Sample records for involve hydroxyl groups

  1. Xylosylation of Phenolic Hydroxyl Groups of the Monomeric Lignin Model Compounds 4-Methylguaiacol and Vanillyl Alcohol by Coriolus versicolor

    PubMed Central

    Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki

    1993-01-01

    When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869

  2. Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone

    PubMed Central

    Chuang, Ting-Yun; Cheng, An-Jie; Chen, I-Ting; Lan, Tien-Yun; Huang, I-Hsuan; Shiau, Chung-Wai; Hsu, Chia-Lin; Liu, Ya-Wen; Chang, Zee-Fen; Tseng, Ping-Hui; Kuo, Jean-Cheng

    2017-01-01

    The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity. PMID:28537905

  3. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  4. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.

    PubMed

    Feliks, Mikolaj; Ullmann, G Matthias

    2012-06-21

    A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.

  5. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  6. Nature and position of functional group on thiopurine substrates influence activity of xanthine oxidase--enzymatic reaction pathways of 6-mercaptopurine and 2-mercaptopurine are different.

    PubMed

    Tamta, Hemlata; Kalra, Sukirti; Thilagavathi, Ramasamy; Chakraborti, Asit K; Mukhopadhyay, Anup K

    2007-02-01

    Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.

  7. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    PubMed

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  8. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  9. The 4′-Hydroxyl Group of Resveratrol Is Functionally Important for Direct Activation of PPARα

    PubMed Central

    Takizawa, Yoshie; Nakata, Rieko; Fukuhara, Kiyoshi; Yamashita, Hiroshi; Kubodera, Hideo; Inoue, Hiroyasu

    2015-01-01

    Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4′-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM), both of which has only 4′-hydroxyl group, indicating that this 4′-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo. PMID:25798826

  10. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    NASA Astrophysics Data System (ADS)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  11. Functional Analysis of Cytochrome P450s Involved in Streptovaricin Biosynthesis and Generation of Anti-MRSA Analogues.

    PubMed

    Liu, Yuanzhen; Chen, Xu; Li, Zhengyuan; Xu, Wei; Tao, Weixin; Wu, Jie; Yang, Jian; Deng, Zixin; Sun, Yuhui

    2017-10-20

    The streptovaricins, chemically related to the rifamycins, are highly effective antibacterial agents, particularly against mycobacteria. Herein, a bioassay-guided investigation of Streptomyces spectabilis CCTCC M2017417 has led to the characterization of streptovaricins as potent compounds against methicillin-resistant Staphylococcus aureus (MRSA). We identified the streptovaricin biosynthetic gene cluster from S. spectabilis CCTCC M2017417 based on genomic sequencing and bioinformatic analysis. Targeted in-frame deletion of five cytochrome P450 genes (stvP1-P5) resulted in the identification of four new streptovaricin analogues and revealed the functions of these genes as follows: stvP1, stvP4, and stvP5 are responsible for the hydroxylation of C-20, Me-24, and C-28, respectively. stvP2 is possibly involved in formation of the methylenedioxy bridge, and stvP3, a conserved gene found in the biosynthetic cluster for naphthalenic ansamycins, might be related to the formation of a naphthalene ring. Biochemical verification of the hydroxylase activity of StvP1, StvP4, and StvP5 was performed, and StvP1 showed unexpected biocatalytic specificity and promiscuity. More importantly, anti-MRSA studies of streptovaricins and derivatives revealed significant structure-activity relationships (SARs): The hydroxyl group at C-28 plays a vital role in antibacterial activity. The hydroxyl group at C-20 substantially enhances activity in the absence of the methoxycarbonyl side chain at C-24, which can increase the activity regardless of the presence of a hydroxyl group at C-20. The inner lactone ring between C-21 and C-24 shows a positive effect on activity. This work provides meaningful information on the SARs of streptovaricins and demonstrates the utility of the engineering of streptovaricins to yield novel anti-MRSA molecules.

  12. Intramolecular interactions in the polar headgroup of sphingosine: serinol.

    PubMed

    Loru, Donatella; Peña, Isabel; Alonso, José L; Sanz, M Eugenia

    2016-03-04

    The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum.

  13. H-Bonding Networks in Sugar Alcohols: Identifying Glucophores?

    NASA Astrophysics Data System (ADS)

    Alonso, E. R.; Mata, Santiago; Cabezas, Carlos; Peña, Isabel; Alonso, José L.

    2016-06-01

    The conformational behaviour of sorbitol and dulcitol has been investigated for the first time using a combination of chirped pulse Fourier transform microwave spectroscopy (CP-FTMW) coupled with a laser ablation (LA) source. The observed conformers have been found to be overstabilised by cooperative networks of intramolecular hydrogen bonds between vicinal hydroxyl groups stretching throughout the whole molecule. A common structural signature - involving hydroxyl groups in the H-bond - has been characterized and ascribed to the glucophore's AH and B sites in accordance with Shallenberger's old proposal. R. S. Shallenberger, T. E. Acree, Nature, 1967, 216, 480-482 R. S. Shallenberger, T. E. Acree, C. Y. Lee, Nature, 1969, 221, 555-556

  14. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  15. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups.

    PubMed

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-08

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  16. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  17. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  18. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-07-02

    Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis.

  19. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC.

    PubMed

    Qiu, Wang-Ren; Sun, Bi-Qian; Xiao, Xuan; Xu, Zhao-Chun; Chou, Kuo-Chen

    2016-07-12

    Protein hydroxylation is a posttranslational modification (PTM), in which a CH group in Pro (P) or Lys (K) residue has been converted into a COH group, or a hydroxyl group (-OH) is converted into an organic compound. Closely associated with cellular signaling activities, this type of PTM is also involved in some major diseases, such as stomach cancer and lung cancer. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of P or K, which ones can be hydroxylated, and which ones cannot? With the explosive growth of protein sequences in the post-genomic age, the problem has become even more urgent. To address such a problem, we have developed a predictor called iHyd-PseCp by incorporating the sequence-coupled information into the general pseudo amino acid composition (PseAAC) and introducing the "Random Forest" algorithm to operate the calculation. Rigorous jackknife tests indicated that the new predictor remarkably outperformed the existing state-of-the-art prediction method for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for iHyd-PseCp has been established at http://www.jci-bioinfo.cn/iHyd-PseCp, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved.

  20. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  1. Promotional effect of surface hydroxyls on electrochemical reduction of CO 2 over SnO x/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnO x) formation on tin-based electrode surfaces during CO 2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnO x in CO 2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnO x. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H 2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface.more » CO 2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO 3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H 2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H 2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO 2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnO x monolayer on the electrode under the operating conditions promotes CO 2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  2. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives.

    PubMed

    Oyama, Takahiro; Yoshimori, Atsushi; Takahashi, Satoshi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2017-07-01

    So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. RNA Structural Analysis by Evolving SHAPE Chemistry

    PubMed Central

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  4. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  5. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  6. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE PAGES

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    2016-06-02

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  7. Determination of hydroxylated fatty acids from the biopolymer of tomato cutin and their fate during incubation in soil.

    PubMed

    Hauff, Simone; Chefetz, Benny; Shechter, Michal; Vetter, Walter

    2010-01-01

    The plant cuticle is a thin, predominantly lipid layer that covers all primary aerial surfaces of vascular plants. The monomeric building blocks of the cutin biopolymer are mainly ω-hydroxy fatty acids. Analysis of ω-hydroxy fatty acids from cutin isolated from tomato fruits at different stages of decomposition in soil. Different derivatives and mass spectrometric techniques were used for peak identification and evaluation. Preparation of purified cutin involving dewaxing and HCl treatment. Incubation of purified cutin for 20 months in soil. Pentafluorobenzoyl derivatives were used for GC/MS operated in the electron capture negative ion (ECNI) mode and trimethylsilyl ethers for GC/MS operated in the electron ionisation (EI) mode for analysis of ω-hydroxy fatty acids. Six ω-hydroxy fatty acids were detected in the purified cutin, three of which were identified as degradation products of 9,16-dihydroxyhexadecanoic acid as a consequence of the HCl treatment involved in the purification step. Incubation of the isolated cutin in soil was accompanied with decrease in concentration of all hydroxyl fatty acids. We produced evidence that the HCl treatment only affected free hydroxyl groups and thus could be used for proportioning free and bound OH-groups on cutin fatty acids. The method enabled a direct quantification of the ω-hydroxy fatty acids throughout the incubation phase. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  9. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemicalmore » shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group of C-1 to the peroxide of the oxytyrosinase form (E{sub ox}). After the nucleophilic attack, the incorporation of the oxygen in the benzene ring occurs by means of an electrophilic aromatic substitution mechanism in which there is no isotopic effect.« less

  10. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological catalysis and the RNA world.

  11. Enhanced electrical properties in solution-processed InGaZnO thin-film transistors by viable hydroxyl group transfer process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk

    2018-05-01

    We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).

  12. Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis

    PubMed Central

    Wu, Chung-Yi; Tu, Kuan-Ju; Deng, Jin-Pei; Lo, Yu-Shiu; Wu, Chien-Hou

    2017-01-01

    The benefits of increasing the number of surface hydroxyls on TiO2 nanoparticles (NPs) are known for environmental and energy applications; however, the roles of the hydroxyl groups have not been characterized and distinguished. Herein, TiO2 NPs with abundant surface hydroxyl groups were prepared using commercial titanium dioxide (ST-01) powder pretreated with alkaline hydrogen peroxide. Through this simple treatment, the pure anatase phase was retained with an average crystallite size of 5 nm and the surface hydroxyl group density was enhanced to 12.0 OH/nm2, estimated by thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Especially, this treatment increased the amounts of terminal hydroxyls five- to six-fold, which could raise the isoelectric point and the positive charges on the TiO2 surface in water. The photocatalytic efficiency of the obtained TiO2 NPs was investigated by the photodegradation of sulforhodamine B under visible light irradiation as a function of TiO2 content, pH of solution, and initial dye concentration. The high surface hydroxyl group density of TiO2 NPs can not only enhance water-dispersibility but also promote dye sensitization by generating more hydroxyl radicals. PMID:28772926

  13. Molecular design and synthesis of functional photothermopolymers from hydroxyl benzoic acids

    NASA Astrophysics Data System (ADS)

    Tong, Xiao; Gu, Jiangnan; Wang, Liyuan; Zou, Yingquan; Yu, Shangxian

    2000-06-01

    The most applicable hydroxyl benzoic acid monomers were optimized to synthesize the thermolysis-decarboxylation polymers according to the relative results of TG analysis of hydroxyl benzoic acids, their 13C-NMR spectra analyses and their quantum chemistry calculation with AB-INITIO method. On the basis of the empirical rule -- M/A value rule, while phenols with high M/A value and hydroxyl benzoic acids were both cocondensed with formaldehyde at proper ratio, the novolak resin with carboxyl groups used as a thermal imaging material could be obtained. In the presence of an acid catalyst, such as oxalic acid, a hydroxyl benzoic acid could be additionally polymerized with divinyl benzene (DVB) to synthesize another kind of polymer with not only carboxyl groups but also phenolic hydroxyl groups. The thermal imaging mechanisms of these polymers with carboxyl groups were discussed in the paper.

  14. Naturally occurring ω-Hydroxyacids.

    PubMed

    Wertz, P W

    2018-02-01

    ω-Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω-hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω-hydroxyacids. ω-Hydroxyacids are produced by two different P450-dependent mechanisms. The longer (30-34 carbons) ω-hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω-hydroxyacids found in plants and 20-eicosatetraenoic acid (20-HETE) by a different P450. The C16 and C18 ω-hydroxyacids are components of polymers in plants. The long-chain ω-hydroxyacids are found in epidermal sphingolipids, in giant-ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  16. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  17. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, Jr., Paul E.; Langdale, Wayne A.

    1997-01-01

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  18. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, P.E. Jr.; Langdale, W.A.

    1997-08-19

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  19. The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions.

    PubMed

    Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan

    2016-10-17

    The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.

  20. Unraveling the impact of hydroxylation on interactions of bile acid cationic lipids with model membranes by in-depth calorimetry studies.

    PubMed

    Singh, Manish; Bajaj, Avinash

    2014-09-28

    We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.

  1. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    PubMed

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  2. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.

    PubMed

    Mira, Lurdes; Fernandez, M Tereza; Santos, Marta; Rocha, Rui; Florêncio, M Helena; Jennings, Keith R

    2002-11-01

    The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe3+) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfill these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu2+ additionally at the ortho-catechol group, the chelating site for catechin with Cu2+ at pH 7.4. Chelation studies of Fe3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe3+, complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe3+ at pH 5.5, suggesting that flavonoids reduce Fe3+ to Fe2+ before association.

  3. Flow of quasi-two dimensional water in graphene channels

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  4. Catalytic Hydroxylation of Polyethylenes

    PubMed Central

    2017-01-01

    Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of mCPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C–C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C–H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and mCPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting properties and serve as macroinitiators to synthesize graft polycaprolactones that compatibilize polyethylene–polycaprolactone blends. PMID:28852704

  5. Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients.

    PubMed

    Orellana, Myriam; Rodrigo, Ramón; Varela, Nelson; Araya, Julia; Poniachik, Jaime; Csendes, Attila; Smok, Gladys; Videla, Luis A

    2006-01-01

    The aim of the present study was to test the hypothesis that induction of cytochrome P450 2E1 (CYP2E1) in the liver of patients with non-alcoholic fatty liver disease (NAFLD) is correlated both with the in vivo activity of the cytochrome and with the development of liver injury. For this purpose, the liver content of CYP2E1 was determined by Western blot and the CYP2E1 activity by the in vivo hydroxylation of chlorzoxazone (CLZ). The study groups were obese women with an average body mass index (BMI) of 40.3kg/m(2), who underwent therapeutic gastroplasty or gastrectomy with a gastro-jejunal anastomosis. Further, the hepatic histology was determined to establish the pathological score grouping the subjects into three categories: control, steatosis and steatohepatitis. The liver CYP2E1 content and the CLZ hydroxylation of obese patients with steatosis and, particularly, with steatohepatitis were significantly higher than controls and correlated positively with both the severity of the liver damage. These data provide evidence that CYP2E1 would be involved in the mechanism of liver injury found in obese NAFLD patients. Also, the correlation between liver CYP2E1 content and in vivo CLZ hydroxylation would validate the latter as a reliable indicator of liver injury in NAFLD, thus providing a simple and not invasive method to study these patients.

  6. Surface Coverage and Metallicity of ZnO Surfaces from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre; The Schleife research Group Team

    Zinc oxide (ZnO) surfaces are widely used in different applications such as catalysis, biosensing, and solar cells. These surfaces are, in many cases, chemically terminated by hydroxyl groups. In experiment, a transition of the ZnO surface electronic properties from semiconducting to metallic was reported upon increasing the hydroxyl coverage to more than approximately 80 %. The reason for this transition is not well understood yet. We report on first-principles calculations based on density functional theory for the ZnO [ 10 1 0 ] surface, taking different amounts of hydroxyl coverage into account. We calculated band structures for fully relaxed configurations and verified the existence of this transition. However, we only find the fully covered surface to be metallic. We thus explore the possibility for clustering of the surface-terminating hydroxyl groups based on total-energy calculations. We also found that the valence band maximum consists of oxygen p states from both the surface hydroxyl groups and the surface oxygen atoms of the material. The main contribution to the metallicity is found to be from the hydroxyl groups.

  7. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.

    PubMed

    Yamaguchi, Aritomo; Muramatsu, Natsumi; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-25

    The intramolecular dehydration of biomass-derived sugar alcohols d-sorbitol, d-mannitol, galactitol, xylitol, ribitol, l-arabitol, erythritol, l-threitol, and dl-threitol was investigated in high-temperature water at 523-573 K without the addition of any acid catalysts. d-Sorbitol and d-mannitol were dehydrated into isosorbide and isomannide, respectively, as dianhydrohexitol products. Galactitol was dehydrated into anhydrogalactitols; however, the anhydrogalactitols could not be dehydrated into dianhydrogalactitol products because of the orientation of the hydroxyl groups at the C-3 and C-6 positions. Pentitols such as xylitol, ribitol, and l-arabitol were dehydrated into anhydropentitols. The dehydration rates of the pentitols containing hydroxyl groups in the trans form, which remained as hydroxyl groups in the product tetrahydrofuran, were larger than those containing hydroxyl groups in the cis form because of the structural hindrance caused by the hydroxyl groups in the cis form during the dehydration process. In the case of the tetritols, the dehydration of erythritol was slower than that of threitol, which could also be explained by the structural hindrance of the hydroxyl groups. The dehydration of l-threitol was faster than that of dl-threitol, which implies that molecular clusters were formed by hydrogen bonding between the sugar alcohols in water, which could be an important factor that affects the dehydration process.

  8. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  9. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells.

    PubMed

    Yang, Yang; Yang, Yifu; Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP's activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP's apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production.

  10. Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sihvonen, Sarah K.; Murphy, Kelly A.; Washton, Nancy M.

    Mineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use 19F magic angle spinning nuclear magnetic resonance spectroscopy and a probemore » molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.« less

  11. Chemoselective Hydroxyl Group Transformation: An Elusive Target‡

    PubMed Central

    Trader, Darci J.; Carlson, Erin E.

    2012-01-01

    The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described. PMID:22695722

  12. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.

    PubMed

    Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro; Kawanami, Hajime

    2017-12-14

    The hydroxyl groups of a 2,2'-bipyridine (bpy) ligand near the metal center activated the catalytic performance of the Ir complex for the dehydrogenation of formic acid at high pressure. The position of the hydroxyl groups on the ligand affected the catalytic durability for the high-pressure H 2 generation through the decomposition of formic acid. The Ir complex with a bipyridine ligand functionalized with para-hydroxyl groups shows a good durability with a constant catalytic activity during the reaction even under high-pressure conditions, whereas deactivation was observed for an Ir complex with a bipyridine ligand with ortho-hydroxyl groups (2). In the presence of high-pressure H 2 , complex 2 decomposed into the ligand and an Ir trihydride complex through the isomerization of the bpy ligand. This work provides the development of a durable catalyst for the high-pressure H 2 production from formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.

    PubMed

    Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R

    2013-12-01

    The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.

  14. Exploring the reaction channels between arsine and the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.

    2017-10-01

    The aim of this study was to present the reaction mechanism channels between arsine (AsH3) and hydroxyl (OH) which was evaluated at CCSD(T)/CBS//CCSD/cc-pVTZ level. One potential channel is the hydrogen abstraction pathway (R1), leading to AsH2 and H2O products, which occurs due to the formation of an entrance complex (AsH3OH) followed by a 1,2-hydrogen shift pathway (involving the proton transfer from the arsine group to hydroxyls, with one leading to the products). Additional channels are accessed via H-elimination pathways of the entrance complexes, forming arsinous acid (AsH2OH; R2) and arsine oxide (AsH3O; R3). In this respect, R2 is the only exoergic route of the three exit channels, representing the major branching ratio at 200-1000 K and, after 2000 K, R1 increases gradually becoming the major route of this reaction. In contrast, even at 4000 K, R3 is a highly unfeasible pathway. Therefore, the information predicted here provides new insights into the neutral-neutral chemical reaction dynamics regarding the Group V hydrides. On the other side, the R2 pathway may have some potential to solve the arsine oxidation puzzle as a possible primary pathway to the arsenic-oxygen species formation.

  15. Galloylglucoses of low molecular weight as mordant in electron microscopy. II. The moiety and functional groups possibly involved in the mordanting effect

    PubMed Central

    1976-01-01

    Synthetic pentamonogalloylglucose applied to fixed tissues acts as a mordant, inducing high and diversified contrast similar to that obtained with natural gallotannins of low molecular weight (LMGG). By the separate use of each of the two moieties of the galloylglucose molecule, it was found that gallic acid is the mordanting agent. Glucose may contribute, however, to the effect by increasing the solubility and cross-linking potential of the compound, since the mordanting induced by gallic acid alone is weaker than that produced by its hexose esters. As suggested by results obtained with various phenolics and benzoic acid derivatives, the functional groups required for the mordanting effect of such agents are the carboxyl group, and at least one hydroxyl group concomitantly present on the benzene ring. In the case of galloylglucoses, it is assumed that the effect is due to hydrolysis products (gallic, digallic, or trigallic acids) or to the multiple hydroxyl groups of the intact molecule. Esters of gallic acid (propyl- and methylgallate), as well as pyrogallol, produce a "reversed staining" of all membranes, except for those of communicating (gap) junctions. PMID:783173

  16. Role of oxygen functional groups in reduced graphene oxide for lubrication

    PubMed Central

    Gupta, Bhavana; Kumar, Niranjan; Panda, Kalpataru; Kanan, Vigneshwaran; Joshi, Shailesh; Visoly-Fisher, Iris

    2017-01-01

    Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters. PMID:28344337

  17. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  18. Hydroxylated PBDEs induce developmental arrest in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was notmore » observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.« less

  19. In vitro metabolism studies of desoxy-methyltestosterone (DMT) and its five analogues, and in vivo metabolism of desoxy-vinyltestosterone (DVT) in horses.

    PubMed

    Kwok, Wai Him; Kwok, Karen Y; Leung, David K K; Leung, Gary N W; Wong, Colton H F; Wong, Jenny K Y; Wan, Terence S M

    2015-08-01

    The positive findings of norbolethone in 2002 and tetrahydrogestrinone in 2003 in human athlete samples confirmed that designer steroids were indeed being abused in human sports. In 2005, an addition to the family of designer steroids called 'Madol' [also known as desoxy-methyltestosterone (DMT)] was seized by government officials at the US-Canadian border. Two years later, a positive finding of DMT was reported in a mixed martial arts athlete's sample. It is not uncommon that doping agents used in human sports would likewise be abused in equine sports. Designer steroids would, therefore, pose a similar threat to the horseracing and equestrian communities. This paper describes the in vitro metabolism studies of DMT and five of its structural analogues with different substituents at the 17α position (RH, ethyl, vinyl, ethynyl and 2 H 3 -methyl). In addition, the in vivo metabolism of desoxy-vinyltestosterone (DVT) in horses will be presented. The in vitro studies revealed that the metabolic pathways of DMT and its analogues occurred predominantly in the A-ring by way of a combination of enone formation, hydroxylation and reduction. Additional biotransformation involving hydroxylation of the 17α-alkyl group was also observed for DMT and some of its analogues. The oral administration experiment revealed that DVT was extensively metabolised and the parent drug was not detected in urine. Two in vivo metabolites, derived respectively from (1) hydroxylation of the A-ring and (2) di-hydroxylation together with A-ring double-bond reduction, could be detected in urine up to a maximum of 46 h after administration. Another in vivo metabolite, derived from hydroxylation of the A-ring with additional double-bond reduction and di-hydroxylation of the 17α-vinyl group, could be detected in urine up to a maximum of 70 h post-administration. All in vivo metabolites were excreted mainly as glucuronides and were also detected in the in vitro studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry.

    PubMed

    Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian

    2014-04-01

    The process and the kinetics of the electrochemical oxidation of morin in an anhydrous electrolyte have been investigated using cyclic and differential pulse voltammetry. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the three aromatic rings. The oxidation of the 2',4'dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one-electron, one-proton irreversible reaction. The rate constant, electron transfer coefficient and diffusion coefficients involved in the electrochemical oxidation of morin were determined. The influence of the deprotonation of the ring B hydroxyl moiety is related to the electron/proton donating capacity of morin and to its radical scavenging antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification.

    PubMed

    Lai, Hai-Wang; Liu, Zai-Qun

    2014-06-23

    4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  3. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    PubMed

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  4. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli

    Tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react with the hydroxyl, formingmore » a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous C-O bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the monolayer maybe formed by the reduction of the monolayer, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. However, the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of -0.20 V (RHE), lower than that for the latter (-0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby, providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product. The work was supported in part by National Natural Sciences Foundation of China (Grant #21373148 and #21206117). The High Performance Computing Center of Tianjin University is acknowledged for providing services to the computing cluster. CC acknowledges the support of 24 China Scholarship Council (CSC). QG acknowledges the support of NSF-CBET program (Award no. CBET-1438440). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The computations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.« less

  5. Modelling the Interaction of Catecholamines with the α1A Adrenoceptor Towards a Ligand-induced Receptor Structure

    NASA Astrophysics Data System (ADS)

    Kinsella, Gemma K.; Rozas, Isabel; Watson, Graeme W.

    2005-06-01

    Adrenoceptors are members of the important G protein coupled receptor family for which the detailed mechanism of activation remains unclear. In this study, we have combined docking and molecular dynamics simulations to model the ligand induced effect on an homology derived human α1A adrenoceptor. Analysis of agonist/α1A adrenoceptor complex interactions focused on the role of the charged amine group, the aromatic ring, the N-methyl group of adrenaline, the beta hydroxyl group and the catechol meta and para hydroxyl groups of the catecholamines. The most critical interactions for the binding of the agonists are consistent with many earlier reports and our study suggests new residues possibly involved in the agonist-binding site, namely Thr-174 and Cys-176. We further observe a number of structural changes that occur upon agonist binding including a movement of TM-V away from TM-III and a change in the interactions of Asp-123 of the conserved DRY motif. This may cause Arg-124 to move out of the TM helical bundle and change the orientation of residues in IC-II and IC-III, allowing for increased affinity of coupling to the G-protein.

  6. Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN Surfaces: an angle-resolved X-ray photoelectron spectroscopy Study.

    PubMed

    Arranz, A; Palacio, C; García-Fresnadillo, D; Orellana, G; Navarro, A; Muñoz, E

    2008-08-19

    A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.

  7. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.

    PubMed

    Fenoll, L G; Rodríguez-López, J N; Varón, R; García-Ruiz, P A; García-Cánovas, F; Tudela, J

    2000-04-01

    The relationship between the structure and activity of meta- and para-hydroxylated monophenols was studied during their tyrosinase-catalysed hydroxylation and the rate-limiting steps of the reaction mechanism were identified. The para-hydroxylated substrates permit us to study the effect of a substituent (R) in the carbon-1 position (C-1) of the benzene ring on the nucleophilic attack step, while the meta group permits a similar study of the effect on the electrophilic attack step. Substrates with a -OCH3 group on C-1, as p-hydroxyanisol (4HA) and m-hydroxyanisol (3HA), or with a -CH2OH group, as p-hydroxybenzylalcohol (4HBA) and m-hydroxybenzylalcohol (3HBA), were used because the effect of the substituent (R) size was assumed to be similar. However, the electron-donating effect of the -OCH3 group means that the carbon-4 position (C-4) is favoured for nucleophilic attack (para-hydroxylated substrates) or for electrophilic attack (meta-hydroxylated substrates). The electron-attracting effect of the -CH2OH group has the opposite effect, hindering nucleophilic (para) or electrophilic (meta) attack of C-4. The experimental data point to differences between the maximum steady-state rate (V(M)Max) of the different substrates, the value of this parameter depends on the nucleophilic and electrophilic attack. However, differences are greatest in the Michaelis constants (K(M)m), with the meta-hydroxylated substrates having very large values. The catalytic efficiency k(M)cat/K(M)m is much greater for thepara-hydroxylated substrates although it varies greatly between one substrate and the other. However, it varies much less in the meta-hydroxylated substrates since this parameter describes the power of the nucleophilic attack, which is weaker in the meta OH. The large increase in the K(M)m of the meta-hydroxylated substrates might suggest that the phenolic OH takes part in substrate binding. Since this is a weaker nucleophil than the para-hydroxylated substrates, the binding constant decreases, leading to an increase in K(M)m. The catalytic efficiency of tyrosinase on a monophenol (para or meta) is directly related to the nucleophilic power of the oxygen of the phenolic OH. The oxidation step is not limiting since if this were the case, the para and meta substrates would have the same V(M)max. The small difference between the absolute values of V(M)max suggests that the rate constants of the nucleophilic and electrophilic attacks are on the same order of magnitude.

  8. Access to Diosgenyl Glycoconjugates via Gold(I)-Catalyzed Etherification of Diosgen-3-yl ortho-Hexynylbenzoate.

    PubMed

    Zhang, Li; Li, Linfeng; Bai, Shujin; Zhou, Xin; Wang, Peng; Li, Ming

    2016-12-02

    An efficient protocol for the synthesis of diverse diosgen-3-yl glycoconjugates, a class of novel synthetic analogs of natural saponins of biological significance, has been developed. The method relies on gold(I)-catalyzed etherification of diosgen-3-yl ortho-hexynylbenzoate with stoichiometric sugar alcohols to afford the corresponding glycoconjugates in 38%-99% yields. The reaction involves the preferential attack of hydroxyl groups to the C3 position of homoallylic carbocation intermediate and displays a broad substrate scope and a good functional group tolerance.

  9. Chemical Isotope Labeling LC-MS for High Coverage and Quantitative Profiling of the Hydroxyl Submetabolome in Metabolomics.

    PubMed

    Zhao, Shuang; Luo, Xian; Li, Liang

    2016-11-01

    A key step in metabolomics is to perform accurate relative quantification of the metabolomes in comparative samples with high coverage. Hydroxyl-containing metabolites are an important class of the metabolome with diverse structures and physical/chemical properties; however, many of them are difficult to detect with high sensitivity. We present a high-performance chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) technique for in-depth profiling of the hydroxyl submetabolome, which involves the use of acidic liquid-liquid extraction to enrich hydroxyl metabolites into ethyl acetate from an aqueous sample. After drying and then redissolving in acetonitrile, the metabolite extract is labeled using a base-activated 12 C- or 13 C-dansylation reaction. A fast step-gradient LC-UV method is used to determine the total concentration of labeled metabolites. On the basis of the concentration information, a 12 C-labeled individual sample is mixed with an equal mole amount of a 13 C-labeled pool or control for relative metabolite quantification. The 12 C-/ 13 C-labeled mixtures are individually analyzed by LC-MS, and the resultant peak pairs of labeled metabolites in MS are measured for relative quantification and metabolite identification. A standard library of 85 hydroxyl compounds containing MS, retention time, and MS/MS information was constructed for positive metabolite identification based on matches of two or all three of these parameters with those of an unknown. Using human urine as an example, we analyzed samples of 1:1 12 C-/ 13 C-labeled urine in triplicate with triplicate runs per sample and detected an average of 3759 ± 45 peak pairs or metabolites per run and 3538 ± 71 pairs per sample with 3093 pairs in common (n = 9). Out of the 3093 peak pairs, 2304 pairs (75%) could be positively or putatively identified based on metabolome database searches, including 20 pairs positively identified using the dansylated hydroxyl standards library. The majority of detected metabolites were those containing hydroxyl groups. This technique opens a new avenue for the detailed characterization of the hydroxyl submetabolome in metabolomics research.

  10. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    PubMed

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the distribution data derived from the simulations. The QM and MM energy profiles predict the same 2'-hydroxyl group orientation preferences. Finally, we demonstrate that the high energy of unfavorable and rarely sampled 2'-hydroxyl group orientations can be attributed to clashes between occupied orbitals.

  11. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA prodrug design. PMID:24328955

  12. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.

    PubMed Central

    Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J

    1987-01-01

    The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212

  13. Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis.

    PubMed

    Kong, Chuixing; Huang, Hezhou; Xue, Ying; Liu, Yiqi; Peng, Qiangqiang; Liu, Qi; Xu, Qin; Zhu, Qiaoyun; Yin, Ying; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2018-02-01

    Terreic acid is a potential anticancer drug as it inhibits Bruton's tyrosine kinase; however, its biosynthetic molecular steps remain unclear. In this work, the individual reactions of terreic acid biosynthesis were determined by stepwise pathway assembly in a heterologous host, Pichia pastoris, on the basis of previous knockout studies in a native host, Aspergillus terreus. Polyketide synthase AtX was found to catalyze the formation of partially reduced polyketide 6-methylsalicylic acid, followed by 3-methylcatechol synthesis by salicylate 1-monooxygenase AtA-mediated decarboxylative hydroxylation of 6-methylsalicylic acid. Our results show that cytochrome P450 monooxygenase AtE hydroxylates 3-methylcatechol, thus producing the next product, 3-methyl-1,2,4-benzenetriol. A smaller putative cytochrome P450 monooxygenase, AtG, assists with this step. Then, AtD causes epoxidation and hydroxyl oxidation of 3-methyl-1,2,4-benzenetriol and produces a compound terremutin, via which the previously unknown function of AtD was identified as cyclooxygenation. The final step involves an oxidation reaction of a hydroxyl group by a glucose-methanol-choline oxidoreductase, AtC, which leads to the final product: terreic acid. Functions of AtD and AtG were determined for the first time. All the genes were reanalyzed and all intermediates and final products were isolated and identified. Our model fully defines the molecular steps and corrects previous results from the literature.

