistage turbomachinery flows. The upstream vortical structures are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (Uke ) associated with the incoming disturbance. The model was applied to compressor and turbine geometry. For compressors, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows is reduced as a result of the interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the Uke by inviscid effects but results in a substantial loss. Any disturbance passing through a turbine blade row results in a larger loss than if the disturbance was mixedout prior to entering the blade row.
Interaction of viscous and inviscid instability modes in separation-bubble transition
NASA Astrophysics Data System (ADS)
Brinkerhoff, Joshua R.; Yaras, Metin I.
2011-12-01
This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.
Splitting of inviscid fluxes for real gases
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Vanleer, Bram; Shuen, Jian-Shun
1988-01-01
Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations or auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.
Splitting of inviscid fluxes for real gases
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun
1990-01-01
Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.
Simple numerical method for predicting steady compressible flows
NASA Technical Reports Server (NTRS)
Vonlavante, Ernst; Nelson, N. Duane
1986-01-01
A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.
Canonical forms of multidimensional steady inviscid flows
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1993-01-01
Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.
NASA Technical Reports Server (NTRS)
Crimi, P.
1974-01-01
A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.
Water-tunnel experiments on an oscillating airfoil at RE equals 21,000
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Carr, L. W.
1978-01-01
Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.
NASA Astrophysics Data System (ADS)
Caughey, David A.; Jameson, Antony
2003-10-01
New versions of implicit algorithms are developed for the efficient solution of the Euler and Navier-Stokes equations of compressible flow. The methods are based on a preconditioned, lower-upper (LU) implementation of a non-linear, symmetric Gauss-Seidel (SGS) algorithm for use as a smoothing algorithm in a multigrid method. Previously, this method had been implemented for flows in quasi-one-dimensional ducts and for two-dimensional flows past airfoils on boundary-conforming O-type grids for a variety of symmetric limited positive (SLIP) spatial approximations, including the scalar dissipation and convective upwind split pressure (CUSP) schemes. Here results are presented for both inviscid and viscous (laminar) flows past airfoils on boundary-conforming C-type grids. The method is significantly faster than earlier explicit or implicit methods for inviscid problems, allowing solution of these problems to the level of truncation error in three to five multigrid cycles. Viscous solutions still require as many as twenty multigrid cycles.
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1992-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1990-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions, are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
The numerical study of the rake angle of impeller blade in centrifugal compressor
NASA Astrophysics Data System (ADS)
Drozdov, A.; Galerkin, Y.
2017-08-01
Investigated impellers have blade surfaces formed by straight generatrix. Blade profiles on shroud and disc surfaces are optimized by velocity diagram control (inviscid, quasi-three dimensional calculations). The blade profiles at hub and shroud blade-to-blade surfaces must be coordinated. A designer can choose the generatrix position at a trailing edge for it. The position is defined by the rake angle that is the angle between a trailing edge generatrix and a meridional plane. Two stages with 3D impellers, vaneless diffusers and return channels were investigated. Seven candidates of impellers of these stages with rake angles in range plus-minus 30 degrees were designed and investigated by quasi-three-dimensional inviscid calculation. CFD-calculations were made for the stages with these impellers. The optimal rake angle is minus 20 degrees for the high flow rate impeller due to lesser blade surface area and favorable meridian velocity field. Zero rake angle is optimal for the medium flow rate impeller where blade surface area is not so important. The combination of inviscid and viscid calculations is the informative instrument for further studies.
Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.
2012-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.
AN IMMERSED BOUNDARY METHOD FOR COMPLEX INCOMPRESSIBLE FLOWS
An immersed boundary method for time-dependant, three- dimensional, incompressible flows is presented in this paper. The incompressible Navier-Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid fluxes and a second order central differenc...
Three-dimensional viscous rotor flow calculations using a viscous-inviscid interaction approach
NASA Technical Reports Server (NTRS)
Chen, Ching S.; Bridgeman, John O.
1990-01-01
A three-dimensional viscous-inviscid interaction analysis was developed to predict the performance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between predictions and test data.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1985-01-01
A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1980-01-01
A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.
Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle
NASA Technical Reports Server (NTRS)
Takashima, N.; Kothari, A. P.
1998-01-01
The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.
Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge
NASA Technical Reports Server (NTRS)
Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.
1991-01-01
A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.
1992-01-01
A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
NASA Astrophysics Data System (ADS)
Colera, Manuel; Pérez-Saborid, Miguel
2018-06-01
We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.
NASA Technical Reports Server (NTRS)
Yang, Y. L.; Tan, C. S.; Hawthorne, W. R.
1992-01-01
A computational method, based on a theory for turbomachinery blading design in three-dimensional inviscid flow, is applied to a parametric design study of a radial inflow turbine wheel. As the method requires the specification of swirl distribution, a technique for its smooth generation within the blade region is proposed. Excellent agreements have been obtained between the computed results from this design method and those from direct Euler computations, demonstrating the correspondence and consistency between the two. The computed results indicate the sensitivity of the pressure distribution to a lean in the stacking axis and a minor alteration in the hub/shroud profiles. Analysis based on Navier-Stokes solver shows no breakdown of flow within the designed blade passage and agreement with that from design calculation; thus the flow in the designed turbine rotor closely approximates that of an inviscid one. These calculations illustrate the use of a design method coupled to an analysis tool for establishing guidelines and criteria for designing turbomachinery blading.
A multigrid nonoscillatory method for computing high speed flows
NASA Technical Reports Server (NTRS)
Li, C. P.; Shieh, T. H.
1993-01-01
A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Flow field predictions for a slab delta wing at incidence
NASA Technical Reports Server (NTRS)
Conti, R. J.; Thomas, P. D.; Chou, Y. S.
1972-01-01
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
Radial Mixing in Turbomachines.
1988-02-01
boundary layers. In a different approach (see 2.7), the flow is considered as a superposition of (1) a main inviscid primary flow, and (ii) viscous boundary...considered as the ’ primary flow’. The secondary flow due to an eventual non-free vortex behaviour is next computed from passage averaged vorticity and...continuity equations. The obtained velocities are superposed on the primary flow and therefore affect the subsequent steps. The end-wall boundary
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices
NASA Technical Reports Server (NTRS)
Bassom, Andrew; Hall, Philip
1990-01-01
The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.
An Inviscid Computational Study of an X-33 Configuration at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1999-01-01
This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of a simplified X-33 configuration. The major components of the X-33 vehicle, namely the body, the canted fin, the vertical fin, and the body-flap, were simulated in the CFD (Computational Fluid Dynamic) model. The rear-ward facing surfaces at the base including the aerospike engine surfaces were not simulated. The FELISA software package consisting of an unstructured surface and volume grid generator and two inviscid flow solvers was used for this study. Computations were made for Mach 4.96, 6.0, and 10.0 with perfect gas air option, and for Mach 10 with equilibrium air option with flow condition of a typical point on the X-33 flight trajectory. Computations were also made with CF4 gas option at Mach 6.0 to simulate the CF4 tunnel flow condition. An angle of attack range of 12 to 48 deg was covered. The CFD results were compared with available wind tunnel data. Comparison was good at low angles of attack; at higher angles of attack (beyond 25 deg) some differences were found in the pitching moment. These differences progressively increased with increase in angle of attack, and are attributed to the viscous effects. However, the computed results showed the trends exhibited by the wind tunnel data.
NASA Technical Reports Server (NTRS)
Hall, G. F.; Shamroth, S. J.; Mcdonald, H.; Briley, W. R.
1976-01-01
A method was developed for determining the aerodynamic loads on the tip of an infinitely thin, swept, cambered semi-infinite wing at an angle of attack which is operating subsonically in an inviscid medium and is subjected to a sinusoidal gust. Under the assumption of linearized aerodynamics, the loads on the tip are obtained by superposition of the steady aerodynamic results for angle of attack and camber, and the unsteady results for the response to the sinusoidal gust. The near field disturbance pressures in the fluid surrounding the tip are obtained by assuming a dipole representation for the loading on the tip and calculating the pressures accordingly. The near field pressures are used to drive a reduced form of the Navier-Stokes equations which yield the tip vortex formation. The combined viscid-inviscid analysis is applied to determining the pressures and examining the vortex rollup in the vicinity of an unswept, uncambered wing moving steadily at a Mach number of 0.2 at an angle of attack of 0.1 rad. The viscous tip flow calculation shows features expected in the tip flow such as the qualitatively proper development of boundary layers on both the upper and lower airfoil surfaces. In addition, application of the viscous solution leads to the generation of a circular type flow pattern above the airfoil suction surface.
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Comer, R. P.; Head, J. W.
1982-01-01
A topographic profile of the young large lunar basin, Orientale, is presented in order to examine the effects of viscous relaxation on basin topography. Analytical models for viscous flow are considered, showing a wavelength-dependence of time constants for viscous decay on the decrease in viscosity with depth and on the extent of the isostatic compensation of the initial topography. Lunar rheological models which are developed include a half-space model for uniform Newtonian viscosity, density, and gravitational acceleration, a layer over inviscid half space model with material inviscid over geological time scales, and a layer with isostatic compensation where a uniformly viscous layer overlies an inviscid half space of higher density. Greater roughness is concluded, and has been observed, on the moon's dark side due to continued lower temperatures since the time of heavy bombardment.
Viscid/inviscid interaction analysis of thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilacqua, P. M.; Dejoode, A. D.
1979-01-01
A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.
The inviscid stability of supersonic flow past a sharp cone
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Shaw, Stephen J.
1990-01-01
The laminar boundary layer which forms on a sharp cone in a supersonic freestream, where lateral curvature plays a key role in the physics of the problem is considered. This flow is then analyzed from the point of view of linear, temporal, inviscid stability. The basic, non-axisymmetric disturbance equations are derived for general flows of this class, and a so called triply generalized inflexion condition is found for the existence of subsonic neutral modes of instability. This condition is analogous to the well-known generalized inflexion condition found in planar flows, although in the present case the condition depends on both axial and aximuthal wavenumbers. Extensive numerical results are presented for the stability problem at a freestream Mach number of 3.8, for a range of streamwise locations. These results reveal that a new mode of instability may occur, peculiar to flows of this type involving curvature. Additionally, asymptotic analyses valid close to the tip of the cone, far downstream of the cone are presented, and these give a partial (asymptotic) description of this additional mode of instability.
Solution of plane cascade flow using improved surface singularity methods
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Viscous versus inviscid exact coherent states in high Reynolds number wall flows
NASA Astrophysics Data System (ADS)
Montemuro, Brandon; Klewicki, Joe; White, Chris; Chini, Greg
2017-11-01
Streamwise-averaged motions consisting of streamwise-oriented streaks and vortices are key components of exact coherent states (ECS) arising in incompressible wall-bounded shear flows. These invariant solutions are believed to provide a scaffold in phase space for the turbulent dynamics realized at large Reynolds number Re . Nevertheless, many ECS, including upper-branch states, have a large- Re asymptotic structure in which the effective Reynolds number governing the streak and roll dynamics is order unity. Although these viscous ECS very likely play a role in the dynamics of the near-wall region, they cannot be relevant to the inertial layer, where the leading-order mean dynamics are known to be inviscid. In particular, viscous ECS cannot account for the observed regions of quasi-uniform streamwise momentum and interlaced internal shear layers (or `vortical fissures') within the inertial layer. In this work, a large- Re asymptotic analysis is performed to extend the existing self-sustaining-process/vortex-wave-interaction theory to account for largely inviscid ECS. The analysis highlights feedback mechanisms between the fissures and uniform momentum zones that can enable their self-sustenance at extreme Reynolds number. NSF CBET Award 1437851.
Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment
NASA Technical Reports Server (NTRS)
Barber, T.; Paterson, R. W.; Skebe, S. A.
1988-01-01
A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.
NASA Technical Reports Server (NTRS)
Day, Brad A.; Meade, Andrew J., Jr.
1993-01-01
A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.
Parabolized Navier-Stokes solutions of separation and trailing-edge flows
NASA Technical Reports Server (NTRS)
Brown, J. L.
1983-01-01
A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.
Experimental studies of hypersonic shock-wave boundary-layer interactions
NASA Technical Reports Server (NTRS)
Lu, Frank K.
1992-01-01
Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.
Gas density field imaging in shock dominated flows using planar laser scattering
NASA Astrophysics Data System (ADS)
Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran
2018-07-01
Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.
Analysis of the three dimensional flow in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Baskharone, E.
1979-01-01
The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.
A supersonic, three-dimensional code for flow over blunt bodies: User's manual
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Mcmillan, O. J.
1980-01-01
A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
NASA Technical Reports Server (NTRS)
Cline, M. C.
1981-01-01
A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Numerical investigation of cylinder wake flow with a rear stagnation jet
NASA Astrophysics Data System (ADS)
Mo, J. D.; Duke, M. R., Jr.
1994-05-01
Upon visualization of the flow past a cylinder with a rear stagnation jet (RSJ), the flow appears fully attached as conventional inviscid flow does. Therefore, at first glance, it would be suspected that the form drag on the cylinder has been reduced to zero as predicted by inviscid flow theory. However, a detailed numerical simulation reveals that the form drag coefficient increases as the jet velocity increases. The mechanics of the increasing form drag are addressed. The following conclusions were drawn: (1) flow behind a cylinder can be effectively influenced by a RSJ; (2) the unsymmetric wake flow becomes symmetric when the RSI is in operation with a velocity ratio as low as 1; the size of the symmetric recirculation region becomes smaller as the jet speed increases; (3) a RSJ forces a symmetrical wake flow pattern, thus eliminating the lateral force; (4) the pressure on the cylinder surface decreases over the entire surface, but significantly more on the downstream side of the cylinder, as the jet velocity increases, causing an increase in form drag as jet velocity ratio increases; and (5) the RSJ to significantly increase form drag on a bluff body has direct applications in aerodynamic controls of reentry or fligths at high angles of attack.
Lagrangian averaging, nonlinear waves, and shock regularization
NASA Astrophysics Data System (ADS)
Bhat, Harish S.
In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity, solutions of the PDE converge strongly to weak solutions of the inviscid Burgers equation. We provide numerical evidence that this limit satisfies an entropy inequality for the inviscid Burgers equation. We demonstrate a Hamiltonian structure for the PDE.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Hall, Philip; Streett, Craig
1992-01-01
The generation of long-wavelength, viscous-inviscid interactive Goertler vortices is studied in the linear regime by numerically solving the time-dependent governing equations. It is found that time-dependent surface deformations, which assume a fixed nonzero shape at large times, generate steady Goertler vortices that amplify in the downstream direction. Thus, the Goertler instability in this regime is shown to be convective in nature, contrary to the earlier findings of Ruban and Savenkov. The disturbance pattern created by steady and streamwise-elongated surface obstacles on a concave surface is examined in detail, and also contrasted with the flow pattern due to roughness elements with aspect ratio of order unity on flat surfaces. Finally, the applicability of the Briggs-Bers criterion to unstable physical systems of this type is questioned by providing a counterexample in the form of the inviscid limit of interactive Goertler vortices.
The vortex street as a statistical-mechanical phenomenon
NASA Technical Reports Server (NTRS)
Montgomery, D.
1974-01-01
An explanation of the Karman vortex street is presented on the basis of the two-temperature canonical distribution for inviscid two-dimensional flows in Navier-Stokes fluids or guiding-center plasmas.
