Ding, Dewu; Sun, Xiao
2018-01-16
Shewanella oneidensis MR-1 can transfer electrons from the intracellular environment to the extracellular space of the cells to reduce the extracellular insoluble electron acceptors (Extracellular Electron Transfer, EET). Benefiting from this EET capability, Shewanella has been widely used in different areas, such as energy production, wastewater treatment, and bioremediation. Genome-wide proteomics data was used to determine the active proteins involved in activating the EET process. We identified 1012 proteins with decreased expression and 811 proteins with increased expression when the EET process changed from inactivation to activation. We then networked these proteins to construct the active protein networks, and identified the top 20 key active proteins by network centralization analysis, including metabolism- and energy-related proteins, signal and transcriptional regulatory proteins, translation-related proteins, and the EET-related proteins. We also constructed the integrated protein interaction and transcriptional regulatory networks for the active proteins, then found three exclusive active network motifs involved in activating the EET process-Bi-feedforward Loop, Regulatory Cascade with a Feedback, and Feedback with a Protein-Protein Interaction (PPI)-and identified the active proteins involved in these motifs. Both enrichment analysis and comparative analysis to the whole-genome data implicated the multiheme c -type cytochromes and multiple signal processing proteins involved in the process. Furthermore, the interactions of these motif-guided active proteins and the involved functional modules were discussed. Collectively, by using network-based methods, this work reported a proteome-wide search for the key active proteins that potentially activate the EET process.
Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D
2007-01-01
While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.
Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Herbert, Eric; Ferrari, Roselyne; Chapeland-Leclerc, Florence
2018-07-01
The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1 Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development. Copyright © 2018 Elsevier Inc. All rights reserved.
Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation
Welch; Mauran; Maridonneau-Parini
1996-06-01
Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.
Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.
2016-01-01
Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR-interacting proteins influence AR activation and contribute to aberrant AR-dependent transcription that underlies the majority of human prostate cancers. PMID:27365400
Berk, B C; Corson, M A; Peterson, T E; Tseng, H
1995-12-01
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.
Co-transcriptional nuclear actin dynamics
Percipalle, Piergiorgio
2013-01-01
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849
Rius, Jordi; Martínez-González, José; Crespo, Javier; Badimon, Lina
2004-04-01
Low density lipoproteins (LDLs) modulate the expression of key genes involved in atherogenesis. Recently, we have shown that the transcription factor neuron-derived orphan receptor-1 (NOR-1) is involved in vascular smooth muscle cell (VSMC) proliferation. Our aim was to analyze whether NOR-1 is involved in LDL-induced mitogenic effects in VSMC. LDL induced NOR-1 expression in a time- and dose-dependent manner. Antisense oligonucleotides against NOR-1 inhibit DNA synthesis induced by LDL in VSMCs as efficiently as antisense against the protooncogene c-fos. The upregulation of NOR-1 mRNA levels by LDL involves pertusis-sensitive G protein-coupled receptors, Ca2+ mobilization, protein kinases A (PKA) and C (PKC) activation, and mitogen-activated protein kinase pathways (MAPK) (p44/p42 and p38). LDL promotes cAMP response element binding protein (CREB) activation (phosphorylation in Ser133). In transfection assays a dominant-negative of CREB inhibits NOR-1 promoter activity, while mutation of specific (cAMP response element) CRE sites in the NOR-1 promoter abolishes LDL-induced NOR-1 promoter activity. In VSMCs, LDL-induced mitogenesis involves NOR-1 upregulation through a CREB-dependent mechanism. CREB could play a role in the modulation by LDL of key genes (containing CRE sites) involved in atherogenesis.
Chen, Mei-Yu; Long, Yu; Devreotes, Peter N.
1997-01-01
Genetic analysis was applied to identify novel genes involved in G protein-linked pathways controlling development. Using restriction enzyme-mediated integration (REMI), we have identified a new gene, Pianissimo (PiaA), involved in cAMP signaling in Dictyostelium discoideum. PiaA encodes a 130-kD cytosolic protein required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase. In piaA− null mutants, neither chemoattractant stimulation of intact cells nor GTPγS treatment of lysates activates the enzyme; constitutive expression of PiaA reverses these defects. Cytosols of wild-type cells that contain Pia protein reconstitute the GTPγS stimulation of adenylyl cyclase activity in piaA− lysates, indicating that Pia is directly involved in the activation. Pia and CRAC, a previously identified cytosolic regulator, are both essential for activation of the enzyme as lysates of crac− piaA− double mutants require both proteins for reconstitution. Homologs of PiaA are found in Saccharomyces cerevisiae and Schizosaccaromyces pombe; disruption of the S. cerevisiae homolog results in lethality. We propose that homologs of Pia and similar modes of regulation of these ubiquitous G protein-linked pathways are likely to exist in higher eukaryotes. PMID:9389653
Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro
2014-01-01
The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034
Human T-lymphotropic virus proteins and post-translational modification pathways
Bidoia, Carlo
2012-01-01
Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins. PMID:24175216
Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina
2013-11-01
The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John's wort extract. © 2013 International Society for Neurochemistry.