  14. Dissociative adsorption of a multifunctional compound on a semiconductor surface: a theoretical study of the adsorption of hydroxylamine on Ge(100).

    PubMed

    Park, Hyunkyung; Kim, Do Hwan

    2018-06-06

    The adsorption behavior of hydroxylamine on a Ge(100) surface was investigated using density functional theory (DFT) calculations. These calculations predicted that hydroxylamine, a multifunctional compound consisting of a hydroxyl group and an amine group, would initially become adsorbed through N-dative bonding, or alternatively through the hydroxyl group via O-H dissociative adsorption. An N-O dissociative reaction may also occur, mainly via N-dative molecular adsorption, and the N-O dissociative product was calculated to be the most stable of all the possible adsorption structures. The calculations furthermore indicated the formation of the N-O dissociative product from the N-dative structure to be nearly barrierless and the dissociated hydroxyl and amine groups to be bonded to two Ge atoms of adjacent Ge dimers. Simulated STM images suggested the change in electron density that would occur upon adsorption of hydroxylamine in various adsorption configurations, and specifically indicated the N-O dissociative product to have greater electron density around the amine groups, and the hydroxyl groups to mainly contribute electron density to the unoccupied electronic states.

  15. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  16. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-06

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  18. Damage mechanism of hydroxyl radicals toward adenine—thymine base pair

    NASA Astrophysics Data System (ADS)

    Tan, Rong-Ri; Wang, Dong-Qi; Zhang, Feng-Shou

    2014-02-01

    The adenine—thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 < HN61 < HN62 < H2 < H8.

  19. Characterization and Neutralization of Recovered Lewisite Munitions

    DTIC Science & Technology

    2006-12-01

    chlorine being rated as 1.0.51 Oxidative Species Relative Oxidizing Strength* Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permnanganate ion is strongly attracted to the electrons

  20. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    NASA Astrophysics Data System (ADS)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  1. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  2. Hydrogen-bond rich ionic liquids with hydroxyl cationic tails

    NASA Astrophysics Data System (ADS)

    Deng, Li; Shi, Rui; Wang, Yanting; Ou-Yang, Zhong-Can

    2013-02-01

    To investigate if the amphiphilic feature exhibited in ionic liquids (ILs) with nonpolar cationic tails still exists in ILs with polar tails, by performing molecular dynamics simulations for 1-(8-hydroxyoctyl)-3-methyl-imidazolium nitrate (COH) and 1-octyl-3-methyl-imidazolium nitrate (C8), we found that, in COH, cationic tail groups can no longer aggregate to form separated nonpolar tail domains, instead hydroxyl groups form a rich number of hydrogen bonds with other groups, indicating that the hydroxyl substituent changes the IL system from an amphiphilic liquid to a polar liquid. Due to the large amount of hydrogen bonds, COH has slower dynamics than C8.

  3. Spectroscopic investigation of phenolic groups ionization in the vipoxin neurotoxic phospholipase A 2: comparison with the X-ray structure in the region of the tyrosyl residues

    NASA Astrophysics Data System (ADS)

    Georgieva, Dessislava Nikolova; Genov, Nicolay; Rajashankar, Kanagalaghatta R.; Aleksiev, Boris; Betzel, Christian

    1998-12-01

    The neurotoxin vipoxin is the major lethal component of the venom of Vipera ammodites meridionalis, the most toxic snake in Europe. It is a complex between a toxic phospholipase A 2 (PLA 2) and a non-toxic protein inhibitor (Inh). Tyrosyl residues are involved in the catalytic site (Tyr 52 and 73) and in the substrate binding (Tyr 22). Spectroscopic studies demonstrated differences in the ionization behavior of the various phenolic hydroxyl groups in the toxic PLA 2. The tyrosyl side chains of the enzyme can be classified into three groups: (a) three phenolic hydroxyls are accessible to the solvent and titrate normally, with a p Keff=10.45; (b) three residues are partially 'buried' and participate in hydrogen bonds with neighboring functional groups. They titrate anomalously with a p Keff=12.17; (c) two tyrosines with a p Keff=13.23 are deeply 'buried' in the hydrophobic interior of PLA 2. They became accessible to the titrating agent only after alkaline denaturation of the protein molecule. The spectroscopic data are related to the X-ray structure of the vipoxin PLA 2. The refined model was investigated in the region of the tyrosyl side chains. The accessible surface area of each tyrosyl residue and each phenolic hydroxyl group was calculated. A good correlation between the spectrophotometric and the crystallographic data was observed. The ionization behavior of the phenolic groups is explained by peculiarities of the protein three-dimensional structure and the participation of tyrosines in the catalytic site hydrogen bond network. Attempts are made to assign the calculated p Keff values to individual residues. The high degree of 'exposure' on the protein surface of Tyr 22 and 75 is probably important for their function as parts of the substrate binding and pharmacological sites.

  4. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  5. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    PubMed

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  6. Toward an Inexpensive Test for Vitamin D Levels in Blood

    DTIC Science & Technology

    2013-10-01

    involved in vitamin D metabolism) was designed. The enzyme was expressed in E. coli and the activity of this enzyme was verified spectrophotometrically ...fractions were collected for dialysis into buffer C. 1.3. Spectrophotometric activity assay for CYP27B1 The hydroxylation of 25(OH)D to 1,25(OH...for required hydroxylation.6-8 So, the rate of 25(OH)D hydroxylation by CYP27B1 can be monitored spectrophotometrically by monitoring the rate of NADPH

  7. Possible mechanism of structural incorporation of Al into diatomite during the deposition process I. Via a condensation reaction of hydroxyl groups.

    PubMed

    Liu, Dong; Yu, Wenbin; Deng, Liangliang; Yuan, Weiwei; Ma, Lingya; Yuan, Peng; Du, Peixin; He, Hongping

    2016-01-01

    The structural incorporation of aluminium (Al) into diatomite is investigated by preparing several Al-diatomite composites by loading an Al precursor, hydroxyl aluminum polymer (Al13), onto the surface of diatomite and heating at various temperatures. The results indicate that Al was incorporated and implanted into the structure of diatomite by the condensation reaction of the hydroxyl groups of Al13 and diatomite, and the Si-O-Al(OH) groups were formed during the condensation reaction. Al incorporation by the condensation reaction of hydroxyl groups of Al13 with single silanols of diatomite occurred more readily than that with geminal silanols. The Al incorporation increased solid acidity of diatomite after Al incorporation. The acidity improvement was various for different types of acid sites, depending on the preparation temperature of the Al-incorporated diatomite. Both Brønsted and Lewis acid sites increased greatly after heating at 250 and 350 °C, but only L acid sites significantly improved after heating at 500 °C. These results demonstrate that the structural incorporation of Al(3+) ions into diatomite can occur by the condensation reaction of the hydroxyl groups of the Al precursors and diatomite. Moreover, the rich solid acid sites of Al-incorporated diatomite show its promising application as a solid acid catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-15

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was foundmore » in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.« less

  9. The size of the hydroxyl group and its contribution to the affinity of atropine for muscarine-sensitive acetylcholine receptors.

    PubMed Central

    Barlow, R. B.; Ramtoola, S.

    1980-01-01

    1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742

  10. Materials for use as proton conducting membranes for fuel cells

    DOEpatents

    Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA

    2009-01-06

    A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.

  11. Metabolism of mequindox in liver microsomes of rats, chicken and pigs.

    PubMed

    Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Yuan, Zong-Hui

    2010-04-15

    Mequindox, 3-methyl-2-quinoxalinacetyl-1,4-dioxide, is a quinoxaline-N,N-dioxide used in veterinary medicine as a antibacterial in China. To gain an understanding of the interspecies differences in the metabolism of mequindox, comparative metabolite profiles were qualitatively and quantitatively carried out for the first time in rat, chicken and pig liver microsomes by high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. A total of 14 metabolites were characterized based on their accurate MS(2) spectra and known structure of mequindox. The in vitro metabolic pathways of mequindox in three species were proposed as N-->O group reduction, carbonyl reduction, N-->O group reduction followed by carbonyl reduction or methyl mono-hydroxylation. A metabolic pathway involving N-->O group reduction followed by acetyl group mono-hydroxylation in only chicken was also proposed. There was also quantitative species difference for mequindox metabolism in three species. 1-Desoxymequindox was the main metabolite in all species, but otherwise there were some qualitative interspecies differences in mequindox major metabolites. This work has revealed biotransformation characteristics of mequindox among different species, and moreover will further facilitate the explanations of the biological activities of mequindox in animals. 2010 John Wiley & Sons, Ltd.

  12. Synthetic route to meso-tetra hydrocarbyl or substituted hydrocarbyl porphyrins and derivatives

    DOEpatents

    Wijesekera, T.P.; Wagner, R.W.

    1993-08-31

    The hydroxyl group in a pyrrolic compound having in the 2-position thereof a group having the formula R(OH)CH-R is hydrocarbyl or substituted hydrocarbyl, is replaced by a group, for example a p-nitrobenzoate group, having better leaving properties than those of hydroxyl for a subsequent self-condensation and cyclization of the pyrrolic compound to form a meso-hydrocarbyl or meso-substituted hydrocarbyl porphyrin.

  13. Synthetic route to meso-tetra hydrocarbyl or substituted hydrocarbyl porphyrins and derivatives

    DOEpatents

    Wijesekera, Tilak P.; Wagner, Richard W.

    1993-01-01

    The hydroxyl group in a pyrrolic compound having in the 2-position thereof a group having the formula R(OH)CH--R is hydrocarbyl or substituted hydrocarbyl, is replaced by a group, for example a p-nitrobenzoate group, having better leaving properties than those of hydroxyl for a subsequent self-condensation and cyclization of the pyrrolic compound to form a meso-hydrocarbyl or meso-substituted hydrocarbyl porphyrin.

  14. Characterization and Neutralization of Arsenical-Based WWII Era Chemical Munition Fills

    DTIC Science & Technology

    2006-08-01

    Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen Peroxide 1.31 Perhydroxyl Radical 1.25 Permanganate 1.24 Hypobromous Acid 1.17 Chlorine...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permanganate ion is strongly attracted to the

  15. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.

  16. Intramolecular interactions in the polar headgroup of sphingosine: serinol† †Electronic supplementary information (ESI) available: Ab initio parameters for serinol conformers within 1000 cm–1, measured transition frequencies, typical a-type transition for conformer aa1, interconversion barriers and possible tunnelling pathways. See DOI: 10.1039/c5cc09423b Click here for additional data file.

    PubMed Central

    Loru, Donatella; Peña, Isabel; Alonso, José L.

    2016-01-01

    The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum. PMID:26727395

  17. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes.

    PubMed

    Zhu, Zechen; Luo, Jie; Zhao, Xiaodan

    2017-09-15

    A new and efficient method for diaryl selenide catalyzed vicinal CF 3 S hydroxylation of 1,1-multisubstitued alkenes has been developed. Various trifluoromethylthiolated tertiary alcohols could be readily synthesized under mild conditions. This method is also effective for the intramolecular cyclization of alkenes tethered by carboxylic acid, hydroxy, sulfamide, or ester groups and is associated with the introduction of a CF 3 S group. Mechanistic studies have revealed that the pathway involves a redox cycle between Se(II) and Se(IV) and Lewis basic selenium catalysis.

  18. Retention and release of hexavalent and trivalent chromium by chitosan, olive stone activated carbon, and their blend.

    PubMed

    Ba, Seydou; Alagui, Abdelhakim; Hajjaji, Mohamed

    2018-05-07

    Shrimp shells and waste of olive stones were used as feedstock for the preparation of chitosan and activated carbon. The adsorption of Cr VI and Cr III species in aqueous solution by the materials prepared and their blend were studied by using the well-known kinetic and isotherm models, Fourier transform infrared spectroscopy and scanning electron microscope. It was demonstrated that the rates of adsorption were controlled by diffusion inside particles and throughout the liquid film, and adsorption occurred spontaneously (- 26 < ∆G° < - 15 kJ/mol) in the range of 298-333 K, except for that involving Cr III species and activated carbon. The maximum amounts of Cr species retained by the composite (146 mg of Cr VI /g and 33 mg of Cr III /g at 298 K) were three times greater than those of the basic constituents. Adsorption was markedly affected by temperature and pH, and Cr VI species were substantially desorbed in acid mediums, particularly in acetic acid solution. The recovery of Cr III species varied according to the adsorbent and the solution used. The immobilization of Cr VI species (HCrO 4 - and CrO 4 2- ) and Cr III species (Cr(OH) 2 + and Cr 3 (OH) 4 5+ ) by chitosan was accomplished by means of amine moieties and hydroxyls of D-glucosamine units of the biopolymer. The adsorption of Cr VI species on activated carbon involved π electrons of aromatic rings as well as oxygenated sites (C-OH, C=O, C-O-C). In such a condition, Cr VI was partially reduced into Cr III . For the composite, the amino functional groups of chitosan and hydroxyls of both constituents were implicated in the linkage of the biopolymer and activated carbon, and the C-O-H and C-O-C functional groups of chitosan were involved in the retention of Cr VI species. For Cr III species, adsorption occurred preferentially on hydroxyls of the components, and consequently, the chains of the biopolymer recovered some flexibility.

  19. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view.

    PubMed

    Marquês, Joaquim Trigo; Susana Marinho, H; de Almeida, Rodrigo Freire Martins

    2018-05-07

    This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature, with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as they can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants. Copyright © 2017. Published by Elsevier Ltd.

  20. Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.

    PubMed

    Idowu, O R; Peggins, J O; Brewer, T G

    1995-01-01

    Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chunya; Skelton, Adam A.; Chen, Mingjun

    Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg 2+, Ca 2+, or Sr 2+) or monovalent (Na +, K +, or Rb +) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na + > K + >more » Rb + shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr 2+ > Ca 2+ > Mg 2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO – group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.« less

  2. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-Dihydropyridin-4-one catalyzed by non-P450 enzymes.

    PubMed

    Meng, Jian; Zhong, Dafang; Li, Liang; Yuan, Zhengyu; Yuan, Hong; Xie, Cen; Zhou, Jialan; Li, Chen; Gordeev, Mikhail Fedorovich; Liu, Jinqian; Chen, Xiaoyan

    2015-05-01

    MRX-I is an analog of linezolid containing a 2,3-dihydropyridin-4-one (DHPO) ring rather than a morpholine ring. Our objectives were to characterize the major metabolic pathways of MRX-I in humans and clarify the mechanism underlying the oxidative ring opening of DHPO. After an oral dose of MRX-I (600 mg), nine metabolites were identified in humans. The principal metabolic pathway proposed involved the DHPO ring opening, generating the main metabolites in the plasma and urine: the hydroxyethyl amino propionic acid metabolite MRX445-1 and the carboxymethyl amino propionic acid metabolite MRX459. An in vitro phenotyping study demonstrated that multiple non-cytochrome P450 enzymes are involved in the formation of MRX445-1 and MRX459, including flavin-containing monooxygenase 5, short-chain dehydrogenase/reductase, aldehyde ketone reductase, and aldehyde dehydrogenase (ALDH). H2 (18)O experiments revealed that two (18)O atoms are incorporated into MRX445-1, one in the carboxyethyl group and the other in the hydroxyl group, and three (18)O atoms are incorporated into MRX459, two in the carboxymethyl group and one in the hydroxyl group. Based on these results, the mechanism proposed for the DHPO ring opening involves the metabolism of MRX-I via FMO5-mediated Baeyer-Villiger oxidation to an enol lactone, hydrolysis to an enol, and enol-aldehyde tautomerism to an aldehyde. The aldehyde is reduced by short-chain dehydrogenase/reductase, aldehyde ketone reductase, ALDH to MRX445-1, or oxidized by ALDH to MRX459. Our study suggests that few clinical adverse drug-drug interactions should be anticipated between MRX-I and cytochrome P450 inhibitors or inducers. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Improved synthesis of 3 alpha, 7 alpha, 12 alpha, 24 = xi-tetrahydroxy-5 beta-cholestan-26-oic acid.

    PubMed

    Batta, A K; Tint, G S; Dayal, B; Shefer, S; Salen, G

    1982-06-01

    This paper describes three simple and short methods for the conversion of cholic acid into cholylaldehyde with protected hydroxyl groups. The first method involves lithium aluminum hydride reduction of the tetrahydropyranyl ether of methyl cholate and oxidation of the resulting primary alcohol with pyridinium chlorochromate. The second method employs diborane for the reduction of the -COOH group to the -CH2OH group, while the third method involves the reduction of 3 alpha, 7 alpha, 12 alpha-triformyloxy-5 beta-cholan-24-oic acid (as the acid chloride) directly into 3 alpha, 7 alpha, 12 alpha-triformyloxy-5 beta-cholan-24-al with TMA-ferride (tetramethylammonium hydridoirontetracarbonyl). The aldehyde obtained by any of the above methods underwent smooth Reformatsky reaction with ethyl alpha-bromopropionate to yield 3 alpha, 7 alpha, 12 alpha, 24 xi-tetrahydroxy-5 beta-cholestan-26-oic acid.

  4. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  5. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  6. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    PubMed

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  7. Functional characterization of O-methyltransferases used to catalyse site-specific methylation in the post-tailoring steps of pradimicin biosynthesis.

    PubMed

    Han, J W; Ng, B G; Sohng, J K; Yoon, Y J; Choi, G J; Kim, B S

    2018-01-01

    To identify the roles of the two O-methyltransferase homologous genes pdmF and pdmT in the pradimicin biosynthetic gene cluster of Actinomadura hibisca P157-2. Pradimicins are pentangular polyphenol antibiotics synthesized by bacterial type II polyketide synthases (PKSs) and tailoring enzymes. Pradimicins are naturally derivatized by combinatorial O-methylation at two positions (i.e., 7-OH and 11-OH) of the benzo[α]naphthacenequinone structure. PdmF and PdmT null mutants (PFKO and PTKO) were generated. PFKO produced the 11-O-demethyl shunt metabolites 11-O-demethylpradimicinone II (1), 11-O-demethyl-7-methoxypradimicinone II (2), 11-O-demethylpradimicinone I (3) and 11-O-demethylpradimicin A (4), while PTKO generated the 7-O-demethyl derivatives pradimicinone II (5) and 7-hydroxypradimicin A (6). Pradimicinones 1, 2, 3, and 5 were fed to a heterologous host Escherichia coli harbouring expression plasmid pET-22b::pdmF or pET-28a::pdmT. PdmF catalysed 11-O-methylation of pradimicinones 1, 2, and 3 regardless of O-methylation at the C-7 position, while PdmT was unable to catalyse 7-O-methylation when the C-11 hydroxyl group was methylated (5). PdmF and PdmT were involved in 11-O- and 7-O-methylations of the benzo[α]naphthacenequinone moiety of pradimicin, respectively. Methylation of the C-7 hydroxyl group precedes methylation of the C-11 hydroxyl group in pradimicin biosynthesis. This is the first reported demonstration of the functions of PdmF and PdmT for regiospecific O-methylation, which contributes to better understanding of the post-PKS modifications in pradimicin biosynthesis as well as to rational engineering of the pradimicin biosynthetic machinery. © 2017 The Society for Applied Microbiology.

  8. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    PubMed

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. In vivo involvement of cytochrome P450 4A family in the oxidative metabolism of the lipid peroxidation product trans-4-hydroxy-2-nonenal, using PPARalpha-deficient mice.

    PubMed

    Guéraud, F; Alary, J; Costet, P; Debrauwer, L; Dolo, L; Pineau, T; Paris, A

    1999-01-01

    Trans-4-hydroxy-2-nonenal (HNE) is a potent cytotoxic and genotoxic compound originating from the peroxidation of n-6 polyunsaturated fatty acids. Its metabolism has been previously studied in the rat (Alary et al. 1995. Chem. Res. Toxicol., 8: 35-39). In addition to major urinary mercapturic derivatives, some polar urinary metabolites were isolated and could correspond to hydroxylated compounds. 4-Hydroxynonenoic acid (HNA), resulting from the oxidation of the HNE carbonyl group, is a medium chain fatty acid and its omega-hydroxylation might be hypothesized. Therefore, the involvement of the CYP 4A family isoenzymes in the metabolism of [3H]HNE has been investigated in vivo using inducer treatments (fibrates) in wild-type or in peroxisome proliferator-activated receptor alpha (PPARalpha)-deficient mice. In wild-type mice, but not in PPARalpha (-/-) mice, fibrate treatments resulted in an increase of two urinary metabolites characterized, after HPLC purifications and mass spectrometry analyses, as the omega-hydroxylated metabolite of HNA, i.e., 4,9-dihydroxy-2-nonenoic acid, and its oxidized form, 4-hydroxy-2-nonene-1,9-dicarboxylic acid. The formation of the latter is correlated accurately to laurate hydroxylase activity studied concurrently in microsomes prepared from the liver of these animals. Basal levels of these two metabolites were measured in urine of normal and PPARalpha-deficient mice. These results are in accord with an implication of the P450 4A family in the extended oxidative metabolism of 4-HNE.

  10. Implications of the fluorescence for the conformational analysis of polymeric profisetinidins and procyanidins

    Treesearch

    Carin A. Helfer; Joo-Sang Sun; Mark A. Matties; Wayne L. Mattice; Richard W. Hemingway; Jan P. Steynberg; Lisa A. Kelly

    1995-01-01

    The common monomeric units in the polymeric proeyanidins are catechin and epicatechin, which have a hydroxyl group at C(5). This hydroxyl group is absent in the profisetinidins. The fluorescence properties have been characterized for the profisetinidin monomer and dimers, and compared with previous results for the procyanidins. There is a measurable heterogeneity in...

  11. Implications of the fluorescence for the conformational analysis of polymeric profisentinidins and procyanidins

    Treesearch

    Carin A. Heifer; Joo-Sang Sun; Mark A. Matties; Wayne L. Mattice; Richard W. Hemingway; Jan P. Steynberg; Lisa A. Kelly

    1995-01-01

    The common monomeric units in the polymeric procyanidins are catechin and epicatechin, which have a hydroxyl group at C(5). this hydroxyl group is absent in the profisetinidins. The fluorescence properties have been characterized for the profisentinidin monomer and dimers, and compared with previous results for the procyanidins. There is a measurable heterogeneity in...

  12. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.

  13. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders.

    PubMed

    Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André

    2012-02-14

    Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.

  14. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts.

    PubMed

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    To evaluate the structure-activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system.

  15. Regioselective Benzoylation of Diols and Carbohydrates by Catalytic Amounts of Organobase.

    PubMed

    Lu, Yuchao; Hou, Chenxi; Ren, Jingli; Xin, Xiaoting; Xu, Hengfu; Pei, Yuxin; Dong, Hai; Pei, Zhichao

    2016-05-17

    A novel metal-free organobase-catalyzed regioselective benzoylation of diols and carbohydrates has been developed. Treatment of diol and carbohydrate substrates with 1.1 equiv. of 1-benzoylimidazole and 0.2 equiv. of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in MeCN under mild conditions resulted in highly regioselective benzoylation for the primary hydroxyl group. Importantly, compared to most commonly used protecting bulky groups for primary hydroxyl groups, the benzoyl protective group offers a new protection strategy.

  16. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies.

    PubMed

    Bors, W; Michel, C

    1999-12-01

    Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.

  18. Screening for strains with 11α-hydroxylase activity for 17α-hydroxy progesterone biotransformation.

    PubMed

    Gao, Qian; Qiao, Yuqian; Shen, Yanbing; Wang, Min; Wang, Xibo; Liu, Yang

    2017-08-01

    Various corticosteroids are prepared by using 11α,17α-diOH-progesterone (11α,17α-diOH-PROG) as an important intermediate and raw material. Hence, strains that can improve the yields of 11α,17α-diOH-PROG should be screened. Cunninghamella elegans CICC40250 was singled out from five common 11α hydroxylation strains. The reaction parameters of 11α,17α-diOH-PROG production were also investigated. C. elegans CICC40250 could efficiently catalyze the hydroxylation of 17α-hydroxy progesterone (17α-OH-PROG) at C-11α position. This strain could also effectively convert 11α,17α-diOH-PROG at high substrate concentrations (up to 30g/L). After the coenzyme precursor glucose was added, the rate of 11α,17α-diOH-PROG formation reached 84.2%, which was 11.4% higher than that of the control group. Our study established a simple and feasible mechanism to increase 11α,17α-diOH-PROG production levels. This mechanism involves C. elegans CICC40250 that can be efficiently applied to induce the biotransformation of 17α-OH-PROG with a hydroxylation biocatalytic ability. Copyright © 2017. Published by Elsevier Inc.

  19. Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors.

    PubMed

    Ma, Ming; Li, Feng; Yuan, Zhe-fan; Zhuo, Ren-xi

    2010-07-01

    In this study poly(aminoethyl methacrylate) (PAEMA), poly(3-amino-2-hydroxypropyl methacrylate) (PAHPMA), poly(2-(2-aminoethylamino)ethyl methacrylate) (PAEAEMA) and poly(3-(2-aminoethylamino) 2-hydroxypropyl methacrylate) (PAEAHPMA) were synthesized using atom transfer radical polymerization to evaluate the effect of hydroxyl groups on the relative properties of cationic polymeric gene vectors. The results of heparin displacement assays showed that PAHPMA possessed a stronger binding capacity than PAEMA. PAHPMA/DNA complexes and PAEAHPMA/DNA complexes had lower zeta potentials than those of PAEMA and PAEAEMA. MTT assay results indicated that PAHPMA and PAEAHPMA exhibited obviously lower cytotoxicities than PAEMA and PAEAEMA. Subsequently, in vitro gene transfection studies in 293T cells without serum showed that PAHPMA exhibited a lower transfection efficiency than PAEMA and PAEAHPMA/DNA complexes possessed a similar transfection efficiency to PAEAEMA/DNA complexes. Moreover, PAHPMA and PAEAHPMA retained similar transfection efficiencies in DMEM with 10% serum, but PAEMA and PAEAEMA showed slightly lower transfection efficiencies than in the absence of serum. The reason for these phenomena might be attributed to the introduction of hydroxyl groups into PAHPMA and PAEAHPMA, i.e. the existence of hydroxyl groups might increase the binding capacity to DNA and at the same time decrease the surface charge of the polymer/DNA complexes due to the formation of hydrogen bonds between the polymers and DNA. Therefore, a lower zeta potential and stronger binding ability may result in a lower gene transfection efficiency. This effect of hydroxyl groups decreased with increasing amino group density on the polymer. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant.

    PubMed

    Jin, Pengkang; Song, Jina; Wang, Xiaochang C; Jin, Xin

    2018-02-01

    In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral pH. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at pH5. At pH5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation. Meanwhile, at pH7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH) 3 . Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH>COO - >NH deformation of amide II>aliphatic hydroxyl COH at pH5, and COO - >aliphatic hydroxyl COH at pH7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants. Copyright © 2017. Published by Elsevier B.V.

  1. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  2. Switchable nanoassembly from an azobenzene-containing dye.

    PubMed

    Wang, Jing; Ha, Chang-Sik

    2011-07-01

    In this work, we investigated optical properties and the morphology of the amphiphilic azobenzene dye 1 containing hydroxyl azobenzene and C10 alkyl chains. Since the hydroxyl group on 1 has a pKa of 9.38, the deprotonation of the hydroxyl group occurs at pH > pKa (9.38) and thus the 1 nanoparticles are negatively charged. The deprotonated hydroxyl group is hydrophilic relative to the long alkyl chain that is hydrophobic, while the hydrophobic and hydrophilic parts are connected by covalent bonds. When such an azobenzene molecule 1 with both hydrophobic and hydrophilic groups exists in solution, "self-aggregation" may occur due to the hydrophobic interaction between the long alkyl chains. The scattered morphology at pH 7.0 (neutral state) and the aggregated morphology at pH 10.5 (anionic state) of 1 were demostrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM) images. Formation of supramolecular aggregation-induced vesicular-like structures are highly interesting due to the ability to respond to external triggers, pH. The pH value can be reversed by adding acid or base to the system, that is, switching the aggregation "on" and "off" can be repeated.

  3. Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.

    PubMed Central

    Fu, D J; McLaughlin, L W

    1992-01-01

    Eight modified ribozymes of 19 residues have been prepared with individual purine amino or hydroxyl groups excised. The modified ribozymes were chemically synthesized with the substitution of a single 2'-deoxyadenosine, 2'-deoxyguanosine, inosine, or purine riboside for residues G10, A11, G13, or A14. Five of the modified ribozymes cleaved the 24-mer substrate with little change in rate as monitored by simple first-order kinetics. However, deletion of the 2-amino group at G10 (replacement with inosine) or deletion of either of the 2'-hydroxyls at G10 or G13 (replacement with 2'-deoxyguanosine) resulted in ribozymes with a drastic decrease in cleavage efficiency. Increasing the concentration of the Mg2+ cofactor from 10 mM to 50 mM significantly enhanced cleavage efficiency by these three derivatives. Steady-state kinetic assays for these three ribozymes indicated that the modifications result in both an increase in Km and a decrease in kcat. These results suggest that the exocyclic amino group at-G10 and the hydroxyls at G10 and G13 are important both for ribozyme-substrate binding and for the Mg(2+)-catalyzed cleavage reaction. PMID:1570323

  4. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    NASA Astrophysics Data System (ADS)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  5. Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis.

    PubMed

    Asare, George A; Bronz, Michelle; Naidoo, Vivash; Kew, Michael C

    2008-12-05

    Hereditary hemochromatosis (HH) and dietary iron overload are the main iron-loading diseases. Fibrosis, cirrhosis and hepatocellular carcinoma (HCC) are complications to HH and dietary iron overload possibly influenced by co-factors. Alcohol may be one such factor. The aim therefore was to determine the extent of synergistic interaction between free hepatic iron and alcohol, complicating dietary iron overload in HCC pathogenesis. Four groups of 20 Wistar albino rats were used: group 1 (C) was fed the chow diet; group 2 (Fe) was supplemented with 0.75% ferrocene iron; group 3 (Fe+Al), 0.75% iron and 7% ethanol; and group 4, 7% ethanol (Al) for 12 months. Iron profile, superoxide/nitrite free radicals, lipid peroxidation (LPO)/8-isoprostane (8-IP), 8-hydroxydeoxyguanosine (8-OHdG), oxidative lipid/DNA damage immunohistochemistry, transaminases (AST/ALT) and Ames mutagenesis tests were performed. Significant differences were observed in the Fe+Al group for LPO, 8-IP, AST and ALT (p<0.001, 0.001, 0.001 and 0.001, respectively) compared to other groups. A three-fold synergistic interaction was observed for the same parameters. Furthermore, significant differences of p<0.05 and 0.001 were observed for 8-OHdG and mutagenesis, respectively, with an additive synergy in the Fe+Al group. ALT/8-OHdG and ALT/mutagenesis correlated positively (p<0.04 and 0.008, respectively). The immunohistochemistry revealed iron/alcohol multiplicative synergism with hydroxyl radical involvement. Mutagenic effects of iron and alcohol are synergistically multiplicative implicating hydroxyl free radicals in hepatocarcingenesis.

  6. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  7. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  8. Biosynthesis of Costunolide, Dihydrocostunolide, and Leucodin. Demonstration of Cytochrome P450-Catalyzed Formation of the Lactone Ring Present in Sesquiterpene Lactones of Chicory

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J.

    2002-01-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme. PMID:12011356

  9. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    PubMed

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  10. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy

    PubMed Central

    Wang, Y. F.; Singh, Shashi B.; Limaye, Mukta V.; Shao, Y. C.; Hsieh, S. H.; Chen, L. Y.; Hsueh, H. C.; Wang, H. T.; Chiou, J. W.; Yeh, Y. C.; Chen, C. W.; Chen, C. H.; Ray, Sekhar C.; Wang, J.; Pong, W. F.; Takagi, Y.; Ohigashi, T.; Yokoyama, T.; Kosugi, N.

    2015-01-01

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets. PMID:26481557

  11. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory.

    PubMed

    de Kraker, Jan-Willem; Franssen, Maurice C R; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J

    2002-05-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme.

  12. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  13. ROLE OF THE PHOTO-FENTON REACTION IN THE PRODUCTION OF HYDROXYL RADICALS AND PHOTOBLEACHING OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...

  14. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts

    PubMed Central

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    Aim: To evaluate the structure–activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Materials & methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Results & conclusion: Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system. PMID:26107486

  15. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45.