Applications and suggested directions of transition research
NASA Technical Reports Server (NTRS)
Bushnell, Dennis L.
1989-01-01
This paper summarizes many of the applications of transition research having significant technological importance and suggests critical general areas for further research. Critical research requirements include identification and quantification of initial disturbance fields, disturbance internalization by inviscid and viscous flow fields and amplification in nonboundary-layer flows, along with elucidation of the roughness-induced destabilization physics.
Boson Hamiltonians and stochasticity for the vorticity equation
NASA Technical Reports Server (NTRS)
Shen, Hubert H.
1990-01-01
The evolution of the vorticity in time for two-dimensional inviscid flow and in Lagrangian time for three-dimensional viscous flow is written in Hamiltonian form by introducing Bose operators. The addition of the viscous and convective terms, respectively, leads to an interpretation of the Hamiltonian contribution to the evolution as Langevin noise.
Flux Jacobian matrices and generaled Roe average for an equilibrium real gas
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1988-01-01
Inviscid flux Jacobian matrices and their properties used in numerical solutions of conservation laws are extended to general, equilibrium gas laws. Exact and approximate generalizations of the Roe average are presented. Results are given for one-dimensional flow, and then extended to three-dimensional flow with time-varying grids.
NASA Technical Reports Server (NTRS)
Hafez, M.
1989-01-01
Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.
An exponential time-integrator scheme for steady and unsteady inviscid flows
NASA Astrophysics Data System (ADS)
Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili
2018-07-01
An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.
Advanced Space Propulsion System Flowfield Modeling
NASA Technical Reports Server (NTRS)
Smith, Sheldon
1998-01-01
Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.
Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)
NASA Technical Reports Server (NTRS)
Barber, T.
1988-01-01
A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.
Inviscid Flow Computations of the Orbital Sciences X-34 Over a Mach Number Range of 1.25 to 6.0
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
2001-01-01
This report documents the results of an inviscid computational study conducted on the Orbital Sciences X-34 vehicle to compute its inviscid longitudinal aerodynamic characteristics over a Mach number range of 1.25 to 6.0. The unstructured grid software FELISA was used and th e aerodynamic characteristics were computed at Mach numbers 1.25, 1.6, 2.5, 4.0, 4.63, and 6.0, and an angle of attack range of -4 to 32 degrees. These results were compared with available aerodynamic data from wind tunnel test on X-34 models. The comparison showed excellent agreement in C(sub N). The computed pitching moment compared well at Mach numbers 2.5 and higher, and at angles of attack of up to 12 deg. The agreement was not good at higher angles of attack possibly due to viscous effects. At lower Mach numbers there were significant differences between computed and measured C(sub m) values. This could not be explained. Since the present computations are inviscid, the computed C(sub A) was consistently lower than the measured values as expected.
A Study of the Flow Structure of Tip Vortices on a Hydrofoil
1986-11-28
as measured from the flow visualization imager. . . 0 . . . 61 III.10 The vertical location of the tip vortex center as measured from the flow...pressure gra- dients of opposite sign exist on both sides of an airfoil . These gradients induce an inward lateral flow on the suc- tion side and an...And most recently, Cebeci et al. (1986) developed a viscous/inviscid interaction method to calculate the flow around airfoils , emphasizing the
Numerical simulations of incompressible laminar flows using viscous-inviscid interaction procedures
NASA Astrophysics Data System (ADS)
Shatalov, Alexander V.
The present method is based on Helmholtz velocity decomposition where velocity is written as a sum of irrotational (gradient of a potential) and rotational (correction due to vorticity) components. Substitution of the velocity decomposition into the continuity equation yields an equation for the potential, while substitution into the momentum equations yields equations for the velocity corrections. A continuation approach is used to relate the pressure to the gradient of the potential through a modified Bernoulli's law, which allows the elimination of the pressure variable from the momentum equations. The present work considers steady and unsteady two-dimensional incompressible flows over an infinite cylinder and NACA 0012 airfoil shape. The numerical results are compared against standard methods (stream function-vorticity and SMAC methods) and data available in literature. The results demonstrate that the proposed formulation leads to a good approximation with some possible benefits compared to the available formulations. The method is not restricted to two-dimensional flows and can be used for viscous-inviscid domain decomposition calculations.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
NASA Astrophysics Data System (ADS)
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
Analysis of airfoil leading edge separation bubbles
NASA Technical Reports Server (NTRS)
Carter, J. E.; Vatsa, V. N.
1982-01-01
A local inviscid-viscous interaction technique was developed for the analysis of low speed airfoil leading edge transitional separation bubbles. In this analysis an inverse boundary layer finite difference analysis is solved iteratively with a Cauchy integral representation of the inviscid flow which is assumed to be a linear perturbation to a known global viscous airfoil analysis. Favorable comparisons with data indicate the overall validity of the present localized interaction approach. In addition numerical tests were performed to test the sensitivity of the computed results to the mesh size, limits on the Cauchy integral, and the location of the transition region.
Aircraft aerodynamic prediction method for V/STOL transition including flow separation
NASA Technical Reports Server (NTRS)
Gilmer, B. R.; Miner, G. A.; Bristow, D. R.
1983-01-01
A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape.
NASA Technical Reports Server (NTRS)
Hafez, M.; Ahmad, J.; Kuruvila, G.; Salas, M. D.
1987-01-01
In this paper, steady, axisymmetric inviscid, and viscous (laminar) swirling flows representing vortex breakdown phenomena are simulated using a stream function-vorticity-circulation formulation and two numerical methods. The first is based on an inverse iteration, where a norm of the solution is prescribed and the swirling parameter is calculated as a part of the output. The second is based on direct Newton iterations, where the linearized equations, for all the unknowns, are solved simultaneously by an efficient banded Gaussian elimination procedure. Several numerical solutions for inviscid and viscous flows are demonstrated, followed by a discussion of the results. Some improvements on previous work have been achieved: first order upwind differences are replaced by second order schemes, line relaxation procedure (with linear convergence rate) is replaced by Newton's iterations (which converge quadratically), and Reynolds numbers are extended from 200 up to 1000.
Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun
1987-01-01
For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.
Prediction of nearfield jet entrainment by an interactive mixing/afterburning model
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.
1978-01-01
The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.
2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation
NASA Astrophysics Data System (ADS)
Proctor, Camron Lisle
The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.
Internal and external axial corner flows
NASA Technical Reports Server (NTRS)
Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.
1975-01-01
The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.
Viscous and Interacting Flow Field Effects.
1980-06-01
in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of
A sensitivity equation approach to shape optimization in fluid flows
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1994-01-01
A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.
Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew
1999-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.
Numerical study of the effects of icing on viscous flow over wings
NASA Technical Reports Server (NTRS)
Sankar, L. N.
1994-01-01
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved using a diagonal form of an alternating-direction implicit (ADI) approximate factorization procedure. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic-based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are less than 60 percent of that required for a full-blown Navier-Stokes analysis for steady flow applications and about 60 percent of the Navier-Stokes CPU times for unsteady flows in non-vector processing machines. Applications of the method are presented for a rectangular NACA 0012 wing in low subsonic steady flow at moderate and high angles of attack, and for an F-5 wing in steady and unsteady subsonic and transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to Navier-Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier-Stokes equations can be retained with a significant savings in computational time.
A source flow characteristic technique for the analysis of scramjet exhaust flow field
NASA Technical Reports Server (NTRS)
Delguidice, P.; Dash, S.; Kalben, P.
1974-01-01
The factors which influence the design and selection of a nozzle for a hypersonic scramjet are described. A two dimensional second-order characteristic procedure capable of analyzing the aerodynamic performance of typical nozzle configurations is presented. Equations of motion governing the two dimensional, axisymmetric, or axially expanding inviscid flow of a gas mixture, with frozen chemistry, are provided. Diagrams of the flow conditions for various configurations are included.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1982-01-01
A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.
Effects of viscosity on shock-induced damping of an initial sinusoidal disturbance
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Liu, Fusheng; Jing, Fuqian
2010-05-01
A lack of reliable data treatment method has been for several decades the bottleneck of viscosity measurement by disturbance amplitude damping method of shock waves. In this work the finite difference method is firstly applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in inviscid and viscous flow. When water shocked to 15 GPa is taken as an example, the main results are as follows: (1) For inviscid and lower viscous flows the numerical method gives results in good agreement with the analytic solutions under the condition of small disturbance ( a 0/ λ=0.02); (2) For the flow of viscosity beyond 200 Pa s ( η = κ) the analytic solution is found to overestimate obviously the effects of viscosity. It is attributed to the unreal pre-conditions of analytic solution by Miller and Ahrens; (3) The present numerical method provides an effective tool with more confidence to overcome the bottleneck of data treatment when the effects of higher viscosity in experiments of Sakharov and flyer impact are expected to be analyzed, because it can in principle simulate the development of shock waves in flows with larger disturbance amplitude, higher viscosity, and complicated initial flow.
NASA Technical Reports Server (NTRS)
Bonataki, E.; Chaviaropoulos, P.; Papailiou, K. D.
1991-01-01
A new inverse inviscid method suitable for the design of rotating blade sections lying on an arbitrary axisymmetric stream-surface with varying streamtube width is presented. The geometry of the axisymmetric stream-surface and the streamtube width variation with meridional distance, the number of blades, the inlet flow conditions, the rotational speed and the suction and pressure side velocity distributions as functions of the normalized arc-length are given. The flow is considered irrotational in the absolute frame of reference and compressible. The output of the computation is the blade section that satisfies the above data. The method solves the flow equations on a (phi 1, psi) potential function-streamfunction plane for the velocity modulus, W and the flow angle beta; the blade section shape can then be obtained as part of the physical plane geometry by integrating the flow angle distribution along streamlines. The (phi 1, psi) plane is defined so that the monotonic behavior of the potential function is guaranteed, even in cases with high peripheral velocities. The method is validated on a rotating turbine case and used to design new blades. To obtain a closed blade, a set of closure conditions were developed and referred.
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2009-01-01
The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.
Computational AeroAcoustics for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)
2002-01-01
An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.
NASA Technical Reports Server (NTRS)
Liou, M. S.; Adamson, T. C., Jr.
1979-01-01
An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam
2017-12-01
The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.
Relaxation Oscillations in the Nearly Inviscid Faraday System
NASA Astrophysics Data System (ADS)
Knobloch, Edgar; Higuera, Maria
2004-11-01
The amplitude equations for nearly inviscid Faraday waves couple to a streaming flow driven by oscillatory viscous boundary layers at the rigid walls and the free surface produced by the waves. This flow is driven most efficiently by mixed mode oscillations created in secondary bifurcations from standing waves, and these occur at small amplitude in containers that are almost symmetric.(M. Higuera, J.M. Vega and E. Knobloch. J. Nonlin. Sci. 12, 505, 2002.) Among the new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and mixed mode oscillations. Such oscillations are present both in almost circular and in almost square containers. The origin of these oscillations will be explained and the results related to experiments.(F. Simonelli and J. P. Gollub, J. Fluid Mech. 199, 471, 1989.)footnote[3]Z.C. Feng and P.R. Sethna, J. Fluid Mech. 199, 495, 1989.
Radiative Viscous Shock Layer Analysis of Fire, Apollo, and PAET Flight Data
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Park, Chul; Green, Michael J.
1986-01-01
Equilibrium, radiating viscous shock layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well with two engineering correlations, except at high altitudes corresponding to low densities. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70% are observed between measured data and the viscous calculations. Because of boundary-layer absorption, viscous effects reduce the intensity to the wall by as much as 30% compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict an enhancement to the radiation owing to the chemical relaxation. Stagnation point solutions are also presented for future aeroassisted orbital transfer vehicle geometries with nose radii of 0.3-15 m.
Radiative viscous-shock-layer analysis of Fire, Apollo, and PAET flight data
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Park, C.; Green, M. J.
1985-01-01
Equilibrium, radiating viscous-shock-layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well, except at high altitudes corresponding to low densities, with two engineering correlations. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70 percent are observed between measured data and the viscous calculations. Viscous effects reduce the intensity toward the wall, because of boundary-layer absorption, by as much as 30 percent, compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict enhancement of radiation owing to chemical relaxation. Stagnation point solutions are also presented for future air-assisted orbital transfer vehicle geometries with nose radii ranging from 0.3 to 15 m.
Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow
NASA Technical Reports Server (NTRS)
Arian, Eyal; Ta'asan, Shlomo
1996-01-01
In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.
The computation of induced drag with nonplanar and deformed wakes
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Smith, Stephen
1991-01-01
The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.
Unsteady aerodynamic analyses for turbomachinery aeroelastic predictions
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Barnett, M.; Ayer, T. C.
1994-01-01
Applications for unsteady aerodynamics analysis in this report are: (1) aeroelastic: blade flutter and forced vibration; (2) aeroacoustic: noise generation; (3) vibration and noise control; and (4) effects of unsteadiness on performance. This requires that the numerical simulations and analytical modeling be accurate and efficient and contain realistic operating conditions and arbitrary modes of unsteady excitation. The assumptions of this application contend that: (1) turbulence and transition can be modeled with the Reynolds averaged and using Navier-Stokes equations; (2) 'attached' flow with high Reynolds number will require thin-layer Navier-Stokes equations, or inviscid/viscid interaction analyses; (3) small-amplitude unsteady excitations will need nonlinear steady and linearized unsteady analyses; and (4) Re to infinity will concern inviscid flow. Several computer programs (LINFLO, CLT, UNSVIS, AND SFLOW-IVI) are utilized for these analyses. Results and computerized grid examples are shown. This report was given during NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
An inviscid-viscous interaction approach to the calculation of dynamic stall initiation on airfoils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebeci, T.; Platzer, M.F.; Jang, H.M.
An interactive boundary-layer method is described for computing unsteady incompressible flow over airfoils, including the initiation of dynamic stall. The inviscid unsteady panel method developed by Platzer and Teng is extended to include viscous effects. The solutions of the boundary-layer equations are obtained with an inverse finite-difference method employing an interaction law based on the Hilbert integral, and the algebraic eddy-viscosity formulation of Cebeci and Smith. The method is applied to airfoils subject to periodic and ramp-type motions and its abilities are examined for a range of angles of attack, reduced frequency, and pitch rate.
Flux vector splitting of the inviscid equations with application to finite difference methods
NASA Technical Reports Server (NTRS)
Steger, J. L.; Warming, R. F.
1979-01-01
The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
NASA Technical Reports Server (NTRS)
Gorton, C. A.; Lakshminarayana, B.
1980-01-01
The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.
Viscous wing theory development. Volume 1: Analysis, method and results
NASA Technical Reports Server (NTRS)
Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.
1986-01-01
Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.
Rotational flow in tapered slab rocket motors
NASA Astrophysics Data System (ADS)
Saad, Tony; Sams, Oliver C.; Majdalani, Joseph
2006-10-01
Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.
An Experimental and numerical Study for squeezing flow
NASA Astrophysics Data System (ADS)
Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team
2017-11-01
We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).
Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2011-01-01
Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.
Visualization study of flow in axial flow inducer.
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.
1972-01-01
A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.
Three dimensional flow computations in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Ghantous, C. A.
1982-01-01
The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.
Development of a nonlinear unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
Unstructured mesh algorithms for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1992-01-01
The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.