Wang, Ming-yi; Chen, Cheng; Shao, Chen; Wang, Shao-bo; Wang, Ai-chu; Yang, Ya-chao; Yuan, Xiao-yan; Shao, Shi-he
2015-04-01
The function of intact long-type DupA protein in Helicobacter pylori was analyzed using immunoblotting and molecular biology techniques in the study. After cloning, expression and purification, ATPase activity of DupA protein was detected. Antibody was produced for localization and interaction proteins analysis. The dupA-deleted mutant was generated for adhesion and CagA protein translocation assay, susceptibility to different pH, IL-8 secretion assay, cytotoxicity to MKN-45 cells and proteins-involved apoptosis analysis. DupA protein exhibited an ATPase activity (129.5±17.8 U/mgprot) and located in bacterial membrane, while it did not involve the adhesion and CagA protein delivery of H. pylori. DupA protein involved the urease secretion as the interaction proteins. The wild type strain had a stronger growth in low pH than the dupA-deleted mutant (p < 0.001). IL-8 productions from GES-1 cells infected with the wild type strain were significantly higher than from those with the mutant (p < 0.001). The amounts of vital MKN-45 cells were decreased and the numbers of apoptotic cells were increased with the wild type strain, compared to those with the mutant after 12 h (p < 0.05). The increase of cleaved Caspase-3 and Bax was significantly higher and the decrease of Bcl-2 was more obvious in MKN-45 cells exposed to the wild type strain than that exposed to the mutant after 6 h. We demonstrate that intact long-type DupA protein located in membrane as ATPase is a true virulence factor associated with duodenal ulcer development involving the IL-8 induction and urease secretion, while it inhibits gastric cancer cell growth in vitro by activating the mitochondria-mediated apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monteiro, Rose A.; de Souza, Emanuel M.; Yates, M. Geoffrey; Pedrosa, Fabio O.; Chubatsu, Leda S.
2003-01-01
Herbaspirillum seropedicae is an endophytic diazotroph belonging to the β-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein. PMID:12620839
Monteiro, Rose A; de Souza, Emanuel M; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S
2003-03-01
Herbaspirillum seropedicae is an endophytic diazotroph belonging to the beta-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein.
Response of Escherichia coli to Prolonged Berberine Exposure.
Budeyri Gokgoz, Nilay; Avci, Fatma Gizem; Yoneten, Kubra Karaosmanoglu; Alaybeyoglu, Begum; Ozkirimli, Elif; Sayar, Nihat Alpagu; Kazan, Dilek; Sariyar Akbulut, Berna
2017-07-01
Berberine is a plant-derived alkaloid possessing antimicrobial activity; unfortunately, its efflux through multidrug resistance pumps reduces its efficacy. Cellular life span of Escherichia coli is generally shorter with prolonged berberine exposure; nevertheless, about 30% of the cells still remain robust following this treatment. To elucidate its mechanism of action and to identify proteins that could be involved in development of antimicrobial resistance, protein profiles of E. coli cells treated with berberine for 4.5 and 8 hours were compared with control cells. A total of 42 proteins were differentially expressed in cells treated with berberine for 8 hours when compared to control cells. In both 4.5 and 8 hours of berberine-treated cells, carbohydrate and peptide uptake regimens remained unchanged, although amino acid maintenance regimen switched from transport to synthesis. Defect in cell division persisted and this condition was confirmed by images obtained from scanning electron microscopy. Universal stress proteins were not involved in stress response. The significant increase in the abundance of elongation factors could suggest the involvement of these proteins in protection by exhibiting chaperone activities. Furthermore, the involvement of the outer membrane protein OmpW could receive special attention as a protein involved in response to antimicrobial agents, since the expression of only this porin protein was upregulated after 8 hours of exposure.
Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane
2004-01-01
Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.
Effect of point mutations on Herbaspirillum seropedicae NifA activity.
Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S
2015-08-01
NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.