    PubMed Central

    Lendenmann, U; Spain, J C

    1996-01-01

    Most bacterial pathways for the degradation of aromatic compounds involve introduction of two hydroxyl groups either ortho or para to each other. Ring fission then occurs at the bond adjacent to one of the hydroxyl groups. In contrast, 2-aminophenol is cleaved to 2-aminomuconic acid semialdehyde in the nitrobenzene-degrading strain Pseudomonas pseudoalcaligenes JS45. To examine the relationship between this enzyme and other dioxygenases, 2-aminophenol 1,6-dioxygenase has been purified by ethanol precipitation, gel filtration, and ion exchange chromatography. The molecular mass determined by gel filtration was 140,000 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two subunits of 35,000 and 39,000 Da, which suggested an alpha2beta2 subunit structure. Studies with inhibitors indicated that ferrous iron was the sole cofactor. The Km values for 2-aminophenol and oxygen were 4.2 and 710 microM, respectively. The enzyme catalyzed the oxidation of catechol, 6-amino-m-cresol, 2-amino-m-cresol, and 2-amino-4-chlorophenol. 3-Hydroxyanthranilate, protocatechuate, gentisate, and 3- and 4-methylcatechol were not substrates. The substrate range and the subunit structure are unique among those of the known ring cleavage dioxygenases. PMID:8892823

  16. Specific intermolecular interactions of conserved water molecules with amino acids in the Galectin-1 carbohydrate recognition domain

    NASA Astrophysics Data System (ADS)

    Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.

    2010-08-01

    Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.

  17. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process.

    PubMed

    Cano, María Emilia; Varela, Oscar; García-Moreno, María Isabel; García Fernández, José Manuel; Kovensky, José; Uhrig, María Laura

    2017-04-18

    The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC 50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  19. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M.; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H.; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-01-01

    Aims Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein–protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. Methods and results We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. Conclusions This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing. PMID:27095734

  20. One-shot preparation of an inherently chiral trifunctional calix[4]arene from an easily available cone-triformylcalix[4]arene.

    PubMed

    Ciaccia, Maria; Tosi, Irene; Cacciapaglia, Roberta; Casnati, Alessandro; Baldini, Laura; Di Stefano, Stefano

    2013-06-14

    Via selective 1,3-distal intramolecular Cannizzaro disproportionation of an easily available cone-triformylcalix[4]arene, an inherently chiral trifunctional cone-calix[4]arene derivative has been prepared. The presence of three different functional groups (-CH2OH, -CHO and -COOH) at the upper rim of the calixarene scaffold makes this compound a versatile intermediate for the development of multifunctional devices. Interesting chiral discrimination of serine derivatives has been observed, presumably thanks to a multipoint-interaction involving the reversible imine bond formation and the hydrogen bonding of the hydroxyl group of the amino acid side-chain with the upper rim functional groups. Consistently, chiral discrimination was not observed with alanine and valine derivatives, lacking hydrogen bonding groups on the side-chain.

  1. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism.

    PubMed

    Luanpitpong, Sudjit; Nimmannit, Ubonthip; Chanvorachote, Pithi; Leonard, Stephen S; Pongrakhananon, Varisa; Wang, Liying; Rojanasakul, Yon

    2011-08-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.

  2. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Johnston, James C. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Fabrizio, Eve F. (Inventor)

    2012-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  3. Highly porous and mechanically strong ceramic oxide aerogels

    NASA Technical Reports Server (NTRS)

    Fabrizio, Eve F. (Inventor); Leventis, Nicholas (Inventor); Ilhan, Ulvi F. (Inventor); Meador, Mary Ann B. (Inventor); Johnston, James C. (Inventor)

    2010-01-01

    Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.

  4. Diffusion of hydroxyl ions from calcium hydroxide and Aloe vera pastes.

    PubMed

    Batista, Victor Eduardo de Souza; Olian, Douglas Dáquila; Mori, Graziela Garrido

    2014-01-01

    This study evaluated the diffusion through the dentinal tubules of hydroxyl ions from different calcium hydroxide (CH) pastes containing Aloe vera. Sixty single-rooted bovine teeth were used. The tooth crowns were removed, the root canals were instrumented and the specimens were assigned to 4 groups (n=15) according to the intracanal medication: Group CH/S - CH powder and saline paste; Group CH/P - CH powder and propylene glycol paste; Group CH/A - calcium hydroxide powder and Aloe vera gel paste; Group CH/A/P - CH powder, Aloe vera powder and propylene glycol paste. After placement of the root canal dressings, the teeth were sealed coronally and apically with a two-step epoxy adhesive. The teeth were placed in identified flasks containing deionized water and stored in an oven with 100% humidity at 37 °C. After 3 h, 24 h, 72 h, 7 days, 15 days and 30 days, the deionized water in the flasks was collected and its pH was measured by a pH meter. The obtained data were subjected to statistical analysis at a significance level of 5%. The results demonstrated that all pastes provided diffusion of hydroxyl ions through the dentinal tubules. The combination of Aloe vera and CH (group CH/A) provided a constant release of calcium ions. Group CH/A/P showed the highest pH at 24 and 72 h. In conclusion, the experimental pastes containing Aloe vera were able to enable the diffusion of hydroxyl ions through the dentinal tubules.

  5. Identification of the related substances of tilmicosin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Stoev, Georgi; Nazarov, Valeri

    2008-06-01

    Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%.

  6. Spectroscopic and Photochemical Properties of Water-Soluble Fullerenol

    EPA Science Inventory

    Fullerenol, a hydroxylated form of C60-fullerene, is of potential environmental and biological significance due to its buckyball structure, hydroxyl groups and high water solubility. Although fullerenol is known to be an efficient triplet photosensitizer, little is known about it...

  7. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  8. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  9. DNA Binding Hydroxyl Radical Probes.

    PubMed

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  10. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  11. TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period.

    PubMed

    Gogniat, Gaëtan; Dukan, Sam

    2007-12-01

    Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery.

  12. Fragmentation characteristics of hydroxycinnamic acids in ESI-MSn by density functional theory.

    PubMed

    Yin, Zhi-Hui; Sun, Chang-Hai; Fang, Hong-Zhuang

    2017-07-01

    This work aims to analyze the electrospray ionization multistage mass spectrometry (ESI-MS n ) fragmentation characteristics of hydroxycinnamic acids (HCAs) in negative ion mode. The geometric parameters, energies, natural bond orbitals and frontier orbitals of fragments were calculated by density functional theory (DFT) to investigate mass spectral fragmentation mechanisms. The results showed that proton transfer always occurred during fragmentation of HCAs; their quasi-molecular ions ([M - H] - ) existed in more than one form and were mainly with the lowest energy. The fragmentation characteristics included the followings: (1) according to the different substitution position of phenolic hydroxyl group, the ring contraction reaction by CO elimination from benzene was in an increasingly difficult order: m-phenolic hydroxyl > p-phenolic hydroxyl > o-phenolic hydroxyl; and (2) ortho effect always occurred in o-dihydroxycinnamic acids (o-diHCAs), i.e. one phenolic hydroxyl group offered H + , which combined with the other one to lose H 2 O. In addition, there was a nucleophilic reaction during ring contraction in diHCAs that oxygen atom attacked the carbon atom binding with the other phenolic hydroxyl to lose CO 2 . The fragmentation characteristics and mechanism of HCAs could be used for analysis and identification of such compounds quickly and effectively, and as reference for structural analogues by ESI-MS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.

  14. Mechanism and kinetics of the atmospheric degradation of 2-formylcinnamaldehyde with O3 and hydroxyl OH radicals - a theoretical study

    NASA Astrophysics Data System (ADS)

    Thangamani, D.; Shankar, R.; Vijayakumar, S.; Kolandaivel, P.

    2016-10-01

    In the present investigation, the reaction mechanism and kinetics of 2-formylcinnamaldehyde (2-FC) with O3 and hydroxyl OH radicals were studied. The reaction of 2-FC with O3 radical are initiated by the formation of primary ozonide, whereas the reaction of 2-FC with the hydroxyl OH radical are initiated by two different ways: (1). H-atom abstraction by hydroxyl OH radical from the -CHO and -CH = CHCHO group of 2-FC (2). Hydroxyl OH addition to the -CH = CHCHO group to the ring-opened 2-FC. These reactions lead to the formation of an alkyl radical. The reaction pathways corresponding to the reactions between 2-FC with O3 and hydroxyl OH radicals have been analysed using density functionals of B3LYP and M06-2X level of methods with the 6-31+G(d,p) basis set. Single-point energy calculations for the most favourable reactive species are determined by B3LYP/6-311++G(d,p) and CCSD(T)/6-31+G(d,p) levels of theory. From the obtained results, the hydroxyl OH addition at C8 position of 2-FC are most favourable than the C9 position of 2-FC. The subsequent reactions of the alkyl radicals, formed from the hydroxyl OH addition at C8 position, are analysed in detail. The individual and overall rate constant for the most favourable reactions are calculated by canonical variational transition theory with small-curvature tunnelling corrections over the temperature range of 278-350 K. The calculated theoretical rate constants are in good agreement with the available experimental data. The Arrhenius plot of the rate constants with the temperature are fitted and the atmospheric lifetimes of the 2-FC with hydroxyl OH radical reaction in the troposphere calculate for the first time, which can be applied to the study on the atmospheric implications. The condensed Fukui function has been verified for the most favourable reaction sites. This study can be regarded as an attempt to investigate the O3-initiated and hydroxyl OH-initiated reaction mechanisms of 2-FC in the atmosphere.

  15. Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic

    PubMed Central

    2012-01-01

    Liquid cultures of the basidiomycetous fungus Gloeophyllum striatum were employed to study the biodegradation of pradofloxacin, a new veterinary fluoroquinolone antibiotic carrying a CN group at position C-8. After 16 days of incubation, metabolites were purified by micro-preparative high-performance liquid chromatography. Four metabolites could be identified by co-chromatography with chemically synthesized standards. The chemical structures of three compounds were resolved by 1H-nuclear magnetic resonance spectroscopy plus infrared spectroscopy in one case. All metabolites were confirmed by high resolution mass spectrometry-derived molecular formulae. They comprised compounds in which the carboxyl group or the fluorine atom had been exchanged for a hydroxyl group. Furthermore, replacement of the CN group and the intact amine moiety by a hydroxyl group as well as degradation of the amine substituent were observed. The chemical structure of a catechol-type fluoroquinolone metabolite (F-5) could be fully defined for the first time. The latter initiated a hypothetical degradation sequence providing a unique metabolite, F-13, which consisted of the cyclopropyl-substituted pyridone ring still carrying C-7 and C-8 of pradofloxacin, now linked by a double bond and substituted by a hydroxyl and the CN group, respectively. Most likely, all reactions were hydroxyl radical-driven. Metabolite F-13 proves fungal cleavage of the aromatic fluoroquinolone core for the first time. Hence, two decades after the emergence of the notion of the non-biodegradability of fluoroquinolones, fungal degradation of all key structural elements has been proven. PMID:22214407

  16. General aspects of metal toxicity.

    PubMed

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  17. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid

    PubMed Central

    Saghaie, L; Pourfarzam, M.; Fassihi, A.; Sartippour, B.

    2013-01-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V’a) were more potent than their analogues with one hydroxyl group (ie Vb and V’b). Also substitution of a methyl group on position N1 of the hydroxypyridinone ring seems to confer more inhibitory potency. PMID:24082892

  18. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid.

    PubMed

    Saghaie, L; Pourfarzam, M; Fassihi, A; Sartippour, B

    2013-10-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V'a) were more potent than their analogues with one hydroxyl group (ie Vb and V'b). Also substitution of a methyl group on position N(1) of the hydroxypyridinone ring seems to confer more inhibitory potency.

  19. Metabolomic Discovery of Novel Urinary Galabiosylceramide Analogs as Fabry Disease Biomarkers

    NASA Astrophysics Data System (ADS)

    Boutin, Michel; Auray-Blais, Christiane

    2015-03-01

    Fabry disease is an X-linked, complex, multisystemic lysosomal storage disorder presenting marked phenotypic and genotypic variability among affected male and female patients. Glycosphingolipids, mainly globotriaosylceramide (Gb3) isoforms/analogs, globotriaosylsphingosine (lyso-Gb3) and analogs, as well as galabiosylceramide (Ga2) isoforms/analogs accumulate in the vascular endothelium, nerves, cardiomyocytes, renal glomerular and tubular epithelial cells, and biological fluids. The search for biomarkers reflecting disease severity and progression is still on-going. A metabolomic study using quadrupole time-of-flight mass spectrometry has revealed 22 galabiosylceramide isoforms/analogs in urine of untreated Fabry patients classified in seven groups according to their chemical structure: (1) Saturated fatty acid; (2) one extra double bond; (3) two extra double bonds; (4) hydroxylated saturated fatty acid; (5) hydroxylated fatty acid and one extra double bond; (6) hydrated sphingosine and hydroxylated fatty acid; (7) methylated amide linkage. Relative quantification of both Ga2 and Gb3 isoforms/analogs was performed. All these biomarkers are significantly more abundant in urine samples from untreated Fabry males compared with healthy male controls. A significant amount of Ga2 isoforms/analogs, accounting for 18% of all glycosphingolipids analyzed (Ga2 + Gb3 and respective isoforms/analogs), were present in urine of Fabry patients. Gb3 isoforms containing saturated fatty acids are the most abundant (60.9%) compared with 26.3% for Ga2. A comparison between Ga2 isoforms/analogs and their Gb3 counterparts also showed that the proportion of analogs with hydroxylated fatty acids is significantly greater for Ga2 (35.8%) compared with Gb3 (1.9%). These results suggest different biological pathways involved in the synthesis and/or degradation of Gb3 and Ga2 metabolites.

  20. In vitro phase I metabolism of gamabufotalin and arenobufagin: Reveal the effect of substituent group on metabolic stability.

    PubMed

    Feng, Yujie; Wang, Chao; Tian, Xiangge; Huo, Xiaokui; Feng, Lei; Sun, Chengpeng; Ge, Guangbo; Yang, Ling; Ning, Jing; Ma, Xiaochi

    2017-09-01

    Bufadienolides are a major class of bioactive compounds derived from amphibian skin secretion. Gamabufotalin (GB) and arenobufagin (AB) are among the top of the intensively investigated natural bufadienolides for their outstanding biological activities. This study aimed to characterize the phase I metabolism of GB and AB with respect to the metabolic profiles, enzymes involved, and catalytic efficacy, thereafter tried to reveal substituent effects on metabolism. Two mono-hydroxylated products of GB and AB were detected in the incubation mixtures, and they were accurately identified as 1- and 5-hydroxylated bufadienolides by NMR and HPLC-MS techniques. Reaction phenotyping studies demonstrated that CYP3A mediated the metabolism of the two bufadienolides with a high specific selectivity. Further kinetic evaluation demonstrated that the metabolism stability of GB and AB were better than other reported bufadienolides. Additionally, the CYP3A5 preference for hydroxylation of AB was observed, which was different to the selectivity of CYP3As for bufadienolides suggested by our previous report. This study can provide important data for elucidating the phase I metabolism of GB and AB and can lead to a better understanding of the bufadienolide-CYP3A interaction which is helpful for preclinical development and rational use of bufadienolides. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  2. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  3. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  4. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    PubMed

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A comprehensive review of techniques for biofunctionalization of titanium

    PubMed Central

    2011-01-01

    A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO2. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin. PMID:22324003

  6. The Role of Pectin in Pb Binding by Carrot Peel Biosorbents: Isoterm Adsorption Study

    NASA Astrophysics Data System (ADS)

    Hastuti, B.; Totiana, F.; Winiasih, R.

    2018-04-01

    Cheaply and abundantly biosorption available materials such as carrot peels can be a cost-efficient method for removing heavy metals from wastewater. To investigate the role pectin plays in metal binding by carrot peels, commerce pectin was compared. FTIR spectra confirmed the presence of carboxyl and hydroxyl groups in commerce pectin and carrot pectin. Isoterm experiments showed that all materials could remove Pb (II) ion. All of materials binding Pb (II) follow Freundlich models adsorption. The commerce pectin bindsPb (II) by involving energy 16.6 KJ/mole whereas pectin from carrot peel involves energy 21.09 KJ/mole. It indicates that commerce pectin binds the Pb (II) by physics adsorption whereas pectin from carrot peel by physics and chemical adsorption.

  7. Evaluation of newly synthesized and commercially available charged cyclomaltooligosaccharides (cyclodextrins) for capillary electrokinetic chromatography.

    PubMed

    Culha, Mustafa; Schell, Fred M; Fox, Shannon; Green, Thomas; Betts, Thomas; Sepaniak, Michael J

    2004-01-22

    A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.

  8. New Psychoactive Substances 3-Methoxyphencyclidine (3-MeO-PCP) and 3-Methoxyrolicyclidine (3-MeO-PCPy): Metabolic Fate Elucidated with Rat Urine and Human Liver Preparations and their Detectability in Urine by GC-MS, “LC-(High Resolution)-MSn” and “LC-(High Resolution)-MS/MS”

    PubMed Central

    Michely, Julian A.; Manier, Sascha K.; Caspar, Achim T.; Brandt, Simon D.; Wallach, Jason; Maurer, Hans. H.

    2017-01-01

    Background: 3-Methoxyphencyclidine (3-MeO-PCP) and 3-methoxyrolicyclidine (3-MeO-PCPy) are two new psychoactive substances (NPS). The aims of the present study were the elucidation of their metabolic fate in rat and pooled human liver microsomes (pHLM) the identification of the cytochrome P450 (CYP) isoenzymes involved and the detectability using standard urine screening approaches (SUSA) after intake of common users’ doses using gas chromatography-mass spectrometry (GC-MS) liquid chromatography-multi-stage mass spectrometry (LC-MSn) and liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-MS/MS) Methods: For metabolism studies rat urine samples were treated by solid phase extraction or simple precipitation with or without previous enzymatic conjugate cleavage. After analyses via LC-HR-MSn the phase I and II metabolites were identified Results: Both drugs showed multiple aliphatic hydroxylations at the cyclohexyl ring and the heterocyclic ring single aromatic hydroxylation carboxylation after ring opening O-demethylation and glucuronidation. The transferability from rat to human was investigated by pHLM incubations where O-demethylation and hydroxylation were observed. The involvement of the individual CYP enzymes in the initial metabolic steps was investigated after single CYP incubations. For 3-MeO-PCP CYP 2B6 was responsible for aliphatic hydroxylations and CYP 2C19 and CYP 2D6 for O-demethylation. For 3-MeO-PCPy aliphatic hydroxylation was again catalyzed by CYP 2B6 and O-demethylation by CYP 2C9 and CYP 2D6 Conclusions: As only polymorphically expressed enzymes were involved pharmacogenomic variations might occur but clinical data are needed to confirm the relevance. The detectability studies showed that the authors’ SUSAs were suitable for monitoring the intake of both drugs using the identified metabolites PMID:27758707

  9. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  10. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing. Published by Oxford University Press on behalf of the European Society of Cardiology 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Hydroxy protons as structural probes to reveal hydrogen bonding properties of polyols in aqueous solution by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Oruc, Gizem; Varnali, Tereza; Bekiroglu, Somer

    2018-05-01

    The solution properties of ethylene glycol (ethane-1,2-diol), glycerol (propane-1,2,3-triol), erythritol ((2R,3S)-butane-1,2,3,4-tetraol), D-xylitol ((2R,3r,4S)-pentane-1,2,3,4,5-pentaol), D-mannitol ((2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), and D-sorbitol ((2S,3R,4R,5R)-hexane-1,2,3,4,5,6-hexaol), constituting a subgroup of polyalcohols/polyols of maximum six carbon atoms have been investigated using 1H NMR chemical shifts, coupling constants, temperature coefficients, and chemical exchange rates of hydroxy protons in aqueous medium. Relative within a molecule, minimum two-fold difference in rate of exchange values and higher temperature dependence of chemical shifts of the hydroxy protons on terminal carbon atoms confirm that sustainable hydrogen bonding interactions is accentuated for the hydroxyl groups on secondary carbons. Compared to the primary carbons i.e. terminal ones, the hydroxy protons on second and third carbon atoms exhibit much lower rate of exchange and smaller temperature coefficients, indicating that they are further involved in transient hydrogen bonding interactions. Scalar 3JOH,CH-couplings ranging between 3.9 and 7.2 Hz imply that the hydroxyl groups are practically in free rotation regime. Examination of the chemical shift differences with respect to the shift of glycol hydroxy proton reveals that the disparity between terminal and inner hydroxyl groups disclosed by the exchange rates and temperature coefficients is sustained with the exception of 0.003 and 0.053 ppm for O(3)H of mannitol and O(5)H of sorbitol respectively. The experimental findings have been augmented by quantum chemical calculations targeting theoretical NMR chemical shifts, as well as the conformational analysis of the structures.

  12. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  13. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    PubMed

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency.

  14. Hydroxyl orientations in cellobiose and other polyhydroxy compounds – modeling versus experiment

    USDA-ARS?s Scientific Manuscript database

    Theoretical and experimental gas-phase studies of carbohydrates show that their hydroxyl groups are located in homodromic partial rings that resemble cooperative hydrogen bonds, albeit with long H…O distances and small O-H…O angles. On the other hand, anecdotal experience with disaccharide crystal ...

  15. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation.

    PubMed

    González-Pérez, Vanessa; Connolly, Elizabeth A; Bridges, Arlene S; Wienkers, Larry C; Paine, Mary F

    2012-11-01

    (S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.

  16. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-12-31

    The hydration of an outer layer on nuclear waste glasses in known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular watermore » was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with gel layers.« less

  17. Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Maleki, Farahnaz; Schlexer, Philomena; Pacchioni, Gianfranco

    2018-02-01

    Oxide-supported Cu nanoparticles and clusters catalyze a variety of important reactions, such as CO/CO2 hydrogenation to methanol. Recent studies demonstrate that also sub-nanometer clusters consisting of only a few atoms can actively catalyze chemical reactions. In this study, we investigate the interaction between Cu4 clusters and silica-surfaces, considering the de-hydroxylated and the fully hydroxylated α-quartz surfaces. We also considered various dopants such as Ti- and Nb-ions substitutional to Si, respectively, in order to see if an electronic change of the support has an effect on the reaction of the supported cluster. We find that hydroxyl groups can enhance the adsorption energy of the cluster, whereas the dopants have only little effects on the adsorption mode of the Cu cluster. On the fully hydroxylated surface, the cluster may react with the hydroxyl groups via reverse hydrogen spillover. Finally, we explore the reactivity of the silica-supported Cu4 cluster in terms of acetylene trimerization, for which extended Cu surfaces have shown catalytic activity. We find that this reaction should occur with activation barriers below 0.8 eV; Nb-doping of the support does not seem to produce any direct effect on the reactivity of the Cu tetramer.

  18. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  19. Effect of the deletion of the C region on the structure and hydration of insulin-like growth factor 1: a molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Degreve, Leo; Silva, Luciene B.

    The structure and hydration of insulin-like growth factor 1 and an inactive mutant lacking the C region have been investigated in aqueous solution by molecular dynamics simulation. The overall structures of the two polypeptide resemble those determined by NMR spectroscopy. The deletion of the C region in the wild polypeptide introduces structural stability in the mutant, leading to a better definition of the secondary structure elements. A detailed hydration analysis was performed using the radial distribution functions and energy distributions. The backbone of the mutant is in general more solvent accessible than the wild polypeptide backbone. The structural rearrangements induced in the mutant led to changes in the solvent exposition of Tyr24 and Tyr60, which are residues important for ligand-receptor complex formation. Tyr24 exhibited a similar degree of solvent exposition in both IGF-1 and in the mutant; however, its hydroxyl group in the wild polypeptide is better solvated than in the mutant. Tyr60 was found to be solvent exposed in the wild protein, while in the mutant the involvement of its hydroxyl group in intramolecular hydrogen bonds led to it being buried away from the solvent.

  20. AlNbO oxides as new supports for hydrocarbon oxidation II. Catalytic properties of VO sub x -grafted AlNbO oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.

    1992-09-01

    Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less

  1. Microbial biotransformation of bioactive flavonoids.

    PubMed

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.

  3. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the interaction between Tyr223 and the substrate is important for ensuring hydroxylation. These results highlight how the active site of a flavoenzyme is able to deal with the presence of multiple forms of a substrate in solution and ensure efficient hydroxylation. © 2015 FEBS.

  4. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  5. An Efficient Approach to Sulfate Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Li, Xueshu; Parkin, Sean; Duffel, Michael W.; Robertson, Larry W.; Lehmler, Hans-Joachim

    2009-01-01

    Polychlorinated biphenyls (PCBs), a major class of persistent organic pollutants, are metabolized to hydroxylated PCBs. Several hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol and hydroxysteroid (alcohol) sulfotransferases; however, the corresponding sulfation products have not been isolated and characterized. Here we describe a straightforward synthesis of a series of ten PCB sulfate monoesters from the corresponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling chlorinated benzene boronic acids with appropriate brominated (chloro-)anisoles, followed by demethylation with boron tribromide. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction. PMID:19345419

  6. Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations.

    PubMed

    Brambilla, Marta; Brennan, Méabh B; Csatayová, Kristína; Davies, Stephen G; Fletcher, Ai M; Kennett, Alice M R; Lee, James A; Roberts, Paul M; Russell, Angela J; Thomson, James E

    2017-10-06

    The diastereoselectivities and rates of epoxidation (upon treatment with Cl 3 CCO 2 H then m-CPBA) of a range of cis- and trans-4-aminocycloalk-2-en-1-ol derivatives (containing five-, six-, and seven-membered rings) have been investigated. In all cases where the two potential directing groups can promote epoxidation on opposite faces of the ring scaffold, evidence of competitive epoxidation pathways, promoted by hydrogen-bonding to either the in situ formed ammonium moiety or the hydroxyl group, was observed. In contrast to the relative directing group abilities already established for the six-membered ring system (NHBn ≫ OH > NBn 2 ), an N,N-dibenzylammonium moiety appeared more proficient than a hydroxyl group at directing the stereochemical course of the epoxidation reaction in a five- or seven-membered system. In the former case, this was rationalized by the drive to minimize torsional strain in the transition state being coupled with assistance from hydrogen-bonding to the ammonium moiety. In the latter case, this was ascribed to the steric bulk of the ammonium moiety disfavoring conformations in which hydrogen-bonding to the hydroxyl group results in direction of the epoxidation to the syn face. In cases where the two potential directing groups can promote epoxidation on the same face of the ring scaffold, an enhancement of epoxidation diastereoselectivity was not observed, while introduction of a second, allylic heteroatom to the substrate results in diminishment of the rate of epoxidation in all cases. Presumably, reduction of the nucleophilicity of the olefin by the second, inductively electron-withdrawing heteroatom is the dominant factor, and any assistance to the epoxidation reaction by the potential to form hydrogen-bonds to two directing groups rather than one is clearly unable to overwhelm it.

  7. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization

    DOE PAGES

    Stukenbroeker, Tyler S.; Bandar, Jeffrey S.; Zhang, Xiangyi; ...

    2015-07-30

    Cyclopropenimine superbases were employed in this study to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl end groups. Finally, model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes.

  8. Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate

    NASA Technical Reports Server (NTRS)

    Schieler, Leroy

    1961-01-01

    The rate and temperature dependence of reaction for the ferric acetylacetonate catalyzed reaction between a-naphthyl, ortho-tolyl, and para-tolyl isocyanates and n-butyl alcohol are investigated. The effect of substituents on the reactivity of isocyanate and hydroxyl group are reported and for substituted isocyanates are correlated by means of the Hammett equation. Several metal chelates were studied and their catalytic activity was compared to that of ferric acetylacetonate. All rate data are interpreted in terms of a mechanism involving simultaneous second-order uncatalyzed and catalyzed reactions between alcohol and isocyanate.

  9. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae

    NASA Astrophysics Data System (ADS)

    Vico, Tamara A.; Arce, Valeria B.; Fangio, María F.; Gende, Liesel B.; Bertran, Celso A.; Mártire, Daniel O.; Churio, María S.

    2016-11-01

    Silica nanoparticles attached to gallic acid were synthesized from 7-nm diameter fumed silica particles by different functionalization methods involving the condensation of hydroxyl or carboxyl groups. The particles were characterized by thermal analyses and UV-vis, FTIR, NMR, and EPR spectroscopies. In comparison to free gallic acid, enhanced stability and increased antimicrobial activity against Paenibacillus larvae were found for the functionalized nanoparticles. Thus, both derivatization strategies result in improved properties of the natural polyphenol as antimicrobial agent for the treatment of honeybee pathologies.

  10. Analysis of the antigen recognition sites of anti-methamphetamine monoclonal antibodies (II): unique feature of MA-3 antibody.

    PubMed

    Ishimaru, M; Morikawa, K; Hifumi, E; Itoh, T; Uda, T

    2000-01-01

    A monoclonal antibody against methamphetamine (MA-3 mAb) was found to be strongly bound to ephedrine. This feature was quite different from that of other fourteen mAbs against MA. Analyses of cDNA sequence and steric conformation by molecular modeling revealed that one hydrophilic pocket was generated in the heavy chain of MA-3 mAb involving CDRH-1 and CDRH-2. Asn33, Asn35, Asn50 and Asp52 were the main components of the unique pocket capable of binding to the hydroxyl group of ephedrine.

  11. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, K.; Ben, H.; Muzzy, J.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oilsmore » range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.« less

  12. Hydroxyl Ion Diffusion through Radicular Dentine When Calcium Hydroxide Is Used under Different Conditions

    PubMed Central

    Cai, Michael; Castro Salgado, Jacqueline

    2018-01-01

    Calcium hydroxide’s anti-bacterial action relies on high pH. The aim here was to investigate hydroxyl ion diffusion through dentine under different conditions. Teeth were divided into control (n = 4) and four experimental groups (n = 10): Group 1—no medicament; Group 2—Calmix; Group 3—Calmix/Ledermix; Group 4—Calasept Plus/Ledermix; Group 5—Pulpdent/smear layer. Deep (inner dentine) and shallow (outer dentine) cavities were cut into each root. pH was measured in these cavities for 12 weeks. The inner and outer dentine pH in Group 2 was significantly higher than all groups. Inner dentine pH in Group 3 was slightly higher than that in Group 4 initially but subsequently comparable. After Day 2, Group 5 had significantly lower pH than Groups 3 and 4. The outer dentine pH in Group 3 started higher than that in Groups 4 and 5, but by Day 28 the difference was insignificant. The time for the inner dentine to reach maximum pH was one week for Group 2 and four weeks for Groups 3 and 4. The time for the outer dentine to reach maximum pH was eight weeks for all experimental groups. Mixing different Ca(OH)2 formulations with Ledermix gave similar hydroxyl ion release but pH and total diffusion was lower than Ca(OH)2 alone. The smear layer inhibited diffusion. PMID:29342093

  13. ipso-Hydroxylation and Subsequent Fragmentation: a Novel Microbial Strategy To Eliminate Sulfonamide Antibiotics

    PubMed Central

    Ricken, Benjamin; Cichocka, Danuta; Parisi, Martina; Lenz, Markus; Wyss, Dominik; Martínez-Lavanchy, Paula M.; Müller, Jochen A.; Shahgaldian, Patrick; Tulli, Ludovico G.; Kohler, Hans-Peter E.; Kolvenbach, Boris A.

    2013-01-01

    Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us. PMID:23835177

  14. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    PubMed Central

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  15. Hydroetching of high surface area ceramics using moist supercritical fluids

    DOEpatents

    Fryxell, Glen; Zemanian, Thomas S.

    2004-11-02

    Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.

  16. Efavirenz Primary and Secondary Metabolism In Vitro and In Vivo: Identification of Novel Metabolic Pathways and Cytochrome P450 2A6 as the Principal Catalyst of Efavirenz 7-Hydroxylation

    PubMed Central

    Ogburn, Evan T.; Jones, David R.; Masters, Andrea R.; Xu, Cong; Guo, Yingying

    2010-01-01

    Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo. PMID:20335270

  17. Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.

  18. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  19. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  20. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  1. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    PubMed

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  2. Use of deuterated camphor as substrate in 1H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence for the involvement of compound I

    PubMed Central

    Davydov, Roman; Dawson, John H.; Perera, Roshan; Hoffman, Brian M.

    2013-01-01

    EPR and 1H ENDOR spectroscopies have been used to analyze intermediate states formed during the hydroxylation of (1R)-camphor [H2-camphor] and (1R)-5,5-dideuterocamphor [D2-camphor] as induced by cryoreduction (77 K)/annealing of the ternary ferrous cytochrome P450cam-O2-substrate complex. Hydroxylation of H2-camphor produced a primary product state in which 5-exo-hydroxycamphor is coordinated with Fe(III). ENDOR spectra contained signals derived from two protons [Fe(III)-bound C5-OHexo and C5-Hendo] from camphor. When D2-camphor was hydroxylated under the same condition in H2O or D2O buffer, both ENDOR Hexo and Hendo signals are absent. For D2-camphor in H2O buffer, H/D exchange causes the C5-OHexo signal to reappear during relaxation upon annealing to 230 K; for H2-camphor in D2O, the C5-OHexo signal decreases through H/D exchange. These observations clearly show that Cpd I is the reactive species in the hydroxylation of camphor in P450cam. PMID:23215047

  3. Phase behavior in quaternary ammonium ionic liquid-propanol solutions: Hydrophobicity, molecular conformations, and isomer effects

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki

    2017-07-01

    In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.