NASA Technical Reports Server (NTRS)
Hamaker, Frank M; Neice, Stanford E; Wong, Thomas J
1953-01-01
The similarity law for nonsteady, inviscid, hypersonic flow about slender three-dimensional shapes is derived. Conclusions drawn are shown to be valid for rotational flow. Requirements for dynamic similarity of related shapes in free flight are obtained. The law is examined for steady flow about related three-dimensional shapes. Results of an experimental investigation of the pressures acting on two inclined cones are found to check the law as it applies to bodies of revolution.
Procedures for the computation of unsteady transonic flows including viscous effects
NASA Technical Reports Server (NTRS)
Rizzetta, D. P.
1982-01-01
Modifications of the code LTRAN2, developed by Ballhaus and Goorjian, which account for viscous effects in the computation of planar unsteady transonic flows are presented. Two models are considered and their theoretical development and numerical implementation is discussed. Computational examples employing both models are compared with inviscid solutions and with experimental data. Use of the modified code is described.
On relation between scalar interfaces and vorticity in inviscid flows
NASA Astrophysics Data System (ADS)
Ramesh, O. N.; Patwardhan, Saurabh
2013-11-01
A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.
The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1991-01-01
A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.
NASA Technical Reports Server (NTRS)
Davis, R. L.
1986-01-01
A program called ALESEP is presented for the analysis of the inviscid-viscous interaction which occurs due to the presence of a closed laminar-transitional separation bubble on an airfoil or infinite swept wing. The ALESEP code provides an iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis; hence, part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function, a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation, and an empirical natural transition model.
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Graves, R. A., Jr.
1973-01-01
A method for the rapid calculation of the inviscid shock layer about blunt axisymmetric bodies at an angle of attack of 0 deg has been developed. The procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The flow field solution procedure is programed at the Langley Research Center for the Control Data 6600 computer. The geometries specified in the program are sphores, ellipsoids, paraboloids, and hyperboloids which may conical afterbodies. The normal momentum equation is replaced with an approximate algebraic expression. This simplification significantly reduces machine computation time. Comparisons of the present results with shock shapes and surface pressure distributions obtained by the more exact methods indicate that the program provides reasonably accurate results for smooth bodies in axisymmetric flow. However, further research is required to establish the proper approximate form of the normal momentum equation for the two-dimensional case.
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.
Systematic flow manipulation by a deflector-turbine array
NASA Astrophysics Data System (ADS)
Mandre, Shreyas; Mangan, Niall M.
2017-11-01
Wind and hydrokinetic turbines are often installed in the wake of upstream turbines that limit the energy incident on the downstream ones. In two-dimensions, we describe how an array can deflect the wake away and redirect more energy to itself. Using inviscid fluid dynamics, we formulate the definitions of ``deflectors'' and ``turbines'' as elements that introduce bound and shed vorticity in the flow, respectively. To illustrate the flow manipulation, we consider a deflector-turbine array constrained to a line segment aligned with the freestream and acting as an internal boundary. We impose profiles of bound and shed vorticity on this segment that parameterize the flow deflection and the wake deficit respectively, and analyze the resulting flow using inviscid fluid dynamics. We find that the power extracted by the array is the product of two components: (i) the deflected kinetic energy incident on the array, and (ii) the array efficiency, or its ability to extract a fraction of the incident energy, both of which vary with deflection strength. The array efficiency decreases slightly with increasing deflection from about 57% at weak deflection to 39% at high deflection. This decrease is outweighed by an increase in the incident kinetic energy due to deflection. Funded by the Advanced Research Projects Agency - Energy.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
Hybrid fully nonlinear BEM-LBM numerical wave tank with applications in naval hydrodynamics
NASA Astrophysics Data System (ADS)
Mivehchi, Amin; Grilli, Stephan T.; Dahl, Jason M.; O'Reilly, Chris M.; Harris, Jeffrey C.; Kuznetsov, Konstantin; Janssen, Christian F.
2017-11-01
simulation of the complex dynamics response of ships in waves is typically modeled by nonlinear potential flow theory, usually solved with a higher order BEM. In some cases, the viscous/turbulent effects around a structure and in its wake need to be accurately modeled to capture the salient physics of the problem. Here, we present a fully 3D model based on a hybrid perturbation method. In this method, the velocity and pressure are decomposed as the sum of an inviscid flow and viscous perturbation. The inviscid part is solved over the whole domain using a BEM based on cubic spline element. These inviscid results are then used to force a near-field perturbation solution on a smaller domain size, which is solved with a NS model based on LBM-LES, and implemented on GPUs. The BEM solution for large grids is greatly accelerated by using a parallelized FMM, which is efficiently implemented on large and small clusters, yielding an almost linear scaling with the number of unknowns. A new representation of corners and edges is implemented, which improves the global accuracy of the BEM solver, particularly for moving boundaries. We present model results and the recent improvements of the BEM, alongside results of the hybrid model, for applications to problems. Office of Naval Research Grants N000141310687 and N000141612970.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow
NASA Technical Reports Server (NTRS)
Baker, A. J.; Fox, C. H., Jr.
1977-01-01
Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed.
2010-09-01
nozzle • Brayton (or Joule) cycle: combustion at constant pressure at non-zero velocity The combustion process is modelled by means of adding heat to...against aerodynamic heating Aerodynamic heating calculations are based on: • Taylor -Maccoll method for compressible inviscid cone flow • Reynolds
Interaction of a Vortex Pair with a Free Surface.
1987-09-01
larger than normal in a wing in a wind tunnel), or the unsteady nature of the flow (for vortices generated by a wing in a tow basin) makes the mean...tension can be assumed to be negligible. This observation has been verified experimentally by Gray [Ref. 17]. Thus, if the flow is considered inviscid...analytical solutions in the exterior regions could be obtained without too much difficulty. In particular, treatment of steady flows in a uniform
Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer
2016-01-01
We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289
NASA Technical Reports Server (NTRS)
Sidilkover, David
1997-01-01
Some important advances took place during the last several years in the development of genuinely multidimensional upwind schemes for the compressible Euler equations. In particular, a robust, high-resolution genuinely multidimensional scheme which can be used for any of the flow regimes computations was constructed. This paper summarizes briefly these developments and outlines the fundamental advantages of this approach.
A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Eberhardt, S.; Palmer, G.
1986-01-01
A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.
A viscous-inviscid interactive compressor calculations
NASA Technical Reports Server (NTRS)
Johnston, W.; Sockol, P. M.
1978-01-01
A viscous-inviscid interactive procedure for subsonic flow is developed and applied to an axial compressor stage. Calculations are carried out on a two-dimensional blade-to-blade region of constant radius assumed to occupy a mid-span location. Hub and tip effects are neglected. The Euler equations are solved by MacCormack's method, a viscous marching procedure is used in the boundary layers and wake, and an iterative interaction scheme is constructed that matches them in a way that incorporates information related to momentum and enthalpy thicknesses as well as the displacement thickness. The calculations are quasi-three-dimensional in the sense that the boundary layer and wake solutions allow for the presence of spanwise (radial) velocities.
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Johnson, F. T.
1976-01-01
The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.
A zonal method for modeling powered-lift aircraft flow fields
NASA Technical Reports Server (NTRS)
Roberts, D. W.
1989-01-01
A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.
A Theoretical and Experimental Study for a Developing Flow in a Thin Fluid Gap
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Lang, Ji; Jen, Kei-Peng; Nathan, Rungun; Vucbmss Team
2016-11-01
In this paper, we report a novel theoretical and experimental approach to examine a fast developing flow in a thin fluid gap. Although the phenomena are widely observed in industrial applications and biological systems, there is a lack of analytical approach that captures the instantaneous fluid response to a sudden impact. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. A sudden impact was imposed on the piston, creating a fast compaction on the thin fluid gap underneath. The motion of the piston was captured by the laser displacement sensor, and the fluid pressure build-up and relaxation was recorded by the pressure transducer. For this dynamic process, a novel analytical approach was developed. It starts with the inviscid limit when the viscous fluid effect has no time to appear. This short process is followed by a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. A boundary layer integral method is used during the process. Lastly, the flow is completely viscous dominant featured by a typical squeeze flow in a thin gap. Excellent agreement between the theory and the experiment was achieved. The study presented herein, filling the gap in the literature, will have broad impact in industrial and biomedical applications. This research was supported by the National Science Foundation under Award #1511096.
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1983-01-01
A computer code HALIS, designed to compute the three dimensional flow about shuttle like configurations at angles of attack greater than 25 deg, is described. Results from HALIS are compared where possible with an existing flow field code; such comparisons show excellent agreement. Also, HALIS results are compared with experimental pressure distributions on shuttle models over a wide range of angle of attack. These comparisons are excellent. It is demonstrated that the HALIS code can incorporate equilibrium air chemistry in flow field computations.
NASA Technical Reports Server (NTRS)
Howlett, James T.
1989-01-01
Recent experience in calculating unsteady transonic flow by means of viscous-inviscid interactions with the XTRAN2L computer code is examined. The boundary layer method for attached flows is based upon the work of Rizzetta. The nonisentropic corrections of Fuglsang and Williams are also incorporated along with the viscous interaction for some cases and initial results are presented. For unsteady flows, the inverse boundary layer equations developed by Vatsa and Carter are used in a quasi-steady manner and preliminary results are presented.
Mach Reflection, Mach Disc, and the Associated Nozzle Free Jet Flows. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chang, I.
1973-01-01
The numerical method involving both the method of integral relations and the method of characteristics have been applied to investigate the steady flow phenomena associated with the accurrence of Mach reflection and Mach disc from nozzle flows. The solutions of triple-shock intersection are presented. The regime where Mach configuration appears is defines for the inviscid analysis. The method of integral relations developed for the blunt body problem is modified and extended to the attached shock wave and to internal nozzle flow problems.
A three-dimensional structured/unstructured hybrid Navier-Stokes method for turbine blade rows
NASA Technical Reports Server (NTRS)
Tsung, F.-L.; Loellbach, J.; Kwon, O.; Hah, C.
1994-01-01
A three-dimensional viscous structured/unstructured hybrid scheme has been developed for numerical computation of high Reynolds number turbomachinery flows. The procedure allows an efficient structured solver to be employed in the densely clustered, high aspect-ratio grid around the viscous regions near solid surfaces, while employing an unstructured solver elsewhere in the flow domain to add flexibility in mesh generation. Test results for an inviscid flow over an external transonic wing and a Navier-Stokes flow for an internal annular cascade are presented.
Penn State axial flow turbine facility: Performance and nozzle flow field
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Zaccaria, M.; Itoh, S.
1991-01-01
The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.
Evaluation of hydrogen as a cryogenic wind tunnel test gas
NASA Technical Reports Server (NTRS)
Haut, R. C.
1977-01-01
The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2004-01-01
The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II; Spall, J. R.
1986-01-01
A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.
NASA Astrophysics Data System (ADS)
Hamilton, H. H., II; Spall, J. R.
1986-07-01
A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.
Dynamic stall: An example of strong interaction between viscous and inviscid flows
NASA Technical Reports Server (NTRS)
Philippe, J. J.
1978-01-01
A study was done of the phenomena concerning profiles in dynamic stall configuration, and more specially those related to pitch oscillations. The most characteristic experimental results on flow separations with a vortex character, and their repercussions on local pressures and total forces were analyzed. Some aspects of the methods for predicting flows with the presence (or not) of boundary layer separation are examined, as well as the main simplified methods available to date for the calculation of total forces in such configurations.
NASA Technical Reports Server (NTRS)
Stauter, R. C.; Fleeter, S.
1982-01-01
Three dimensional aerodynamic data, required to validate and/or indicate necessary refinements to inviscid and viscous analyses of the flow through turbomachine blade rows, are discussed. Instrumentation and capabilities for pressure measurement, probe insertion and traversing, and flow visualization are reviewed. Advanced measurement techniques including Laser Doppler Anemometers, are considered. Data processing is reviewed. Predictions were correlated with the experimental data. A flow visualization technique using helium filled soap bubbles was demonstrated.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Aero-optics overview. [laser applications
NASA Technical Reports Server (NTRS)
Gilbert, K. G.
1980-01-01
Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.
Simulation of Inviscid Compressible Multi-Phase Flow with Condensation
NASA Technical Reports Server (NTRS)
Kelleners, Philip
2003-01-01
Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.
An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium
NASA Astrophysics Data System (ADS)
Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.
2015-11-01
A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2003-01-01
An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2001-01-01
An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.
Stabilization Approaches for Linear and Nonlinear Reduced Order Models
NASA Astrophysics Data System (ADS)
Rezaian, Elnaz; Wei, Mingjun
2017-11-01
It has been a major concern to establish reduced order models (ROMs) as reliable representatives of the dynamics inherent in high fidelity simulations, while fast computation is achieved. In practice it comes to stability and accuracy of ROMs. Given the inviscid nature of Euler equations it becomes more challenging to achieve stability, especially where moving discontinuities exist. Originally unstable linear and nonlinear ROMs are stabilized here by two approaches. First, a hybrid method is developed by integrating two different stabilization algorithms. At the same time, symmetry inner product is introduced in the generation of ROMs for its known robust behavior for compressible flows. Results have shown a notable improvement in computational efficiency and robustness compared to similar approaches. Second, a new stabilization algorithm is developed specifically for nonlinear ROMs. This method adopts Particle Swarm Optimization to enforce a bounded ROM response for minimum discrepancy between the high fidelity simulation and the ROM outputs. Promising results are obtained in its application on the nonlinear ROM of an inviscid fluid flow with discontinuities. Supported by ARL.
NASA Technical Reports Server (NTRS)
Grose, W. L.
1971-01-01
An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.
NASA Technical Reports Server (NTRS)
Daywitt, J.; Kutler, P.; Anderson, D.
1977-01-01
The technique of floating shock fitting is adapted to the computation of the inviscid flowfield about circular cones in a supersonic free stream at angles of attack that exceed the cone half-angle. The resulting equations are applicable over the complete range of free-stream Mach numbers, angles of attack and cone half-angles for which the bow shock is attached. A finite difference algorithm is used to obtain the solution by an unsteady relaxation approach. The bow shock, embedded cross-flow shock, and vortical singularity in the leeward symmetry plane are treated as floating discontinuities in a fixed computational mesh. Where possible, the flowfield is partitioned into windward, shoulder, and leeward regions with each region computed separately to achieve maximum computational efficiency. An alternative shock fitting technique which treats the bow shock as a computational boundary is developed and compared with the floating-fitting approach. Several surface boundary condition schemes are also analyzed.
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
NASA Astrophysics Data System (ADS)
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
NASA Technical Reports Server (NTRS)
Beatty, T. D.
1975-01-01
A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.
NASA Technical Reports Server (NTRS)
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
NASA Technical Reports Server (NTRS)
Barnwell, R. W.; Davis, R. M.
1975-01-01
A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.
Flow Coupling between a Rotor and a Stator in Turbomachinery
1990-04-01
potential-flow effects which would occur if the working fluid were perfectly inviscid. All observations made in practical situations represent a combination...interest. They are primarily working papers intended for internal use. They carry an identifying number which indicates their type and the numerical code of...release; distribution is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) s. MONITORING ORGANIZATION REPORT NUMBER(S) DTRC-PAS-90/15 Si. NAME OF
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1994-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1993-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.