Effect of point mutations on Herbaspirillum seropedicae NifA activity
Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.
2015-01-01
NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain. PMID:26176311
Bitko, Vira; Barik, Sailen
1998-01-01
Respiratory syncytial virus (RSV) activated the RelA (p65) subunit of nuclear factor kappa B (NF-κB) over many hours postinfection. The initial activation coincided with phosphorylation and degradation of IκBα, the cytoplasmic inhibitor of RelA. During persistent activation of NF-κB at later times in infection, syntheses of inhibitors IκBα as well as IκBβ were restored. However, the resynthesized IκBβ was in an underphosphorylated state, which apparently prevented inhibition of NF-κB. Use of specific inhibitors suggested that the pathway leading to the persistent—but not the initial—activation of NF-κB involved signaling through protein kinase C (PKC) and reactive oxygen intermediates of nonmitochondrial origin, whereas phospholipase C or D played little or no role. Thus, RSV infection led to the activation of NF-κB by a biphasic mechanism: a transient or early activation involving phosphorylation of the inhibitor IκB polypeptides, and a persistent or long-term activation requiring PKC and the generation of hypophosphorylated IκBβ. At least a part of the activation was through a novel mechanism in which the viral phosphoprotein P associated with but was not dephosphorylated by protein phosphatase 2A and thus sequestered and inhibited the latter. We postulate that this led to a net increase in the phosphorylation state of signaling proteins that are responsible for RelA activation. PMID:9621019
Chun, Min Jeong; Kim, Sunshin; Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun
2016-08-16
Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.
Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian
2007-10-10
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Dok1 and Dok2 proteins regulate natural killer cell development and function
Celis-Gutierrez, Javier; Boyron, Marilyn; Walzer, Thierry; Pandolfi, Pier Paolo; Jonjić, Stipan; Olive, Daniel; Dalod, Marc; Vivier, Eric; Nunès, Jacques A
2014-01-01
Natural killer (NK) cells are involved in immune responses against tumors and microbes. NK-cell activation is regulated by intrinsic and extrinsic mechanisms that ensure NK tolerance and efficacy. Here, we show that the cytoplasmic signaling molecules Dok1 and Dok2 are tyrosine phosphorylated upon NK-cell activation. Overexpression of Dok proteins in human NK cells reduces cell activation induced by NK-cell-activating receptors. Dok1 and Dok2 gene ablation in mice induces an NK-cell maturation defect and leads to increased IFN-γ production induced by activating receptors. Taken together, these results reveal that Dok1 and Dok2 proteins are involved in an intrinsic negative feedback loop downstream of NK-cell-activating receptors in mouse and human. PMID:24963146
Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M
2001-09-04
Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.
RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.
Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong
2016-12-19
ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Klemann, C.; Stephan, M.
2016-01-01
Summary Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi‐functional protein involved in T cell activation by co‐stimulation via its association with adenosine deaminase (ADA), caveolin‐1, CARMA‐1, CD45, mannose‐6‐phosphate/insulin growth factor‐II receptor (M6P/IGFII‐R) and C‐X‐C motif receptor 4 (CXC‐R4). The proline‐specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4‐like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4‐like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4‐like protein 2 (DPL2, DPP10) from the DPP4‐gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4‐like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4‐like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen‐presenting (DPP9), co‐stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology. PMID:26671446
León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe
2015-09-01
Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition.
Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H
1989-01-01
The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252
Kolesnick, R N; Clegg, S
1988-05-15
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.
Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi
2016-01-01
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission. PMID:27835888
Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3.
Terada, Atsushi; Honda, Takashi; Fukuhara, Hideo; Hada, Kazumasa; Kimura, Makoto
2006-08-01
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA). Our earlier study revealed that RNase P RNA (pRNA) and five proteins (PhoPop5, PhoRpp38, PhoRpp21, PhoRpp29, and PhoRpp30) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 reconstituted RNase P activity that exhibits enzymatic properties like those of the authentic enzyme. In present study, we investigated involvement of the individual proteins in RNase P activity. Two particles (R-3Ps), in which pRNA was mixed with three proteins, PhoPop5, PhoRpp30, and PhoRpp38 or PhoPop5, PhoRpp30, and PhoRpp21 showed a detectable RNase P activity, and five reconstituted particles (R-4Ps) composed of pRNA and four proteins exhibited RNase P activity, albeit at reduced level compared to that of the reconstituted particle (R-5P) composed of pRNA and five proteins. Time-course analysis of the RNase P activities of R-4Ps indicated that the R-4Ps lacking PhoPop5, PhoRpp21, or PhoRpp30 had virtually reduced activity, while omission of PhoRpp29 or PhoRpp38 had a slight effect on the activity. The results indicate that the proteins contribute to RNase P activity in order of PhoPop5 > PhoRpp30 > PhoRpp21 > PhoRpp29 > PhoRpp38. It was further found that R-4Ps showed a characteristic Mg2+ ion dependency approximately identical to that of R-5P. However, R-4Ps had optimum temperature of around at 55 degrees C which is lower than 70 degrees C for R-5P. Together, it is suggested that the P. horikoshii RNase P proteins are predominantly involved in optimization of the pRNA conformation, though they are individually dispensable for RNase P activity in vitro.