  4. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  5. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  6. An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis.

    PubMed

    Meesapyodsuk, Dauenpen; Qiu, Xiao

    2008-07-01

    Claviceps purpurea, a fungal pathogen responsible for ergot diseases in many agriculturally important cereal crops, produces high levels of ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) in its sclerotia. It has been believed for many years that the biosynthesis of this fatty acid in C. purpurea involves a hydration process with linoleic acid as the substrate. Using degenerate polymerase chain reaction, we cloned a gene from the sclerotia encoding an enzyme (CpFAH) that has high sequence similarity to the C. purpurea oleate desaturase, but only low similarity to plant oleate hydroxylases. Functional analysis of CpFAH in yeast (Saccharomyces cerevisiae) indicated it acted predominantly as a hydroxylase, introducing hydroxyl groups at the 12-position of oleic acid and palmitoleic acid. As well, it showed Delta(12) desaturase activities on 16C and 18C monounsaturated fatty acids and, to a much lesser extent, omega(3) desaturase activities on ricinoleic acid. Heterologous expression of CpFAH under the guidance of a seed-specific promoter in Arabidopsis (Arabidopsis thaliana) wild-type and mutant (fad2/fae1) plants resulted in the accumulation of relatively higher levels of hydroxyl fatty acids in seeds. These data indicate that the biosynthesis of ricinoleic acid in C. purpurea is catalyzed by the fungal desaturase-like hydroxylase, and CpFAH, the first Delta(12) oleate hydroxylase of nonplant origin, is a good candidate for the transgenic production of hydroxyl fatty acids in oilseed crops.

  7. Cloning, functional expression, and characterization of a chalcone 3-hydroxylase from Cosmos sulphureus.

    PubMed

    Schlangen, Karin; Miosic, Silvija; Thill, Jana; Halbwirth, Heidi

    2010-07-01

    A chalcone 3-hydroxylase (CH3H) cDNA clone was isolated and characterized from Cosmos sulphureus petals accumulating butein (2',3,4,4'-tetrahydroxychalcone) derivatives as yellow flower pigments. The recombinant protein catalyses the introduction of an additional hydroxyl group in the B-ring of chalcones, a reaction with high similarity to the hydroxylation of flavonoids catalysed by the well-studied flavonoid 3'-hydroxylase (F3'H). CH3H shows high specificity for chalcones, but a low F3'H activity was also detected. By contrast, the common F3'H from C. sulphureus does not accept chalcones as substrates and is therefore unlikely to be involved in the creation of the B-ring hydroxylation pattern of the yellow flower pigments. CH3H was primarily expressed in young buds, the main tissue for chalcone pigment formation. Expression levels in open flowers and 3-d-old seedlings were lower and almost no CH3H expression was observed in leaves. F3'H, in contrast, showed the highest expression also in buds, but comparable expression rates in all other tissues tested. Recombinant hybrid proteins constructed from CH3H and F3'H fragments demonstrated that amino acid residues at a substrate recognition site and an insertion of four amino acid residues in a putative loop region have an impact on chalcone acceptance. This is the first identification of a CH3H cDNA from any plant species.

  8. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  9. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration.

    PubMed

    Wu, Wei; Shan, Guoqiang; Xiang, Qian; Zhang, Yinqing; Yi, Shujun; Zhu, Lingyan

    2017-10-01

    Large volume production and application of nano-TiO 2 make it inevitably release to natural waters and its environmental behaviors would be affected by natural organic matters. In this study, the mechanisms of humic acid (HA) affecting the photocatalytic performance of nano-TiO 2 were elucidated by using three HA fractions from the same source but with different polarities. Bulk HA was fractionated on a silica gel column to get three fractions with polarity increasing in the order of FA, FB and FC. FA was fulvic acid-like while FB and FC were humic acid-like. All the three fractions (at 0.1 mg/L) promoted the generation of hydroxyl radicals (OHs) by nano-TiO 2 , and thus in turn facilitated the photocatalytic degradation of bispheol A (BPA). FA and FC displayed a stronger promotion effect than FB and the bulk HA. Online in situ flow cell ATR-FTIR and XPS analyses indicated that HA fractions could form charge-transfer complex with nano-TiO 2 surface through the phenolic hydroxyl and carboxylic groups, which favored the separation of photogenerated electron-hole pairs. Through step methylation experiments, it was verified that the phenolic hydroxyl and carboxylic groups of HA fractions played important roles in promoting the photocatalytic performance of nano-TiO 2 , and the effect of carboxylic group was more significant than the phenolic hydroxyl group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ethyl 4-(4-hydroxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

    PubMed Central

    Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P; Guru Row, T. N.

    2008-01-01

    There are three formula units in the asymmetric unit of the title compound, C14H16N2O4·H2O. Mol­ecules are linked by N—H⋯O hydrogen bonds into dimers with the common R 2 2(8) graph-set motif. Between dimers, single N—H⋯O hydrogen bonds are formed between the other N—H group of each pyrimidine ring and the hydroxyl groups. The water mol­ecules accept O—H⋯O hydrogen bonds from the hydroxyl groups and donate hydrogen bonds to the ester groups. PMID:21581452

  11. [Effect of the steroid molecule structure on the direction of its hydroxylation by the fungus Curvularia lunata].

    PubMed

    Andriushina, V A; Iaderets, V V; Stytsenko, T S; Druzhinina, A V; Voĭshvillo, N E

    2013-01-01

    The main and side products of hydroxylation by the C. lunata VKPM F-981 mycelium of fourteen delta(4)-3-ketosteroids of the estrane, androstane, and pregnane series and six of their delta(5)-3beta-hydroxy analogues were identified by H1 PMR spectroscopy and comparison with standard samples. The obtained experimental data are considered in terms of the triangular model of the enzyme-substrate interaction. The dependence of the direction of hydroxylation of steroid molecules and the orientation of hydroxy groups on the structure of the initial substrate was revealed.

  12. Radical Polymerization of Diene Hydrocarbons in a Presence of Peroxide of Hydrogen and Solvent. 1. Effectiveness of Initiation and Rate of Expansion H2O2 during Oligomerization in Metallic Equipment

    DTIC Science & Technology

    1990-04-10

    the hydroxyl groups. These are liquid oligobutadienes of brand R-15M and R-45M (firm "Sinclair Retgochemical Suc."/OSA) [5, 6, 10] and hydroxyl... ionic mechanism. Most promising, in view of simplicity and cheapness, is considered the I DOC - 90010000 PAGE - method of the radical polymerization of...Initiators of polimerization in this method are the hydroxyl radicals, which are generated during the homolytic decomposition of peroxide of hydrogen PDO

  13. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  14. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; ...

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  15. Sources and composition of submicron organic mass in marine aerosol particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less

  16. Sources and composition of submicron organic mass in marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater organic mass hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production.

  17. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identificationmore » of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.« less

  18. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  19. Expression and role of the genes involved in the transport of bile acids in the liver and kidneys in mice.

    PubMed

    Attakpa, Eugène S; Djibril, Naguibou M; Baba-Moussa, Farid; Yessoufou, Ganiou; Sezan, Alphonse

    2013-01-01

    Bile acids are synthesized in the liver from cholesterol. This study investigated the impact and expression of different carriers of bile acid in the liver and kidneys. Eight-week-old male mice were used, which were fed for 15 days and divided into two groups: 15 mice fed with standard diet (control group) and another 15 mice fed with a rich diet of 5% cholesterol (second group). Bile acid dosage was based on their oxidation by 7α hydroxyl-steroid dehydrogenize. The mRNA expression was quantitatively analyzed by the real time of polymerase chain reaction (RT-PCR), and the expression of the renal carrier bile acid protein was analyzed by Western blot. The expression of bile salt export pump involved in the uptake of bile acids in the basolateral membrane of hepatocytes revealed no differences between the two groups of mice. However, the expression of multidrug resistance-associated protein 2 was reduced in mice of the second group. Moreover, the expressions of organic anion transporting polypeptide 4, organic anion transporting polypeptide 1, and sodium taurocholate co-transporting polypeptide (Ntcp) involved in the uptake of bile acids in the apical pole of hepatocytes are suppressed in mice of the second group. The expression of multidrug resistance-associated protein 3 involved in the secretion of bile acids in the apical membrane of hepatocytes revealed no significant differences between the two groups. In mice of the second group, blood concentration of bile acids on the last day was increased. In those mice, the expression of intestinal bile acid transporter was reduced in the kidneys compared with the control mice.

  20. New Psychoactive Substances 3-Methoxyphencyclidine (3-MeO-PCP) and 3-Methoxyrolicyclidine (3-MeO-PCPy): Metabolic Fate Elucidated with Rat Urine and Human Liver Preparations and their Detectability in Urine by GC-MS, "LC-(High Resolution)-MSn" and "LC-(High Resolution)-MS/MS".

    PubMed

    A Michely, Julian A; Manier, Sascha K; Caspar, Achim T; Brandt, Simon D; Wallach, Jason; Maurer, Hans H

    2017-01-01

    3-Methoxyphencyclidine (3-MeO-PCP) and 3-methoxyrolicyclidine (3-MeOPCPy) are two new psychoactive substances (NPS). The aims of the present study were the elucidation of their metabolic fate in rat and pooled human liver microsomes (pHLM), the identification of the cytochrome P450 (CYP) isoenzymes involved, and the detectability using standard urine screening approaches (SUSA) after intake of common users' doses using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-multi-stage mass spectrometry (LC-MSn), and liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-MS/MS). For metabolism studies, rat urine samples were treated by solid phase extraction or simple precipitation with or without previous enzymatic conjugate cleavage. After analyses via LC-HR-MSn, the phase I and II metabolites were identified. Both drugs showed multiple aliphatic hydroxylations at the cyclohexyl ring and the heterocyclic ring, single aromatic hydroxylation, carboxylation after ring opening, O-demethylation, and glucuronidation. The transferability from rat to human was investigated by pHLM incubations, where Odemethylation and hydroxylation were observed. The involvement of the individual CYP enzymes in the initial metabolic steps was investigated after single CYP incubations. For 3-MeO-PCP, CYP 2B6 was responsible for aliphatic hydroxylations and CYP 2C19 and CYP 2D6 for O-demethylation. For 3-MeO-PCPy, aliphatic hydroxylation was again catalyzed by CYP 2B6 and O-demethylation by CYP 2C9 and CYP 2D6 Conclusions: As only polymorphically expressed enzymes were involved, pharmacogenomic variations might occur, but clinical data are needed to confirm the relevance. The detectability studies showed that the authors' SUSAs were suitable for monitoring the intake of both drugs using the identified metabolites. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    PubMed Central

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014

  2. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles

    PubMed Central

    Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

    2011-01-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

  3. Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution.

    PubMed

    Al-Omari, Saleh; Ali, Ahmad

    2009-03-01

    Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.

  4. Effects of various vitamins and coenzymes Q on reactions involving alpha-hydroxyl-containing radicals.

    PubMed

    Shadyro, Oleg I; Sosnovskaya, Anna A; Edimecheva, Irina P; Grintsevich, Ivan B; Lagutin, Petr Yu; Alekseev, Aleksei V; Kazem, Kamel

    2005-07-01

    Effects of vitamins B, C, E, K and P, as well as coenzymes Q, on formation of final products of radiation-induced free-radical transformations of ethanol, ethylene glycol, alpha-methylglycoside and glucose in aqueous solutions were studied. Based on the obtained results, it can be concluded that there are substances among vitamins and coenzymes that effectively interact with alpha-hydroxyl-containing radicals. In the presence of these substances, recombination reactions of alpha-hydroxyalkyl radicals and fragmentation of alpha-hydroxy-beta-substituted organic radicals are suppressed. It has been established that the observed effects are due to the ability of the vitamins and coenzymes under study to either oxidize alpha-hydroxyl-containing radicals yielding the respective carbonyl compounds or reduce them into the initial molecules.

  5. Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Li, Zhenjun; Smith, R. Scott

    2014-04-16

    Understanding hydrogen formation on TiO2 surfaces is of great importance as it could provide fundamental insight into water splitting for hydrogen production using solar energy. In this work, hydrogen formation from glycols having different numbers of methyl end-groups have been studied using temperature pro-grammed desorption on reduced, hydroxylated, and oxidized TiO2(110) surfaces. The results from OD-labeled glycols demon-strate that gas-phase molecular hydrogen originates exclusively from glycol hydroxyl groups. The yield is controlled by a combi-nation of glycol coverage, steric hindrance, TiO2(110) order and the amount of subsurface charge. Combined, these results show that proximal pairs of hydroxyl aligned glycol moleculesmore » and subsurface charge are required to maximize the yield of this redox reaction. These findings highlight the importance of geometric and electronic effects in hydrogen formation from adsorbates on TiO2(110).« less

  6. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  7. Interactions of Kraft lignin and wheat gluten during biomaterial processing: evidence for the role of phenolic groups.

    PubMed

    Kaewtatip, Kaewta; Menut, Paul; Auvergne, Remi; Tanrattanakul, Varaporn; Morel, Marie-Helene; Guilbert, Stephane

    2010-04-14

    The chemical interactions between Kraft lignin and wheat gluten under processing conditions were investigated by determining the extent of the protein network formation. To clarify the role of different chemical functions found in lignin, the effect of Kraft lignin was compared with that of an esterified lignin, in which hydroxyl groups had been suppressed by esterification, and with a series of simple aromatics and phenolic structures with different functionalities (conjugated double bonds, hydroxyl, carboxylic acid, and aldehyde). The protein solubility was determined by using the Kjeldahl method. The role of the hydroxyl function was assessed by the significantly lower effect of esterified lignin. The importance of the phenolic radical scavenging structure is evidenced by the effect of guaiacol, which results in a behavior similar to that of the Kraft lignin. In addition, the significant effect of conjugated double bonds on gluten reactivity, through nucleophilic addition, was demonstrated.

  8. Effect of acetylated wood flour or coupling agent on moisture, UV, and biological resistance of extruded woodfiber-plastic composites

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons

    2006-01-01

    Although moisture sorption in woodfiber-thermoplastic composites (WPCs) is slower than in unmodified solid wood, it still affects strength and ultimately results in decay of the material in moist outdoor exposure conditions. Chemical modification of the hydroxyl groups of wood with acetic anhydride esterifies the hydroxyl making the wood more hydrophobic and...

  9. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  10. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy

    DOE PAGES

    Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...

    2017-09-07

    Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less

  11. Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action.

    PubMed

    Pérez, Yohani; Oyárzabal, Ambar; Mas, Rosa; Molina, Vivian; Jiménez, Sonia

    2013-01-01

    D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.

  12. Sweet Structural Signatures Unveiled in Ketohexoses.

    PubMed

    Bermúdez, Celina; Peña, Isabel; Mata, Santiago; Alonso, José L

    2016-11-14

    The conformational behaviour of naturally occurring ketohexoses has been revealed in a supersonic expansion by Fourier transform microwave spectroscopy coupled with a laser ablation source. Three, two and one conformers of d-tagatose, d-psicose and l-sorbose, respectively, have been identified by their rotational constants extracted from the analysis of the spectra. Singular structural signatures involving the hydroxyl groups OH (1) and OH (2) have been disentangled from the intricate intramolecular hydrogen bond networks stabilising the most abundant conformers. The present results place the old Shallenberger and Kier sweetness theories on a firmer footing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  14. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    PubMed

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  15. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    PubMed

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids.

    NASA Astrophysics Data System (ADS)

    Benitez, Jose; Heredia-Guerrero, José; Guzman-Puyol, Susana; Barthel, Markus; Dominguez, Eva; Heredia, Antonio

    2015-08-01

    Free-standing polyesters films from mono and polyhydroxylated fatty acids (C16 and C18) have been obtained by non-catalyzed melt-condensation polymerization in air at 150°C. Chemical characterization by Fourier Transform Infrared Spectroscopy (FTIR) and 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR) has confirmed the formation of the corresponding esters and the occurrence of hydroxyl partial oxidation which extent depends on the type of hydroxylation of the monomer (primary or secondary). Generally, polyester films obtained are hydrophobic, insoluble in common solvents, amorphous and infusible as revealed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). In ?-polyhydroxy acids, esterification reaction with primary hydroxyls is preferential and, therefore, the structure can be defined as linear with variable branching depending on the amount of esterified secondary hydroxyls. The occurrence side oxidative reactions like the diol cleavage are responsible for chain cross-linking. Films are thermally stable up to 200-250°C though this limit can be extended up to 300°C in the absence of ester bonds involving secondary hydroxyls. By analogy with natural occurring fatty polyesters (i.e. cutin in higher plants) these polymers are proposed as biodegradable and non-toxic barrier films or coatings to be used, for instance, in food packing

  17. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    NASA Astrophysics Data System (ADS)

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  18. Selective aminolysis of acetylated lignin: Toward simultaneously improving thermal-oxidative stability and maintaining mechanical properties of polypropylene.

    PubMed

    Ye, Dezhan; Kong, Jinfeng; Gu, Shaojin; Zhou, Yingshan; Huang, Caoxing; Xu, Weilin; Zhang, Xi

    2018-03-01

    Even with outstanding radical capturing ability, the utilization of lignin as a natural antioxidant in polypropylene (PP) still has been pended. Usually, the compatibility of its blends is improved based on the reaction of hydroxyl content, thus leading to the decreasing content of phenolic hydroxyl (Ph-OH) group and inferior thermal-oxidative stability of lignin blends. Here, the selective aminolysis of acetylated Kraft lignin (pyr-KL) was investigated, which structures were characterized using FTIR, 31 P-NMR and GPC. The Ph-OH group of acetylated KL could be released by the addition of pyrrolidine; however the aliphatic hydroxyl group is still blocked. With the control of reaction conditions, the highest oxidation induction time of pyr-KL/PP (0.5wt% loading) reaches up to 22.6min, almost 2.6 times than that of pure PP. More importantly, the mechanical properties of PP were also maintained under the loading of pyr-KL, which is much better than that of curde KL/PP. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Metal-ion interactions with carbohydrates. Crystal structure and FT-IR study of the SmCl3-ribose complex.

    PubMed

    Lu, Yan; Guo, Jianyu

    2006-04-10

    A single-crystal of SmCl3.C5H10O5.5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is alpha-D-ribopyranose in the 4C1 conformation and the other one is beta-D-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the D-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.

  20. A stereochemical examination of the equine metabolism of 17alpha-methyltestosterone.

    PubMed

    McKinney, Andrew R; Suann, Craig J; Stenhouse, Allen M

    2007-01-09

    An investigation was conducted into the stereochemistry of the equine urinary metabolites of 17alpha-methyltestosterone observed after oral administration. Standards of the complete range of C3/C5/C16 stereoisomeric 17alpha-methylandrostane-3,17beta-diols, 17alpha-methylandrostane-3,16,17beta-triols and 17alpha-hydroxymethylandrostane-3,17beta-diols were purchased or synthesised, and were used to unequivocally identify the absolute structures of the metabolites. Phase I metabolism was found to involve combinations of Delta(4)-3-ketone reduction with both 5alpha,3beta- and 5beta,3alpha-stereochemistry, hydroxylation at C16 with both 16alpha- and 16beta-stereochemistry and hydroxylation of the 17alpha-methyl substituent. Phase II metabolism involved mainly sulfation with a lesser degree of beta-glucuronidation.

  1. Possible involvement of G-proteins and cAMP in the induction of progesterone hydroxylating enzyme system in the vascular wilt fungus Fusarium oxysporum.

    PubMed

    Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena

    2009-02-01

    Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.

  2. NMR and X-ray studies of isomeric 22,23-dihydroxy stigmastanes

    NASA Astrophysics Data System (ADS)

    Khripach, Vladimir A.; Zhabinskii, Vladimir N.; Ivanova, Galina V.; Fando, Galina P.; Tsavlovskii, Dmitrii V.; Khripach, Natalya B.; Lyakhov, Alexander S.; Misharin, Alexander Yu.

    2010-06-01

    A comparative conformational study of steroidal side chain of (22 R,23 R)- and (22 S,23 S)-dihydroxy stigmastane derivatives was performed using single crystal X-ray diffraction and NMR spectroscopy. The preferred conformation in solution was shown to be close to that in the crystal. (22 R,23 R)-Isomers typical for natural plant steroid hormones brassinosteroids adopt a conformation in which both hydroxyl groups are pointed toward unhindered α-side of the steroidal plane and can thus participate in biochemical processes. Unnatural (22 S,23 S)-counterparts exhibit a conformation with the two hydroxyl groups oriented in the opposite direction and sterically hindered by 21-methyl group and terminal side chain fragment.

  3. Induction of protein oxidation in human low density lipoprotein by the photosensitive organic hydroperoxide, N,N'-bis(2-hydroxyperoxy-2-methoxyethyl)-1,4,5,8-naphthalene-tetra-carb oxylic- diimide.

    PubMed

    Matsugo, S; Yan, L J; Han, D; Packer, L

    1995-01-05

    We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.

  4. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.

    PubMed

    Petrillo, Teodolinda; O'Donohoe, Catrina A; Howe, Nicole; Malthouse, J Paul G

    2012-08-07

    Two new inhibitors in which the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced with a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H, respectively, have been synthesized. Using these inhibitors, we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases the level of inhibitor binding 3-4-fold while a glyoxal group increases the level of binding by 500-2000-fold. We show that at pH 7.2 the effective molarities of the catalytic hydroxyl group of the active site serine are 41000-229000 and 101000-159000 for α-chymotrypsin and subtilisin Carlsberg, respectively. It is estimated that oxyanion stabilization and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low-barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pK(a) of the active site histidine, allowing it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.

  5. Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B.

    PubMed

    Naik, Milind Mohan; Pandey, Anju; Dubey, Santosh Kumar

    2012-09-01

    A lead resistant bacterial strain isolated from effluent of lead battery manufacturing company of Goa, India has been identified as Enterobacter cloacae strain P2B based on morphological, biochemical characters, FAME profile and 16S rDNA sequence data. This bacterial strain could resist lead nitrate up to 1.6 mM. Significant increase in exopolysaccharide (EPS) production was observed as the production increased from 28 to 108 mg/L dry weight when exposed to 1.6 mM lead nitrate in Tris buffered minimal medium. Fourier-transformed infrared spectroscopy of this EPS revealed presence of several functional groups involved in metal binding viz. carboxyl, hydroxyl and amide groups along with glucuronic acid. Gas chromatography coupled with mass spectrometry analysis of alditol-acetate derivatives of acid hydrolysed EPS produced in presence of 1.6 mM lead nitrate demonstrated presence of several neutral sugars such as rhamnose, arabinose, xylose, mannose, galactose and glucose, which contribute to lead binding hydroxyl groups. Scanning electron microscope coupled with energy dispersive X-ray spectrometric analysis of this lead resistant strain exposed to 1.6 mM lead nitrate interestingly revealed mucous EPS surrounding bacterial cells which sequestered 17 % lead (as weight %) extracellularly and protected the bacterial cells from toxic effects of lead. This lead resistant strain also showed multidrug resistance. Thus these results significantly contribute to better understanding of structure, function and environmental application of lead-enhanced EPSs produced by bacteria. This lead-enhanced biopolymer can play a very important role in bioremediation of several heavy metals including lead.

  6. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater.

    PubMed

    Liu, Chen; Nanaboina, Venkateswarlu; Korshin, Gregory V; Jiang, Wenju

    2012-10-15

    This study addressed the formation and properties of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed during ozonation of secondary wastewater effluent containing these fluoroquinolone antibiotics. The generation of the degradation products was interpreted in the context of transformations of effluent organic matter (EfOM) tracked via absorbance measurements. The structures of 20 degradation products were elucidated for ciprofloxacin and norfloxacin, respectively. 27 degradation products were identified for lomefloxacin. The prevalent oxidation pathways were suggested based on the structures of the identified products formed in the absence and presence of the hydroxyl radical scavenger t-butanol. These pathways were largely similar for all studied fluoroquinolones and involved attacks on the piperazine ring and the quinolone structure. The quinolone ring remained intact in the presence of t-butanol thus indicating that this functional group could only be oxidized by OH radicals while the piperazine ring was readily oxidized by molecular ozone. The cleavage of the quinolone moiety that resulted in several identified degradation products occurred via the attack by hydroxyl radicals on the carbon-carbon double bond adjacent to the carboxylic acid group. Lomefloxacin had more diverse oxidation products due to the presence of a methyl group on its piperazinyl ring. The concentrations of the identified degradation products behaved non-monotonically as a function of ozone dose or treatment time, yet exhibited interpretable correlations versus changes of EfOM absorbance. Examination of these correlations allowed developing a novel approach for elucidating the transformations of fluoroquinolone antibiotics during ozonation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    PubMed

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  8. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  9. Motor neuron-like NSC-34 cells as a new model for the study of vitamin D metabolism in the brain.

    PubMed

    Almokhtar, Mokhtar; Wikvall, Kjell; Ubhayasekera, S J Kumari A; Bergquist, Jonas; Norlin, Maria

    2016-04-01

    Vitamin D3 is a pro-hormone, which is sequentially activated by 25- and 1α-hydroxylation to form 25-hydroxyvitamin D3 [25(OH)D3] and 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], respectively. Subsequent inactivation is performed by 24-hydroxylation. These reactions are carried out by a series of CYP450 enzymes. The 25-hydroxylation involves mainly CYP2R1 and CYP27A1, whereas 1α-hydroxylation and 24-hydroxylation are catalyzed by CYP27B1 and CYP24A1, respectively, and are tightly regulated to maintain adequate levels of the active vitamin D hormone, 1α,25(OH)2D3. Altered circulating vitamin D levels, in particular 25(OH)D3, have been linked to several disorders of the nervous system, e.g., schizophrenia and Parkinson disease. However, little is known about the mechanisms of vitamin D actions in the neurons. In this study, we examined vitamin D metabolism and its regulation in a murine motor neuron-like hybrid cell line, NSC-34. We found that these cells express mRNAs for the four major CYP450 enzymes involved in vitamin D activation and inactivation, and vitamin D receptor (VDR) that mediates vitamin D actions. We also found high levels of CYP24A1-dependent 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] production, that was inhibited by the well-known CYP enzyme inhibitor ketoconazole and by several inhibitors that are more specific for CYP24A1. Furthermore, CYP24A1 mRNA levels in NSC-34 cells were up-regulated by 1α,25(OH)2D3 and its synthetic analogs, EB1089 and tacalcitol. Our results suggest that NSC-34 cells could be a novel model for the studies of neuronal vitamin D metabolism and its mechanism of actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  11. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    PubMed

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing radiation.

  12. Riccardin C derivatives as anti-MRSA agents: structure-activity relationship of a series of hydroxylated bis(bibenzyl)s.

    PubMed

    Sawada, Hiromi; Okazaki, Miki; Morita, Daichi; Kuroda, Teruo; Matsuno, Kenji; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-12-15

    Members of a series of macrocyclic bis(bibenzyl) riccardin-class derivatives were found to exhibit antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Structure-activity relationship (SAR) studies were conducted, focusing on the number and position of the hydroxyl groups. The minimum essential structure for anti-MRSA activity was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Preparation of linear hydroxy substituted polyphosphazenes. [flame retardant polyurethane foam

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1978-01-01

    The synthesis of partially hydroxy-substituted phosphazene prepolymers amenable to processing into cellular, flexible polyurethane foams was investigated. Factors determined include (1) the environment of the hydroxyl group; (2) the ease of the hexachlorocyclotriphosphazene polymerization; (3) the nature of the nonreactive substituents; and (4) the mode of introduction of the hydroxyl entity. The specific approaches taken, the rationale of the selections made, and the results are discussed.

  14. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity.

    PubMed

    Kolet, Swati P; Haldar, Saikat; Niloferjahan, Siddiqui; Thulasiram, Hirekodathakallu V

    2014-07-01

    Transformation of testosterone and progesterone into synthetically challenging 14α-hydroxy derivatives was achieved by using fungal strain Mucor hiemalis. Prolonged incubation led to the formation of corresponding 6β/7α,14α-dihydroxy metabolites. The position and stereochemistry of newly introduced hydroxyl group was determined by detailed spectroscopic analyses. The time course experiment indicated that fungal strain initiated transformation by hydroxylation at 14α-position followed by at 6β- or 7α-positions. Studies using cell-free extracts suggest that the 14α-hydroxylase activity is NADPH dependent and belongs to the cytochrome P450 family. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Ozeir, Mohammad; Pelosi, Ludovic; Ismail, Alexandre; Mellot-Draznieks, Caroline; Fontecave, Marc; Pierrel, Fabien

    2015-01-01

    The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway. PMID:26260787

  16. Evolution of Functional Groups during Pyrolysis Oil Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankovikj, Filip; Tran, Chi-Cong; Kaliaguine, Serge

    In this paper, we examine the evolution of functional groups (carbonyl, carboxyl, phenol, and hydroxyl) during stabilization at 100–200 °C of two typical wood derived pyrolysis oils from BTG and Amaron in a batch reactor over Ru/C catalyst for 4h. An aqueous and an oily phase were obtained. The content of functional groups in both phases were analyzed by GC/MS, 31P-NMR, 1H-NMR, elemental analysis, KF titration, carbonyl groups by Faix, Folin – Ciocalteu method and UV-Fluorescence. The consumption of hydrogen was between 0.007 and 0.016 g/g oil, and 0.001-0.020 g of CH4/g of oil, 0.005-0.016 g of CO2/g oil andmore » 0.03-0.10 g H2O/g oil were formed. The content of carbonyl, hydroxyl, and carboxyl groups in the volatile GC-MS detectable fraction decreased (80, 65, and ~70% respectively), while their behavior in the total oil and hence in the non-volatile fraction was more complex. The carbonyl groups initially decreased having minimum at ~125-150°C and then increased, while the hydroxyl groups had reversed trend. This might be explained by initial hydrogenation of the carbonyl groups to form hydroxyls, followed by continued dehydration reactions at higher temperatures that may increase their content. The 31P-NMR was on the limit of its sensitivity for the carboxylic groups to precisely detect changes in the non-volatile fraction, however the more precise titration method showed that the concentration of carboxylic groups in the non-volatile fraction remains constant with increased stabilization temperature. The UV-Fluorescence results show that repolymerization increases with temperature. ATR-FTIR method coupled with deconvolution of the region between 1490 and 1850 cm-1 showed to be a good tool for following the changes in carbonyl groups and phenols of the stabilized pyrolysis oils. The deconvolution of the IR bands around 1050 and 1260 cm-1 correlated very well with the changes in the 31P-NMR silent O groups (likely ethers). Most of the H2O formation could be explained from the significant reduction of these silent O groups (from 12% in the fresh oils, to 6 to 2% in the stabilized oils) most probably belonging to ethers.« less

  17. New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: Revisiting theoretical and experimental data

    NASA Astrophysics Data System (ADS)

    Sade, Ziv; Halevy, Itay

    2017-10-01

    CO2 (de)hydration (i.e., CO2 hydration/HCO3- dehydration) and (de)hydroxylation (i.e., CO2 hydroxylation/HCO3- dehydroxylation) are key reactions in the dissolved inorganic carbon (DIC) system. Kinetic isotope effects (KIEs) during these reactions are likely to be expressed in the DIC and recorded in carbonate minerals formed during CO2 degassing or dissolution of gaseous CO2. Thus, a better understanding of KIEs during CO2 (de)hydration and (de)hydroxylation would improve interpretations of disequilibrium compositions in carbonate minerals. To date, the literature lacks direct experimental constraints on most of the oxygen KIEs associated with these reactions. In addition, theoretical estimates describe oxygen KIEs during separate individual reactions. The KIEs of the related reverse reactions were neither derived directly nor calculated from a link to the equilibrium fractionation. Consequently, KIE estimates of experimental and theoretical studies have been difficult to compare. Here we revisit experimental and theoretical data to provide new constraints on oxygen KIEs during CO2 (de)hydration and (de)hydroxylation. For this purpose, we provide a clearer definition of the KIEs and relate them both to isotopic rate constants and equilibrium fractionations. Such relations are well founded in studies of single isotope source/sink reactions, but they have not been established for reactions that involve dual isotopic sources/sinks, such as CO2 (de)hydration and (de)hydroxylation. We apply the new quantitative constraints on the KIEs to investigate fractionations during simultaneous CaCO3 precipitation and HCO3- dehydration far from equilibrium.