Atmospheric flow over two-dimensional bluff surface obstructions
NASA Technical Reports Server (NTRS)
Bitte, J.; Frost, W.
1976-01-01
The phenomenon of atmospheric flow over a two-dimensional surface obstruction, such as a building (modeled as a rectangular block, a fence or a forward-facing step), is analyzed by three methods: (1) an inviscid free streamline approach, (2) a turbulent boundary layer approach using an eddy viscosity turbulence model and a horizontal pressure gradient determined by the inviscid model, and (3) an approach using the full Navier-Stokes equations with three turbulence models; i.e., an eddy viscosity model, a turbulence kinetic-energy model and a two-equation model with an additional transport equation for the turbulence length scale. A comparison of the performance of the different turbulence models is given, indicating that only the two-equation model adequately accounts for the convective character of turbulence. Turbulence flow property predictions obtained from the turbulence kinetic-energy model with prescribed length scale are only insignificantly better than those obtained from the eddy viscosity model. A parametric study includes the effects of the variation of the characteristics parameters of the assumed logarithmic approach velocity profile. For the case of the forward-facing step, it is shown that in the downstream flow region an increase of the surface roughness gives rise to higher turbulence levels in the shear layer originating from the step corner.
Linear flow dynamics near a T/NT interface
NASA Astrophysics Data System (ADS)
Teixeira, Miguel; Silva, Carlos
2011-11-01
The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.
The fluid dynamics of the chocolate fountain
NASA Astrophysics Data System (ADS)
Townsend, Adam K.; Wilson, Helen J.
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.
Stability of miscible core?annular flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.
The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
NASA Technical Reports Server (NTRS)
Civinskas, K.; Povinelli, L. A.
1984-01-01
Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination of an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.
NASA Technical Reports Server (NTRS)
Civinskas, K. C.; Povinelli, L. A.
1984-01-01
Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.
2D Slightly Compressible Ideal Flow in an Exterior Domain
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2006-12-01
We consider the Euler equations of barotropic inviscid compressible fluids in the exterior domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In dimension 2 such limit solution exists on any arbitrary time interval, with no restriction on the size of the initial data. It is then natural to expect the same for the compressible solution, if the Mach number is sufficiently small. First we study the life span of smooth irrotational solutions, i.e. the largest time interval T(ɛ) of existence of classical solutions, when the initial data are a small perturbation of size ɛ from a constant state. Then, we study the nonlinear interaction between the irrotational part and the incompressible part of a general solution. This analysis yields the existence of smooth compressible flow on any arbitrary time interval and with no restriction on the size of the initial velocity, for any Mach number sufficiently small. Finally, the approach is applied to the study of the incompressible limit. For the proofs we use a combination of energy estimates and a decay estimate for the irrotational part.
Analysis of airfoil transitional separation bubbles
NASA Technical Reports Server (NTRS)
Davis, R. L.; Carter, J. E.
1984-01-01
A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.
Ducted turbine theory with right angled ducts
NASA Astrophysics Data System (ADS)
McLaren-Gow, S.; Jamieson, P.; Graham, J. M. R.
2014-06-01
This paper describes the use of an inviscid approach to model a ducted turbine - also known as a diffuser augmented turbine - and a comparison of results with a particular one-dimensional theory. The aim of the investigation was to gain a better understanding of the relationship between a real duct and the ideal diffuser, which is a concept that is developed in the theory. A range of right angled ducts, which have a rim for a 90° exit angle, were modelled. As a result, the performance of right angled ducts has been characterised in inviscid flow. It was concluded that right angled ducts cannot match the performance of their associated ideal diffuser and that the optimum rotor loading for these turbines varies with the duct dimensions.
NASA Astrophysics Data System (ADS)
Teixeira, Miguel A. C.
2017-04-01
A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly because the Fourier transform of the orography has zeros, which unrealistically weaken the wave response. Concerning the inability of even the full model to discriminate between rotors and hydraulic jumps, this may be attributed to the fact that the flow perturbations associated with stagnation in the model differ from those seen in the numerical simulations, especially for the most hydrostatic rotors, where the waves are generated indirectly. This suggests that flow stagnation may not be occurring for the right reasons in those cases.
Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles
2013-01-01
coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure
Computation of Viscous-Inviscid Interactions
1981-02-01
porte stir 11Epaisseur de d~placement Pizr) at non sur la direction angu- laire de Il’couiement f9"(X,) . Doe le cas incompressible, par example, !a...into the boundary layer. The diffraction of the shock wave by the nonuniform flow in the boundary layer leads to significant normal pressrre gradients...deivative. This equ . wemr’s the propagation of small disturbances in the nonuniform flow in the boundary layer. Within this model, disturbances
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle booster configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 at angles of attack of 40 and 50 deg and at a free stream unit Reynolds number of 3.7 million per foot.
Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.
1975-01-01
Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which
Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinnella, P.
1990-01-01
The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.
Calculations of transonic boattail flow at small angle of attack
NASA Technical Reports Server (NTRS)
Nakayama, A.; Chow, W. L.
1979-01-01
A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.
Coherent motion in excited free shear flows
NASA Technical Reports Server (NTRS)
Wygnanski, Israel J.; Petersen, Robert A.
1987-01-01
The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.
Spatial derivatives of flow quantities behind curved shocks of all strengths
NASA Technical Reports Server (NTRS)
Darden, C. M.
1984-01-01
Explicit formulas in terms of shock curvature are developed for spatial derivatives of flow quantities behind a curved shock for two-dimensional inviscid steady flow. Factors which yield the equations indeterminate as the shock strength approaches 0 have been cancelled analytically so that formulas are valid for shocks of any strength. An application for the method is shown in the solution of shock coalescence when nonaxisymmetric effects are felt through derivatives in the circumferential direction. The solution of this problem requires flow derivatives behind the shock in both the axial and radial direction.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Large perturbation flow field analysis and simulation for supersonic inlets
NASA Technical Reports Server (NTRS)
Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.
1984-01-01
An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.
Investigation of parabolic computational techniques for internal high-speed viscous flows
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
Flowfield predictions for multiple body launch vehicles
NASA Technical Reports Server (NTRS)
Deese, Jerry E.; Pavish, D. L.; Johnson, Jerry G.; Agarwal, Ramesh K.; Soni, Bharat K.
1992-01-01
A method is developed for simulating inviscid and viscous flow around multicomponent launch vehicles. Grids are generated by the GENIE general-purpose grid-generation code, and the flow solver is a finite-volume Runge-Kutta time-stepping method. Turbulence effects are simulated using Baldwin and Lomax (1978) turbulence model. Calculations are presented for three multibody launch vehicle configurations: one with two small-diameter solid motors, one with nine small-diameter solid motors, and one with three large-diameter solid motors.
Crossflow in two-dimensional asymmetric nozzles
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Lee, L. P.
1975-01-01
An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.
NASA Technical Reports Server (NTRS)
Warmbrod, J. D.; Martindale, M. R.; Matthews, R. K.
1972-01-01
The results of a wind tunnel test program to determine the surface pressures and flow distribution on the McDonnell Douglas Orbiter configuration are presented. Tests were conducted in hypersonic wind tunnel at Mach 8. The freestream unit Reynolds number was 3.7 time one million per foot. Angle of attack was varied from 10 degrees to 60 degrees in 10 degree increments.
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1982-01-01
A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.
Classic Bernoulli's Principle Derivation and Its Working Hypotheses
ERIC Educational Resources Information Center
Marciotto, Edson R.
2016-01-01
The Bernoulli's principle states that the quantity p+ pgz + pv[superscript 2]/2 must be conserved in a streamtube if some conditions are matched, namely: steady and irrotational flow of an inviscid and incompressible fluid. In most physics textbooks this result is demonstrated invoking the energy conservation of a fluid material volume at two…
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
NASA Astrophysics Data System (ADS)
Straccia, Joseph; Farnsworth, John
2016-11-01
The Biot-Savart law is a simple yet powerful inviscid and incompressible relationship between the velocity induced at a point and the circulation, orientation and distance of separation of a vortex line. The authors have developed an algorithm for obtaining numerical solutions of the Biot-Savart relationship to predict the self-induced velocity on a vortex line of arbitrary shape. In this work the Biot-Savart solver was used to predict the self-induced propagation of non-circular, finite-span vortex rings expelled from synthetic jets with rectangular orifices of varying aspect ratios. The solver's prediction of the time varying shape of the vortex ring and frequency of axis switching was then compared with Particle Image Velocimetry (PIV) data from a synthetic jet expelled into a quiescent flow i.e. zero cross flow condition. Conclusions about the effectiveness and limitations of this simple, inviscid relationship are drawn from this experimental data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144083.
Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser
NASA Technical Reports Server (NTRS)
Moore, F. K.
1990-01-01
A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.
NASA Technical Reports Server (NTRS)
Bartlett, E. P.; Morse, H. L.; Tong, H.
1971-01-01
Procedures and methods for predicting aerothermodynamic heating to delta orbiter shuttle vehicles were reviewed. A number of approximate methods were found to be adequate for large scale parameter studies, but are considered inadequate for final design calculations. It is recommended that final design calculations be based on a computer code which accounts for nonequilibrium chemistry, streamline spreading, entropy swallowing, and turbulence. It is further recommended that this code be developed with the intent that it can be directly coupled with an exact inviscid flow field calculation when the latter becomes available. A nonsimilar, equilibrium chemistry computer code (BLIMP) was used to evaluate the effects of entropy swallowing, turbulence, and various three dimensional approximations. These solutions were compared with available wind tunnel data. It was found study that, for wind tunnel conditions, the effect of entropy swallowing and three dimensionality are small for laminar boundary layers but entropy swallowing causes a significant increase in turbulent heat transfer. However, it is noted that even small effects (say, 10-20%) may be important for the shuttle reusability concept.
Investigation of advancing front method for generating unstructured grid
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1992-01-01
The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.
Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN
NASA Technical Reports Server (NTRS)
Quinlan, Jesse; McDaniel, James; Baurle, Robert A.
2013-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.
Mechanical algal disruption for efficient biodiesel extraction
NASA Astrophysics Data System (ADS)
Krehbiel, Joel David
Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of mass at the bubble center, and if the bubble-to-cell spacing is much larger than the cell radius, the flow around the cell is approximately extensional in the cell's frame of reference. It is known that the present algae are quasi-spherical with cytoplasmic viscosity approximately 100 times that of water, so the cell is approximated as a viscous sphere. Thus, conditions that cause cell disruption from an expanding microbubble are modeled as either steady inviscid extensional flow or steady point source flow over a viscous sphere. In the inviscid extensional flow model, the flow inside the sphere is dominated by viscous forces so the Stokes equation is solved with matched stresses at the sphere surface from the exterior inviscid extensional flow. The short-time deformation of the sphere surface suggests that inviscid extensional flow is insufficient to disrupt cells. This indicates that asymmetry of the flow over the sphere may be required to provide sufficient surface areal strain to rupture the cell. In a more detailed model, the bubble expansion is modeled as an expansion near a viscous sphere using finite element software. For conditions similar to those seen in the experiment, deformation shows similar scaling to disruption. The deformation in this model is significantly higher than predicted from the inviscid extensional flow model due to the effect of asymmetric flow on the cell membrane. Estimates suggest 21% average areal strain on the algal membrane is required to disrupt algal cells, and this result agrees well with areal strains typically required to disrupt cell membranes although the actual value would be lessened by the effect of an elastic membrane, which is neglected in the present model. The local areal strain on the sphere surface is a maximum closest to the point source, and there is compressive strain near theta = +/-pi/4 with theta the angle from the line between the cell center and the point source. The maximum local areal strain shows less sensitivity to the viscosity of the interior fluid than the average areal strain. Overall, the dissertation lays the groundwork for more efficient algal disruption through the judicious use of microbubbles. Separation of bubble generation and bubble growth provides the ability to improve the efficiency of each process and localize energy. Results suggest that effective disruption can occur by pulsing high-pressure ultrasound waves to a solution of cells co-suspended with microbubbles. The models are thought to represent basic phenomenological mechanisms of disruption that could be exploited to improve the overall energy efficiency of schemes. Analysis suggests that extensional flow alone cannot be the cause of cell disruption near an expanding microbubble. Additionally, this work provides an estimate of the areal strain required disrupt an algal cell membrane. This research suggests a couple routes toward reducing the energy required for production of algal biodiesel.
Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design
NASA Technical Reports Server (NTRS)
Lee, Esther; Wurster, Kathryn E.
2017-01-01
A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating environments, coupled with the use of unstructured methods, is considered enabling for TPS material selection and design in conceptual studies where vehicle mission, shape, and entry strategies evolve rapidly.
NASA Technical Reports Server (NTRS)
Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence
1992-01-01
Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.
Fluid-structure interaction of two bodies in an inviscid fluid
NASA Astrophysics Data System (ADS)
Tchieu, A. A.; Crowdy, D.; Leonard, A.
2010-10-01
The interaction of two arbitrary bodies immersed in a two-dimensional inviscid fluid is investigated. Given the linear and angular velocities of the bodies, the solution of the potential flow problem with zero circulation around both bodies is reduced to the determination of a suitable Laurent series in a conformally mapped domain that satisfies the boundary conditions. The potential flow solution is then used to determine the force and moment acting on each body by using generalized Blasius formulas. The current formulation is applied to two examples. First, the case of two rigid circular cylinders interacting in an unbounded domain is investigated. The forces on two cylinders with prescribed motion (forced-forced) is determined and compared to previous results for validation purposes. We then study the response of a single "free" cylinder due to the prescribed motion of the other cylinder (forced-free). This forced-free situation is used to justify the hydrodynamic benefits of drafting in aquatic locomotion. In the case of two neutrally buoyant circular cylinders, the aft cylinder is capable of attaining a substantial propulsive force that is the same order of magnitude of its inertial forces. Additionally, the coupled interaction of two cylinders given an arbitrary initial condition (free-free) is studied to show the differences of perfect collisions with and without the presence of an inviscid fluid. For a certain range of collision parameters, the fluid acts to deflect the cylinder paths just enough before the collision to drastically affect the long time trajectories of the bodies. In the second example, the flapping of two plates is explored. It is seen that the interactions between each plate can cause a net force and torque at certain instants in time, but for idealized sinusoidal motions in irrotational potential flow, there is no net force and torque acting at the system center.
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.; Gollan, Rowan J.
2010-01-01
Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
1987-06-01
not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free...crossed. Failing the proper denvatcin of a new pressure equation appiicabie to unsteady rotational flows, care must be exercised :, o -e-gard the present...time tk . U(T) - Chordwise translation velocity ( postive forward) at time tk. V(T) - Transverse translational velocity (positive downward) at trie tk
1993-10-14
expansion in Figure 8, a finite rate chemistry, inviscid flow solution was calculated using a One Dimensional Kinetics ( ODK ) computer program2 0...T Temperature range (K) 300 < T < 2000 Units cm3 mo-L’ sec-, [able 2: Reaction rate used in ODK compuiations. Working Gas 12 Stagnation pressure (atm...and proceeding to shorter wavelengths. The laser beam was focused on the probed volume with a 30 cm focal length lens. The LIF signal was collected in
On heat transfer in squish gaps
NASA Astrophysics Data System (ADS)
Spurk, J. H.
1986-06-01
Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.
Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.
A supersonic three-dimensional code for flow over blunt bodies: Program documentation and test cases
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Mcmillan, O. J.