Baker, Nicole M; Yee Chow, Hoi; Chernoff, Jonathan; Der, Channing J
2014-09-15
Cancers driven by oncogenic Ras proteins encompass some of the most deadly human cancer types, and there is a pressing need to develop therapies for these diseases. Although recent studies suggest that mutant Ras proteins may yet be druggable, the most promising and advanced efforts involve inhibitors of Ras effector signaling. Most efforts to target Ras signaling have been aimed at the ERK mitogen-activated protein kinase and the phosphoinositide 3-kinase signaling networks. However, to date, no inhibitors of these Ras effector pathways have been effective against RAS-mutant cancers. This ineffectiveness is due, in part, to the involvement of additional effectors in Ras-dependent cancer growth, such as the Rac small GTPase and the p21-activated serine-threonine kinases (PAK). PAK proteins are involved in many survival, cell motility, and proliferative pathways in the cell and may present a viable new target in Ras-driven cancers. In this review, we address the role and therapeutic potential of Rac and group I PAK proteins in driving mutant Ras cancers. ©2014 American Association for Cancer Research.
Musidlak, Oskar; Nawrot, Robert; Goździcka-Józefiak, Anna
2017-11-01
Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.
Goździcka-Józefiak, Anna
2017-01-01
Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine. PMID:29104238
Zhang, Jing; Lauf, Peter K; Adragna, Norma C
2005-07-15
K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.
Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard
2014-07-11
The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2017-02-01
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X
2016-05-15
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Irazusta, Verónica; Bernal, Anahí Romina; Estévez, María Cristina; de Figueroa, Lucía I C
2018-02-01
Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus. Copyright © 2017 Elsevier Inc. All rights reserved.
Lenfant, Nicolas; Hotelier, Thierry; Bourne, Yves; Marchot, Pascale; Chatonnet, Arnaud
2014-07-01
A cholinesterase activity can be found in all kingdoms of living organism, yet cholinesterases involved in cholinergic transmission appeared only recently in the animal phylum. Among various proteins homologous to cholinesterases, one finds neuroligins. These proteins, with an altered catalytic triad and no known hydrolytic activity, display well-identified cell adhesion properties. The availability of complete genomes of a few metazoans provides opportunities to evaluate when these two protein families emerged during evolution. In bilaterian animals, acetylcholinesterase co-localizes with proteins of cholinergic synapses while neuroligins co-localize and may interact with proteins of excitatory glutamatergic or inhibitory GABAergic/glycinergic synapses. To compare evolution of the cholinesterases and neuroligins with other proteins involved in the architecture and functioning of synapses, we devised a method to search for orthologs of these partners in genomes of model organisms representing distinct stages of metazoan evolution. Our data point to a progressive recruitment of synaptic components during evolution. This finding may shed light on the common or divergent developmental regulation events involved into the setting and maintenance of the cholinergic versus glutamatergic and GABAergic/glycinergic synapses.
Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun
2016-01-01
Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway. PMID:27449087
Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.
Ohba, M
1997-06-09
In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.
Proteome Characterization of Leaves in Common Bean
Robison, Faith M.; Heuberger, Adam L.; Brick, Mark A.; Prenni, Jessica E.
2015-01-01
Dry edible bean (Phaseolus vulgaris L.) is a globally relevant food crop. The bean genome was recently sequenced and annotated allowing for proteomics investigations aimed at characterization of leaf phenotypes important to agriculture. The objective of this study was to utilize a shotgun proteomics approach to characterize the leaf proteome and to identify protein abundance differences between two bean lines with known variation in their physiological resistance to biotic stresses. Overall, 640 proteins were confidently identified. Among these are proteins known to be involved in a variety of molecular functions including oxidoreductase activity, binding peroxidase activity, and hydrolase activity. Twenty nine proteins were found to significantly vary in abundance (p-value < 0.05) between the two bean lines, including proteins associated with biotic stress. To our knowledge, this work represents the first large scale shotgun proteomic analysis of beans and our results lay the groundwork for future studies designed to investigate the molecular mechanisms involved in pathogen resistance. PMID:28248269
Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.
Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi
2005-01-01
The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.
Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori
2011-01-01
Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357
Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda
2017-04-01
Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.
Lindin, Inger; Wuxiuer, Yimingjiang; Ravna, Aina Westrheim; Moens, Ugo; Sylte, Ingebrigt
2014-01-01
The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding. PMID:24651460
Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.
Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia
2010-05-01
Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (p<0.05). Pea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (p<0.05). Hepatic mRNA concentration of genes involved in fatty acids synthesis, such as fatty acid synthase and stearoyl-CoA desaturase, was lower in pea protein-fed rats than in rats fed casein (p<0.05). In conclusion, the present study demonstrates a marked cholesterol and triglyceride-lowering activity of pea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.
Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells
María López-Colomé, Ana; Martínez-Lozada, Zila; Guillem, Alain M; López, Edith; Ortega, Arturo
2012-01-01
Glu (glutamate), the excitatory transmitter at the main signalling pathway in the retina, is critically involved in changes in the protein repertoire through the activation of signalling cascades, which regulate protein synthesis at transcriptional and translational levels. Activity-dependent differential gene expression by Glu is related to the activation of ionotropic and metabotropic Glu receptors; however, recent findings suggest the involvement of Na+-dependent Glu transporters in this process. Within the retina, Glu uptake is aimed at the replenishment of the releasable pool, and for the prevention of excitotoxicity and is carried mainly by the GLAST/EAAT-1 (Na+-dependent glutamate/aspartate transporter/excitatory amino acids transporter-1) located in Müller radial glia. Based on the previous work showing the alteration of GLAST expression induced by Glu, the present work investigates the involvement of GLAST signalling in the regulation of protein synthesis in Müller cells. To this end, we explored the effect of D-Asp (D-aspartate) on Ser-2448 mTOR (mammalian target of rapamycin) phosphorylation in primary cultures of chick Müller glia. The results showed that D-Asp transport induces the time- and dose-dependent phosphorylation of mTOR, mimicked by the transportable GLAST inhibitor THA (threo-β-hydroxyaspartate). Signalling leading to mTOR phosphorylation includes Ca2+ influx, the activation of p60src, phosphatidylinositol 3-kinase, protein kinase B, mTOR and p70S6K. Interestingly, GLAST activity promoted AP-1 (activator protein-1) binding to DNA, supporting a function for transporter signalling in retinal long-term responses. These results add a novel receptor-independent pathway for Glu signalling in Müller glia, and further strengthen the critical involvement of these cells in the regulation of glutamatergic transmission in the retina. PMID:22817638
Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt Vaughn Greg Harrington Daniel R Bush
2002-08-06
This project was based on our discovery that sucrose acts as a signaling molecule that regulates the activity of a proton-sucrose symporter in sugar beet leaf tissue. A major objective here was determining how sucrose transporter activity is being regulated. When sucrose accumulates in the phloem sucrose transport activity drops dramatically. Western blots of plasma membrane proteins isolated from sucrose treated leaves showed that the loss of sucrose transport activity was proportional to a decline in symporter abundance, demonstrating that sucrose transport is regulated by changes in the amount of BvSUT1 protein. BvSUT1 transcript levels decreased in parallel with themore » loss of sucrose transport activity. Nuclear run-on experiments demonstrated that BvSUT1 gene transcription was repressed significantly in nuclei from leaves fed 100 mM exogenous sucrose, showing that sucrose-dependent modulation of BvSUT1 mRNA levels is mediated by changes in transcription. To identify which secondary messenger systems might be involved in regulating symporter activity, we used a variety of pharmacological agents to probe for a role of calcium or protein phosphorylation in sucrose signaling. In a detailed analysis, only okadaic acid altered sucrose transport activity. These results suggest a protein phosphatase is involved. We hypothesized that protein kinase inhibitors would have a neutral affect or increase symporter transcription. Transpirational feeding of the protein kinase inhibitor staurosporine had no impact on sucrose transport while calphostin C, an inhibitor of protein kinase C, caused a 60% increase. These data provided good evidence that protein phosphorylation plays a central role in regulating sucrose symporter expression and sucrose transport activity. To determine whether protein phosphorylation is involved in sucrose regulation of proton-sucrose symporter activity, we pre-fed leaves with staurosporine for 4 h and then fed the treated leaves water or 100 mM sucrose for an additional 20 h. Sucrose transport activity was higher than the water control in both staurosporine/water- and staurosporine/sucrose-fed leaves. In contrast, sucrose transport activity was only 40% of the water control in sucrose-fed leaves. Taken together, these results showed that a phosphorylation-dependent signal transduction pathway is involved in sucrose-mediated regulation of BvSUT1 gene expression, sucrose transport activity, and ultimately phloem loading. Publications originating from this work: Vaughn MW, GN. Harrington, and DR Bush 2002. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc. Natl. Acad. Sci. USA 99:10876-10880 Ransom-Hodgkins W, MW Vaughn, and DR Bush 2003. Protein phosphorylation mediates a key step in sucrose-regulation of the expression and transport activity of a beet proton-sucrose symporter. Planta 217:483-489 Harrington GN and Bush DR 2003. The bifunctional role of hexokinase in metabolism and glucose signaling. Plant Cell 15: 2493-2496« less
Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas
Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 thatmore » forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.« less
Inclusion bodies and purification of proteins in biologically active forms.