  18. Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications.

    PubMed Central

    Williams, D M; Pieken, W A; Eckstein, F

    1992-01-01

    The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed. Images PMID:1736306

  19. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  20. Elucidation of hydroxyl groups-antioxidant relationship in mono- and dihydroxyflavones based on O-H bond dissociation enthalpies.

    PubMed

    Treesuwan, Witcha; Suramitr, Songwut; Hannongbua, Supa

    2015-06-01

    Radical scavenging potential is the key to anti-oxidation of hydroxyflavones which generally found in fruits and vegetables. The objective of this work was to investigate the influence of hydroxyl group on the O-H bond dissociation enthalpies (BDE) from a series of mono- and dihydroxyflavones. Calculation at the B3LYP/6-31G(d,p) level reveals the important roles of an additional one hydroxyl group to boost the BDE of hydroxyflavones that were a stabilization of the generated radicals through attractive H-bond interactions, an ortho- and para-dihydroxyl effect, and a presence of the 3-OH in dihydroxyflavones. On the other hand, the meta-dihydroxyl effect and range-hydroxyl effect especially associated with the either 5-OH or 8-OH promoted greater BDE. Results did not only confirm that dihydroxyflavones had lower BDE than monohydroxyflavones but also suggest the selective potent hydroxyflavone molecules that are the 6'-hydroxyflavone (for monohydroxyflavone) and the 5',6'-, 7,8- and 3',4'-dihydroxyflavone which the corresponding radical preferable generated at C6'-O•, C8-O• and C4'-O•, respectively. Electron distribution was limited only over the two connected rings of hydroxyflavones while the expansion distribution into C-ring could be enhanced if the radical was formed especially for the 2',3'- and 5',6'dihydroxyflavone radicals. The delocalized bonds were strengthened after radical was generated. However the 5-O• in 5,6-dihydroxyflavone and the 3-O• in 3,6'-dihydroxyflavone increased the bond order at C4-O11 which might interrupt the conjugated delocalized bonds at the keto group.

  1. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    PubMed

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Lance; Beste, Ariana; Chen, Banghao

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less

  3. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE PAGES

    Gill, Lance; Beste, Ariana; Chen, Banghao; ...

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of noncalcined nanocubes arise from kinetically trapped subsurface $-$OH.« less

  4. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    PubMed

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  6. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    PubMed

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.

  7. Effect of carboxyl-reduced heparin on the growth inhibition of bovine pulmonary artery smooth muscle cells

    PubMed Central

    G.Garg, Hari; Mrabat, Hicham; Yu, Lunyin; Freeman, Craig; Li, Boyangzi; Zhang, Fuming; Linhardt, Robert J.; Hales, Charles A.

    2010-01-01

    Heparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC's), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity. In this study, to understand the influence of carboxyl groups in the HP structure required for endogenous activity, a chemically modified derivative of native HP was prepared by converting the carboxyl groups of hexuronic acid residues in HP to primary hydroxyl groups. This modification procedure involves the treatment of HP with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide followed by reduction with NaBH4 to yield carboxyl-reduced heparin (CR-HP). When compared to the antiproliferative potency of native HP on cultured BPASMC's at three dose levels (1, 10, and 100 μg/mL), the CR-HP showed significantly less potency at all the doses. These results suggest that hexuronic acid residues in both major and variable sequences in HP are essential for the antiproliferative properties of native HP. PMID:20399420

  8. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    DOE PAGES

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; ...

    2017-02-13

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here in this paper we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III) {[V III 2(OH) 2(L)], LH 4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV), [V IV 2O 2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2, which binds in an end-on manner, OH∙∙∙ =1.863(1) Å. In contrast, CO 2-loaded MFM-300(V IV) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O COmore » $$_2$$···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. Lastly, the macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.« less

  9. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  10. Variation in Optoelectronic Properties of Azo Dye-Sensitized TiO 2 Semiconductor Interfaces with Different Adsorption Anchors: Carboxylate, Sulfonate, Hydroxyl and Pyridyl Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Dai, Chencheng

    2014-05-28

    The optoelectronic properties of four azo dye-sensitized TiO2 interfaces are systematically studied as a function of a changing dye anchoring group: carboxylate, sulfonate, hydroxyl, and pyridyl. The variation in optoelectronic properties of the free dyes and those in dye/TiO 2 nanocomposites are studied both experimentally and computationally, in the context of prospective dye-sensitized solar cell (DSSC) applications. Experimental UV/vis absorption spectroscopy, cyclic voltammetry, and DSSC device performance testing reveal a strong dependence on the nature of the anchor of the optoelectronic properties of these dyes, both in solution and as dye/TiO2 nanocomposites. First-principles calculations on both an isolated dye/TiO2 clustermore » model (using localized basis sets) and each dye modeled onto the surface of a 2D periodic TiO2 nanostructure (using plane wave basis sets) are presented. Detailed examination of these experimental and computational results, in terms of light harvesting, electron conversion and photovoltaic device performance characteristics, indicates that carboxylate is the best anchoring group, and hydroxyl is the worst, whereas sulfonate and pyridyl groups exhibit competing potential. Different sensitization solvents are found to affect critically the extent of dye adsorption achieved in the dye-sensitization of the TiO2 semiconductor, especially where the anchor is a pyridyl group.« less

  11. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051.

    PubMed

    Sayyadi, Shayan; Ahmady-Asbchin, Salman; Kamali, Kasra

    2018-02-01

    The biosorption characteristics of Cd(II) and Cs(I) using live and dead cells of Saccharomyces carlsbergensis PTCC 5051 as biosorbents have been investigated in the present research. The influence of different experimental parameters such as initial pH (pHi), shaking rate, sorption time and initial metal concentration was evaluated. The optimum pH was obtained as 4 for Cd(II) and 7 for Cs(I). The experimental adsorption data were fitted to the Langmuir linear equation adsorption model. The highest metal uptake values of 0.593 and 0.473 mmol g -1 were calculated for Cd(II) and Cs(I), respectively. The results of Fourier transform infrared analysis suggested the involvement of amine, carboxyl and hydroxyl groups during the biosorption process and also indicated that more functional groups were involved in the biosorption process of live adsorbents, compared with those linked to dead biomass. The results showed that the biomass of S. carlsbergensis PTCC 5051 is a suitable biosorbent for the removal of Cd(II) and Cs(I) from the aqueous solutions.

  12. Elastohydrodynamics of farm-based blends comprising amphiphilic oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils contain non-polar hydrocarbon chains and polar ester groups (and possibly also other functional groups such as hydroxyl groups in castor oil). The presence of polar and non-polar groups within the same molecule gives vegetable oil amphiphilic character. The density, refractive index, ...

  13. Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.

    PubMed

    Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R

    2007-03-01

    A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.

  14. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    PubMed Central

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  15. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  16. Adsorption behaviour of hydrogarnet for humic acid

    NASA Astrophysics Data System (ADS)

    Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro

    2018-04-01

    Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.

  17. A Novel Mechanism of Sugar Selection Utilized by a Human X-family DNA Polymerase†

    PubMed Central

    Brown, Jessica A.; Fiala, Kevin A.; Fowler, Jason D.; Sherrer, Shanen M.; Newmister, Sean A.; Dyum, Wade W.; Suo, Zucai

    2009-01-01

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2′-hydroxyl group and the bulky side chain of an active site residue. Here, we demonstrated that human DNA polymerase λ used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2′-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such a steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2′ position. PMID:19900463

  18. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  19. Rheological and Thermal Properties of Bio-based Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Dumitrascu, Adina; Zhang, Tracy; Smith, Patrick

    Hyperbranched poly(ester)s (HBPEs) of designed molecular structures and targeted molecular weight can be prepared from a variety of multi-functional acids and alcohols. These polymers find application in the areas of coatings and rheology modifiers for coatings. These functional polymers can be synthesized in variety of architectures, possessing either hydroxyl or carboxyl reactive end-groups suitable for the attachment of active entities. The rheological characteristics as related to variation in molecular structure were determined using cone and plate or couette geometries. Viscosities of the HBPEs were found to be near Newtonian. HB polymers permit the control of Tg that is not as readily attained with linear polymers. Accordingly, Tg and viscosity are affected little as a function of Mw but vary dramatically with the nature of the end-groups, are highly dependent on hydrogen bonding of the hydroxyl end groups, and decrease dramatically with the incorporation of aliphatic end-caps. The thermal properties and the degradation characteristics of the HBPEs were determined. Thermal degradation of the hydroxyl-terminal HBPEs is initiated by dehydrative ether formation (crosslinking) while decarboxylation is the initial decomposition event for the carboxyl-terminal polymers. Midland, MI Campus.

  20. In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2

    PubMed Central

    2013-01-01

    In situ FT-IR spectroscopy was exploited to study the adsorption of CO2 and CO on commercially available yttria-stabilized ZrO2 (8 mol % Y, YSZ-8), Y2O3, and ZrO2. All three oxides were pretreated at high temperatures (1173 K) in air, which leads to effective dehydroxylation of pure ZrO2. Both Y2O3 and YSZ-8 show a much higher reactivity toward CO and CO2 adsorption than ZrO2 because of more facile rehydroxylation of Y-containing phases. Several different carbonate species have been observed following CO2 adsorption on Y2O3 and YSZ-8, which are much more strongly bound on the former, due to formation of higher-coordinated polydentate carbonate species upon annealing. As the crucial factor governing the formation of carbonates, the presence of reactive (basic) surface hydroxyl groups on Y-centers was identified. Therefore, chemisorption of CO2 most likely includes insertion of the CO2 molecule into a reactive surface hydroxyl group and the subsequent formation of a bicarbonate species. Formate formation following CO adsorption has been observed on all three oxides but is less pronounced on ZrO2 due to effective dehydroxylation of the surface during high-temperature treatment. The latter generally causes suppression of the surface reactivity of ZrO2 samples regarding reactions involving CO or CO2 as reaction intermediates. PMID:24009780

  1. Structure of 1:1 complex of 1-naphthylmethyl ester of monensin A with sodium perchlorate studied by X-ray, FT-IR and ab initio methods

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil

    2012-12-01

    A new crystalline complex formed between 1-naphthylmethyl ester of the naturally occurring antibiotic - monensin A (MON8) with sodium perchlorate has been obtained and studied using X-ray crystallography and FT-IR spectroscopy. The X-ray data of the complex show that MON8 forms a pseudo-cyclic structure stabilised by one weak intramolecular hydrogen bond and the sodium cation co-ordinated by two oxygen atoms of hydroxyl groups and four etheric oxygen atoms in the hydrophilic sphere. Within this structure the oxygen atoms of the ester groups are not involved in the coordination of sodium cation. In contrast to the solid state structure of the complex, in acetonitrile solution an equilibrium between two structures, in which the oxygen atom of the carbonyl ester group is either involved or not involved in the complexation of the sodium cation, is found. In acetonitrile this equilibrium is shifted towards the latter structure i.e. the structure existing in the solid state. The gas-phase structure of [MON8sbnd Na]+ cation as shown the ab initio MO calculations is comparable with the crystal one. Three-dimensional molecular electrostatic potential calculated for the neutral MON8 and [MON8sbnd Na]+ molecules is helpful for understanding the structural aspects of the sodium complex formation.

  2. Reactivity of formic acid (HCOOD and DCOOH) at uranium and UO 2.0 surfaces

    NASA Astrophysics Data System (ADS)

    Manner, William L.; Lloyd, Jane A.; Paffett, Mark T.

    1999-10-01

    Interactions of DCOOH and HCOOD with uranium and UO 2.0 surfaces have been examined using surface-specific techniques of thermal desorption mass spectroscopy (TDMS), X-ray photoelectron spectroscopy (XPS), and static secondary ion mass spectroscopy (SSIMS). On the clean uranium surface, formate is the predominant product following formic acid adsorption at 100 K. A wide range of products is observed after annealing to 200 K, including formate, hydroxyl, O ads, and H ads (D ads) groups. Adsorbed formate decomposes by 300 K increasing the concentration of the remaining surface products. Surface-adsorbed carbon following TDMS measurements remains as the carbide, as indicated from XPS and SSIMS measurements. The only gaseous species created in high yields from the clean surface upon annealing are H 2, HD, and D 2. On the oxide surface (UO 2.0), adsorbed formate groups are more stable toward dissociation in comparison with the clean uranium surface. Between 100 and 300 K the predominant species on the UO 2.0 surface are surface formate and hydroxyl groups. Hydroxyl groups react between 300 and 350 K to release water from the surface. Adsorbed formate groups decompose between 400 and 500 K to release CO and H 2CO (D 2CO) groups from the oxide surface. Carbon was not detected on the oxide surface by XPS or SSIMS after annealing to 500 K, indicating that all carbon-containing species either desorb in the form of CO-containing products or migrate into the surface.

  3. As many as six tandem reactions in one step! Unprecedented formation of highly functionalized benzothiophenes.

    PubMed

    Gopinath, Pushparathinam; Nilaya, Surapaneni; Debi, Tripathy Ranjan; Ramkumar, Venkatachalam; Muraleedharan, Kannoth Manheri

    2009-12-14

    A novel reaction pathway involving 1,3-diketones and 2,2'-dithiodibenzoylchloride that gives access to benzothiophenes with spiroketal, lactone, carbonyl, hydroxyl and carboxylic acid functionalities is discussed.

  4. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    PubMed

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  5. Complex Cure Kinetics of the Tertiary Amine activated Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes

    The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.

  6. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    PubMed

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups.

  7. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    PubMed Central

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2016-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed by 32P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC50 = 16 μM) > epicatechin gallate (24 μM) > epigallocatechin (146 μM) > epicatechin (462 μM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC50 = 4 μM) and pentagalloglucose (IC50 = 26 μM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 μM) in the presence of test compounds (200 μM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography–mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP–DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups. PMID:20218540

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4 H 6 O 6 ) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysismore » in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4 H 4 O 6 ) and three C 3 fragmentation products (C 3 H 4 O 4 , C 3 H 2 O 4 , and C 3 H 2 O 5 ). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4 H 4 O 6 ), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C ), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  9. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    PubMed

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  10. Salt permeation and exclusion in hydroxylated and functionalized silica pores.

    PubMed

    Leung, Kevin; Rempe, Susan B; Lorenz, Christian D

    2006-03-10

    We use combined ab initio molecular dynamics (AIMD), grand canonical Monte Carlo, and molecular dynamics techniques to study the effect of pore surface chemistry and confinement on the permeation of salt into silica nanopore arrays filled with water. AIMD shows that 11.6 A diameter hydroxylated silica pores are relatively stable in water, whereas amine groups on functionalized pore surfaces abstract silanol protons, turning into NH3+. Free energy calculations using an ab initio parametrized force field show that the hydroxylated pores strongly attract Na+ and repel Cl- ions. Pores lined with NH3+ have the reverse surface charge polarity. Finally, studies of ions in carbon nanotubes suggest that hydration of Cl- is more strongly frustrated by pure confinement effects than Na+.

  11. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  12. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  13. Effect of the St. John's wort constituent hyperforin on docetaxel metabolism by human hepatocyte cultures.

    PubMed

    Komoroski, Bernard J; Parise, Robert A; Egorin, Merrill J; Strom, Stephen C; Venkataramanan, Raman

    2005-10-01

    St. John's wort is a commonly used herbal medication that increases cytochrome P450 3A (CYP3A) activity. Because docetaxel is inactivated by CYP3A, we studied the effects of the St. John's wort constituent hyperforin on docetaxel metabolism in a human hepatocyte model. Hepatocytes, isolated from three donor livers, were exposed to hyperforin (0.1, 0.5, or 1.5 micromol/L) or rifampin (10 micromol/L) for 48 hours. After 48 hours, hyperforin- or rifampin-containing medium was replaced with medium containing 100 micromol/L docetaxel. After 1 hour, docetaxel metabolism was characterized by liquid chromatography-tandem mass spectrometry. Subsequent incubations characterized the specific cytochrome P450s that produced the docetaxel metabolites observed in hepatocyte incubations. Rifampin induced docetaxel metabolism 6.8- to 32-fold above docetaxel metabolism in control cultures. Hyperforin induced docetaxel metabolism in all three hepatocyte preparations. Hyperforin induction was dose-dependent and, at maximum, was 2.6- to 7-fold greater than that in controls. Docetaxel metabolites identified in rifampin- and hyperforin-treated hepatocyte preparations included the previously described tert-butyl-hydroxylated metabolite and two previously unidentified metabolites involving hydroxylation on the baccatin ring. CYP3A4 produced the tert-butyl-hydroxylated metabolite and the two ring-hydroxylated metabolites. CYP2C8 produced one of the newly described ring-hydroxylated metabolites. Exposure to the St. John's wort constituent hyperforin induces docetaxel metabolism in vitro. This implies that subtherapeutic docetaxel concentrations may result when docetaxel is administered to patients using St. John's wort on a chronic basis. The results also show induction of previously undescribed metabolic pathways for docetaxel, one of which may be analogous to the known 6-alpha-hydroxylation of paclitaxel by CYP2C8.

  14. Structure-activity relationship of carbamate-linked cationic lipids bearing hydroxyethyl headgroup for gene delivery.

    PubMed

    Zhi, Defu; Zhang, Shubiao; Qureshi, Farooq; Zhao, Yinan; Cui, Shaohui; Wang, Bing; Chen, Huiying; Yang, Baoling; Zhao, Defeng

    2013-12-01

    A novel series of carbamate-linked cationic lipids containing hydroxyl headgroup were synthesized and included in formulations for transfection assays. The DNA-lipid complexes were characterized for their ability to bind DNA, their size, ζ-potential and cytotoxicity. Compared with our previously reported cationic transfection lipid DDCDMA lacking the hydroxyl group and the commercially available, these cationic liposomes exhibited relatively higher transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans.

    PubMed

    Böttiger, Y; Dostert, P; Benedetti, M S; Bani, M; Fiorentini, F; Casati, M; Poggesti, I; Alm, C; Alvan, G; Bertilsson, L

    1996-12-01

    1. Nicergoline, an ergot derivative previously used as a vasodilator, has gained a new indication in treating the symptoms of senile dementia. 2. Nicergoline is rapidly hydrolysed to an alcohol derivative, 1-methyl-10-alpha-methoxy-9,10-dihydrolysergol (MMDL), which is further N-demethylated to form 10-alpha-methoxy-9,10-dihydrolysergol (MDL). A few individuals display aberrant metabolism of this drug, as shown by their diminished capacity to form the MDL metabolite. The aim of this study was to determine whether defective nicergoline metabolism is associated with the debrisoquine and/or the S-mephenytoin hydroxylation polymorphisms. 3. After a single, oral 30 mg dose of nicergoline, the plasma concentrations of its two metabolites were studied in 15 subjects, divided into three groups with respect to their debrisoquine and S-mephenytoin hydroxylation phenotypes. 4. The pharmacokinetic parameters of MMDL and MDL were similar in the ten subjects who were extensive metabolisers of debrisoquine (five of whom were poor metabolisers of S-mephenytoin) (mean MMDL Cmax 59 nmol l-1 and AUC (0, th) 144 nmol l-1h, mean MDL Cmax 183 nmol l-1 and AUC 2627 nmol l-1h) but were markedly different from the five subjects who were poor metabolisers of debrisoquine (mean MMDL Cmax 356 nmol l-1 and AUC 10512 nmol l-1h, MDL concentrations below limit of quantitation). 5. We conclude that the formation of MDL from MMDL in the metabolism of nicergoline is catalysed to a major extent by CYP2D6 and that the observed interindividual variation in the metabolic pattern of the drug is related to the debrisoquine hydroxylation polymorphism.

  16. Involvement of CYP2D6 but not CYP2C19 in nicergoline metabolism in humans

    PubMed Central

    BÖTTIGER, Y.; DOSTERT, P.; STROLIN BENEDETTI, M.; BANI, M.; FIORENTINI, F.; CASATI, M.; POGGESTI, I.; ALM, C.; ALVAN, G.; BERTILSSON, L.

    1996-01-01

    1Nicergoline, an ergot derivative previously used as a vasodilator, has gained a new indication in treating the symptoms of senile dementia. 2Nicergoline is rapidly hydrolysed to an alcohol derivative, 1-methyl-10-α-methoxy-9,10-dihydrolysergol (MMDL), which is further N-demethylated to form 10-α-methoxy-9,10-dihydrolysergol (MDL). A few individuals display aberrant metabolism of this drug, as shown by their diminished capacity to form the MDL metabolite. The aim of this study was to determine whether defective nicergoline metabolism is associated with the debrisoquine and/or the S-mephenytoin hydroxylation polymorphisms. 3After a single, oral 30 mg dose of nicergoline, the plasma concentrations of its two metabolites were studied in 15 subjects, divided into three groups with respect to their debrisoquine and S-mephenytoin hydroxylation phenotypes. 4The pharmacokinetic parameters of MMDL and MDL were similar in the ten subjects who were extensive metabolisers of debrisoquine (five of whom were poor metabolisers of S-mephenytoin) (mean MMDL Cmax 59 nmol l−1 and AUC (0, th) 144 nmol l−1h, mean MDL Cmax 183 nmol l−1 and AUC 2627 nmol l−1h) but were markedly different from the five subjects who were poor metabolisers of debrisoquine (mean MMDL Cmax 356 nmol l−1 and AUC 10512 nmol l−1h, MDL concentrations below limit of quantitation). 5We conclude that the formation of MDL from MMDL in the metabolism of nicergoline is catalysed to a major extent by CYP2D6 and that the observed interindividual variation in the metabolic pattern of the drug is related to the debrisoquine hydroxylation polymorphism. PMID:8971425

  17. Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds.

    PubMed

    Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado

    2017-07-26

    Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.

  18. Conformational analyses of 2,3-dihydroxypropanoic acid as a function of solvent and ionization state as determined by NMR spectroscopy.

    PubMed

    Drake, Michael D; Harsha, Alex K; Terterov, Sergei; Roberts, John D

    2006-03-01

    Vicinal (1)H--(1)H coupling constants were used to determine the conformational preferences of 2,3-dihydroxypropanoic acid (1) (DL-glyceric acid) in various solvents and its different carboxyl ionization states. The stereospecific assignments of J(12) and J(13) were confirmed through the point-group substitution of the C-3 hydrogen with deuterium, yielding rac-(2SR,3RS)-[3-(2)H]-1, and the observation of only J(13) in the (1)H NMR spectra. While hydrogen bonding and steric strain may be expected to drive the conformational equilibrium, their role is overshadowed by a profound gauche effect between the vicinal hydroxyl groups that mimics other substituted ethanes, such as 1,2-ethanediol and 1,2-difluoroethane. At low pH, the conformational equilibrium is heavily weighted toward the gauche-hydroxyl rotamers with a range of 81% in DMSO-d(6) to 92% in tert-butyl alcohol-d(10). At high pH, the equilibrium exhibits a larger dependence upon the polarity and solvating capability of the medium, although the gauche effect still dominates in D(2)O, 1,4-dioxane-d(8), methanol-d(4), and ethanol-d(6) (96, 89, 85, and 83% gauche-hydroxyls respectively). The observed preference for the gauche-hydroxyl rotamers is believed to stem primarily from hyperconjugative sigma(C--H) --> sigma*(C--OH) interactions.

  19. Modulating optical properties of graphene oxide: role of prominent functional groups.

    PubMed

    Johari, Priya; Shenoy, Vivek B

    2011-09-27

    To modulate the electronic and optical properties of graphene oxide via controlled deoxidation, a proper understanding of the role of the individual functional group in determining these properties is required. We, therefore, have performed ab initio density functional theory based calculations to study the electronic and optical properties of model structures of graphene oxide with different coverages and compositions. In particular, we considered various concentrations of major functional groups like epoxides, hydroxyls, and carbonyls, which mainly consititute the graphene oxide and the reduced graphene oxide. Our calculated electron energy loss spectra (EELS) demonstrate the π plasmon peak to be less sensitive, while π + σ plasmon is found to have a significant blue shift of about 1.0-3.0 eV, when the concentration of epoxy and hydroxyl functional groups in graphene oxide vary from 25% to 75%. However, the increase in carbonyl groups in the center of the graphene sheet creates holes, which lead to the red shift of the EELS. In the case of 37.5% of oxygen-to-carbon ratio, we find the π plasmon peak to be shifted by roughly 1.0 eV as compared to that of the pristine graphene. Our results agree well with the experimental findings which suggest a blue shift in the EELS of graphene oxide and an absorption feature due to a π electron transition of the carbonyl groups at a lower energy than that of epoxy and hydroxyl groups. We also show that the increase in the width of the hole created by the carbonyl groups significantly decreases the optical gap and opens the band gap, and thus, we argue that reduced graphene oxide with mostly carbonyl groups could be a useful material for developing tunable opto-electronic nanodevices. © 2011 American Chemical Society

  20. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved.

    PubMed

    Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K

    2018-06-20

    Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The role of a conserved tyrosine residue in high-potential iron sulfur proteins.

    PubMed Central

    Iwagami, S. G.; Creagh, A. L.; Haynes, C. A.; Borsari, M.; Felli, I. C.; Piccioli, M.; Eltis, L. D.

    1995-01-01

    Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring. PMID:8580847

  2. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films.

    PubMed

    Sledge, Samiyyah M; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria L; Michael, Heidi; Dennis, Emily K; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-10-01

    The inhibition of the rate of evaporation (R evap ) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit R evap . R evap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11-24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 μm 2 . All of the surface lipids were ordered. R evap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. R evap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence R evap over an estimated average thickness range of 0.69 to >6.9 μm. R evap of human tears and buffer with and without human meibum (34.4 μm thick) was not significantly different. R evap of human tears was not significantly different from buffer. Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit R evap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit R evap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits R evap of tears. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate1[OPEN

    PubMed Central

    Free, Heather C.A.; Smith, Bronwen G.

    2018-01-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. PMID:29724771

  4. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    NASA Astrophysics Data System (ADS)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  5. Synthesis and characterization of a novel hyaluronic acid hydrogel.

    PubMed

    Zhao, X

    2006-01-01

    Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation.

  6. Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the South China Sea.

    PubMed

    Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu

    2010-04-01

    Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.

  7. A modular approach for multifunctional polymersomes with controlled adhesive properties.

    PubMed

    Petit, Julien; Thomi, Laura; Schultze, Jennifer; Makowski, Marcin; Negwer, Inka; Koynov, Kaloian; Herminghaus, Stephan; Wurm, Frederik R; Bäumchen, Oliver; Landfester, Katharina

    2018-02-14

    The bottom-up approach in synthetic biology involves the engineering of synthetic cells by designing biological and chemical building blocks, which can be combined in order to mimic cellular functions. The first step for mimicking a living cell is the design of an appropriate compartment featuring a multifunctional membrane. This is of particular interest since it allows for the selective attachment of different groups or molecules to the membrane. In this context, we report on a modular approach for polymeric vesicles, so-called polymersomes, with a multifunctional surface, namely hydroxyl, alkyne and acrylate groups. We demonstrate that the surface of the polymersome can be functionalized to facilitate imaging, via fluorescent dyes, or to improve the specific adhesion to surfaces by using a biotin functionalization. This generally applicable multifunctionality allows for the covalent integration of various molecules in the membrane of a synthetic cell.

  8. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate.

    PubMed

    Karlen, Steven D; Free, Heather C A; Padmakshan, Dharshana; Smith, Bronwen G; Ralph, John; Harris, Philip J

    2018-06-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p -coumarate. The Poaceae, or grass family, is a member of this group, and most of the p -coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p -coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Wang, Yingfeng; Yao, Qiuming

    2014-01-01

    Detailed characterization of posttranslational modifications (PTMs) of proteins in microbial communities remains a significant challenge. Here we directly identify and quantify a broad range of PTMs (hydroxylation, methylation, citrullination, acetylation, phosphorylation, methylthiolation, S-nitrosylation and nitration) in a natural microbial community from an acid mine drainage site. Approximately 29% of the identified proteins of the dominant Leptospirillum group II bacteria are modified, and 43% of modified proteins carry multiple PTM types. Most PTM events, except S-nitrosylations, have low fractional occupancy. Notably, PTM events are detected on Cas proteins involved in antiviral defense, an aspect of Cas biochemistry not considered previously. Further,more » Cas PTM profiles from Leptospirillum group II differ in early versus mature biofilms. PTM patterns are divergent on orthologues of two closely related, but ecologically differentiated, Leptospirillum group II bacteria. Our results highlight the prevalence and dynamics of PTMs of proteins, with potential significance for ecological adaptation and microbial evolution.« less

  10. Spectroscopic and structural studies of the first complex formed between salinomycin and organic amine

    NASA Astrophysics Data System (ADS)

    Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam

    2017-02-01

    For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.

  11. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  12. Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations.

    PubMed

    Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Gao, Feng; Liu, Cun; Teppen, Brian J

    2018-01-01

    Intercalation is the promising strategy to expand the interlayer region of kaolinite for their further applications. Herein, the adaptive biasing force (ABF) accelerated molecular dynamics simulations were performed to calculate the free energies involved in the kaolinite intercalation by dimethyl sulfoxide (DMSO). Additionally, the classical all atom molecular dynamics simulations were carried out to calculate the interfacial interactions between kaolinite interlayer surfaces and DMSO with the aim at exploring the underlying force that drives the DMSO to enter the interlayer space. The results showed that the favorable interaction of DMSO with both kaolinite interlayer octahedral surface and tetrahedral surface can help in introducing DMSO enter kaolinite interlayer. The hydroxyl groups on octahedral surface functioned as H-donors attracting the S=O groups of DMSO through hydrogen bonding interaction. The tetrahedral surface featuring hydrophobic property attracted the methyl groups of DMSO through hydrophobic interaction. The results provided a detailed picture of the energetics and interlayer structure of kaolinite-DMSO intercalate.

  13. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects.

    PubMed

    Yamaori, Satoshi; Yamazaki, Hiroshi; Iwano, Shunsuke; Kiyotani, Kazuma; Matsumura, Keiko; Honda, Goro; Nakagawa, Kazuko; Ishizaki, Takashi; Kamataki, Tetsuya

    2004-04-01

    The purpose of this study was to evaluate a contribution of polymorphic cytochrome P450 (CYP) 3A5 to the oxidation of diltiazem, midazolam and testosterone by liver microsomes from Japanese subjects. Twenty-seven liver samples were classified into three groups according to the CYP3A5 genotypes; CYP3A5(*)1/(*)1 (n=3), (*)1/(*)3 (n=12) and (*)3/(*)3 (n=12). The results of genotyping and immunochemical quantitation of CYP3A5 protein showed a good accordance between the CYP3A5 genotype and CYP3A5 content but not CYP3A4 content in liver microsomes. The expression levels of hepatic CYP3A5 protein ranged from 20 to 60% of the sum of CYP3A4 and CYP3A5 contents in subjects with at least one wild type allele ((*)1). The CYP3A5 contents correlated well with liver microsomal activities of diltiazem N-demethylation, midazolam 1'- and 4-hydroxylations and testosterone 6beta-hydroxylation among subjects carrying at least one (*)1 allele. In addition, the correlation coefficients of CYP3A5 contents with the rates of diltiazem N-demethylation, midazolam 1'-hydroxylation and testosterone 6beta- hydroxylation were higher than those of CYP3A4, although the value of CYP3A5 with the midazolam 4-hydroxylation rate was similar to that of CYP3A4. Kinetic analyses revealed a biphasic diltiazem N-demethylation in liver microsomes from subjects carrying the (*)1 allele. The apparent V(max)/K(m) values for recombinant CYP3A5 indicated the greater contributions to diltiazem N-demethylation and midazolam 1'-hydroxylation as compared with CYP3A4. These results suggest that polymorphic CYP3A5 contributes markedly to the drug oxidations, particularly diltiazem N-demethylation, midazolam 1'- hydroxylation and testosterone 6beta-hydroxylation by liver microsomes from Japanese subjects.

  14. Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics.

    PubMed

    Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil

    2018-01-01

    Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks under various conditions with a series of RH. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups within paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude-regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.