1980-01-01
The use of a computer code for the calculation of steady, supersonic, three dimensional, inviscid flow over blunt bodies is illustrated. Input and output are given and explained for two cases: a pointed code of 20 deg half angle at 15 deg angle of attack in a free stream with M sub infinite = 7, and a cone-ogive-cylinder at 10 deg angle of attack with M sub infinite = 2.86. A source listing of the computer code is provided.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle orbiter configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 and a free stream unit Reynolds number of 3.7 million per foot. Angle of attack was varied from 10 to 50 deg in 10-deg increments.
Finite element methodology for integrated flow-thermal-structural analysis
NASA Technical Reports Server (NTRS)
Thornton, Earl A.; Ramakrishnan, R.; Vemaganti, G. R.
1988-01-01
Papers entitled, An Adaptive Finite Element Procedure for Compressible Flows and Strong Viscous-Inviscid Interactions, and An Adaptive Remeshing Method for Finite Element Thermal Analysis, were presented at the June 27 to 29, 1988, meeting of the AIAA Thermophysics, Plasma Dynamics and Lasers Conference, San Antonio, Texas. The papers describe research work supported under NASA/Langley Research Grant NsG-1321, and are submitted in fulfillment of the progress report requirement on the grant for the period ending February 29, 1988.
Real gas flow fields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Lombard, C. K.; Davy, W. C.
1983-01-01
Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
Prediction of unsteady separated flows on oscillating airfoils
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1978-01-01
Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.
DSMC simulation of the interaction between rarefied free jets
NASA Technical Reports Server (NTRS)
Dagum, Leonardo; Zhu, S. H. K.
1993-01-01
This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.
Viscous/Inviscid Interaction Analysis of the Aerodynamic Performance of the NACA 65-213 Airfoil.
1987-03-01
flows . The principal forces that act on the body are those which act directly on the mass of the fluid element, the bodi’ forces , and those which act...shall again consider a 2-D flow , as indicated in Figure.2-. The resultant force in the x- direction, for one unit length in z is F= ph.r~u + a(.10...x,+.a. Where fx is the body force per-unit mass in the x direction. The most conmmon body force for the flow fields is that of gravity. Equation 2.10
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
NASA Technical Reports Server (NTRS)
Magnus, A. E.; Epton, M. A.
1981-01-01
Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.
Computation of steady nozzle flow by a time-dependent method
NASA Technical Reports Server (NTRS)
Cline, M. C.
1974-01-01
The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.
1981-01-01
Scotia and the Northern Atlantic is evidence of winter monsoonal flow with polar air imoving equatorward and zonally from continental regions to the...inviscid motion must be tangent to both the entropy and energy surfaces and 2) the condition emphasized earlier in the discussion that, in the time
Inviscid spatial stability of a compressible mixing layer. II - The flame sheet model
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1990-01-01
The results of an inviscid spatial calculation for a compressible reacting mixing layer are reported. The limit of infinitive activation energy is taken and the diffusion flame is approximated by a flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of the unstable waves as a function of the parameters of the problem: the ratio of the temperature of the stationary stream to that of the moving stream, the Mach number of the moving streams, the heat release per unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing layer. We show that the addition of combustion has important and complex effects on the flow stability.
Inviscid Flow Computations of Several Aeroshell Configurations for a '07 Mars Lander
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
2001-01-01
This report documents the results of an inviscid computational study conducted on several candidate aeroshell configurations for a proposed '07 Mars lander. Eleven different configurations were considered, and the aerodynamic characteristics of each of these were computed for a Mach number of 23.7 at 10, 15, and 20 degree angles of attack. The unstructured grid software FELISA with the equilibrium Mars gas option was used for these computations. The pitching moment characteristics and the lift-to-drag ratios at trim angle of attack of each of these configurations were examined to make a selection. The criterion for selection was that the configuration should be longitudinally stable, and should trim at an angle of attack where the L/D is -0.25. Based on the present study, two configurations were selected for further study
On applications of chimera grid schemes to store separation
NASA Technical Reports Server (NTRS)
Cougherty, F. C.; Benek, J. A.; Steger, J. L.
1985-01-01
A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.
Injection and swirl driven flowfields in solid and liquid rocket motors
NASA Astrophysics Data System (ADS)
Vyas, Anand B.
In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
Linear stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1992-01-01
A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
Mach 6 flow field surveys beneath the forebody of an airbreathing missile
NASA Technical Reports Server (NTRS)
Johnson, P. J.; Hunt, J. L.
1986-01-01
Wall static, local stream static, and pitot pressure surveys were made on the windward side of a hypersonic airbreathing missile at full-scale length Reynolds numbers. In the inviscid part of the flow field, the experimental massflow ratios agreed with trends predicted by a three-dimensional method-of-characteristics solution. At a longitudinal station 3.5 diameters downstrea of the nose, the boundary layer was transitional or turbulent at zero incidence but became laminar as the angle of attack increased. The bell-shaped distribution of the boundary layer across the width of the body affected the mass flow distribution out to the bow shock and decreased the mass flow available the engine inlet.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, K. D.
1985-01-01
A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Steady axisymmetric vortex flows with swirl and shear
NASA Astrophysics Data System (ADS)
Elcrat, Alan R.; Fornberg, Bengt; Miller, Kenneth G.
A general procedure is presented for computing axisymmetric swirling vortices which are steady with respect to an inviscid flow that is either uniform at infinity or includes shear. We consider cases both with and without a spherical obstacle. Choices of numerical parameters are given which yield vortex rings with swirl, attached vortices with swirl analogous to spherical vortices found by Moffatt, tubes of vorticity extending to infinity and Beltrami flows. When there is a spherical obstacle we have found multiple solutions for each set of parameters. Flows are found by numerically solving the Bragg-Hawthorne equation using a non-Newton-based iterative procedure which is robust in its dependence on an initial guess.
Inverse boundary-layer theory and comparison with experiment
NASA Technical Reports Server (NTRS)
Carter, J. E.
1978-01-01
Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.
1974-01-01
An inviscid technique for designing forebodies which produce uniformly precompressed flows at the inlet entrance for bottom-mounted scramjets has been developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a hypersonic research airplane conceptual design study have been analyzed in detail with three-dimensional characteristics calculations to verify the uniform flow conditions. For the designs analyzed, uniform flow is maintained over a wide range of flight conditions (Mach number equals 4 to 10; angle of attack equals 6 deg to 10 deg) corresponding to scramjet operation flight envelope of the research airplane.
NASA Technical Reports Server (NTRS)
Chima, R. V.; Strazisar, A. J.
1982-01-01
Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1985-01-01
A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.
NASA Technical Reports Server (NTRS)
Murman, E. M. (Editor); Abarbanel, S. S. (Editor)
1985-01-01
Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.
NASA Technical Reports Server (NTRS)
Berger, Marsha J.; Saltzman, Jeff S.
1992-01-01
We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Upstream and Downstream Influence in STBLI Instability
NASA Astrophysics Data System (ADS)
Martin, Pino; Priebe, Stephan; Helm, Clara
2016-11-01
Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Sullivan, E. M.; Margolis, S. B.
1974-01-01
Curve-fit formulas are presented for the stagnation-point radiative heating rate, cooling factor, and shock standoff distance for inviscid flow over blunt bodies at conditions corresponding to high-speed earth entry. The data which were curve fitted were calculated by using a technique which utilizes a one-strip integral method and a detailed nongray radiation model to generate a radiatively coupled flow-field solution for air in chemical and local thermodynamic equilibrium. The range of free-stream parameters considered were altitudes from about 55 to 70 km and velocities from about 11 to 16 km.sec. Spherical bodies with nose radii from 30 to 450 cm and elliptical bodies with major-to-minor axis ratios of 2, 4, and 6 were treated. Powerlaw formulas are proposed and a least-squares logarithmic fit is used to evaluate the constants. It is shown that the data can be described in this manner with an average deviation of about 3 percent (or less) and a maximum deviation of about 10 percent (or less). The curve-fit formulas provide an effective and economic means for making preliminary design studies for situations involving high-speed earth entry.
Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo'o, Nora; Bellan, Josette
2008-01-01
A computational-simulation study has been presented of effects of perturbation wavelengths and initial Reynolds numbers on the transition to turbulence of a heptane/nitrogen mixing layer at supercritical pressure. The governing equations for the simulations were the same as those of related prior studies reported in NASA Tech Briefs. Two-dimensional (2D) simulations were performed with initially im posed span wise perturbations whereas three-dimensional (3D) simulations had both streamwise and spanwise initial perturbations. The 2D simulations were undertaken to ascertain whether perturbations having the shortest unstable wavelength obtained from a linear stability analysis for inviscid flow are unstable in viscous nonlinear flows. The goal of the 3D simulations was to ascertain whether perturbing the mixing layer at different wavelengths affects the transition to turbulence. It was found that transitions to turbulence can be obtained at different perturbation wavelengths, provided that they are longer than the shortest unstable wavelength as determined by 2D linear stability analysis for the inviscid case and that the initial Reynolds number is proportionally increased as the wavelength is decreased. The transitional states thus obtained display different dynamic and mixture characteristics, departing strongly from the behaviors of perfect gases and ideal mixtures.
The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1992-01-01
A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
NASA Technical Reports Server (NTRS)
Reynolds, W. C. (Editor); Maccormack, R. W.
1981-01-01
Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.
Nozzle Free Jet Flows Within the Strong Curved Shock Regime
NASA Technical Reports Server (NTRS)
Shih, Tso-Shin
1975-01-01
A study based on inviscid analysis was conducted to examine the flow field produced from a convergent-divergent nozzle when a strong curved shock occurs. It was found that a certain constraint is imposed on the flow solution of the problem which is the unique feature of the flow within this flow regime, and provides the reason why the inverse method of calculation cannot be employed for these problems. An approximate method was developed to calculate the flow field, and results were obtained for two-dimensional flows. Analysis and calculations were performed for flows with axial symmetry. It is shown that under certain conditions, the vorticity generated at the jet boundary may become infinite and the viscous effect becomes important. Under other conditions, the asymptotic free jet height as well as the corresponding shock geometry were determined.
Inviscid spatial stability of a compressible mixing layer. Part 2: The flame sheet model
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1989-01-01
The results of an inviscid spatial calculation for a compressible reacting mixing layer are reported. The limit of infinitive activation energy is taken and the diffusion flame is approximated by a flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of the unstable waves as a function of the parameters of the problem: the ratio of the temperature of the stationary stream to that of the moving stream, the Mach number of the moving streams, the heat release per unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing layer. We show that the addition of combustion has important, and complex effects on the flow stability.
Choice of implicit and explicit operators for the upwind differencing method
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Vanleer, Bram
1988-01-01
The flux-vector and flux-difference splittings of Steger-Warming, van Leer and Roe are tested in all possible combinations on the implicit and explicit operators that can be distinguished in implicit relaxation methods for the steady Euler and Navier-Stokes equations. The tests include one-dimensional inviscid nozzle flow, and two-dimensional inviscid and viscous shock reflection. Roe's splitting, as anticipated, is found to uniformly yield the most accurate results. On the other hand, an approximate Roe splitting of the implicit operator (the complete Roe splitting is too complicated for practical use) proves to be the least robust with regard to convergence to the steady state. In this respect, the Steger-Warming splitting is the most robust; it leads to convergence when combined with any of the splittings in the explicit operator, although not necessarily in the most efficient way.
NASA Technical Reports Server (NTRS)
Mcfarland, E.; Tabakoff, W.; Hamed, A.
1977-01-01
An investigation of the effects of coolant injection on the aerodynamic performance of cooled turbine blades is presented. The coolant injection is modeled in the inviscid irrotational adiabatic flow analysis through the cascade using the distributed singularities approach. The resulting integral equations are solved using a minimized surface singularity density criteria. The aerodynamic performance was evaluated using this solution in conjunction with an existing mixing theory analysis. The results of the present analysis are compared with experimental measurements in cold flow tests.
2006-06-01
Figure 13 Survey Rake containing Instrumentation to Measure Pitot and Static Pressure, Heating Distributions on Cylinders and Spheres, and Cone...35a and is in close agreement with the inviscid flow prediction in Figure 35b. Measurements made with a pitot pressure rake positioned at the end of...Velocity 15,00o 7 ’ DISOl• AglOrf (feet per sec) 10 N•’’ 10,000 47_T"___ ____ VIBATIONA Hypersonic 5,000 EXCITATION REGION Supersonic IDEAL GAS -Transonic 0
A projection method for low speed flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colella, P.; Pao, K.
The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Hydraulic forces on a centrifugal impeller undergoing synchronous whirl
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Sato, C. J.; Branagan, L. A.
1984-01-01
High speed centrifugal rotating machinery with large vibrations caused by aerodynamic forces on impellers was examined. A method to calculate forces in a two dimensional orbiting impeller in an unbounded fluid with nonuniform entering flow was developed. A finite element model of the full impeller is employed to solve the inviscid flow equations. Five forces acting on the impeller are: Coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotation and pressure changes due to linear momentum. Both principal and cross coupled stiffness coefficients are calculated for the impeller.
Drag Minimization for Wings and Bodies in Supersonic Flow
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Fuller, Franklyn B
1958-01-01
The minimization of inviscid fluid drag is studied for aerodynamic shapes satisfying the conditions of linearized theory, and subject to imposed constraints on lift, pitching moment, base area, or volume. The problem is transformed to one of determining two-dimensional potential flows satisfying either Laplace's or Poisson's equations with boundary values fixed by the imposed conditions. A general method for determining integral relations between perturbation velocity components is developed. This analysis is not restricted in application to optimum cases; it may be used for any supersonic wing problem.
Pseudo-compressibility methods for the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, Eli; Arnone, A.
1993-01-01
Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.
Effect of particle velocity fluctuations on the inertia coupling in two-phase flow
NASA Technical Reports Server (NTRS)
Drew, Donald A.
1989-01-01
Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Real-gas effects associated with one-dimensional transonic flow of cryogenic nitrogen
NASA Technical Reports Server (NTRS)
Adcock, J. B.
1976-01-01
Real gas solutions for one-dimensional isentropic and normal-shock flows of nitrogen were obtained for a wide range of temperatures and pressures. These calculations are compared to ideal gas solutions and are presented in tables. For temperatures (300 K and below) and pressures (1 to 10 atm) that cover those anticipated for transonic cryogenic tunnels, the solutions are analyzed to obtain indications of the magnitude of inviscid flow simulation errors. For these ranges, the maximum deviation of the various isentropic and normal shock parameters from the ideal values is about 1 percent or less, and for most wind tunnel investigations this deviation would be insignificant.
Navier-Stokes simulations of unsteady transonic flow phenomena
NASA Technical Reports Server (NTRS)
Atwood, C. A.
1992-01-01
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.
Direct numerical simulation of turbulence in injection-driven plane channel flows
NASA Astrophysics Data System (ADS)
Venugopal, Prem; Moser, Robert D.; Najjar, Fady M.