  15. Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics

    NASA Astrophysics Data System (ADS)

    Huang, Ziwei; Gengenbach, Thomas; Tian, Junfei; Shen, Wei; Garnier, Gil

    2018-05-01

    Paper and cellulosic films are used in many designs of low-cost diagnostics such as paper-based blood grouping devices. A major issue limiting their commercialization is the short stability of the functional biomolecules. To address this problem, the effect of relative humidity (RH) and bovine serum albumin (BSA) on the antibody bioactivity and the surface chemical composition of a paper blood typing biodiagnostic were studied. An IgM blood typing antibody was physisorbed from solution onto paper - with or without BSA pretreatment, and aged for periods up to 9 weeks at room temperature and under different RH conditions. The blood typing efficiency of the antibodies and the substrate surface chemical composition were analyzed by image analysis and X-ray photoelectron spectroscopy (XPS), respectively. This study tests two hypotheses. The first is that the hydroxyl groups in paper promote antibody denaturation on paper; the second hypothesis is that proteins such as BSA can partially block the hydroxyl groups with paper, thus preserving antibody bioactivity. Results show that high RH is detrimental to antibody longevity on paper, while BSA can block hydroxyl groups and prolong antibody longevity by almost an order of magnitude – regardless of humidity. This study opens up new engineering concepts to develop robust and marketable paper diagnostics. The simplest is to store paper and antibody based diagnostics in moisture proof packages.

  16. Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2 composites.

    PubMed

    Nomura, Youhei; Fukahori, Shuji; Fukada, Haruhisa; Fujiwara, Taku

    2017-10-15

    Removal efficiencies of sulfamonomethoxine (SMM) and its degradation intermediates formed by treatment with zeolite/TiO 2 composites through adsorption and photocatalysis were investigated in fresh aquaculture wastewater (FAWW). Coexistent substances in the FAWW showed no inhibitory effects against SMM adsorption. Although coexistent substances in the FAWW inhibited the photocatalytic decomposition of SMM, the composites mitigated the inhibition, possibly because of concentration of SMM on their surface by adsorption. LC/MS/MS analyses revealed that hydroxylation of amino phenyl and pyrimidinyl portions, transformation of the amino group in the amino phenyl portion into a nitroso group, and substitution of the methoxy group with a hydroxyl group occurring in the initial reaction resulted in the formation of various intermediates during the photocatalysis of SMM. All detected intermediates had a ring structure, and almost all intermediates disappeared at the same time SMM was completely decomposed. Ph-OH formed by hydroxylation of the phenyl portion was detected upon decomposition of SMM during photocatalysis. The removal of Ph-OH by the composites proceeded more rapidly than that by TiO 2 alone under ultraviolet irradiation. The SMM and Ph-OH were completely degraded by the composites within 30min, showing that the zeolite/TiO 2 composites were effective in removing SMM and its intermediates from FAWW. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives

    PubMed Central

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-01-01

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907

  18. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.

    PubMed

    Brown, Jessica A; Fiala, Kevin A; Fowler, Jason D; Sherrer, Shanen M; Newmister, Sean A; Duym, Wade W; Suo, Zucai

    2010-01-15

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2'-hydroxyl group and the bulky side chain of an active-site residue. In this study, we demonstrated that human DNA polymerase lambda used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2'-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2'-position. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with "Universal Hydrophilizer" or Hydroxyl Groups.

    PubMed

    Roubinet, Benoit; Bischoff, Matthias; Nizamov, Shamil; Yan, Sergey; Geisler, Claudia; Stoldt, Stefan; Mitronova, Gyuzel Y; Belov, Vladimir N; Bossi, Mariano L; Hell, Stefan W

    2018-05-11

    Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor superresolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-L-alanyl - beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The superresolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N,N,N',N'-tetramethyl rhodamine.

  20. The effects of certain glycols, substituted glycols and related organic solvents on the thermal stability of soluble collagen

    PubMed Central

    Hart, G. J.; Russell, A. E.; Cooper, D. R.

    1971-01-01

    The effects of a number of related diols, substituted diols and glycerol on the thermal stability of acid-soluble calf skin collagen were investigated. Thermal transition temperatures were determined by optical rotation measurement. Short-chain diols with terminal hydroxyl groups, i.e. ethylene glycol and propane-1,3-diol, stabilized the protein at all accessible concentrations. Stabilization was also observed with glycerol and diethylene glycol. Higher homologues in the diol series produced various effects, as did hydroxyl-group positional isomerism. Monoalkyl substitution of diols progressively lowered the denaturation temperature of collagen. Results are discussed in relation to possible mechanisms of perturbant action. PMID:5169191

  1. Methemoglobinemia Hemotoxicity of Some Antimalarial 8-Aminoquinoline Analogues and Their Hydroxylated Derivatives: Density Functional Theory Computation of Ionization Potentials.

    PubMed

    Ding, Yuanqing; Liu, Haining; Tekwani, Babu L; Nanayakkara, N P Dhammika; Khan, Ikhlas A; Walker, Larry A; Doerksen, Robert J

    2016-07-18

    The administration of primaquine (PQ), an essential drug for the treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose an electron) of the metabolites generated by antimalarial 8-aminoquinoline (8-AQ) drugs like PQ has been believed to be correlated in part to this methemoglobinemia hemotoxicity: the lower the IP of an 8-AQ derivative, the higher the concentration of methemoglobin generated. In this work, demethoxylated primaquine (AQ02) was employed as a model, by intensive computation at the B3LYP-SCRF(PCM)/6-311++G**//B3LYP/6-31G** level in water, to study the effects of hydroxylation at various positions on the ionization potential. Compared to the parent AQ02, the IPs of AQ02's metabolites hydroxylated at N1', C5, and C7 were lower by 61, 30, and 19 kJ/mol, respectively, while differences in the IP relative to PQ were small for hydroxylation at all other positions. The C6 position, at which the IP of the hydroxylated metabolite was greater than that of AQ02, by 2 kJ/mol, was found to be unique. Several literature and proposed 8-AQ analogues were studied to evaluate substituent effects on their potential to generate methemoglobin, with the finding that hydroxylations at N1' and C5 contribute the most to the potential hemotoxicity of PQ-based antimalarials, whereas hydroxylation at C7 has little effect. Phenoxylation at C5 in PQ-based 8-AQs can block the hydroxylation at C5 and reduce the potential for methemoglobin generation, while -CF3 and chlorines attached to the phenolic ring can further reduce the risk. The H-shift at N1' during the cationization of hydroxylated metabolites of 8-AQs sharply decreased their IPs, but this effect can be significantly reduced by the introduction of an electron-withdrawing group to the quinoline core. The results and this approach may be utilized for the design of safer antimalarial 8-AQ analogues.

  2. Supramolecular structures on silica surfaces and their adsorptive properties.

    PubMed

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  3. Surface segregation of additives on SnO 2 based powders and their relationship with macroscopic properties

    NASA Astrophysics Data System (ADS)

    Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas

    2002-07-01

    Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.

  4. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  5. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  6. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen.

    PubMed

    Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin

    2017-02-01

    The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ab initio simulations of water splitting on hematite

    NASA Astrophysics Data System (ADS)

    Seriani, Nicola

    2017-11-01

    In recent years, hematite has attracted great interest as a photocatalyst for water splitting, but many questions remain unanswered about the mechanisms and the main limiting factors. For this reason, density functional theory has been used to understand the optical, electronic and chemical properties of this material at an atomistic level. Bulk doping can be used to reduce the band gap, and to increase photoabsorption and charge mobility. Charge transport takes place through adiabatic polaron hopping. The stable (0 0 0 1) surface has a stoichiometric termination when exposed to oxygen, it becomes hydroxylated in water, and it has an oxygen-rich termination under illumination in a photoelectrochemical setup. On the oxygen-rich termination, surface states are present that might act as recombination centres for electrons and holes. On the contrary, on the hydroxylated termination surface states appear only on reaction intermediates. The intrinsic surface states disappear in the presence of an overlayer of gallium oxide. The reaction of water oxidation is assumed to proceed by four proton-coupled electron transfers and it is shown to involve a nucleophilic attack with the formation of an OOH group. Calculated overpotentials are in the range of 0.5-0.6 V. Open questions and future research directions are briefly discussed.

  8. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  9. Diastereoselective Additions of Allylmetal Reagents to Free and Protected syn-α,β-Dihydroxyketones Enable Efficient Synthetic Routes to Methyl Trioxacarcinoside A

    PubMed Central

    Smaltz, Daniel J.; Švenda, Jakub

    2012-01-01

    Two routes to the 2,6-dideoxysugar methyl trioxacarcinoside A are described. Each was enabled by an apparent α-chelation-controlled addition of an allylmetal reagent to a ketone substrate containing a free α-hydroxyl group and a β-hydroxyl substituent, either free or protected as the corresponding di-tert-butylmethyl silyl ether. Both routes provide practical access to gram-quantities of trioxacarcinose A in a form suitable for glycosidic coupling reactions. PMID:22404560

  10. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    PubMed

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  11. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling.

    PubMed Central

    Thanki, N.; Rao, J. K.; Foundling, S. I.; Howe, W. J.; Moon, J. B.; Hui, J. O.; Tomasselli, A. G.; Heinrikson, R. L.; Thaisrivongs, S.; Wlodawer, A.

    1992-01-01

    The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure. PMID:1304383

  12. Antioxidant Properties of Kynurenines: Density Functional Theory Calculations

    PubMed Central

    2016-01-01

    Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556

  13. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGES

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; ...

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO 2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO 2-x(111) at varying Ce³⁺ concentrations (CeO 1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria.more » Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  14. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  15. Compositions and methods for hydrocarbon functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  16. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor. PMID:22403541

  17. Coumarin-BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation.

    PubMed

    Esnal, I; Duran-Sampedro, G; Agarrabeitia, A R; Bañuelos, J; García-Moreno, I; Macías, M A; Peña-Cabrera, E; López-Arbeloa, I; de la Moya, S; Ortiz, M J

    2015-03-28

    Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin-BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520-680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260-350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.

  18. Biosynthesis of CdS nanoparticles in banana peel extract.

    PubMed

    Zhou, Guang Ju; Li, Shuo Hao; Zhang, Yu Cang; Fu, Yun Zhi

    2014-06-01

    Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized by using banana peel extract as a convenient, non-toxic, eco-friendly 'green' capping agent. Cadmium nitrate and sodium sulfide are main reagents. A variety of CdS NPs are prepared through changing reaction conditions (banana extracts, the amount of banana peel extract, solution pH, concentration and reactive temperature). The prepared CdS colloid displays strong fluorescence spectrum. X-ray diffraction analysis demonstrates the successful formation of CdS NPs. Fourier transform infra-red (FTIR) spectrogram indicates the involvement of carboxyl, amine and hydroxyl groups in the formation of CdS NPs. Transmission electron microscope (TEM) result reveals that the average size of the NPs is around 1.48 nm.

  19. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    PubMed

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank

    PubMed Central

    Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2013-01-01

    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645

  1. The Roles of a Flavone-6-Hydroxylase and 7-O-Demethylation in the Flavone Biosynthetic Network of Sweet Basil*

    PubMed Central

    Berim, Anna; Gang, David R.

    2013-01-01

    Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin. PMID:23184958

  2. Expression and Characterization of CYP52 Genes Involved in the Biosynthesis of Sophorolipid and Alkane Metabolism from Starmerella bombicola

    PubMed Central

    Huang, Fong-Chin; Peter, Alyssa

    2014-01-01

    Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps. PMID:24242247

  3. In vivo transport of three radioactive [18F]-fluorinated deoxysucrose analogs by the maize sucrose transporter ZmSUT1.

    PubMed

    Tran, Thu M; Hampton, Carissa S; Brossard, Tom W; Harmata, Michael; Robertson, J David; Jurisson, Silvia S; Braun, David M

    2017-06-01

    Sucrose transporter (SUT) proteins translocate sucrose across cell membranes; however, mechanistic aspects of sucrose binding by SUTs are not well resolved. Specific hydroxyl groups in sucrose participate in hydrogen bonding with SUT proteins. We previously reported that substituting a radioactive fluorine-18 [ 18 F] at the C-6' position within the fructosyl moiety of sucrose did not affect sucrose transport by the maize (Zea mays) ZmSUT1 protein. To determine how 18 F substitution of hydroxyl groups at two other positions within sucrose, the C-1' in the fructosyl moiety or the C-6 in the glucosyl moiety, impact sucrose transport, we synthesized 1'-[F 18 ]fluoro-1'-deoxysucrose and 6-[F 18 ]fluoro-6-deoxysucrose ([ 18 F]FDS) analogs. Each [ 18 F]FDS derivative was independently introduced into wild-type or sut1 mutant plants, which are defective in sucrose phloem loading. All three (1'-, 6'-, and 6-) [ 18 F]FDS derivatives were efficiently and equally translocated, similarly to carbon-14 [ 14 C]-labeled sucrose. Hence, individually replacing the hydroxyl groups at these positions within sucrose does not interfere with substrate recognition, binding, or membrane transport processes, and hydroxyl groups at these three positions are not essential for hydrogen bonding between sucrose and ZmSUT1. [ 18 F]FDS imaging afforded several advantages compared to [ 14 C]-sucrose detection. We calculated that 1'-[ 18 F]FDS was transported at approximately a rate of 0.90 ± 0.15 m.h-1 in wild-type leaves, and at 0.68 ± 0.25 m.h-1 in sut1 mutant leaves. Collectively, our data indicated that [ 18 F]FDS analogs are valuable tools to probe sucrose-SUT interactions and to monitor sucrose transport in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  5. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    PubMed

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  6. Identification and characterization of the steroid 15α-hydroxylase gene from Penicillium raistrickii.

    PubMed

    Jia, Longgang; Dong, Jianzhang; Wang, Ruijie; Mao, Shuhong; Lu, Fuping; Singh, Suren; Wang, Zhengxiang; Liu, Xiaoguang

    2017-08-01

    Penicillium raistrickii ATCC 10490 is used for the commercial preparation of 15α-13-methy-estr-4-ene-3,17-dione, a key intermediate in the synthesis of gestodene, which is a major component of third-generation contraceptive pills. Although it was previously shown that a cytochrome P450 enzyme in P. raistrickii is involved in steroid 15α-hydroxylation, the gene encoding the steroid 15α-hydroxylase remained unknown. In this study, we report the cloning and characterization of the 15α-hydroxylase gene from P. raistrickii ATCC 10490 by combining transcriptomic profiling with functional heterologous expression in Saccharomyces cerevisiae. The full-length open reading frame (ORF) of the 15α-hydroxylase gene P450pra is 1563 bp and predicted to encode a cytochrome P450 protein of 520 amino acids. Targeted gene deletion revealed that P450pra is solely responsible for 15α-hydroxylation activity on 13-methy-estr-4-ene-3,17-dione in P. raistrickii ATCC 10490. The identification of the 15α-hydroxylase gene from P. raistrickii should help elucidate the molecular basis of regio- and stereo-specificity of steroid 15α-hydroxylation and aid in the engineering of more efficient industrial strains for useful steroid 15α-hydroxylation reactions.

  7. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

    DOE PAGES

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; ...

    2015-03-23

    N-hydroxylating monooxygenases (NMOs) are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines, such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on D-Lys although it binds L-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producingmore » more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the FAD domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. We discuss the biological implications of these findings.« less

  8. Regioselective Synthesis of Cellulose Ester Homopolymers

    Treesearch

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  9. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.

  10. Microbial transformations of diosgenin by the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Wu, Guang-Wei; Gao, Jin-Ming; Shi, Xin-Wei; Zhang, Qiang; Wei, Shao-Peng; Ding, Kan

    2011-10-28

    Microbial transformation of diosgenin (3β-hydroxy-5-spirostene) using white-rot fungus Coriolus versicolor afforded four previously unreported polyhydroxylated steroids, 25(R)-spirost-5-en-3β,7α,15α,21-tetraol (5), 25(R)-spirost-5-en-3β,7β,12β,21-tetrol (6), (25R)-spirost-5-en-3β,7α,12β,21-tetraol (7), and (25R)-spirost-5-en-3β,7β,11α,21-tetraol (8), along with three known congeners, 25(R)-spirost-5-en-3β,7β-diol (2), 25(R)-spirost-5-en-3β,7β,21-triol (3), and 25(R)-spirost-5-en-3β,7β,12β-triol (4). These structures were elucidated by 1D and 2D NMR as well as HR-ESIMS analysis. In addition, we provide evidence for two new microbial hydroxylations of diosgenin: C-21 primary carbon hydroxylation and C-15 hydroxylation. The 3β-hydroxyl group and double bond in the B-ring of diosgenin were found to be important structural determinants for their activity.

  11. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  12. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa.

    PubMed

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0.

  13. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa

    PubMed Central

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0. PMID:28253367

  14. Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2.

    PubMed

    Martínez-Fernández, Leyre; Pons, Zara; Margalef, Maria; Arola-Arnal, Anna; Muguerza, Begoña

    2015-03-01

    Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox.

    PubMed

    Wang, Xu; Huang, Xian-Ju; Ihsan, Awais; Liu, Zhao-Ying; Huang, Ling-Li; Zhang, Hua-Hai; Zhang, Hong-Fei; Zhou, Wen; Liu, Qin; Xue, Xi-Juan; Yuan, Zong-Hui

    2011-02-27

    Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides antibacterial agent and growth promoter in animal husbandry. This study was to investigate whether reactive oxygen species (ROS), the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway, suppressors of cytokine signaling (SOCS) and inflammatory cytokines were involved in toxicities of MEQ. Our data demonstrated that high dose of MEQ (275 mg/kg) apparently led to tissue impairment combined with imbalance of redox in liver. In liver and spleen samples, hydroxylation metabolites and desoxymequindox were detected, directly confirming the potential link of N→O group reduction metabolism with its organ toxicity. Moreover, up-regulation of JAK/STAT, SOCS family, tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were also observed in the high-dose group. Meanwhile, significant changes of oxidative stress indices in liver were observed in the high-dose group. As for NADPH subunit, the mRNA levels of many subunits were significantly up-regulated at low doses but down-regulated in a dose-dependent manner in liver and spleen, suggesting an involvement of NADPH in MEQ metabolism and ROS generation. In conclusion, we reported the dose-dependent long-term toxicity as well as the discussion of the potential mechanism and pathways of MEQ, which raised further awareness of its toxicity following with the dose change. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Theoretical and modeling studies of the atmospheric chemistry of sulfur oxide and hydroxyl radical systems

    NASA Astrophysics Data System (ADS)

    El-Zanan, Hazem S.

    Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The results indicate that the concentrations observed here in this study are comparable with the HO concentrations measured and/or modeled from other studies. HO concentrations produced from ozone, formaldehyde and isoprene were by far the most important sources for HO production but the HO removal processes greatly differs between the urban and rural areas. Hydroxyl radical concentrations vary by location, time of the day, season and meteorological conditions. Comparing the HO concentrations from our study with other studies from different urban, rural and marine environments shows that hydroxyl radical concentrations in the urban areas can be lower than some pristine environments.

  17. Adsorption of natural dissolved organic matter at the oxide/water interface

    USGS Publications Warehouse

    Davis, James A.

    1982-01-01

    Natural organic matter is readily adsorbed by alumina and kaolinite in the pH range of natural waters. Adsorption occurs by complex formation between surface hydroxyls and the acidic functional groups of the organic matter. Oxides with relatively acidic surface hydroxyls, e.g. silica, do not react strongly with the organic matter. Under conditions typical for natural waters, almost complete surface coverage by adsorbed organic matter may be expected for alumina, hydrous iron oxides and the edge sites of aluminosilicates. Potentiometric titration and electrophoresis indicate that most of the acidic functional groups of the adsorbed organic matter are neutralized by protons from solution. The organic coating is expected to have a great influence on subsequent adsorption of inorganic cations and anions.

  18. Mass Spectrometric Distinction of In-Source and In-Solution Pyroglutamate and Succinimide in Proteins: A Case Study on rhG-CSF

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi

    2013-02-01

    Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.

  19. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  20. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds

    PubMed Central

    2013-01-01

    Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the activation energy of the hydrogen transfer process. PMID:23497653

  1. Importance of Unimolecular HO 2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol

    DOE PAGES

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    2016-07-09

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  2. Reaction mechanism of sterol hydroxylation by steroid C25 dehydrogenase - Homology model, reactivity and isoenzymatic diversity.

    PubMed

    Rugor, Agnieszka; Wójcik-Augustyn, Anna; Niedzialkowska, Ewa; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej; Szaleniec, Maciej

    2017-08-01

    Steroid C25 dehydrogenase (S25DH) is a molybdenum-containing oxidoreductase isolated from the anaerobic Sterolibacterium denitrificans Chol-1S. S25DH is classified as 'EBDH-like' enzyme (EBDH, ethylbenzene dehydrogenase) and catalyzes the introduction of an OH group to the C25 atom of a sterol aliphatic side-chain. Due to its regioselectivity, S25DH is proposed as a catalyst in production of pharmaceuticals: calcifediol or 25-hydroxycholesterol. The aim of presented research was to obtain structural model of catalytic subunit α and investigate the reaction mechanism of the O 2 -independent tertiary carbon atom activation. Based on homology modeling and theoretical calculations, a S25DH α subunit model was for the first time characterized and compared to other S25DH-like isoforms. The molecular dynamics simulations of the enzyme-substrate complexes revealed two stable binding modes of a substrate, which are stabilized predominantly by van der Waals forces in the hydrophobic substrate channel. However, H-bond interactions involving polar residues with C3=O/C3-OH in the steroid ring appear to be responsible for positioning the substrate. These results may explain the experimental kinetic results which showed that 3-ketosterols are hydroxylated 5-10-fold faster than 3-hydroxysterols. The reaction mechanism was studied using QM:MM and QM-only cluster models. The postulated mechanism involves homolytic CH cleavage by the MoO ligand, giving rise to a radical intermediate with product obtained in an OH rebound process. The hypothesis was supported by kinetic isotopic effect (KIE) experiments involving 25,26,26,26-[ 2 H]-cholesterol (4.5) and the theoretically predicted intrinsic KIE (7.0-7.2). Finally, we have demonstrated that the recombinant S25DH-like isoform catalyzes the same reaction as S25DH. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nanostructure and surface activation of mayenite (12CaO·7Al2O3) ceramics via femtosecond laser irradiation in solvents

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Hirano, Minami; Omura, Takuya; Shimizu, Masahiro; Takaishi, Taigo; Hirao, Kazuyuki

    2017-07-01

    Mayenite (12CaO·7Al2O3) is a highly interesting functional material due to the wide variety of its possible future applications. In this study, we used femtosecond laser irradiation in several solvents with varying polarities to increase the specific surface area of 12CaO·7Al2O3 ceramics and reduce their particle size without any structural degradation or loss of crystallinity. We observed that when femtosecond laser irradiation was applied to solvents bearing hydroxyl groups, a smaller particle size was obtained with the particle size decreasing as the polarity of the solvent increased. Using infrared spectroscopy, we confirmed the presence of hydroxyl and carbonyl surface functional groups at the surface of 12CaO·7Al2O3 ceramics after femtosecond laser irradiation. This is attributed to the direct chemical bonds breaking of the solvent via multiphoton ionization and/or tunneling ionization, followed by the Coulomb explosion and the subsequent production of ions that are adsorbed on the surfaces of 12CaO·7Al2O3 ceramics. Femtosecond laser irradiation in polar solvents with hydroxyl groups can reduce the particle size and increase the specific surface area without degradation or loss of crystallinity of 12CaO·7Al2O3 ceramics. Additionally, this method can be used for the surface modification and introduction of functional groups on the 12CaO·7Al2O3 ceramics surface.

  4. Where and What Is Pristine Marine Aerosol?

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter, 48:v-x, doi10.1080/02786826.2013.879979, 2014a. Frossard, A.A., L.M. Russell, M.S. Long, S.M. Burrows, S.M. Elliot, T.S. Bates, and P.K. Quinn, "Sources and Composition of Submicron Organic Mass in Marine Aerosol Particles," Journal of Geophysical Research - Atmospheres, submitted 2014b.

  5. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less

  7. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  8. Genomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula[C][W

    PubMed Central

    Naoumkina, Marina A.; Modolo, Luzia V.; Huhman, David V.; Urbanczyk-Wochniak, Ewa; Tang, Yuhong; Sumner, Lloyd W.; Dixon, Richard A.

    2010-01-01

    Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene expression clustering analysis to identify candidate genes involved in the elaboration, hydroxylation, and glycosylation of the triterpene skeleton in the model legume Medicago truncatula. Four candidate uridine diphosphate glycosyltransferases were expressed in Escherichia coli, one of which (UGT73F3) showed specificity for multiple sapogenins and was confirmed to glucosylate hederagenin at the C28 position. Genetic loss-of-function studies in M. truncatula confirmed the in vivo function of UGT73F3 in saponin biosynthesis. This report provides a basis for future studies to define genetically the roles of multiple cytochromes P450 and glycosyltransferases in triterpene saponin biosynthesis in Medicago. PMID:20348429

  9. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation.

    PubMed

    Park, Yeong-Joon; Song, Ho-Jun; Kim, In; Yang, Hong-So

    2007-04-01

    In this study, we characterized the surface of oxide film formed on titanium metal through the use of thermal treatment and investigated the effect of surface characteristics on the bioactivity of titanium. The as-received sample group was prepared by polishing and cleaning CP-Ti as a control group, and thermally oxidized sample groups were prepared by heat treating at 530, 600, 700, 800, 900, and 1000 degrees C respectively. Micro-morphology, crystalline structure, chemical composition, and binding state were evaluated using FE-SEM, XRD, and XPS. The bioactivity of sample groups was investigated by observing the degree of calcium phosphate formation from immersion testing in MEM. The surface characterization tests showed that hydroxyl group content in titanium oxide film was increased, as the density of titanium atoms was high and the surface area was large. In MEM immersion test, initial calcium phosphate formation was dependent upon the thickness of titanium oxide, and resultant calcium phosphate formation depended on the content of the hydroxyl group of the titanium oxide film surface.

  10. 2,3-trans-3,4-trans-3,4-Dihydroxy-L-proline: An amino acid in toxic peptides of Amanita virosa mushrooms

    PubMed Central

    Buku, A.; Faulstich, H.; Wieland, T.; Dabrowski, J.

    1980-01-01

    Among the four possible stereoisomers of 3,4-dihydroxy-L-proline,2,3-trans-3,4-trans-3,4-dihydroxy-L-proline (IV) had not been found in nature previously. It has now been detected as a component of virotoxins, toxic peptides of Amanita virosa mushrooms. Because periodate failed to effect an oxidative glycol splitting reaction, the two hydroxyl groups in positions 3 and 4 were expected to be in a trans configuration. Furthermore, the formation of a 4-lactone on treatment with acids pointed to the carboxyl group and the hydroxyl group at position 4 being in a cis configuration. These results are in agreement with structure IV only. Final proof for structure IV was given by NMR spectroscopy and direct comparison with the 2,3-cis-3,4-trans-3,4-dihydroxy-L-proline isomer. PMID:16592813

  11. Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives.

    PubMed

    Sawada, Hiromi; Onoda, Kenji; Morita, Daichi; Ishitsubo, Erika; Matsuno, Kenji; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2013-12-15

    We synthesized a series of macrocyclic bis(bibenzyl) derivatives, including riccardin-, isoplagiochin- and marchantin-class structures, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The structure-activity relationships and the results of molecular dynamics simulations indicated that bis(bibenzyl)s with potent anti-MRSA activity commonly have a 4-hydroxyl group at the D-benzene ring and a 2-hydroxyl group at the C-benzene ring in the hydrophilic part of the molecule, and an unsubstituted phenoxyphenyl group in the hydrophobic part of the molecule containing the A-B-benzene rings. Pharmacological characterization of the bis(bibenzyl) derivatives and 2-phenoxyphenol fragment 25, previously proposed as the minimum structure of riccardin C 1 for anti-MRSA activity, indicated that they have different action mechanisms: the bis(bibenzyl)s are bactericidal, while 25 is bacteriostatic, showing only weak bactericidal activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms.

    PubMed

    Legentil, Laurent; Cabezas, Yari; Tasseau, Olivier; Tellier, Charles; Daligault, Franck; Ferrières, Vincent

    2017-07-21

    Koenigs-Knorr glycosylation of acceptors with more than one free hydroxyl group by 2,3,5,6-tetrabenzoyl galactofuranosyl bromide was performed using diphenylborinic acid 2-aminoethyl ester (DPBA) as inducer of regioselectivity. High regioselectivity for the glycosylation on the equatorial hydroxyl group of the acceptor was obtained thanks to the transient formation of a borinate adduct of the corresponding 1,2-cis diol. Nevertheless formation of orthoester byproducts hampered the efficiency of the method. Interestingly electron-withdrawing groups on O-6 or on C-1 of the acceptor displaced the reaction in favor of the desired galactofuranosyl containing disaccharide. The best yield was obtained for the furanosylation of p-nitrophenyl 6-O-acetyl mannopyranoside. Precursors of other disaccharides, found in the glycocalix of some pathogens, were synthesized according to the same protocol with yields ranging from 45 to 86%. This is a good alternative for the synthesis of biologically relevant glycoconjugates.

  13. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.

    2017-05-01

    The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.

  14. Effect of Agitation in Alkalization Process on the Characteristics of Sodium Carboxymethyl Sago and Cassava Starches

    NASA Astrophysics Data System (ADS)

    Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.

    2018-05-01

    Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less

  16. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  17. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    EPA Science Inventory

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  18. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.

    PubMed

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-02-10

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight ( M W ) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.

  19. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers

    PubMed Central

    Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan

    2016-01-01

    In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836

  20. Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Trans-AT Polyketide Synthase Pathway.

    PubMed

    Mohammad, Hadi H; Connolly, Jack A; Song, Zhongshu; Hothersall, Joanne; Race, Paul R; Willis, Christine L; Simpson, Thomas J; Winn, Peter J; Thomas, Christopher M

    2018-04-16

    The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  2. Synthesis of novel benzohydrazone-oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Selvaraj, Manikandan; Rahim, Abdul; Ali, Muhammad; Siddiqui, Salman; Rahim, Fazal; Khan, Khalid Mohammed

    2015-12-01

    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Molecular interactions in nanocellulose assembly

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshiharu

    2017-12-01

    The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol-1. On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol-1, whereas the London dispersion force contributes about 0.41 kJ mol-1 Da-1. The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. CO 2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGES

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; ...

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  5. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China.

    PubMed

    Ma, Shengtao; Ren, Guofa; Zeng, Xiangying; Yu, Zhiqiang; Sheng, Guoying; Fu, Jiamo

    2017-05-05

    A number of studies have reported on the exposure of e-waste dismantling workers to significantly high concentrations of halogenated organic pollutants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers. Such exposure can have adverse health effects. However, little information on the metabolites of these contaminants exists. In this study, we investigated PCBs levels and their hydroxylated metabolites (OH-PCB) in the serum of e-waste workers in Taizhou in eastern China. Our results indicate elevated PCB and OH-PCB levels in the serum of the workers, with medians of 443.7 and 133.9 ng/g lw, respectively. Tri- to hexachlorinated PCB congeners were the dominant homologue groups in all of the samples. 4-OH-CB107 was the predominant homologue among the hydroxylated metabolites, accounting for 88.9% of the total OH-PCB concentrations. While dietary sources (e.g., fish) appear to be an important route for PCB accumulation in non-occupational exposure groups, exposure via ingestion of house dust and inhalation of pollutants derived from the recycling of PCB-containing e-wastes may primarily contribute to the high body burden observed in the occupational groups. Since we found concentrations of metabolites higher than those of their parent compounds, further studies need to pay more attention to their bioaccumulation and toxicity.

  6. The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noinaj, Nicholas; Bosserman, Mary A.; Schickli, M. Alexandra

    2012-11-26

    GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attachedmore » FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.« less

  7. The crystal structure and mechanism of an unusual oxidoreductase, GilR, involved in gilvocarcin V biosynthesis.

    PubMed

    Noinaj, Nicholas; Bosserman, Mary A; Schickli, M Alexandra; Piszczek, Grzegorz; Kharel, Madan K; Pahari, Pallab; Buchanan, Susan K; Rohr, Jürgen

    2011-07-01

    GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.

  8. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.

    PubMed

    Duchardt-Ferner, Elke; Wöhnert, Jens

    2017-10-01

    Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1 H, 31 P-correlation experiments as well as a BEST-HNP experiment exploiting 3h J N,P rather than 2h J H,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.

  9. Structure of a model TiO2 photocatalytic interface

    NASA Astrophysics Data System (ADS)

    Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C. L.; Humphrey, D. S.; Yim, C. M.; Grinter, D. C.; Cabailh, G.; Bikondoa, O.; Lindsay, R.; Zegenhagen, J.; Michaelides, A.; Thornton, G.

    2017-04-01

    The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.

  10. Structure of a model TiO2 photocatalytic interface.

    PubMed

    Hussain, H; Tocci, G; Woolcot, T; Torrelles, X; Pang, C L; Humphrey, D S; Yim, C M; Grinter, D C; Cabailh, G; Bikondoa, O; Lindsay, R; Zegenhagen, J; Michaelides, A; Thornton, G

    2017-04-01

    The interaction of water with TiO 2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO 2 (110) interface with water. This has provided an atomic-level understanding of the water-TiO 2 interaction. However, nearly all of the previous studies of water/TiO 2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO 2 (110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O 2 and H 2 O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO 2 photocatalysis.

  11. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?

    PubMed

    de Visser, Sam P; Tahsini, Laleh; Nam, Wonwoo

    2009-01-01

    The catalytic activity of high-valent iron-oxo active species of heme enzymes is known to be dependent on the nature of the axial ligand trans to the iron-oxo group. In a similar fashion, experimental studies on iron-oxo porphyrin biomimetic systems have shown a significant axial ligand effect on ethylbenzene hydroxylation, with an axial acetonitrile ligand leading to phenyl hydroxylation products and an axial chloride anion giving predominantly benzyl hydroxylation products. To elucidate the fundamental factors that distinguish this regioselectivity reversal in iron-oxo porphyrin catalysis, we have performed a series of density functional theory calculations on the hydroxylation of ethylbenzene by [Fe(IV)=O(Por(+.))L] (Por = porphyrin; L = NCCH(3) or Cl(-)), which affords 1-phenylethanol and p-ethylphenol products. The calculations confirm the experimentally determined product distributions. Furthermore, a detailed analysis of the electronic differences between the two oxidants shows that their reversed regioselectivity is a result of differences in orbital interactions between the axial ligand and iron-oxo porphyrin system. In particular, three high-lying orbitals (pi*(xz), pi*(yz) and a(2u)), which are singly occupied in the reactant complex, are stabilised with an anionic ligand such as Cl(-), which leads to enhanced HOMO-LUMO energy gaps. As a consequence, reactions leading to cationic intermediates through the two-electron reduction of the metal centre are disfavoured. The aliphatic hydroxylation mechanism, in contrast, is a radical process in which only one electron is transferred in the rate-determining transition state, which means that the effect of the axial ligand on this mechanism is much smaller.

  12. Unusual solvent effects on the fluorescence quenching rate constants of a thioxanthone derivative by n-butylamine and isoprene

    NASA Astrophysics Data System (ADS)

    Burget, D.; Jacques, P.

    1998-07-01

    The fluorescence quenching rate constants of a thioxanthone derivative by two electron donors ( n-butylamine and isoprene) were studied in eighteen solvents of different polarity. Both the empirical polarity parameter ET(30) and the more elaborate solvatochromic comparative method (SCM) π*, α, β (used without any precautions) failed to explain the relevant data. However, when in the frame of the SCM the sequential procedure is applied, unexpected solvent effects were revealed for hydroxylic solvents. These effects can be well accounted for by introducing a parameter χ for the whole set of solvents studied, equal to one or zero, depending on whether OH groups are involved or not in the quenching mechanism. A clue to the introduction of the parameter χ is presented.

  13. Hypotheses on the evolution of hyaluronan: A highly ironic acid

    PubMed Central

    Csoka, Antonei B; Stern, Robert

    2013-01-01

    Hyaluronan is a high-molecular-weight glycosaminoglycan (GAG) prominent in the extracellular matrix. Emerging relatively late in evolution, it may have evolved to evade immune recognition. Chondroitin is a more ancient GAG and a possible hyaluronan precursor. Epimerization of a 4-hydroxyl in N-acetylgalactosamine in chondroitin to N-acetylglucosamine of hyaluronan is the only structural difference other than chain length between these two polymers. The axial 4-hydroxyl group extends out perpendicular from the equatorial plane of N-acetylgalactosamine in chondroitin. We suspect that this hydroxyl is a prime target for immune recognition. Conversion of a thumbs-up hydroxyl group into a thumbs-down position in the plane of the sugar endows hyaluronan with the ability to avoid immune recognition. Chitin is another potential precursor to hyaluronan. But regardless whether of chondroitin or of chitin origin, an ancient chondroitinase enzyme sequence seems to have been commandeered to catalyze the cleavage of the new hyaluronan substrate. The evolution of six hyaluronidase-like sequences in the human genome from a single chondroitinase as found in Caenorhabditis elegans can now be traced. Confirming our previous predictions, two duplication events occurred, with three hyaluronidase-like sequences occurring in the genome of Ciona intestinalis (sea squirt), the earliest known chordate. This was probably followed by en masse duplication, with six such genes present in the genome of zebra fish onwards. These events occurred, however, much earlier than predicted. It is also apparent on an evolutionary time scale that in several species, this gene family is continuing to evolve. PMID:23315448

  14. Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.

    PubMed

    Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe

    2016-04-27

    The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.

  15. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  16. Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri.

    PubMed

    Pham, Le Thanh Mai; Kim, Yong Hwan

    2014-11-01

    Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Improved Stability of Proline-Derived Direct Thrombin Inhibitors through Hydroxyl to Heterocycle Replacement.

    PubMed

    Chobanian, Harry R; Pio, Barbara; Guo, Yan; Shen, Hong; Huffman, Mark A; Madeira, Maria; Salituro, Gino; Terebetski, Jenna L; Ormes, James; Jochnowitz, Nina; Hoos, Lizbeth; Zhou, Yuchen; Lewis, Dale; Hawes, Brian; Mitnaul, Lyndon; O'Neill, Kim; Ellsworth, Kenneth; Wang, Liangsu; Biftu, Tesfaye; Duffy, Joseph L

    2015-05-14

    Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

  18. Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol.

    PubMed

    Zhu, Wenkun; Duan, Tao; Hu, Zuowen

    2018-05-01

    We have demonstrated there is a significant intermolecular interaction between GO and KGM that results from hydrogen bonding and physical cross-linking by studying the rheological properties of a graphene oxide/konjac glucomannan (GO/KGM) solution. When the addition of GO was 5%, the storage modulus (G') and loss modulus (G″) were only improved by 0.25%. However, G' and G″ were improved by approximately 90% and 73.4%, respectively, when the GO content was increased to 7.5%. The moduli also displayed a relationship between the power function and concentration. Furthermore, the formation mechanism of GO/KGM was investigated by Raman, FT-IR, XPS and SEM. The results suggested that hydrogen bonding and physical crosslinking are generated from the abundant carboxy and hydroxyl groups of graphene oxide and the hydroxyl groups of konjac glucomannan.

  19. Protein lysine-Nζ alkylation and O-phosphorylation mediated by DTT-generated reactive oxygen species

    PubMed Central

    Kumar, Nigam; Ippel, Hans; Weber, Christian; Hackeng, Tilman; Mayo, Kevin H

    2013-01-01

    Reactive oxygen species (ROS) play crucial roles in physiology and pathology. In this report, we use NMR spectroscopy and mass spectrometry (MS) to demonstrate that proteins (galectin-1, ubiquitin, RNase, cytochrome c, myoglobin, and lysozyme) under reducing conditions with dithiothreitol (DTT) become alkylated at lysine-Nζ groups and O-phosphorylated at serine and threonine residues. These adduction reactions only occur in the presence of monophosphate, potassium, trace metals Fe/Cu, and oxygen, and are promoted by reactive oxygen species (ROS) generated via DTT oxidation. Superoxide mediates the chemistry, because superoxide dismutase inhibits the reaction, and hydroxyl and phosphoryl radicals are also likely involved. While lysine alkylation accounts for most of the adduction, low levels of phosphorylation are also observed at some serine and threonine residues, as determined by western blotting and MS fingerprinting. The adducted alkyl group is found to be a fragment of DTT that forms a Schiff base at lysine Nζ groups. Although its exact chemical structure remains unknown, the DTT fragment includes a SH group and a –CHOH–CH2– group. Chemical adduction appears to be promoted in the context of a well-folded protein, because some adducted sites in the proteins studied are considerably more reactive than others and the reaction occurs to a lesser extent with shorter, unfolded peptides and not at all with small organic molecules. A structural signature involving clusters of positively charged and other polar groups appears to facilitate the reaction. Overall, our findings demonstrate a novel reaction for DTT-mediated ROS chemistry with proteins. PMID:23315912

  20. Biological and nonbiological modifications of carbamates

    PubMed Central

    Knaak, James B.

    1971-01-01

    Methylcarbamate insecticides undergo hydrolysis, oxidation, dealkylation, and conjugation in animals, plants, and insects to form similar or identical products. Carbaryl is hydroxylated in biological systems to form hydroxy, dihydro-dihydroxy, and N-hydroxymethyl carbaryl and is hydrolysed to form 1-naphthol. The products are conjugated, stored, or excreted. Carbofuran is hydroxylated at the 3 position and propoxur at the 5 position to form hydroxylated derivatives. N-hydroxymethyl derivatives of these two carbamates may also be formed. Hydrolysis appears to be the major metabolic pathway of carbofuran in the animal. Aldicarb is oxidized to its sulfoxide and then hydrolysed to the oxime sulfoxide in animals and plants. Plants hydrolyse the oxime sulfoxide to form the corresponding aldehyde, which is an intermediate in the formation of 2-methyl-2-(methyl-sulfinyl)propanol. Methomyl, which is structurally similar to aldicarb, is metabolized in plants to acetonitrile, carbon dioxide, and methylamine. Bux and Meobal undergo hydrolysis and hydroxylation to form N-hydroxy methylcarbamates, as well as hydroxybutylphenyl and hydroxymethylphenyl methylcarbamates. Zectran, which contains a dimethylamino group, is converted to the methylamino, amino, and methylformamido derivatives by insects and plants. In soil and water, methylcarbamate insecticides are hydrolysed to their respective phenols or oximes. PMID:4999481

  1. Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.

    PubMed

    Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang

    2017-04-01

    In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.

  2. Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds.

    PubMed

    Freire, Rosemayre S; Morais, Selene M; Catunda-Junior, Francisco Eduardo A; Pinheiro, Diana C S N

    2005-07-01

    Some derivatives of trans-anethole [1-methoxy-4-(1-propenyl)-benzene] (1) were synthesized, by introducing hydroxyl groups in the double bond of the propenyl moiety. Two types of reactions were performed: (i) oxymercuration/demercuration that formed two products, the mono-hydroxyl derivative, 1-hydroxy-1-(4-methoxyphenyl)-propane (2) and in lesser extent the dihydroxyl derivative, 1,2-dihydroxy-1-(4-methoxyphenyl)-propane (3) and (ii) epoxidation with m-chloroperbenzoic acid that also led to the formation of two products, the dihydroxyl derivative (3) and the correspondent m-chloro-benzoic acid mono-ester, 1-hydroxy-1(4-methoxyphenyl)-2-m-chlorobenzoyl-propane (4). The structures of these compounds were confirmed mainly by mass, IR, 1H and 13C NMR spectral data. The activity of anethole and hydroxylated derivatives was evaluated using antioxidant, anti-inflammatory and gastroprotector tests. Compounds (2) and (3) were more active antioxidant agents than (1) and (4). In the anti-inflammatory assay, anethole showed lower activity than hydroxylated derivatives. Anethole and in lesser extent its derivatives 2 and 4 showed significant gastroprotector activity. All tested compounds do not alter significantly the total number of white blood cells.

  3. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    PubMed

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  4. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.

    PubMed

    Ozyürek, Mustafa; Bektaşoğlu, Burcu; Güçlü, Kubilay; Apak, Reşat

    2008-06-02

    Hydroxyl radicals (OH) generated in the human body may play an important role in tissue injury at sites of inflammation in oxidative stress-originated diseases. As a more convenient, efficient, and less costly alternative to HPLC/electrochemical detection techniques and to the nonspecific, low-yield deoxyribose (TBARS) test, we used a salicylate probe for detecting OH generated by the reaction of iron(II)-EDTA complex with H(2)O(2). The produced hydroxyl radicals attack both the salicylate probe and the hydroxyl radical scavengers that are incubated in solution for 10 min. Added radical scavengers compete with salicylate for the OH produced, and diminish chromophore formation from Cu(II)-neocuproine. At the end of the incubation period, the reaction was stopped by adding catalase. With the aid of this reaction, a kinetic approach was adopted to assess the hydroxyl radical scavenging properties of polyphenolics, flavonoids and other compounds (e.g., ascorbic acid, glucose, mannitol). A second-order rate constant for the reaction of the scavenger with OH could be deduced from the inhibition of colour formation due to the salicylate probe. In addition to phenolics and flavonoids, five kinds of herbs were evaluated for their OH scavenging activity using the developed method. The modified CUPRAC (cupric ion reducing antioxidant capacity) assay proved to be efficient for ascorbic acid, gallic acid and chlorogenic acid, for which the deoxyribose assay test is basically nonresponsive. An important contribution of this developed assay is the inhibition of the Fenton reaction with catalase degradation of hydrogen peroxide so that the remaining H(2)O(2) would neither give a CUPRAC absorbance nor involve in redox cycling of phenolic antioxidants, enabling the rapid assay of polyphenolics.

  5. Effect of gemfibrozil on the metabolism of brivaracetam in vitro and in human subjects.

    PubMed

    Nicolas, J-M; Chanteux, H; Rosa, M; Watanabe, S; Stockis, A

    2012-08-01

    Brivaracetam (BRV) is a new high-affinity synaptic vesicle protein 2A ligand in phase III for epilepsy. Initial studies suggested that the hydroxylation of BRV into BRV-OH is supported by CYP2C8. Other metabolic routes include hydrolysis into a carboxylic acid derivative (BRV-AC), which could be further oxidized into a hydroxy acid derivative (BRV-OHAC). The aim of the present study was to investigate the effect of gemfibrozil (CYP2C9 inhibitor) and its 1-O-β-glucuronide (CYP2C8 inhibitor) on BRV disposition both in vivo (healthy participants) and in vitro (human liver microsomes and hepatocytes). In a two-period randomized crossover study, 26 healthy male participants received a single oral dose of 150 mg of BRV alone or at steady state of gemfibrozil (600 mg b.i.d). Gemfibrozil did not modify plasma and urinary excreted BRV, BRV-OH, or BRV-AC. The only observed change was a modest decrease (approximately -40%) in plasma and urinary BRV-OHAC. In human hepatocytes and/or liver microsomes, gemfibrozil potently inhibited the hydroxylation of BRV-AC into BRV-OHAC (K(I) 12 μM) while having a marginal effect on BRV-OH formation (K(I) ≥153 μM). Gemfibrozil-1-O-β-glucuronide had no relevant effect on either reaction (K(I) >200 μM). In conclusion, gemfibrozil did not influence the pharmacokinetics of BRV and its hydroxylation into BRV-OH. Overall, in vitro and in vivo data suggest that CYP2C8 and CYP2C9 are not involved in BRV hydroxylation, whereas hydroxylation of BRV-AC to BRV-OHAC is likely to be mediated by CYP2C9.

  6. Carnivorous pitcher plant uses free radicals in the digestion of prey.

    PubMed

    Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai

    2004-01-01

    A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.

  7. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    PubMed

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  8. Formation of Hydroxylamine from Ammonia and Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Zins, Emilie-Laure

    2014-06-01

    In the interstellar medium, as well as in icy comets, ammonia may be a crucial species in the first step toward the formation of amino-acids and other prebiotic molecules such as hydroxylamine (NH2OH). It is worth to notice that the NH3/H2 ratio in the ISM is 3 10-5 compared the H2O/H2 one which is only 7 10-5. Using either electron-UV irradiations of water-ammonia ices or successive hydrogenation of solid nitric oxide, laboratory experiments have already shown the feasibility of reactions that may take place on the surface of ice grains in molecular clouds, and may lead to the formation of this precursor. Herein is proposed a new reaction pathway involving ammonia and hydroxyl radicals generated in a microwave discharge. Experimental studies, at 3 and 10 K, in solid phase as well as in neon matrix have shown that this reaction proceed via a hydrogen abstraction, leading to the formation of NH2 radical, that further recombine with hydroxyl radical to form hydroxylamine, under non-energetic conditions.

  9. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    PubMed

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Exploring the limitations of the Hantzsch method used for quantification of hydroxyl radicals in systems of relevance for interfacial radiation chemistry

    NASA Astrophysics Data System (ADS)

    Yang, Miao; Soroka, Inna; Jonsson, Mats

    2017-01-01

    In the presence of Tris or methanol, hydroxyl radicals in systems of relevance for interfacial radiation chemistry can be quantified indirectly via the Hantzsch method by determining the amount of the scavenging product formaldehyde formed. In this work, the influence of the presence of H2O2 on the Hantzsch method using acetoacetanilide (AAA) as derivatization reagent is studied. The experiments show that the measured CH2O concentration deviates from the actual concentration in the presence of H2O2 and the deviation increases with increasing [H2O2]0/[CH2O]0. The deviation is negative, i.e., the measured formaldehyde concentration is lower than the actual concentration. This leads to an underestimation of the hydroxyl radical production in systems containing significant amount of H2O2. The main reason for the deviation is found to be three coupled equilibria involving H2O2, CH2O and the derivative produced in the Hantzsch method.

  11. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA.

    PubMed

    Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E

    2017-06-07

    DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.

  12. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.

    PubMed

    Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen

    2018-05-07

    Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .

  13. Developing cellulosic waste products as platform chemicals: protecting group chemistry of α-glucoisosaccharinic acid.

    PubMed

    Almond, Michael; Suleiman, Mustapha G; Hawkins, Matthew; Winder, Daniel; Robshaw, Thomas; Waddoups, Megan; Humphreys, Paul N; Laws, Andrew P

    2018-01-02

    Alpha and beta-glucoisosaccharinic acids ((2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid) which are produced when cellulosic materials are treated with aqueous alkali are potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In order to assess the potential of these saccharinic acids as platform chemicals we have explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic acid (α-GISAL). We report here the use of single and multiple step reaction pathways leading to the regioselective protection of the three different hydroxyl groups of α-GISAL. We report strategies for protecting the three different hydroxyl groups individually or in pairs. We also report the synthesis of a range of tri-O-protected α-GISAL derivatives where a number of the products contain orthogonal protecting groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nonfouling Characteristics of Dextran-Containing Surfaces

    PubMed Central

    Martwiset, Surangkhana; Koh, Anna E.; Chen, Wei

    2008-01-01

    Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with percentage of conversion ranging from 6% to 100%. Dextrans (10 k, 70 k, 148 k, 500 k, and 2 000 kDa) and oxidized 10 k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When ∼ 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, i.e. the relative amounts of –OH and –CHO groups. That the dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and –CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol)-alternatives for nonfouling applications. PMID:16952261

  15. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay.

    PubMed

    Diamond, Tracy L; Bushman, Frederic D

    2006-01-01

    Paired metal ions have been proposed to be central to the catalytic mechanisms of RNase H nucleases, bacterial transposases, Holliday junction resolvases, retroviral integrases and many other enzymes. Here we present a sensitive assay for DNA transesterification in which catalysis by human immunodeficiency virus-type 1 (HIV-1) integrase (IN) connects two DNA strands (disintegration reaction), allowing detection using quantitative PCR (qPCR). We present evidence suggesting that the three acidic residues of the IN active site function through metal binding using metal rescue. In this method, the catalytic acidic residues were each substituted with cysteines. Mn2+ binds tightly to the sulfur atoms of the cysteine residues, but Mg2+ does not. We found that Mn2+, but not Mg2+, could rescue catalysis of each cysteine-substituted enzyme, providing evidence for functionally important metal binding by all three residues. We also used the PCR-boosted assay to show that HIV-1 IN could carry out transesterification reactions involving DNA 5' hydroxyl groups as well as 3' hydroxyls as nucleophiles. Lastly, we show that Mn2+ by itself (i.e. without enzyme) can catalyze formation of a low level of PCR-amplifiable product under extreme conditions, allowing us to estimate the rate enhancement due to the IN-protein scaffold as at least 60 million-fold.

  16. Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products.

    PubMed

    Chen, Jing; Xu, Xinxin; Zeng, Xiaolan; Feng, Mingbao; Qu, Ruijuan; Wang, Zunyao; Nesnas, Nasri; Sharma, Virender K

    2018-06-13

    This paper presents oxidation of polychlorinated diphenyl sulfides (PCDPSs), dioxin-like compounds, by ferrate(VI) (Fe VI O 4 2- , Fe(VI)). Kinetics of the reactions of Fe(VI) with seventeen PCDPSs, differ in number and positions of chlorine atoms (from 2 to 7), were investigated at pH 8.0. The second-order rate constants (k, M -1 s -1 ) of the reactions varied with the numbers and positions of chlorine atoms and appeared to be related with standard Gibbs free energy of formation (Δ f G 0 ) of PCDPSs. Degradation experiments in the presence of ions and humic acid demonstrated complete removal of PeCDPS by Fe(VI) in minutes. Pathways of the reaction were investigated by identifying oxidized products (OPs) of the reaction between Fe(VI) and 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) at pH 8.0. Pathways of oxidation involved major pathway of attack on sulfur(II) by Fe(VI) in steps to yield sulfoxide type products, and subsequent breakage of C-S bond with the formation of sulfonic acid-containing trichloro compound. Minor pathways were hydroxylation of benzene ring and substitution of chlorine atom with hydroxyl group. Estimation of toxicity of OPs of the oxidation of PeCDPS by Fe(VI) suggested the decreased toxicity from the parent contaminant. Copyright © 2018. Published by Elsevier Ltd.

  17. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane).

    PubMed

    Sanli, D; Erkey, C

    2013-11-27

    Monolithic composites of silica aerogels with hydroxyl-terminated poly(dimethylsiloxane) (PDMS(OH)) were developed with a novel reactive supercritical deposition technique. The method involves dissolution of PDMS(OH) in supercritical CO2 (scCO2) and then exposure of the aerogel samples to this single phase mixture of PDMS(OH)-CO2. The demixing pressures of the PDMS(OH)-CO2 binary mixtures determined in this study indicated that PDMS(OH) forms miscible mixtures with CO2 at a wide composition range at easily accessible pressures. Upon supercritical deposition, the polymer molecules were discovered to react with the hydroxyl groups on the silica aerogel surface and form a conformal coating on the surface. The chemical attachment of the polymer molecules on the aerogel surface were verified by prolonged extraction with pure scCO2, simultaneous deposition with superhydrophobic and hydrophilic silica aerogel samples and ATR-FTIR analysis. All of the deposited silica aerogel samples were obtained as monoliths and retained their transparency up to around 30 wt % of mass uptake. PDMS(OH) molecules were found to penetrate all the way to the center of the monoliths and were distributed homogenously throughout the cylindrical aerogel samples. Polymer loadings as high as 75.4 wt % of the aerogel mass could be attained. It was shown that the polymer uptake increases with increasing exposure time, as well as the initial polymer concentration in the vessel.

  18. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  19. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay

    PubMed Central

    Diamond, Tracy L.; Bushman, Frederic D.

    2006-01-01

    Paired metal ions have been proposed to be central to the catalytic mechanisms of RNase H nucleases, bacterial transposases, Holliday junction resolvases, retroviral integrases and many other enzymes. Here we present a sensitive assay for DNA transesterification in which catalysis by human immunodeficiency virus-type 1 (HIV-1) integrase (IN) connects two DNA strands (disintegration reaction), allowing detection using quantitative PCR (qPCR). We present evidence suggesting that the three acidic residues of the IN active site function through metal binding using metal rescue. In this method, the catalytic acidic residues were each substituted with cysteines. Mn2+ binds tightly to the sulfur atoms of the cysteine residues, but Mg2+ does not. We found that Mn2+, but not Mg2+, could rescue catalysis of each cysteine-substituted enzyme, providing evidence for functionally important metal binding by all three residues. We also used the PCR-boosted assay to show that HIV-1 IN could carry out transesterification reactions involving DNA 5′ hydroxyl groups as well as 3′ hydroxyls as nucleophiles. Lastly, we show that Mn2+ by itself (i.e. without enzyme) can catalyze formation of a low level of PCR-amplifiable product under extreme conditions, allowing us to estimate the rate enhancement due to the IN-protein scaffold as at least 60 million-fold. PMID:17085478

  20. 2-Pyridinyl Thermolabile Groups as General Protectants for Hydroxyl, Phosphate, and Carboxyl Functions.

    PubMed

    Brzezinska, Jolanta; Witkowska, Agnieszka; Kaczyński, Tomasz P; Krygier, Dominika; Ratajczak, Tomasz; Chmielewski, Marcin K

    2017-03-02

    Application of 2-pyridinyl thermolabile protecting groups (2-PyTPGs) for protection of hydroxyl, phosphate, and carboxyl functions is presented in this unit. Their characteristic feature is a unique removal process following the intramolecular cyclization mechanism and induced only by temperature rise. Deprotection rate of 2-PyTPGs is dependent on certain parameters, such as solvent (aqueous or non-aqueous medium), pH values, and electron distribution in a pyridine ring. The presented approach pertains not only to protecting groups but also to an advanced system of controlling certain properties of 2-pyridinyl derivatives. We improved the "chemical switch" method, allowing us to regulate the protecting group stability by inversing the electron distribution in 2-PyTPG. Together with pH values manipulation, this allows us to regulate the protecting group stability. Moreover, phosphite cyclization to oxazaphospholidine provides a very stable but easily reversible tool for phosphate protection/modifications. For all TPGs we confirmed their utility in a system of protecting groups. This concept can contribute to designing the general protecting group that could be useful in bioorganic chemistry. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio.

    PubMed

    Hong, Yongsuk; Brown, Derick G

    2006-07-01

    Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.

  2. Rhemium-186-monoaminemonoamidedithiol-conjugated bisphosphonate derivatives for bone pain palliation.

    PubMed

    Ogawa, Kazuma; Mukai, Takahiro; Arano, Yasushi; Otaka, Akira; Ueda, Masashi; Uehara, Tomoya; Magata, Yasuhiro; Hashimoto, Kazuyuki; Saji, Hideo

    2006-05-01

    To develop a radiopharmaceutical for the palliation of painful bone metastases based on the concept of bifunctional radiopharmaceuticals, we synthesized a bisphosphonate derivative labeled with rhenium-186 (186Re) that contains a hydroxyl group at the central carbon of its bisphosphonate structure, we attached a stable 186Re-MAMA chelate to the amino group of a 4-amino butylidene-bisphosphonate derivative [N-[2-[[4-[(4-hydroxy-4,4-diphosphonobutyl)amino]-4-oxobutyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-HBP) and we investigated the effect of a hydroxyl group at the central carbon of its bisphosphonate structure on affinity for hydroxyapatite and on biodistribution by conducting a comparative study with [N-[2-[[3-(3,3-diphosphonopropylcarbamoyl)propyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-BP). The precursor of 186Re-MAMA-HBP, trityl (Tr)-MAMA-HBP, was obtained by coupling a Tr-MAMA derivative to 4-amino-1-hydroxybutylidene-1,1-bisphosphonate. 186Re-MAMA-HBP was prepared by a reaction with 186ReO(4-) and SnCl2 in citrate buffer after the deprotection of the Tr groups of Tr-MAMA-HBP. After reversed-phase high-performance liquid chromatography, 186Re-MAMA-HBP had a radiochemical purity of over 95%. Compared with 186Re-MAMA-BP, 186Re-MAMA-HBP showed a greater affinity for hydroxyapatite beads in vitro and accumulated a significantly higher level in the femur in vivo. Thus, the introduction of a hydroxyl group into 186Re complex-conjugated bisphosphonates would be effective in enhancing accumulation in bones. These findings provide useful information on the design of bone-seeking therapeutic radiopharmaceuticals.

  3. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity

    PubMed Central

    Li, Bailiang; Jin, Da; Yu, Shangfu; Etareri Evivie, Smith; Muhammad, Zafarullah; Huo, Guicheng; Liu, Fei

    2017-01-01

    Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 (L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir–Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity. PMID:28786945

  4. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity.

    PubMed

    Li, Bailiang; Jin, Da; Yu, Shangfu; Etareri Evivie, Smith; Muhammad, Zafarullah; Huo, Guicheng; Liu, Fei

    2017-08-08

    Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 ( L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir-Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity.

  5. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.

    PubMed

    Świzdor, Alina; Panek, Anna; Milecka-Tronina, Natalia

    2014-04-01

    Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer-Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted "normal" binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora.

    PubMed

    Echeverría, Javier; Opazo, Julia; Mendoza, Leonora; Urzúa, Alejandro; Wilkens, Marcela

    2017-04-10

    In this study, we tested eight naturally-occurring flavonoids-three flavanones and five flavones-for their possible antibacterial properties against four Gram-positive and four Gram-negative bacteria. Flavonoids are known for their antimicrobial properties, and due their structural diversity; these plant-derived compounds are a good model to study potential novel antibacterial mechanisms. The lipophilicity and the interaction of antibacterial compounds with the cell membrane define the success or failure to access its target. Therefore, through the determination of partition coefficients in a non-polar/aqueous phase, lipophilicity estimation and the quantification of the antibacterial activity of different flavonoids, flavanones, and flavones, a relationship between these parameters was assessed. Active flavonoids presented diffusion coefficients between 9.4 × 10 -10 and 12.3 × 10 -10 m²/s and lipophilicity range between 2.0 to 3.3. Active flavonoids against Gram-negative bacteria showed a narrower range of lipophilicity values, compared to active flavonoids against Gram-positive bacteria, which showed a wide range of lipophilicity and cell lysis. Galangin was the most active flavonoid, whose structural features are the presence of two hydroxyl groups located strategically on ring A and the absence of polar groups on ring B. Methylation of one hydroxyl group decreases the activity in 3- O -methylgalangin, and methylation of both hydroxyl groups caused inactivation, as shown for 3,7- O -dimethylgalangin. In conclusion, the amphipathic features of flavonoids play a crucial role in the antibacterial activity. In these compounds, hydrophilic and hydrophobic moieties must be present and could be predicted by lipophilicity analysis.

  7. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    PubMed

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  8. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium--the contribution of the oxidation effect.

    PubMed

    Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T

    2015-05-20

    Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  9. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.

    PubMed

    Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.

  10. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups.

    PubMed

    Du, Shuming; Wang, Wenbin; Yan, Yan; Zhang, Jie; Tian, Ming; Zhang, Liqun; Wan, Xinhua

    2014-09-07

    Claisen rearrangement reaction was employed for the first time to obtain a novel PPTA bearing reactive allyl and hydroxyl groups which may act as a sizing agent of Kevlar fibers to improve the interface structure and interfacial adhesion of rubber or epoxy based composites.

  11. PREDICTING FENTON-DRIVEN DEGRADATION USING CONTAMINANT ANALOG

    EPA Science Inventory

    The reaction of hydrogen peroxide (H2O2) and Fe(II) (Fenton's reaction) generates hydroxyl radicals (OH) that can be used to oxidize contaminants in soils and aquifers. In such environments, insufficient iron, reactions involving H2O2 that do not yield OH, and OH reactions with ...

  12. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  13. MATRIX PHOTOCATALYTIC, INC. PHOTOCATALYTIC OXIDATION TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Matrix Technology involves the exposure of titanium dioxide (Ti02) particles to ultraviolet light (UV). The Ti02 is activated by UV light to produce high oxidizing hydroxyl radicals. Maxtrix also uses hydrogen peroxide (H202) and ozone (03) to enhance the treatment systems p...

  14. INCREASED 8-HYDROXY GUANINE CONTENT OF CHLOROPLAST DNA FROM OZONE TREATED PLANTS

    EPA Science Inventory

    The mechanism of ozone-mediated plant injury is not know but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with elect...

  15. Flexible composite film for printed circuit board

    NASA Technical Reports Server (NTRS)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  16. Papaya Seeds as A Low-Cost Sorbent for Removing Cr(VI) from The Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Rahmawati, Atik; Marwoto, Putut; Karunia Z, Anita

    2016-08-01

    The presence of chromium (VI) contaminants and their toxicity in aqueous streams important environmental problems. Adsorption is one of the effective techniques that can be used for removing metal from wastewater. This research was initiated by preparing sorbent from papaya seeds and determining its functional group contents by using FT-IR. The adsorption process was carried out in a batch method. The study of adsorption aspects involved the pH, initial Cr (VI) concentration and contact time between Cr (VI) and sorbent. FT IR analysis results showed that the main functional groups are carbonyl, hydroxyl, and carboxylic. It was also found that the effective pH for Cr (VI) uptake is 2.0 and increasing contact time would increase the Cr (VI) uptake. In addition, the equilibrium was reached after 40 minutes interaction and the increase of initial chromium (VI) concentration would increase the sorbent uptake percentage. All these results indicated that papaya seed is a potential sorbent for removing Cr (VI) from aqueous solutions.