2008-10-01
Compressible turbulent flow in a periodic plane channel with mass injecting walls is studied as a simplified model for core flow in a solid-propellant rocket motor with homogeneous propellant and other injection-driven internal flows. In this model problem, the streamwise direction was asymptotically homogenized by assuming that at large distances from the closed end, both the mean and rms of turbulent fluctuations evolve slowly in the streamwise direction when compared to the turbulent fluctuations themselves. The Navier-Stokes equations were then modified to account for this slow growth. A direct numerical simulation of the homogenized compressible injection-driven turbulent flow was then conducted for conditions occurring at a streamwise location situated 40 channel half-widths from the closed off end and at an injection Reynolds number of approximately 190. The turbulence in this model flow was found to be only weakly compressible, although significant compressibility existed in the mean flow. As in nontranspired channels, turbulence resulted in increased near-wall shear for the mean streamwise velocity. When normalized by the average rate of turbulence production, the magnitudes of near-wall velocity fluctuations were similar to those in the log region of nontranspired wall-bounded turbulence. However, the sharp peak in streamwise velocity fluctuations observed in nontranspired channels was absent. While streaks and inclined vortices were observed in the near-wall region, their structure was very similar to those observed in the log region of nontranspired channels. These differences are attributed to the absence of a viscous sublayer in the transpired case which in turn is the result of the fact that the no-slip condition for the transpired case is an inviscid boundary condition. That is, unlike nontranspired walls, with transpiration, zero tangential velocity boundary conditions can be imposed at the wall for the Euler (inviscid) equations. The results of this study have important implications on the ability of turbulence models to predict this flow.
Stability investigations of relaxing molecular gas flows. Results and perspectives
NASA Astrophysics Data System (ADS)
Grigor'ev, Yurii N.; Ershov, Igor V.
2017-10-01
This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.
Flow in a centrifugal fan impeller at off-design conditions
NASA Astrophysics Data System (ADS)
Wright, T.; Tzou, K. T. S.; Madhavan, S.
1984-06-01
A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.
Increasing Accuracy in Computed Inviscid Boundary Conditions
NASA Technical Reports Server (NTRS)
Dyson, Roger
2004-01-01
A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number of time derivatives of surface-normal velocity (consistent with no flow through the boundary) up to arbitrarily high order. The corrections for the first-order spatial derivatives of pressure are calculated by use of the first-order time derivative velocity. The corrected first-order spatial derivatives are used to calculate the second- order time derivatives of velocity, which, in turn, are used to calculate the corrections for the second-order pressure derivatives. The process as described is repeated, progressing through increasing orders of derivatives, until the desired accuracy is attained.
The role of finite-difference methods in design and analysis for supersonic cruise
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
Flux Jacobian Matrices For Equilibrium Real Gases
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Flow past a Flat Plate with a Vortex/sink Combination
NASA Technical Reports Server (NTRS)
Mourtos, N. J.
1984-01-01
An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only: and (2) the Helmholtz solution of totally separated flow over the plate.
Flow past a flat plat with a vortex/sink combination
NASA Technical Reports Server (NTRS)
Mourtos, N. J.
1985-01-01
An attempt was made to model the so called leading edge vortex which forms over the leading edge of delta wings at high angles of attack. A simplified model was considered, namely that of a two-dimensional, inviscid, incompressible steady flow around a flat plate at an angle of attack with a stationary vortex detached on top, as well as a sink to simulate the strong spanwise flow. The results appear to agree qualitatively with experiments. A comparison was also made between the lift and the drag of this model and the corresponding results for two classical solutions: (1) that of totally attached flow over the plate with the Kutta condition satisfied at the trailing edge only; and (2) the Helmholtz solution of totally separated flow over the plate.
Steady flow in a rotating sphere with strong precession
NASA Astrophysics Data System (ADS)
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Measurement of flows around modern commercial ship models
NASA Astrophysics Data System (ADS)
Kim, W. J.; Van, S. H.; Kim, D. H.
To document the details of flow characteristics around modern commercial ships, global force, wave pattern, and local mean velocity components were measured in the towing tank. Three modern commercial hull models of a container ship (KRISO container ship = KCS) and of two very large crude-oil carriers (VLCCs) with the same forebody and slightly different afterbody (KVLCC and KVLCC2) having bow and stern bulbs were selected for the test. Uncertainty analysis was performed for the measured data using the procedure recommended by the ITTC. Obtained experimental data will provide a good opportunity to explore integrated flow phenomena around practical hull forms of today. Those can be also used as the validation data for the computational fluid dynamics (CFD) code of both inviscid and viscous flow calculations.
A large deviations principle for stochastic flows of viscous fluids
NASA Astrophysics Data System (ADS)
Cipriano, Fernanda; Costa, Tiago
2018-04-01
We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2 (0 , T ;H1 (T2)) . The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
NASA Technical Reports Server (NTRS)
Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.
1972-01-01
The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
NASA Technical Reports Server (NTRS)
Marshall, F. J.; Deffenbaugh, F. D.
1974-01-01
A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.
NASA Technical Reports Server (NTRS)
Marshall, F. J.; Deffenbaugh, F. D.
1974-01-01
A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.
Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Ash, Robert L.
1992-01-01
The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of code, and assessment of performance, as well as demonstration of flexibility.
Finite element analysis of low speed viscous and inviscid aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1977-01-01
A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.
Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech
NASA Astrophysics Data System (ADS)
Erath, Byron D.; Zañartu, Matías; Peterson, Sean D.; Plesniak, Michael W.
2011-09-01
Nonlinear vocal fold dynamics arising from asymmetric flow formations within the glottis are investigated using a two-mass model of speech with asymmetric vocal fold tensioning, representative of unilateral vocal fold paralysis. A refined theoretical boundary-layer flow solver is implemented to compute the intraglottal pressures, providing a more realistic description of the flow than the standard one-dimensional, inviscid Bernoulli flow solution. Vocal fold dynamics are investigated for subglottal pressures of 0.6 < ps < 1.5 kPa and tension asymmetries of 0.5 < Q < 0.8. As tension asymmetries become pronounced the asymmetric flow incites nonlinear behavior in the vocal fold dynamics at subglottal pressures that are associated with normal speech, behavior that is not captured with standard Bernoulli flow solvers. Regions of bifurcation, coexistence of solutions, and chaos are identified.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1993-01-01
The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
1999-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
Wake flowfields for Jovian probe
NASA Technical Reports Server (NTRS)
Engel, C. D.; Hair, L. M.
1980-01-01
The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures.
A model for closing the inviscid form of the average-passage equation system
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Mulac, R. A.; Celestina, M. L.
1985-01-01
A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
An experimental investigation of the subcritical and supercritical flow about a swept semispan wing
NASA Technical Reports Server (NTRS)
Lockman, W. K.; Seegmiller, H. L.
1983-01-01
An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.
Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1992-01-01
The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, G.P.; Carter, A.F.; Lintz, H.K.
1961-01-01
The theory is developed from the individual equations fo motion of the three componenets of the plasma. The effect of the ion cyclotron angle omega tau, which is the product of the ion cyclotron frequency and the ion mean free time between collisions with neutral particles and which is proportional to the axial component of the ion slip velocity, on both Joule heating rate and accelerator length is included in the results and is shown to be small only for values of about 10/sup -3/ radian or less. (auth)
Preconditioning and the limit to the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, E.; Fiterman, A.; Vanleer, B.
1993-01-01
The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.
NASA Technical Reports Server (NTRS)
Wood, George P.; Carter, Arlen F.; Lintz, Hubert K.; Pennington, J. Byron
1961-01-01
The theory is developed from the individual equations of motion of the three components of the plasma. The effect of the ion cyclotron angle (omega tau), which is the product of the ion cyclotron frequency and the ion mean free time between collisions with neutral particles and which is proportional to the axial component of the ion slip velocity, on both Joule heating rate and accelerator length is included in the results and is shown to be small only for values of about 10(exp -3) radian or less.
Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
1997-01-01
The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.
Aeroelastic optimization methodology for viscous and turbulent flows
NASA Astrophysics Data System (ADS)
Barcelos Junior, Manuel Nascimento Dias
2007-12-01
In recent years, the development of faster computers and parallel processing allowed the application of high-fidelity analysis methods to the aeroelastic design of aircraft. However, these methods are restricted to the final design verification, mainly due to the computational cost involved in iterative design processes. Therefore, this work is concerned with the creation of a robust and efficient aeroelastic optimization methodology for inviscid, viscous and turbulent flows by using high-fidelity analysis and sensitivity analysis techniques. Most of the research in aeroelastic optimization, for practical reasons, treat the aeroelastic system as a quasi-static inviscid problem. In this work, as a first step toward the creation of a more complete aeroelastic optimization methodology for realistic problems, an analytical sensitivity computation technique was developed and tested for quasi-static aeroelastic viscous and turbulent flow configurations. Viscous and turbulent effects are included by using an averaged discretization of the Navier-Stokes equations, coupled with an eddy viscosity turbulence model. For quasi-static aeroelastic problems, the traditional staggered solution strategy has unsatisfactory performance when applied to cases where there is a strong fluid-structure coupling. Consequently, this work also proposes a solution methodology for aeroelastic and sensitivity analyses of quasi-static problems, which is based on the fixed point of an iterative nonlinear block Gauss-Seidel scheme. The methodology can also be interpreted as the solution of the Schur complement of the aeroelastic and sensitivity analyses linearized systems of equations. The methodologies developed in this work are tested and verified by using realistic aeroelastic systems.
Hydrodynamic Forces on Spillway Torque-Tube Gates
2010-10-01
damping coefficient associated with that of an equivalent viscous damper representing the energy dissipation mechanism from the structure itself plus the...in the figure the viscous damper with coef- ficient CD that exerts the drag force on the gate. The degree of freedom is defined as the rotation of...the following simplifying as- sumptions are postulated. Water is assumed an incompressible, inviscid, and homogeneous fluid , and its flow is taken as
Pinching Solutions of Slender Cylindrical Jets
1993-06-01
NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
The fundamental aerodynamics of slender bodies is examined in the reprint edition of an introductory textbook originally published in 1960. Chapters are devoted to the formulas commonly used in missile aerodynamics; slender-body theory at supersonic and subsonic speeds; vortices in viscid and inviscid flow; wing-body interference; downwash, sidewash, and the wake; wing-tail interference; aerodynamic controls; pressure foredrag, base drag, and skin friction; and stability derivatives. Diagrams, graphs, tables of terms and formulas are provided.
Acoustics and dynamics of coaxial interacting vortex rings
NASA Technical Reports Server (NTRS)
Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.
1988-01-01
Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Jae; Hyung, Siek; Chattopadhyay, Indranil
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as inmore » the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.« less
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
NASA Astrophysics Data System (ADS)
Mottyll, S.; Skoda, R.
2015-12-01
A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.
On the fundamental unsteady fluid dynamics of shock-induced flows through ducts
NASA Astrophysics Data System (ADS)
Mendoza, Nicole Renee
Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1 D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and VISCOUS. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave pattems and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 20, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.
RAXBOD- INVISCID TRANSONIC FLOW OVER AXISYMMETRIC BODIES
NASA Technical Reports Server (NTRS)
Keller, J. D.
1994-01-01
The problem of axisymmetric transonic flow is of interest not only because of the practical application to missile and launch vehicle aerodynamics, but also because of its relation to fully three-dimensional flow in terms of the area rule. The RAXBOD computer program was developed for the analysis of steady, inviscid, irrotational, transonic flow over axisymmetric bodies in free air. RAXBOD uses a finite-difference relaxation method to numerically solve the exact formulation of the disturbance velocity potential with exact surface boundary conditions. Agreement with available experimental results has been good in cases where viscous effects and wind-tunnel wall interference are not important. The governing second-order partial differential equation describing the flow potential is replaced by a system of finite difference equations, including Jameson's "rotated" difference scheme at supersonic points. A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped onto a finite computational space. The boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. The system of finite difference equations is solved by a column relaxation method. In order to obtain both rapid convergence and any desired resolution, the relaxation is performed iteratively on successively refined grids. Input to RAXBOD consists of a description of the body geometry, the free stream conditions, and the desired resolution control parameters. Output from RAXBOD includes computed geometric parameters in the normal and tangential directions, iteration history information, drag coefficients, flow field data in the computational plane, and coordinates of the sonic line. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6600 computer with an overlayed central memory requirement of approximately 40K (octal) of 60 bit words. Optional plotted output can be generated for the Calcomp plotting system. The RAXBOD program was developed in 1976.
A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.
1994-01-01
Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.
Calculation of afterbody flows with a composite velocity formulation
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rubin, S. G.; Khosla, P. K.
1983-01-01
A recently developed technique for numerical solution of the Navier-Stokes equations for subsonic, laminar flows is investigated. It is extended here to allow for the computation of transonic and turbulent flows. The basic approach involves a multiplicative composite of the appropriate velocity representations for the inviscid and viscous flow regions. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli equation for the pressure, while the continuity equation reduces to the familiar potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary layers. The velocity components are computed with a coupled strongly implicity procedure. For transonic flows the artificial compressibility method is used to treat supersonic regions. Calculations are made for both laminar and turbulent flows over axisymmetric afterbody configurations. Present results compare favorably with other numerical solutions and/or experimental data.
Influence of rotation on the near-wake development behind an impulsively started circular cylinder
NASA Astrophysics Data System (ADS)
Coutanceau, M.; Menard, C.
1985-09-01
A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.
The response of a laminar boundary layer in supersonic flow to small amplitude progressive waves
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1989-01-01
The effect of a small amplitude progressive wave on the laminar boundary layer on a semi-infinite flat plate, due to a uniform supersonic freestream flow, is considered. The perturbation to the flow divides into two streamwise zones. In the first, relatively close to the leading edge of the plate, on a transverse scale comparable to the boundary layer thickness, the perturbation flow is described by a form of the unsteady linearized compressible boundary layer equations. In the freestream, this component of flow is governed by the wave equation, the solution of which provides the outer velocity conditions for the boundary layer. This system is solved numerically, and also the asymptotic structure in the far downstream limit is studied. This reveals a breakdown and a subsequent second streamwise zone, where the flow disturbance is predominantly inviscid. The two zones are shown to match in a proper asymptotic sense.
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1978-01-01
An investigation has been made into the ability of a method of integral relations to calculate inviscid zero degree angle of attack, radiative heating distributions over blunt, sonic corner bodies for some representative outer planet entry conditions is investigated. Comparisons have been made with a more detailed numerical method, a time asymptotic technique, using the same equilibrium chemistry and radiation transport subroutines. An effort to produce a second order approximation (two-strip) method of integral relations code to aid in this investigation is also described and a modified two-strip routine is presented. Results indicate that the one-strip method of integral relations cannot be used to obtain accurate estimates of the radiative heating distribution because of its inability to resolve thermal gradients near the wall. The two-strip method can sometimes be used to improve these estimates; however, the two-strip method has only a small range of conditions over which it will yield significant improvement over the one-strip method.
NASA Astrophysics Data System (ADS)
Aftosmis, Michael J.
1992-10-01
A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.
Rotor Vortex Filaments: Living on the Slipstream's Edge
NASA Technical Reports Server (NTRS)
Young, Larry A.
1997-01-01
The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.
Two-layer convective heating prediction procedures and sensitivities for blunt body reentry vehicles
NASA Technical Reports Server (NTRS)
Bouslog, Stanley A.; An, Michael Y.; Wang, K. C.; Tam, Luen T.; Caram, Jose M.