  17. Protective activity of green tea against free radical- and glucose-mediated protein damage.

    PubMed

    Nakagawa, Takako; Yokozawa, Takako; Terasawa, Katsutoshi; Shu, Seiji; Juneja, Lekh Raj

    2002-04-10

    Protein oxidation and glycation are posttranslational modifications that are implicated in the pathological development of many age-related disease processes. This study investigated the effects of green tea extract, and a green tea tannin mixture and its components, on protein damage induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (a free radical generator) and glucose in in vitro assay systems. We found that green tea extract can effectively protect against protein damage, and showed that its action is mainly due to tannin. In addition, it was shown that the chemical structures of tannin components are also involved in this activity, suggesting that the presence of the gallate group at the 3 position plays the most important role in the protective activity against protein oxidation and glycation, and that there is also a contribution by the hydroxyl group at the 5' position in the B ring and the sterical structure. These findings demonstrate the mechanisms of the usefulness of green tea in protein oxidation- and glycation-associated diseases.

  18. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles.

    PubMed

    Yahata, Kenzo; Minami, Masaki; Yoshikawa, Yuki; Watanabe, Kei; Fujioka, Hiromichi

    2013-01-01

    A methodology for selective transformations of ketones, esters, Weinreb amides, and nitriles in the presence of aldehydes has been developed. The use of a combination of PPh(3)-trimethylsilyl trifluoromethanesulfonate (TMSOTf) promotes selective transformation of aldehydes to their corresponding, temporarily protected, O,P-acetal type phosphonium salts. Because, hydrolytic work-up following ensuing reactions of other carbonyl moieties in the substrates liberates the aldehyde moiety, a sequence involving aldehyde protection, transformation of other carbonyl groups, and deprotection can be accomplished in a one-pot manner. Furthermore, the use of PEt(3) instead of PPh(3) enables ketones to be converted in situ to their corresponding O,P-ketal type phosphonium salts and, consequently, selective transformations of esters, Weinreb amides, and nitriles in the presence of ketones can be performed. This methodology is applicable to various dicarbonyl compounds, including substrates that possess heteroaromatic skeletons and hydroxyl protecting groups.

  19. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2.

    PubMed

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S; Juknaitė, Lina; Pøhlsgaard, Jacob; Olsen, Lars; Frydenvang, Karla; Goffin, Eric; Pirotte, Bernard; Kastrup, Jette S

    2016-06-07

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, μM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 μM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 μM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Purification and characterization of highly branched α-glucan-producing enzymes from Paenibacillus sp. PP710.

    PubMed

    Tsusaki, Keiji; Watanabe, Hikaru; Yamamoto, Takuo; Nishimoto, Tomoyuki; Chaen, Hiroto; Fukuda, Shigeharu

    2012-01-01

    Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.

  1. IR study of dickite-formamide intercalate, Al 2Si 2O 5(OH) 4-H 2NCOH

    NASA Astrophysics Data System (ADS)

    Zamama, M.; Knidiri, Mohamed

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d 001 spacing from 7.19 to 10.77 Å. It is concluded from infrared studies that hydrogen bonds are formed between CO groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm -1 and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm -1 for FAM-intercalated dickite.

  2. IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH.

    PubMed

    Zamama, M; Knidiri, M

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d001 spacing from 7.19 to 10.77 A. It is concluded from infrared studies that hydrogen bonds are formed between C=O groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm(-1) and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm(-1) for FAM-intercalated dickite.

  3. Antihypertensive neutral lipid

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.

    1986-01-01

    The invention relates to the discovery of a class of neutral acetylated ether-linked glycerolipids having the capacity to lower blood pressure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  4. Antihypertensive neutral lipid

    DOEpatents

    Snyder, F.L.; Blank, M.L.

    1984-10-26

    The invention relates to the discovery of a class of neutral acetylated either-linked glycerolipids having the capacity to lower blood presure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  5. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  6. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed,more » purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.« less

  7. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    PubMed

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  8. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1

    PubMed Central

    Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768

  9. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.

  10. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    PubMed

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  11. Acid-degradable and bioerodible modified polyhydroxylated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single andmore » double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.« less

  12. Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: the Ulex europaeus lectin I and its interaction with fucose.

    PubMed

    Gohier, A; Espinosa, J F; Jimenez-Barbero, J; Carrupt, P A; Pérez, S; Imberty, A

    1996-12-01

    Ulex europaeus isolectin I is specific for fucose-containing oligosaccharide such as H type 2 trisaccharide alpha-L-Fuc (1-->2) beta-D-Gal (1-->4) beta-D-GlcNAc. Several legume lectins have been crystallized and modeled, but no structural data are available concerning such fucose-binding lectin. The three-dimensional structure of Ulex europaeus isolectin I has been constructed using seven legume lectins for which high-resolution crystal structures were available. Some conserved water molecules, as well as the structural cations, were taken into account for building the model. In the predicted binding site, the most probable locations of the secondary hydroxyl groups were determined using the GRID method. Several possible orientations could be determined for a fucose residue. All of the four possible conformations compatible with energy calculations display several hydrogen bonds with Asp-87 and Ser-132 and a stacking interaction with Tyr-220 and Phe-136. In two orientations, the O-3 and O-4 hydroxyl groups of fucose are the most buried ones, whereas two other, the O-2 and O-3 hydroxyl groups are at the bottom of the site. Possible docking modes are also studied by analysis of the hydrophobic and hydrophilic surfaces for both the ligand and the protein. The SCORE method allows for a quantitative evaluation of the complementarity of these surfaces, on the basis of molecular lipophilicity calculations. The predictions presented here are compared with known biochemical data.

  13. The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate

    NASA Astrophysics Data System (ADS)

    Yaghoubi, H.; Dayerizadeh, A.; Han, S.; Mulaj, M.; Gao, W.; Li, X.; Muschol, M.; Ma, S.; Takshi, A.

    2013-12-01

    TiO2 is a prototypical transition metal oxide with physicochemical properties that can be modified more readily through sol-gel synthesis than through other techniques. Herein, we report on the change in the density of the hydroxyl groups on the surface of synthesized surfactant-free TiO2 nanoparticles in water due to varying the pH (7.3, 8.3, 9.3 and 10.3) of the peroxotitanium complex, i.e. the amorphous sol, prior to refluxing. This resulted in colloidal solutions with differing crystallinity, nanoparticle size, optical indirect bandgaps and photocatalytic activity. It was shown that increasing the density of hydroxyl groups on TiO2 particles coupled with low-temperature annealing (90 °C) induced an anatase to rutile transformation. Increasing the pH of the peroxotitanium complex interrupted the formation of anatase phase in crystalline sol, as evidenced by intensity increases of the Raman bands at ˜822 (Ti-O-H) and 906 cm-1 (vibrational Ti-O-H) and an intensity decrease of the band at 150 cm-1 (anatase photonic Eg). Films prepared from higher pH suspensions showed lower roughness. The reaction rate constants for photo-induced self-cleaning activity of TiO2 films prepared from colloidal solutions at pH 7.3, 8.3, 9.3 and 10.3 were estimated at 0.017 s-1, 0.014 s-1, 0.007 s-1 and 0.006 s-1, respectively.

  14. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production

    PubMed Central

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-01-01

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam. PMID:28787959

  15. Reaction of hydroxy and carbonyl compounds with sulfur tetrafluoride. XVI. Reactions of vicinal dihydric alcohols with sulfur tetrafluoride (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burmakov, A.I.; Hassanein, S.M.; Kunshenko, B.V.

    1986-11-20

    During the action of sulfur tetrafluoride on ethanediol, d,l-1,2-propanediol, d,l-3,3,3-trifluoro-1,2-propanediol regioselective substitution of one of the hydroxyl groups by a fluorine atom occurs, depending on the electronic nature of the groups present in the molecule. The second hydroxy group in converted into a fluorosulfite group.

  16. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity.

    PubMed

    Wright, Bernice; Watson, Kimberly A; McGuffin, Liam J; Lovegrove, Julie A; Gibbins, Jonathan M

    2015-11-01

    Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  17. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.

    PubMed

    Sato-Masumoto, Naoko; Ito, Michiho

    2014-06-01

    Geraniol and linalool are acyclic monoterpenes found in plant essential oils that have attracted much attention for their commercial use and in pharmaceutical studies. They are synthesized from geranyl diphosphate (GDP) by geraniol and linalool synthases, respectively. Both synthases are very similar at the amino acid level and share the same substrate; however, the position of the GDP to which they introduce hydroxyl groups is different. In this study, the mechanisms underlying the regiospecific hydroxylation of geraniol and linalool synthases were investigated using a domain swapping approach and site-directed mutagenesis in perilla. Sequences of the synthases were divided into ten domains (domains I to IV-4), and each corresponding domain was exchanged between both enzymes. It was shown that different regions were important for the formation of geraniol and linalool, namely, domains IV-1 and -4 for geraniol, and domains III-b, III-d, and IV-4 for linalool. These results suggested that the conformation of carbocation intermediates and their electron localization were seemingly to be different between geraniol and linalool synthases. Further, five amino acids in domain IV-4 were apparently indispensable for the formation of geraniol and linalool. According to three-dimensional structural models of the synthases, these five residues seemed to be responsible for the different spatial arrangement of the amino acid at H524 in the case of geraniol synthase, while N526 is the corresponding residue in linalool synthase. These results suggested that the side-chains of these five amino acids, in combination with several relevant domains, localized the positive charge in the carbocation intermediate to determine the position of the introduced hydroxyl group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Kinetics of surface processes for Mo(CO){sub 6} on partially dehydroxylated alumina and hydroxylated alumina. Observation of Mo(CO){sub 5}(ads)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.P.; Brown, T.L.

    1995-03-15

    The adsorption of Mo(CO){sub 6} on partially dehydroxylated alumina (PDA) and hydroxylated alumina (HA) has been studied using IR and UV-vis spectroscopy. The results from these experiments suggest that the initially physisorbed Mo(CO){sub 6} coordinates to two distinct Lewis acid sites on the surface of PDA, one much more abundant than the other, with an apparent single rate constant 2.3 x 10{sup {minus}3} s{sup {minus}1} at 298 K. The Mo(CO){sub 6}(ads) in turn loses CO reversibly, with an apparent single rate constant 1.8 x 10{sup {minus}4} s{sup {minus}1} at 298 K to form Mo(CO){sub 5}(ads). Upon removal of gas phasemore » CO released in the first step, Mo(CO){sub 5}(ads) loses two additional COs to form Mo(CO){sub 3}(ads). Alternatively, on HA physisorbed Mo(CO){sub 6} undergoes nucleophilic attack by hydroxyl groups, which results in cis-labilization of a carbonyl group, leading in turn to the formation of Mo(CO){sub 5}(L), where L is a surface hydroxyl. The Mo(CO){sub 5}(L) so formed loses additional carbonyls to form a lower subcarbonyl. The decarbonylation process appears to be faster than on PDA. The experimental data indicate that there are no Al{sup 31} exposed on HA. All the observed decarbonylation processes are reversible under CO at room temperature on both HA and PDA. The addition of CO{sub 2} to the subcarbonyl on HA results in the formation of a bicarbonate, with displacement of the subcarbonyls. 24 refs., 11 figs., 1 tab.« less

  19. Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model.

    PubMed

    Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun

    2014-12-01

    The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.

  20. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  1. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  2. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  3. Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Khaneja, Mamta; Jeyaprakash, B. G.

    2017-10-01

    Ammonia adsorption on graphene (G) and graphene oxide (GO) was investigated through density functional theory calculations. In the GO system, the obtained binding energy, band gap, charge transfer and electronic structure revealed that the epoxide (GO-O) and hydroxyl groups (GO-OH) in GO enhance the NH3 adsorption, which leads to the chemisorption of NH3 on GO. The dissociation of NH3 to NH2 and formation of OH was also observed when the O and H atoms were separated at 0.985 Å, 1.019 Å, 1.035 Å, and 1.044 Å for various GO systems. The maximum charge transfer value was found to be 0.054 |e| with the binding energy of 1.143 eV for GO with a single epoxide (GO-1O) group. The charge transfer from NH3 to G or GO and the bond formation in this study agree with the reported experimental results.

  4. Improved Steroids Detection and Evidence for Their Regiospecific Decompositions Using Anion Attachment Mass Spectrometry.

    PubMed

    Dumont, Quentin; Bárcenas, Mariana; Dossmann, Héloïse; Bailloux, Isabelle; Buisson, Corinne; Mechin, Nathalie; Molina, Adeline; Lasne, Françoise; Rannulu, Nalaka S; Cole, Richard B

    2016-04-05

    Nonpolar anabolic steroids are doping agents that typically do not provide strong signals by electrospray ionization-mass spectrometry (ESI-MS) owing especially to the low polarity of the functional groups present. We have investigated the addition of anions, in ammonium salt form, to anabolic steroid samples as ionization enhancers and have confirmed that lower instrumental limits of detection (as low as 10 ng/mL for fluoxymesterone-M) are obtained by fluoride anion attachment mass spectrometry, as compared to ESI(+)/(-) or atmospheric pressure photoionization (APPI)(+). Moreover, collision-induced decomposition (CID) spectra of precursor fluoride adducts of the bifunctional steroid "reduced pregnenolone" (containing two hydroxyl groups) and its d4-analogue provide evidence of regiospecific decompositions after attachment of fluoride anion to a specific hydroxyl group of the steroid. This type of charting of specific CID reaction pathways can offer value to selected reaction monitoring experiments (SRM) as it may result in a gain in selectivity in detection as well as in improvements in quantification.

  5. Synthetic tripodal receptors for carbohydrates. Pyrrole, a hydrogen bonding partner for saccharidic hydroxyls.

    PubMed

    Francesconi, Oscar; Gentili, Matteo; Roelens, Stefano

    2012-09-07

    The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.

  6. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  7. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Treesearch

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  8. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    NASA Astrophysics Data System (ADS)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  9. Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent.

    PubMed

    Postils, Verònica; Company, Anna; Solà, Miquel; Costas, Miquel; Luis, Josep M

    2015-09-08

    The reaction mechanisms for alkane hydroxylation catalyzed by non-heme Fe(V)O complexes presented in the literature vary from rebound stepwise to concerted highly asynchronous processes. The origin of these important differences is still not completely understood. Herein, in order to clarify this apparent inconsistency, the hydroxylation of a series of alkanes (methane and substrates bearing primary, secondary, and tertiary C-H bonds) through a Fe(V)O species, [Fe(V)(O)(OH)(PyTACN)](2+) (PyTACN = 1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), has been computationally examined at the gas phase and in acetonitrile solution. The initial breaking of the C-H bond can occur via hydrogen atom transfer (HAT), leading to an intermediate where there is an interaction between the radical substrate and [Fe(IV)(OH)2(PyTACN)](2+), or through hydride transfer to form a cationic substrate interacting with the [Fe(III)(OH)2(PyTACN)](+) species. Our calculations show the following: (i) except for methane in the rest of the alkanes studied, the intermediate formed by R(+) and [Fe(III)(OH)2(PyTACN)](+) is more stable than that involving the alkyl radical and the [Fe(IV)(OH)2(PyTACN)](2+) complex; (ii) in spite of (i), the first step of the reaction mechanism for all substrates is a HAT instead of hydride abstraction; (iii) the HAT is the rate-determining step for all analyzed cases; and (iv) the barrier for the HAT decreases along methane → primary → secondary → tertiary carbon. The second part of the reaction mechanism corresponds to the rebound process. Therefore, the stereospecific hydroxylation of alkane C-H bonds by non-heme Fe(V)(O) species occurs through a rebound stepwise mechanism that resembles that taking place at heme analogues. Finally, our study also shows that, to properly describe alkane hydroxylation processes mediated by Fe(V)O species, it is essential to consider the solvent effects during geometry optimizations. The use of gas-phase geometries explains the variety of mechanisms for the hydroxylation of alkanes reported in the literature.

  10. Tegument galactosylceramides of the cestode Spirometra mansonoides.

    PubMed

    Singh, B N; Costello, C E; Levery, S B; Walenga, R W; Beach, D H; Mueller, J F; Holz, G G

    1987-11-01

    The brush border-like surface of the tegument of the adult and the plerocercoid larva of a pseudophyllidean cestode, Spirometra mansonoides, has been shown to contain hydroxylated galactosylceramides. D-Galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-phytosphingosine, D-galactosyl-N-(2-D-hydroxyoctadecanoyl)-D-dihydrosphingosine and D-galactosyl-N-(octadecanoyl)-D-phytosphingosine were identified as major glycosphingolipids in a tegumental plasma membrane fraction with associated microtriches, by combinations of chromatography (column, high performance thin-layer, gas-liquid), mass spectrometry (electron impact, field desorption, fast atom bombardment, collisionally induced decomposition) and proton nuclear magnetic resonance spectrometry. Galactosylceramides with hydroxylated long chain bases and fatty acids are known to occur in some eukaryotic microbes and in cells of vertebrate tissues exposed to plasma membrane destabilizing environments. This has led to a proposal that the capacity of hydroxylated ceramide moieties for intermolecular hydrogen bonding among themselves and with phosphoglycerides acts to stabilize the plasma membrane. Saturated fatty acyl groups in the ceramides would enhance stabilization by their orderly packing in the lipid bilayer. Consequently, the presence of such hydroxylated galactosylceramides in the tegument surface of S. mansonoides may contribute to the maintenance of its normal barrier properties in the face of the varied environmental insults encountered by the cestode in its life-cycle.

  11. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  12. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  13. Hydroxyl radical mediated DNA base modification by manmade mineral fibres.

    PubMed Central

    Leanderson, P; Söderkvist, P; Tagesson, C

    1989-01-01

    Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416

  14. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  15. A rational design approach to nanostructured catalysts for the oxidation of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Karwacki, Christopher

    The extraordinary energetic properties of subnanometer (<10 nm) structures consisting of reduced metals, metal oxides, and graphitic carbons are emerging as the principal technologies involving catalytic reactions at ambient temperatures, for such applications as respiratory protection, pollution abatement, chemical synthesis, sensors, and energy conversion. Gold nanoparticles (Au NP) possess unique reactive properties not present in the bulk state and have served in the past decade as a model for the nanosciences, where molecular species are synthesized, scaled, and engineered into functional materials. Gold nanoparticles as isolated structures are not useful as real catalysts and must co-exist with supports that provide enhanced stability and activity. Support oxides such as TiO2, Fe2O 3, CeO2, SiO2, Al2O3, ZrO 2, and graphitic (active) carbons have been shown to increase the active nature of AuNP and have been the subject of several thousand publications in the past decade. Zirconia compared to titania as a support for Au NP catalysis has been studied with limited success. In fact, the majority of observations show that zirconia is one of the lowest performing metal oxide supports involving Au NP oxidation catalysis. The likely reason for these observations is a lack of understanding of the relationship between structure and surface functionality as it pertains to ambient temperature oxidation catalysis (ATOC). Furthermore, virtually all substrate and catalyst preparations in earlier work were performed at high temperatures, typically 400--900°C, thus forming progressively monomorphic structures containing larger crystals with reduced surface functionality and porosity. In this research, I established the hypothesis based on a structural model that surface functional hydroxides are important to sustained hydrolytic reactions, such as those involving Au NP for the oxidation of CO to CO 2. Theoretical calculations by Ignatchenko, Vittadini, et al. show that zirconia readily dissociates adsorbed water on the most active and stable crystal structures (111) compared to other metal oxides, such as the common anatase (101) form of titania. Also, the support must provide a source of activated oxygen as a means to oxidize intermediate carbonates with CO 2 formation. The role of the support is to provide lattice oxygen in an activated state (O2-) for oxidation of adsorbed CO the Au NP:support interface. Furthermore, the primary interest is the energy associated Au NP in proximity to the support surface. Advancing the understanding of this region is believed to be crucial to the future design of active nanostructured materials that function under ambient conditions. The proposed model involves a structure consisting of properly sized and highly dispersed Au NP supported on a hydroxylated form of nanocrystalline zirconia. This type of zirconia is in a highly polymorphic form consisting of aggregates of small crystals less than 10 nm. The structure is highly porous, containing undercoordinated zirconium atoms, and provides an environment for rapid dissociation of molecular water. In this research and in collaboration with Mogilevsky et al., 37 I introduce a novel method for quantifying the surface concentration of two major forms of hydroxide that form on zirconia. Furthermore, in this research I show how both the porosity of the zirconia support and the size of the crystalline aggregates affect the type and surface concentration of hydroxyl groups. This relationship is thus directly related to the oxidation activity of the catalyst consisting of Au NP supported on hydroxylated ZrO 2. These phenomena are exemplified by a reduction in structural porosity and surface hydroxyl groups with increasing temperature treatments of the zirconia support. Gold NP and ZrO2 supports were extended to studies that included interactions with activated carbons. This work was done on the premise that graphitic carbons, based on their tunable porosities and surface chemistries, can enhance or stabilize the catalytic activity of neighboring Au NP. Gold dispersed on active carbon and hybrid structures consisting of Au/ZrO 2/C shows interesting properties, which lend themselves to catalytic particle stabilization and to the advancement of multifunctional material design.

  16. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

  17. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  18. Ordered hydroxyls on Ca 3Ru 2O 7(001)

    DOE PAGES

    Halwidl, Daniel; Mayr-Schmölzer, Wernfried; Fobes, David; ...

    2017-06-20

    As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is necessary to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca 3Ru 2O 7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH) ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygenmore » atom, O surf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.« less

  19. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL).

    PubMed

    Zhu, Wenyou; Liu, Yongjun; Zhang, Rui

    2015-01-01

    Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. © 2014 Wiley Periodicals, Inc.

  20. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization1

    PubMed Central

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2016-01-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. PMID:26676255

  1. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    PubMed

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins.

    PubMed

    Ali, Hussein M; Ali, Isra H

    2018-03-15

    Antioxidant activity of anthocyanidins is greatly affected by the 3-hydroxyl group and/or a catecholic moiety. The two-hydrogen atom donation process is frequently used to explain the high antioxidant activity of polyphenolic compounds leading to the formation of stable diketones e.g. 1,2-quinones. Thermodynamic parameters, HOMO and spin density were computed to identify the favoured path, either through the 3-hydroxyl group or through the catecholic moiety in a series of catecholic and non-catecholic 3-oxy- (and deoxy)-anthocyanidins. DFT calculations showed that the donation process in non-catecholic anthocyanidins depended on the substituents on ring B. Anthocyanidins with 3',5'-diOMe groups showed donation through 3,4'-OH or, otherwise, through 3,5-OH groups. Catecholic 3-oxyanthocyanidins, on the other hand, showed donation through the 3,4'-OH path rather than the catecholic path (4',3'-path). The 3,4'-path was favoured by the formation of planar 3-radicals in the first step and the stabilization of 4'-radicals in the second step by H-bonding with the 3'-OH group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of oxidation behavior of γ-irradiated EPDM/PP compounds

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Setnescu, R.; Setnescu, T.

    2007-12-01

    The oxidation effect of irradiation on ethylene-propylene diene terpolymer/polypropylene blends is presented. The polymer samples consisting of both materials under various ratios (20:80, 40:60, 60:40 and 80:20) were exposed to γ-irradiation ( 137Cs). The irradiation effects were assessed by two methods: oxygen uptake and IR spectroscopy (1720 cm -1 and 3350 cm -1, the characteristic bands for carbonyl and hydroxyl groups, respectively). The carbonyl and hydroxyl indexes were calculated for all formulations. From oxygen uptake investigation the kinetic parameters for thermal oxidation of irradiated samples were calculated. The contribution of each component to the progress of degradation is discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests amore » potential role for hydroxylated collagen proteins in bone mineralization.« less

  5. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.

    PubMed

    Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N

    2003-12-10

    The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.

  6. Synthesis and crystal structure of the solid solution Co3(SeO3)3-x(PO3OH)x(H2O) involving crystallographic split positions of Se4+ and P5+.

    PubMed

    Zimmermann, Iwan; Johnsson, Mats

    2013-10-21

    Three new cobalt selenite hydroxo-phosphates laying in the solid solution Co3(SeO3)3-x(PO3OH)x(H2O), with x = 0.8, x = 1.0, and x = 1.2 are reported. Single crystals were obtained by hydrothermal synthesis and the crystal structure was determined by single crystal X-ray diffraction. The structure can be described as a 3D framework having selenite and hydroxo-phosphate groups protruding into channels in the crystal structure. Se(4+) and P(5+) share a split position in the structure so that either SeO3 groups having a stereochemically active lone pair or tetrahedrally coordinated PO3OH groups are present. The OH-group is thus only present when the split position is occupied by P(5+). The crystal water is coordinated to a cobalt atom and TG and IR measurements show that the water and hydroxyl groups leave the structure at unusually high temperatures (>450 °C). Magnetic susceptibility measurements show antiferromagnetic coupling below 16 K and a magnetic moment of 4.02(3) μB per Co atom was observed.

  7. Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self-Assembly Behavior.

    PubMed

    Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo

    2018-04-17

    Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Penicillin-binding site on the Escherichia coli cell envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, L.; Lee, Y.; Schwarz, U.

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and freemore » epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.« less

  9. Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl

    NASA Astrophysics Data System (ADS)

    Kim, Suyeon; Yi, Yu; Hong, Ik-Seon; Sohn, Jongdae

    2018-03-01

    Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3's data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.

  10. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    PubMed Central

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  11. Metabolism of isorhynchophylline in rats detected by LC-MS.

    PubMed

    Wang, Wei; Ma, Chao-Mei; Hattori, Masao

    2010-01-01

    This paper investigates the metabolic fate of isorhynchophylline (ISOR) as a main bioactive oxindole alkaloid in the traditional Chinese medicine. After oral administration of ISOR to rats, plasma, bile, urine and feces were analyzed by LC-MS. Hydroxylation of ISOR and successive glucuronidation proceeded in vitro by incubation with rat liver microsomes. ISOR was identified in plasma, 11-hydroxyisorhynchophylline 11-O--D-glucuronide (MI1) and 10-hydroxyisorhynchophylline 10-O--D-glucuronide (MI2) in bile, and free 11-hydroxyisorhynchophylline (MI3) and 10-hydroxyisorhynchophylline (MI4) in urine and feces. Within 24 h, 71.6% of ISOR was excreted into the feces (in 20.0 g) and 13.8% into the urine (in 20.0 ml) of rats after oral administration of 37.5 mg/kg. Monitoring by LC-MS showed that 8.5% of ISOR was metabolized to MI3 and MI4 in a ratio of ca. 1:1. Specific inhibition of CYP isozymes indicated that CYP2D, CYP1A1/2 and CYP2C participate in ISOR hydroxylation. ISOR was involved in the circulatory system after oral administration. Cytochrome P450 (CYP) in rat liver microsomes played a key role in ISOR hydroxylation.

  12. Using terahertz time-domain spectroscopical technique to monitor cocrystal formation between piracetam and 2,5-dihydroxybenzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xia, Yi; Zhang, Huili; Hong, Zhi

    2013-07-01

    Far-infrared vibrational absorption of cocrystal formation between 2,5-dihydroxybenzoic acid (2,5-DHBA) and piracetam compounds under solvent evaporation and grinding methods have been investigated using terahertz time-domain spectroscopy (THz-TDS) at room temperature. The experimental results show large difference among absorption spectra of the formed cocrystals and the involved individual parent molecules in 0.20-1.50 THz region, which probably originated from the intra-molecular and inter-molecular hydrogen bonds due to the presence of two hydroxyl groups in 2,5-DHBA and amide moieties in piracetam compound. The THz absorption spectra of two formed cocrystals with different methods are almost identical. With grinding method, the reaction process can be monitored directly from both time-domain and frequency-domain spectra using THz-TDS technique. The results indicate that THz-TDS technology can absolutely offer us a high potential method to identify and characterize the formed cocrystals, and also provide the rich information about their reaction dynamic process involving two or more molecular crystals in situ to better know the corresponding reaction mechanism in pharmaceutical fields.

  13. A combined experimental and theoretical study of the supramolecular self-assembly of the natural benzopyran 2,2-dimethyl-3-hydroxy-6-acetyl-chromane and its isomeric benzofuran 10,11-dihydro-10-hydroxytremetone

    NASA Astrophysics Data System (ADS)

    Gil, Diego M.; Lizarraga, E.; Echeverría, G. A.; Piro, O. E.; Catalán, C. A. N.; Ben Altabef, A.

    2017-10-01

    Epoxidation of 4HMBA, the main metabolite of the medicinal plant Sencecionutans, produces an unstable epoxide eventually giving rise to a mixture of four derivatives, three of them previously reported as natural products. The epoxide product easily undergoes an intra-molecular attack of the phenolic hydroxyl against the epoxide group carbons to produce either a benzofuran or a chromane derivative. When dissolved in methanol-water mixture at room temperature the epoxide is completely solvolyzed to give the corresponding diol (hydrolysis) or vicinal hydroxyl-methoxy (methanolysis) derivative. All the compounds involved in the above reactions were characterized by IR, Raman, H NMR and UV-vis spectroscopies, and by mass spectrometry. Density functional theory (DFT) computations were used to optimize the structure conformations. The optimized structures were further subjected to a Natural Bond Orbital (NBO) and electrostatic potentials analysis. The crystal structures of the title compounds (for short, 3 and 4 respectively) were determined by X-ray diffraction methods. Compound 3 crystallizes in the triclinic P-1 space group with a = 6.4289 (6) Å, b = 8.7120 (6) Å, c = 10.952 (1) Å, α = 92.280 (7)°, β = 95.738 (7)°, γ = 103.973 (7)°, and Z = 2 molecules per unit cell and 4 in the monoclinic P21/c space group with a = 11.2891 (6) Å, b = 9.1902 (4) Å, c = 12.4272 (7) Å. Β = 113.689 (7)°, and Z = 4. In 3 neighboring molecules are linked to each other by OH⋯O (keto) bonds giving rise to a polymeric structure. In 4 the OH group is a bifurcate H-bond donor. It forms a weak intra-molecular OH⋯O (furan) bond and also a much stronger inter-molecular Osbnd H⋯O (keto) bond giving rise to a zig-zag polymeric structure. A detailed analysis of the solid state molecular interactions of compounds 3 and 4 has been performed using Hirshfeld surface analysis and their associated 2D fingerprint plots.

  14. Novel 20(S)-sulfonylamidine derivatives of camptothecin and the use thereof as a potent antitumor agent: a patent evaluation of WO2015048365 (A1).

    PubMed

    Beretta, Giovanni Luca; Zaffaroni, Nadia; Varchi, Greta

    2016-05-01

    A series of camptothecin (CPT) derivatives featuring acyl-esterification of the 20(S)-hydroxyl group with a residue containing a sulfonylamidine moiety is synthesized via a Cu catalyzed three-component reaction. The compounds show remarkable cytotoxicity against a panel of tumor cells, including a cell line exhibiting Multi-Drug Resistant (MDR) phenotype. The patent develops 9a, the best derivative of the series, that i) selectively poisons DNA Topoisomerase I (TopoI); ii) induces cell-cycle S-phase arrest with activation of the DNA damage response pathway and apoptosis induction and iii) shows considerable in vivo antitumor potency. We envision that the peculiar modification of the 20(S)-hydroxyl group of CPT with a sulfonylamidine residue will play a continuing role in affording new TopoI poison drug candidates for therapeutic applications.

  15. The Effect of Surface Chemical Functionality Upon Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Doss, Jereme; Spence, Destiny; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin R.; McDougal, Nicholas D.

    2015-01-01

    In nature, anti-freeze proteins present in fish utilize specific organic functionalities to disrupt ice crystal formation and propagation. Based on these structures, surfaces with controlled chemical functionality and chain length were evaluated both experimentally and computationally to assess the effect of both parameters in mitigating ice formation. Linear aliphatic dimethylethoxysilanes terminated with methyl or hydroxyl groups were prepared, characterized, and used to coat aluminum. The effect upon icing using a microdroplet freezing apparatus and the Adverse Environment Rotor Test Stand found hydroxyl-terminated materials exhibited a greater propensity for ice formation and adhesion. Molecular dynamics simulations of a silica substrate bearing functionalized species of similar composition were brought into contact with a pre-equilibrated ice crystal. Several parameters including chain mobility were monitored to ascertain the size of a quasi-liquid layer. The studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition.

  16. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  17. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2

    NASA Astrophysics Data System (ADS)

    Wu, Siduo; Teng, Chao; Cai, Sheng; Jiang, Biwang; Wang, Yong; Meng, Hong; Tao, Huchun

    2017-11-01

    A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer-Emmett-Teller (BET) surface area was synthesized through Friedel-Crafts alkylation of triphenylphosphine and α-dibromo- p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption-desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.

  18. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  19. Intercalation of paracetamol into the hydrotalcite-like host

    NASA Astrophysics Data System (ADS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  20. JILA Science | Exploring the frontiers of physics

    Science.gov Websites

    group are lighting up dark excitons. Specifically, the Raschke group developed a method to observe dark into a highly reactive hydroxyl radical (OH). And when CO and OH meet, one byproduct is carbon dioxide one of the nation's leading research institutes in the physical sciences. Learn more about JILA -->

Top