1993-01-01
This paper provides a description of procedures typically used to predict convective heating rates to hypersonic reentry vehicles using the two-layer method. These procedures were used to compute the pitch-plane heating distributions to the Apollo geometry for a wind tunnel test case and for three flight cases. Both simple engineering methods and coupled inviscid/boundary layer solutions were used to predict the heating rates. The sensitivity of the heating results in the choice of metrics, pressure distributions, boundary layer edge conditions, and wall catalycity used in the heating analysis were evaluated. Streamline metrics, pressure distributions, and boundary layer edge properties were defined from perfect gas (wind tunnel case) and chemical equilibrium and nonequilibrium (flight cases) inviscid flow-field solutions. The results of this study indicated that the use of CFD-derived metrics and pressures provided better predictions of heating when compared to wind tunnel test data. The study also showed that modeling entropy layer swallowing and ionization had little effect on the heating predictions.
NASA Astrophysics Data System (ADS)
Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.
2016-10-01
The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.
Mach 4 and Mach 8 axisymmetric nozzles for a shock tunnel
NASA Technical Reports Server (NTRS)
Jacobs, P. A.; Stalker, R. J.
1991-01-01
The performance of two axisymmetric nozzles which were designed to produce uniform, parallel flow with nominal Mach numbers of 4 and 8 is examined. A free-piston-driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the gas was assumed to be calorically perfect, and a contoured wall was designed (using method of characteristics) to convert the source flow into a uniform and parallel flow at the end of the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzles and, over the range of operating conditions examined, the nozzles produced satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that persisted for significant times after flow initiation.
2008-06-01
Geometry Interpolation The function space , VpH , consists of discontinuous, piecewise-polynomials. This work used a polynomial basis for VpH such...between a piecewise-constant and smooth variation of viscosity in both a one- dimensional and multi- dimensional setting. Before continuing with the ...inviscid, transonic flow past a NACA 0012 at zero angle of attack and freestream Mach number of M∞ = 0.95. The
1977-02-11
Continue an reverse aide If necessaty and Identify by block number) A comprehensive computational procedure is presented for predicting the...Aeroballistic Reentry Technology ( ART ) program with some of the fundamental analytical and numerical work supported by NSWC Independent Research Funds. Most of...the Aerospace Corporation. The authors gratefully acknowledge the efforts of Mr. R. Feldhuhn, NSWC coordinator for the ART program, who was responsible
2011-07-19
multidomain methods, Discontinuous Galerkin methods, interfacial treatment ∗ Jorge A. Escobar-Vargas, School of Civil and Environmental Engineering, Cornell...Click here to view linked References 1. Introduction Geophysical flows exhibit a complex structure and dynamics over a broad range of scales that...hyperbolic problems, where the interfacial patching was implemented with an upwind scheme based on a modified method of characteristics. This approach
Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver
NASA Astrophysics Data System (ADS)
Lee, Hee Dong; Kwon, Oh Joon
The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
A High Order Discontinuous Galerkin Method for 2D Incompressible Flows
NASA Technical Reports Server (NTRS)
Liu, Jia-Guo; Shu, Chi-Wang
1999-01-01
In this paper we introduce a high order discontinuous Galerkin method for two dimensional incompressible flow in vorticity streamfunction formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method The streamfunction is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability The method is suitable for inviscid or high Reynolds number flows. Optimal error estimates are proven and verified by numerical experiments.
The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations
NASA Technical Reports Server (NTRS)
Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.
1980-01-01
The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.
Blessing and curse of chaos in numerical turbulence simulations
NASA Astrophysics Data System (ADS)
Lee, Jon
1994-03-01
Because of the trajectory instability, time reversal is not possible beyond a certain evolution time and hence the time irreversibility prevails under the finite-accuracy trajectory computation. This therefore provides a practical reconciliation of the dynamic reversibility and macroscopic irreversibility (blessing of chaos). On the other hand, the trajectory instability is also responsible for a limited evolution time, so that finite-accuracy computation would yield a pseudo-orbit which is totally unrelated to the true trajectory (curse of chaos). For the inviscid 2D flow, however, we can accurately compute the long- time average of flow quantities with a pseudo-orbit by invoking the ergodic theorem.
Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure
NASA Technical Reports Server (NTRS)
Magnus, R.; Yoshihara, H.
1973-01-01
A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.
Optimum shape of a blunt forebody in hypersonic flow
NASA Technical Reports Server (NTRS)
Maestrello, L.; Ting, L.
1989-01-01
The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.
Refined numerical solution of the transonic flow past a wedge
NASA Technical Reports Server (NTRS)
Liang, S.-M.; Fung, K.-Y.
1985-01-01
A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.
Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface
NASA Astrophysics Data System (ADS)
Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta
2015-12-01
A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.
Hyperbolic/parabolic development for the GIM-STAR code. [flow fields in supersonic inlets
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Stalnaker, J. F.; Ratliff, A. W.
1980-01-01
Flow fields in supersonic inlet configurations were computed using the eliptic GIM code on the STAR computer. Spillage flow under the lower cowl was calculated to be 33% of the incoming stream. The shock/boundary layer interaction on the upper propulsive surface was computed including separation. All shocks produced by the flow system were captured. Linearized block implicit (LBI) schemes were examined to determine their application to the GIM code. Pure explicit methods have stability limitations and fully implicit schemes are inherently inefficient; however, LBI schemes show promise as an effective compromise. A quasiparabolic version of the GIM code was developed using elastical parabolized Navier-Stokes methods combined with quasitime relaxation. This scheme is referred to as quasiparabolic although it applies equally well to hyperbolic supersonic inviscid flows. Second order windward differences are used in the marching coordinate and either explicit or linear block implicit time relaxation can be incorporated.
Investigation of flow fields within large scale hypersonic inlet models
NASA Technical Reports Server (NTRS)
Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.
1973-01-01
Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.
On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows
Boghosian, M. E.; Cassel, K. W.
2016-01-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM. PMID:27795617
On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.
Boghosian, M E; Cassel, K W
2016-12-01
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the Vortex-Shedding Mechanism (VSM), is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.
L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor
NASA Technical Reports Server (NTRS)
Fagan, John R., Jr.; Fleeter, Sanford
1989-01-01
The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.
On the linear stability of compressible plane Couette flow
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Erlebacher, Gordon; Hussaini, M. Yousuff
1991-01-01
The linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.
Design optimization of axisymmetric bodies in nonuniform transonic flow
NASA Technical Reports Server (NTRS)
Lan, C. Edward
1989-01-01
An inviscid transonic code capable of designing an axisymmetric body in a uniform or nonuniform flow was developed. The design was achieved by direct optimiation by coupling an analysis code with an optimizer. Design examples were provided for axisymmetric bodies with fineness ratios of 8.33 and 5 at different Mach numbers. It was shown that by reducing the nose radius and increasing the afterbody thickness of initial shapes obtained from symmetric NACA four-digit airfoil contours, wave drag could be reduced by 29 percent for a body of fineness ratio 8.33 in a nonuniform transonic flow of M = 0.98 to 0.995. The reduction was 41 percent for a body of fineness ratio 5 in a uniform transonic flow of M = 0.925 and 65 percent for the same body but in a nonuniform transonic flow of M = 0.90 to 0.95.
NASA Astrophysics Data System (ADS)
Shin, Sangmook
2001-07-01
A three-dimensional unstructured incompressible RANS code has been developed using artificial compressibility and Spalart-Allmaras eddy viscosity model. A node-based finite volume method is used in which all flow variables are defined at the vertices of tetrahedrons in an unstructured grid. The inviscid fluxes are computed by using the Roe's flux difference splitting method, and higher order accuracy is attained by data reconstruction based on Taylor series expansion. Gauss theorem is used to formulate necessary gradients. For time integration, an implicit scheme based on linearized Euler backward method is used. A tetrahedral unstructured grid generation code has been also developed and applied to the tip clearance flow in a highly staggered cascade. Surface grids are first generated in the flow passage and blade tip by using several triangulation methods including Delaunay triangulation, advancing front method and advancing layer method. Then the whole computational domain including tip gap region is filled with prisms using the surface grids. The code has been validated by comparisons with available computational and experimental results for several test cases: inviscid flow around NACA section, laminar and turbulent flow over a flat plate, turbulent flow through double-circular arc cascade and laminar flow through a square duct with 90° bend. Finally the code is applied to a linear cascade that has GE rotor B section with tip clearance and a high stagger angle of 56.9°. The overall structure of the tip clearance flow is well predicted. Loss of loading due to tip leakage flow and reloading due to tip leakage vortex are presented. On the end wall, separation line of the tip leakage vortex and reattachment line of passage vortex are identified. Prediction of such an interaction presents a challenge to RANS computations. The effects of blade span on the flow structure have been also investigated. Two cascades with blades of aspect ratios of 0.5 and 1.0 are considered. By comparing pressure distributions on the blade, it is shown that the aspect ratio has strong effects on loading distribution on the blade although the tip gap height is very small (0.016 chord). Grid convergence study has been carried out with three different grids for pressure distributions and limiting streamlines on the end wall. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Mason, M. L.; Putnam, L. E.
1979-01-01
The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.
Unstructured grid methods for the simulation of 3D transient flows
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.
1994-01-01
A description of the research work undertaken under NASA Research Grant NAGW-2962 has been given. Basic algorithmic development work, undertaken for the simulation of steady three dimensional inviscid flow, has been used as the basis for the construction of a procedure for the simulation of truly transient flows in three dimensions. To produce a viable procedure for implementation on the current generation of computers, moving boundary components are simulated by fixed boundaries plus a suitably modified boundary condition. Computational efficiency is increased by the use of an implicit time stepping scheme in which the equation system is solved by explicit multistage time stepping with multigrid acceleration. The viability of the proposed approach has been demonstrated by considering the application of the procedure to simulation of a transonic flow over an oscillating ONERA M6 wing.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
Boundary Layer Effects on Unsteady Airloads.
1981-02-01
Magnus have shown by a "viscous ramp" behind the shock, whose inclination and height can be deduced from measured shock values such that calculated shock...sat- isfactory treatment of the shock). See YanglII -6 for these specific results. " Magnus 1 1 -7 (solution of the complete, nonlinear, inviscid...34, AFFDL-TR-78-202, December 1978. 111-7 R. J. Magnus and H. Yoshihara, "Calculations of Transonic Flow Over an Oscillating Airfoil", AIAA Paper 75-98
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.
On an Asymptotically Consistent Unsteady Interacting Boundary Layer
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2007-01-01
This paper develops the asymptotic matching of an unsteady compressible boundary layer to an inviscid flow. Of particular importance is the velocity injection or transpiration boundary condition derived by this theory. It is found that in general the transpiration will contain a slope of the displacement thickness and a time derivative of a density integral. The conditions under which the second term may be neglected, and its consistency with the established results of interacting boundary layer are discussed.
2017-11-13
condition is applied to the inviscid and viscous fluxes on the wall to satisfy the surface physical condition, but a non -zero surface tangential...velocity profiles and turbulence quantities predicted by the current wall-model implementation agree well with available experimental data and...implementations. The volume and surface integrals based on the non -zero surface velocity in a cell adjacent to the wall show a good agreement with those
Mixing in Shear Coaxial Jets (Briefing Charts)
2013-08-01
relevant boundary layers 9. Thermodynamic states (2 phase, 1 phase) 10. Transverse Acoustic mode from chamber/siren, f=f(c, geometry St=fDij/Uij 11...stability theory for inviscid instability of a hyperbolic tangent velocity profile for free boundary layers • U(y)=0.5[1 + tanh(y)] • Chigier and Beer , 1964...acoustics Natural OJ excited IJ excited From Chigier NA. and Beer JM, The Flow Region Near the Nozzle in Double Concentric Jets, J of
Longitudinal vortex control - Techniques and applications (The 32nd Lanchester Lecture)
NASA Technical Reports Server (NTRS)
Bushnell, D. M.
1992-01-01
A summary is presented of vortex control applications and current techniques for the control of longitudinal vortices produced by bodies, leading edges, tips and intersections. Vortex control has up till now been performed by many approaches in an empirical fashion, assisted by the essentially inviscid nature of much of longitudinal vortex behavior. Attention is given to Reynolds number sensitivities, vortex breakdown and interactions, vortex control on highly swept wings, and vortex control in juncture flows.
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram
1989-01-01
The extension of the known flux-vector and flux-difference splittings to real gases via rigorous mathematical procedures is demonstrated. Formulations of both equilibrium and finite-rate chemistry for real-gas flows are described, with emphasis on derivations of finite-rate chemistry. Split-flux formulas from other authors are examined. A second-order upwind-based TVD scheme is adopted to eliminate oscillations and to obtain a sharp representation of discontinuities.
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
NASA Technical Reports Server (NTRS)
Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John
2007-01-01
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Analytical method for predicting the pressure distribution about a nacelle at transonic speeds
NASA Technical Reports Server (NTRS)
Keith, J. S.; Ferguson, D. R.; Merkle, C. L.; Heck, P. H.; Lahti, D. J.
1973-01-01
The formulation and development of a computer analysis for the calculation of streamlines and pressure distributions around two-dimensional (planar and axisymmetric) isolated nacelles at transonic speeds are described. The computerized flow field analysis is designed to predict the transonic flow around long and short high-bypass-ratio fan duct nacelles with inlet flows and with exhaust flows having appropriate aerothermodynamic properties. The flow field boundaries are located as far upstream and downstream as necessary to obtain minimum disturbances at the boundary. The far-field lateral flow field boundary is analytically defined to exactly represent free-flight conditions or solid wind tunnel wall effects. The inviscid solution technique is based on a Streamtube Curvature Analysis. The computer program utilizes an automatic grid refinement procedure and solves the flow field equations with a matrix relaxation technique. The boundary layer displacement effects and the onset of turbulent separation are included, based on the compressible turbulent boundary layer solution method of Stratford and Beavers and on the turbulent separation prediction method of Stratford.
Supersonic flow gradients at an overexpanded nozzle lip
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.
2018-07-01
The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.
1989-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.
NASA Technical Reports Server (NTRS)
Brune, G. W.; Weber, J. A.; Johnson, F. T.; Lu, P.; Rubbert, P. E.
1975-01-01
A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments.
Computation of transonic flow about helicopter rotor blades
NASA Technical Reports Server (NTRS)
Arieli, R.; Tauber, M. E.; Saunders, D. A.; Caughey, D. A.
1986-01-01
An inviscid, nonconservative, three-dimensional full-potential flow code, ROT22, has been developed for computing the quasi-steady flow about a lifting rotor blade. The code is valid throughout the subsonic and transonic regime. Calculations from the code are compared with detailed laser velocimeter measurements made in the tip region of a nonlifting rotor at a tip Mach number of 0.95 and zero advance ratio. In addition, comparisons are made with chordwise surface pressure measurements obtained in a wind tunnel for a nonlifting rotor blade at transonic tip speeds at advance ratios from 0.40 to 0.50. The overall agreement between theoretical calculations and experiment is very good. A typical run on a CRAY X-MP computer requires about 30 CPU seconds for one rotor position at transonic tip speed.
A two-dimensional, iterative solution for the jet flap
NASA Technical Reports Server (NTRS)
Herold, A. C.
1973-01-01
A solution is presented for the jet-flapped wing in two dimensions. The main flow is assumed to be inviscid and incompressible. The flow inside the jet is considered irrotational and the upper and lower boundaries between the jet and free stream are assumed to behave as vortex sheets which allow no mixing. The solution is found to be in satisfactory agreement with two dimensional experimental results and other theoretical work for intermediate values of momentum coefficient, but the regions of agreement vary with jet exit angle. At small values of momentum coefficient, the trajectory for the jet, as computed by this method, has more penetration than that of other available data, while at high values of moment coefficient this solution results in less penetration of the jet into the main flow.
Boby-Vortex Interaction, Sound Generation and Destructive Interference
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
2000-01-01
It is generally recognized that interaction of vortices with downstream blades is a major source of noise production. To analyze this problem numerically, a two-dimensional model of inviscid flow together with the method of matched asymptotic expansions is proposed. The method of matched asymptotic expansions is used to match the inner region of incompressible flow to the outer region of compressible flow. Because of incompressibility, relatively simple numerical methods are available to treat multiple vortices and multiple bodies of arbitrary shape. Disturbances from vortices and bodies propagate outward as sound waves. Due to their interactions, either constructive or destructive interference may result. When it is destructive, the combined sound intensity can be reduced, sometimes substantially. In addition, an analytical solution to sound generation by the cascade-vonex interaction is given.
Applicability of empirical data currently used in predicting solid propellant exhaust plumes
NASA Technical Reports Server (NTRS)
Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.; Greenwood, T.; Roberts, B. B.
1977-01-01
Theoretical and experimental approaches to exhaust plume analysis are compared. A two-phase model is extended to include treatment of reacting gas chemistry, and thermodynamical modeling of the gaseous phase of the flow field is considered. The applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size, and particle size distributions is investigated. Experimental and analytical comparisons are presented for subscale solid rocket motors operating at three altitudes with attention to pitot total pressure and stagnation point heating rate measurements. The mathematical treatment input requirements are explained. The two-phase flow field solution adequately predicts gasdynamic properties in the inviscid portion of two-phase exhaust plumes. It is found that prediction of exhaust plume gas pressures requires an adequate model of flow field dynamics.
An approximate Riemann solver for thermal and chemical nonequilibrium flows
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1994-01-01
Among the many methods available for the determination of inviscid fluxes across a surface of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables has been used extensively by the CFD community because of its simplicity and its ability to capture shocks exactly. This method, originally developed for perfect gas flows, has since been extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the literature to determine these variables seem to lack sound bases. The present paper describes a simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-average state. The basis for this method is the requirement that the Roe-averaged variables form a consistent set of thermodynamic variables. The present method satisfies the requirement that the square of the speed of sound be positive.
NASA Technical Reports Server (NTRS)
Lin, K. M.; Moore, F. K.
1976-01-01
A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
An ODE-Based Wall Model for Turbulent Flow Simulations
NASA Technical Reports Server (NTRS)
Berger, Marsha J.; Aftosmis, Michael J.
2017-01-01
Fully automated meshing for Reynolds-Averaged Navier-Stokes Simulations, Mesh generation for complex geometry continues to be the biggest bottleneck in the RANS simulation process; Fully automated Cartesian methods routinely used for inviscid simulations about arbitrarily complex geometry; These methods lack of an obvious & robust way to achieve near wall anisotropy; Goal: Extend these methods for RANS simulation without sacrificing automation, at an affordable cost; Note: Nothing here is limited to Cartesian methods, and much becomes simpler in a body-fitted setting.
Problems Associated with Grid Convergence of Functionals
NASA Technical Reports Server (NTRS)
Salas, Manuel D.; Atkins, Harld L.
2008-01-01
The current use of functionals to evaluate order-of-convergence of a numerical scheme can lead to incorrect values. The problem comes about because of interplay between the errors from the evaluation of the functional, e.g., quadrature error, and from the numerical scheme discretization. Alternative procedures for deducing the order-property of a scheme are presented. The problem is studied within the context of the inviscid supersonic flow over a blunt body; however, the problem and solutions presented are not unique to this example.
On Problems Associated with Grid Convergence of Functionals
NASA Technical Reports Server (NTRS)
Salas, Manuael D.; Atkins, Harold L
2009-01-01
The current use of functionals to evaluate order-of-convergence of a numerical scheme can lead to incorrect values. The problem comes about because of interplay between the errors from the evaluation of the functional, e.g., quadrature error, and from the numerical scheme discretization. Alternative procedures for deducing the order property of a scheme are presented. The problems are studied within the context of the inviscid supersonic flow over a blunt body; however, the problems and solutions presented are not unique to this example.
NASA and CFD - Making investments for the future
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
Multigrid solution strategies for adaptive meshing problems
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1995-01-01
This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.
Special Course on Aerodynamic Characteristics of Controls
1983-07-01
cruciform wings mounted on a long cylindrical body with a pointed nose with either a set of aft cruciform surface or a set of canard cruciform surfaces...FRITZ, W. Transsonische Str6mung um harmonisch schwingende Profile. DORNIER Rep. 78/16B (1978). c66) MAGNUS , R.J. Inviscid transonic flow over...airfoils. YOSHIHARA, H. AIAA paper No. 70-47 (1970). [673 MAGNUS , R.J. The transonic oscillating flap. YOSHIHARA, H. AGARD-CP-226, p. 13-1 to 13-5 (1977
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1980-01-01
A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.
Symmetries of the Gas Dynamics Equations using the Differential Form Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Baty, Roy S.
Here, a brief review of the theory of exterior differential systems and isovector symmetry analysis methods is presented in the context of the one-dimensional inviscid compressible flow equations. These equations are formulated as an exterior differential system with equation of state (EOS) closure provided in terms of an adiabatic bulk modulus. The scaling symmetry generators—and corresponding EOS constraints—otherwise appearing in the existing literature are recovered through the application and invariance under Lie derivative dragging operations.
1987-03-01
the 3: 1 body in figures 14 through 22. First, the convergence history of both approaches is considered. Figures 5 and 6 show the conver- gence... histories with regard to the pressure distribution for the 2:1 body for the large-domain and interaction solutions, respectively. For the former, values... history of the displacement thickness for the interaction solution. Corresponding results for the 3: 1 body are shown in f igures 14 through 16. The
Computational Fluid Dynamics Requirements at the Naval Postgraduate School.
1986-10-01
FIELD ANALYSIS OF WING-FUSELAGE .1?CONFIGURATION r 13. PROFILE- THE EPPLER PROGRAM FOR THE DESIGN AND ANALYSIS OF LOW-SPEED AIRFOILS 14. AERODYNAMIC...POSTORRDUATE SCHOOL(U) VI IJE UNIV MAUSSELS (ELGIUM) C HIRSCH 61 OCT 96 NPS-67-S6-007CR M62271-06-M-0242 UNCLSSIFIED F/0 26/4 NE"I ChE’i...codes Under this group ons can list the codes KELLER BOX METHOD FOR BOUNDARY LAYERS VISCID-INVISCID INTERACTION ON AIRFOIL FLOW OVER WING-BODY JUNCTION
Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Labus, T. L.
1976-01-01
An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.
An unsteady Euler scheme for the analysis of ducted propellers
NASA Technical Reports Server (NTRS)
Srivastava, R.
1992-01-01
An efficient unsteady solution procedure has been developed for analyzing inviscid unsteady flow past ducted propeller configurations. This scheme is first order accurate in time and second order accurate in space. The solution procedure has been applied to a ducted propeller consisting of an 8-bladed SR7 propeller with a duct of NACA 0003 airfoil cross section around it, operating in a steady axisymmetric flowfield. The variation of elemental blade loading with radius, compares well with other published numerical results.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
1983-09-01
Dimensional Cascades. P003 075 Design of Transonic Compressor Cascades for Minimal Shock Losses and Comparison with Test Results. P003 076 Flow...WJ.Caivert 2 A VISCID INVISCID INTERACTION PROEDURE FOR TWO DIMENSIONAL CASCADES by P.Janmens and Ch.Hirsch 4 0/’V 3 DESIGN OF TRANSONIC COMPRESSOR...treated, but, in the opinion of this evaluator, much more work is needed before they can be used with confidence on untested designs . Since capabilities
Effects of nonequilibrium ablation chemistry on Viking radio blackout.
NASA Technical Reports Server (NTRS)
Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.
1973-01-01
The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.
Symmetries of the Gas Dynamics Equations using the Differential Form Method
Ramsey, Scott D.; Baty, Roy S.
2017-11-21
Here, a brief review of the theory of exterior differential systems and isovector symmetry analysis methods is presented in the context of the one-dimensional inviscid compressible flow equations. These equations are formulated as an exterior differential system with equation of state (EOS) closure provided in terms of an adiabatic bulk modulus. The scaling symmetry generators—and corresponding EOS constraints—otherwise appearing in the existing literature are recovered through the application and invariance under Lie derivative dragging operations.
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Zhu, Y.; Luo, X.
2018-07-01
The transition between regular reflection (RR) and Mach reflection (MR) of a Type V shock-shock interaction on a double-wedge geometry with non-equilibrium high-temperature gas effects is investigated theoretically and numerically. A modified shock polar method that involves thermochemical non-equilibrium processes is applied to calculate the theoretical critical angles of transition based on the detachment criterion and the von Neumann criterion. Two-dimensional inviscid numerical simulations are performed correspondingly to reveal the interactive wave patterns, the transition processes, and the critical transition angles. The theoretical and numerical results of the critical transition angles are compared, which shows evident disagreement, indicating that the transition mechanism between RR and MR of a Type V shock interaction is beyond the admissible scope of the classical theory. Numerical results show that the collisions of triple points of the Type V interaction cause the transition instead. Compared with the frozen counterpart, it is found that the high-temperature gas effects lead to a larger critical transition angle and a larger hysteresis interval.
NASA Astrophysics Data System (ADS)
Zeng, Huihui
2017-10-01
For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.
Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2012-01-01
Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.
NASA Technical Reports Server (NTRS)
Greenblatt, David
2005-01-01
A wind tunnel investigation was carried out on a semi-span wing model to assess the feasibility of controlling vortices emanating from outboard flaps and tip-flaps by actively varying the degree of boundary layer separation. Separation was varied by means of perturbations produced from segmented zero-efflux oscillatory blowing slots, while estimates of span loadings and vortex sheet strengths were obtained by integrating wing surface pressures. These estimates were used as input to inviscid rollup relations as a means of predicting changes to the vortex characteristics resulting from the perturbations. Surveys of flow in the wake of the outboard and tip-flaps were made using a seven-hole probe, from which the vortex characteristics were directly deduced. Varying the degree of separation had a marked effect on vortex location, strength, tangential velocity, axial velocity and size for both outboard and tip-flaps. Qualitative changes in vortex characteristics were well predicted by the inviscid rollup relations, while the failure to account for viscosity was presumed to be the main reason for observed discrepancies. Introducing perturbations near the outboard flap-edges or on the tip-flap exerted significant control over vortices while producing negligible lift excursions.
An Inviscid Computational Study of the Space Shuttle Orbiter and Several Damaged Configurations
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Merski, N. Ronald (Technical Monitor)
2004-01-01
Inviscid aerodynamic characteristics of the Space Shuttle Orbiter were computed in support of the Columbia Accident Investigation. The unstructured grid software FELISA was used and computations were done using freestream conditions corresponding to those in the NASA Langley 20-Inch Mach 6 CF4 tunnel test section. The angle of attack was held constant at 40 degrees. The baseline (undamaged) configuration and a large number of damaged configurations of the Orbiter were studied. Most of the computations were done on a half model. However, one set of computations was done using the full-model to study the effect of sideslip. The differences in the aerodynamic coefficients for the damaged and the baseline configurations were computed. Simultaneously with the computation reported here, tests were being done on a scale model of the Orbiter in the 20-Inch Mach 6 CF4 tunnel to measure the deltas . The present computations complemented the CF4 tunnel test, and provided aerodynamic coefficients of the Orbiter as well as its components. Further, they also provided details of the flow field.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.; Sutton, Kenneth (Technical Monitor)
2001-01-01
This report documents the results of a computational study done to compute the inviscid longitudinal aerodynamic characteristics of the Space Shuttle Orbiter for Mach numbers 10 and 15 at angles of attack of 40, 50, 55, and 60 degrees. These computations were done to provide limited aerodynamic data in support of the Orbiter contingency abort task. The Orbiter had all the control surfaces in the undeflected position. The unstructured grid software FELISA was used for these computations with the equilibrium air option. Normal and axial force coefficients and pitching moment coefficients were computed. The hinge moment coefficients of the body flap and the inboard and outboard elevons were also computed. These results were compared with Orbiter Air Data Book (OADB) data and those computed using GASP. The comparison with the GASP results showed very good agreement in Cm and Ca at all the points. The computed axial force coefficients were smaller than those computed by GASP. There were noticeable differences between the present results and those in the OADB at angles of attack greater than 50 degrees.
Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Morrison, P. J.
2017-12-01
While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems
NASA Technical Reports Server (NTRS)
Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.
1995-01-01
Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.
Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems
NASA Technical Reports Server (NTRS)
Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.
1996-01-01
Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e. the aspect-ratio AR = (delta)y/(delta)x much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.
The analysis of a nonsimilar laminar boundary layer
NASA Technical Reports Server (NTRS)
Stalmach, D. D.; Bertin, J. J.
1978-01-01
A computer code is described which yields accurate solutions for a broad range of laminar, nonsimilar boundary layers, providing the inviscid flow field is known. The boundary layer may be subject to mass injection for perfect-gas, nonreacting flows. If no mass injection is present, the code can be used with either perfect-gas or real-gas thermodynamic models. Solutions, ranging from two-dimensional similarity solutions to solutions for the boundary layer on the Space Shuttle Orbiter during reentry conditions, have been obtained with the code. Comparisons of these solutions, and others, with solutions presented in the literature; and with solutions obtained from other codes, demonstrate the accuracy of the present code.
Nonstandard Analysis and Jump Conditions for Converging Shock Waves
NASA Technical Reports Server (NTRS)
Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.
2008-01-01
Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.
A bullet fired in dry water: an investigative activity to learn hydrodynamics concepts
NASA Astrophysics Data System (ADS)
Azevedo Leitão, Ulisses; dos Anjos Pinheiro da Silva, Antonio; Trindade do Nascimento, Natália Cristina; Mara Benedita da Cruz Gervásio, Lilian
2017-01-01
In this paper we report an investigative activity on hydrodynamics, in the context of an inquiry-based learning project. The aim is to analyse the experiment of a bullet shot underwater. Using Tracker, a video analysing and modelling software, the displacement of the bullet was measured as function of time, processing a slow motion video from YouTube. It was found that the displacement of the bullet is well described in the first 20 ms by the inviscid flow regime, where the Newtonian drag force overcomes the viscous drag. This behaviour is discussed in the context of what Richard Feynman’s famous Lectures on Physics describes as ‘The Flow of Dry Water’.
Finite area method for nonlinear supersonic conical flows
NASA Technical Reports Server (NTRS)
Sritharan, S. S.; Seebass, A. R.
1983-01-01
A fully conservative numerical method for the computation of steady inviscid supersonic flow about general conical bodies at incidence is described. The procedure utilizes the potential approximation and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each mesh cell; a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In the supersonic regions the scheme is symmetrized by adding artificial viscosity in conservation form. The algorithm is nearly an order of a magnitude faster than present Euler methods and predicts known results accurately and qualitative features such as nodal point lift off correctly. Results are compared with those of other investigators.