Mukhopadhyay, A
1997-01-01
Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved.
HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A.
Tommasino, M; Adamczewski, J P; Carlotti, F; Barth, C F; Manetti, R; Contorni, M; Cavalieri, F; Hunt, T; Crawford, L
1993-01-01
E7 is the major transforming protein of human papillomavirus type 16 (HPV16). It has been found to associate with the retinoblastoma protein Rb1. We investigated whether HPV16 E7 protein was associated with other cellular proteins, in particular with those involved in cell cycle control. Immunoprecipitates from CaSki cell extracts with an anti E7 monoclonal antibody contained a histone H1 kinase. Recombinant E7, synthesized in yeast, when mixed with protein extracts from epithelial cells bound histone H1 kinase activity in vitro. The in vivo and the in vitro-formed E7-kinase complex had the same periodicity of activity during the cell cycle, being most active in S and G2/M. Immunoblotting of E7 immunoprecipitates with an antibody raised against the p33CDK2, revealed a 33 kDa protein band not detected by an anti-p34cdc2 antibody, suggesting that the E7-associated kinase activity is due to the p33CDK2. The interaction appears to be via cyclin A, since probing of similar immunoblots showed a 50 kDa band corresponding to cyclin A. The association of E7 with cyclin A appeared to be direct, not involving Rb 1 or other proteins.
Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation
Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd
2016-01-01
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380
Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J
2013-11-01
Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.
Brain Responses to High-Protein Diets12
Journel, Marion; Chaumontet, Catherine; Darcel, Nicolas; Fromentin, Gilles; Tomé, Daniel
2012-01-01
Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption. PMID:22585905
Huang, Lei; Kondo, Fumio; Gosho, Masahiko; Feng, Guo-Gang; Harato, Misako; Xia, Zhong-yuan; Ishikawa, Naohisa; Fujiwara, Yoshihiro; Okada, Shoshiro
2014-01-01
We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression. PMID:24859235
Hassan, Mubashir; Shahzadi, Saba; Alashwal, Hany; Zaki, Nazar; Seo, Sung-Yum; Moustafa, Ahmed A
2018-05-22
Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.
Wang, Yiming; Gupta, Ravi; Song, Wei; Huh, Hyun-Hye; Lee, So Eui; Wu, Jingni; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kang, Kyu Young; Park, Sang-Ryeol; Kim, Sun Tae
2017-10-03
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases resulting in a huge loss of the total rice productivity. The initial interaction between rice and Xoo takes place in the host apoplast and is mediated primarily by secretion of various proteins from both partners. Yet, such secretory proteins remain to be largely identified and characterized. This study employed a label-free quantitative proteomics approach and identified 404 and 323 Xoo-secreted proteins from in vitro suspension-cultured cells and in planta systems, respectively. Gene Ontology analysis showed their involvement primarily in catalytic, transporter, and ATPase activities. Of a particular interest was a Xoo cysteine protease (XoCP), which showed dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Besides, a parallel analysis of in planta rice-secreted proteins resulted in identification of 186 secretory proteins mainly associated with the catalytic, antioxidant, and electron carrier activities. Identified secretory proteins were exploited to shed light on their possible role in the rice-Xoo interaction, and that further deepen our understanding of such interaction. Xanthomonas oryzae pv. oryzae (Xoo), causative agent of bacterial blight disease, results in a huge loss of the total rice productivity. Using a label-free quantitative proteomics approach, we identified 727 Xoo- and 186 rice-secreted proteins. Functional annotation showed Xoo secreted proteins were mainly associated with the catalytic, transporter, and ATPase activities while the rice secreted proteins were mainly associated with the catalytic, antioxidant, and electron carrier activities. A novel Xoo cysteine protease (XoCP) was identified, showing dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality, compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a...
NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin
Alagarsamy, Sudar; Saugstad, Julie; Warren, Lee; Mansuy, Isabelle M.; Gereau, Robert W.; Conn, P. Jeffrey
2010-01-01
Previous reports have shown that activation of N-methyl-D-aspartate (NMDA) receptors potentiates responses to activation of the group I metabotropic glutamate receptor mGluR5 by reversing PKC-mediated desensitization of this receptor. NMDA-induced reversal of mGluR5 desensitization is dependent on activation of protein phosphatases. However, the specific protein phosphatase involved and the precise mechanism by which NMDA receptor activation reduces mGluR desensitization are not known. We have performed a series of molecular, biochemical, and genetic studies to show that NMDA-induced regulation of mGluR5 is dependent on activation of calcium-dependent protein phosphatase 2B/calcineurin (PP2B/CaN). Furthermore, we report that purified calcineurin directly dephosphorylates the C-terminal tail of mGluR5 at sites that are phosphorylated by PKC. Finally, immunoprecipitation and GST fusion protein pull-down experiments reveal that calcineurin interacts with mGluR5, suggesting that these proteins could be colocalized in a signaling complex. Taken together with previous studies, these data suggest that activation of NMDA receptors leads to activation of calcineurin and that calcineurin modulates mGluR5 function by directly dephosphorylating mGluR5 at PKC sites that are involved in desensitization of this receptor. 2005 Elsevier Ltd. All rights reserved. PMID:16005030
EX VIVIO DETECTION OF KINASE AND PHOSPHATASE ACTIVITIES IN HUMAN BRONCHIAL BIOPSIES
Protein phosphorylation is a posttranslational modification involved in every aspect cellular function. Levels of protein phosphotyrosine, phosphoserine and phosphothreonine are regulated by the opposing activities of kinases and phosphatases, the expression of which can be alt...
Identification and characterization of proteins involved in rice urea and arginine catabolism.
Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter
2010-09-01
Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.
RBFOX2 protein domains and cellular activities.
Arya, Anurada D; Wilson, David I; Baralle, Diana; Raponi, Michaela
2014-08-01
RBFOX2 (RNA-binding protein, Fox-1 homologue 2)/RBM9 (RNA-binding-motif protein 9)/RTA (repressor of tamoxifen action)/HNRBP2 (hexaribonucleotide-binding protein 2) encodes an RNA-binding protein involved in tissue specific alternative splicing regulation and steroid receptors transcriptional activity. Its ability to regulate specific splicing profiles depending on context has been related to different expression levels of the RBFOX2 protein itself and that of other splicing regulatory proteins involved in the shared modulation of specific genes splicing. However, this cannot be the sole explanation as to why RBFOX2 plays a widespread role in numerous cellular mechanisms from development to cell survival dependent on cell/tissue type. RBFOX2 isoforms with altered protein domains exist. In the present article, we describe the main RBFOX2 protein domains, their importance in the context of splicing and transcriptional regulation and we propose that RBFOX2 isoform distribution may play a fundamental role in RBFOX2-specific cellular effects.
Marro, Samuele; Chiabrando, Deborah; Messana, Erika; Stolte, Jens; Turco, Emilia; Tolosano, Emanuela; Muckenthaler, Martina U
2010-08-01
Macrophages of the reticuloendothelial system play a key role in recycling iron from hemoglobin of senescent or damaged erythrocytes. Heme oxygenase 1 degrades the heme moiety and releases inorganic iron that is stored in ferritin or exported to the plasma via the iron export protein ferroportin. In the plasma, iron binds to transferrin and is made available for de novo red cell synthesis. The aim of this study was to gain insight into the regulatory mechanisms that control the transcriptional response of iron export protein ferroportin to hemoglobin in macrophages. Iron export protein ferroportin mRNA expression was analyzed in RAW264.7 mouse macrophages in response to hemoglobin, heme, ferric ammonium citrate or protoporphyrin treatment or to siRNA mediated knockdown or overexpression of Btb And Cnc Homology 1 or nuclear accumulation of Nuclear Factor Erythroid 2-like. Iron export protein ferroportin promoter activity was analyzed using reporter constructs that contain specific truncations of the iron export protein ferroportin promoter or mutations in a newly identified MARE/ARE element. We show that iron export protein ferroportin is transcriptionally co-regulated with heme oxygenase 1 by heme, a degradation product of hemoglobin. The protoporphyrin ring of heme is sufficient to increase iron export protein ferroportin transcriptional activity while the iron released from the heme moiety controls iron export protein ferroportin translation involving the IRE in the 5'untranslated region. Transcription of iron export protein ferroportin is inhibited by Btb and Cnc Homology 1 and activated by Nuclear Factor Erythroid 2-like involving a MARE/ARE element located at position -7007/-7016 of the iron export protein ferroportin promoter. This finding suggests that heme controls a macrophage iron recycling regulon involving Btb and Cnc Homology 1 and Nuclear Factor Erythroid 2-like to assure the coordinated degradation of heme by heme oxygenase 1, iron storage and detoxification by ferritin, and iron export by iron export protein ferroportin.
Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho
2016-01-01
Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys52 and Leu242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter. PMID:27226609
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2016-01-01
Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170
Manoharan, Prabu; Sridhar, J
2018-05-01
The organophosphorus hydrolase enzyme is involved in the catalyzing reaction that involve hydrolysis of organophosphate toxic compounds. An enzyme from Deinococcus radiodurans reported as homologous to phosphotriesterase and show activity against organophosphate. In the past activity of this enzyme is low and efforts made to improve the activity by experimental mutation study. However only very few organophosphates tested against very few catalytic site mutations. In order to improve the catalytic power of the organophosphorus hydrolase enzyme, we carried out systematic functional hotspot based protein engineering strategy. The mutants tested against 46 know organophosphate compounds using molecular docking study. Finally, we carried out an extensive molecular docking study to predict the binding of 46 organophosphate compounds to wild-type protein and mutant organophosphorus hydrolase enzyme. At the end we are able to improve the degrading potential of organophosphorus hydrolase enzyme against organophosphate toxic compounds. This preliminary study and the outcome would be useful guide for the experimental scientist involved in the bioremediation of toxic organophosphate compounds. Copyright © 2018 Elsevier Inc. All rights reserved.
Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R
2016-06-01
Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n TBA exhibit increased ( < 0.05) pAKT protein levels. These data indicate the TBA-mediated increases in protein synthesis likely involve GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.
E, Yaoyao; Yuan, Jun; Yang, Fang; Wang, Lei; Ma, Jinghua; Li, Jing; Pu, Xiaowei; Raza, Waseem; Huang, Qiwei; Shen, Qirong
2017-12-01
Paenibacillus polymyxa (SQR-21) is not only a plant growth-promoting rhizobacteria, but also an effective biocontrol agent against Fusarium wilt disease of watermelon. For the better understanding and clarifying the potential mechanisms of SQR-21 to improve watermelon growth and disease resistance, a split-root methodology in hydroponic and LC-MS technology with the label free method was used to analyze the key root proteins involved in watermelon metabolism and disease resistance after the inoculation of SQR-21. Out of 623 identified proteins, 119 proteins were differentially expressed when treatment (SQR-21 inoculation) and control (no bacterial inoculation) were compared. Among those, 57 and 62 proteins were up-regulated and down-regulated, respectively. These differentially expressed proteins were identified to be involved in signal transduction (ADP-ribosylation factor, phospholipase D), transport (aspartate amino-transferase), carbohydratemetabolic (glucose-6-phosphate dehydrogenase, UDP-glucose pyrophosphorylase), defense and response to stress (glutathione S-transferase, Ubiquitin-activating enzyme E1), and oxidation-reduction process (thioredoxin peroxidase, ascorbate peroxidase). The results of this study indicated that SQR-21 inoculation on the watermelon roots benefits plant by inducing the expression of several proteins involved in growth, photosynthesis, and other metabolic and physiological activities.
IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer.
Samanta, Sanjoy; Guru, Santosh; Elaimy, Ameer L; Amante, John J; Ou, Jianhong; Yu, Jun; Zhu, Lihua J; Mercurio, Arthur M
2018-05-29
Insulin-like growth factor-2 mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with many aggressive cancers and implicated in the function of breast cancer stem cells (CSCs). The mechanisms involved, however, are poorly understood. We observed that IMP3 facilitates the activation of TAZ, a transcriptional co-activator of Hippo signaling that is necessary for the function of breast CSCs. The mechanism by which IMP3 activates TAZ involves both mRNA stability and transcriptional regulation. IMP3 stabilizes the mRNA of an alternative WNT ligand (WNT5B) indirectly by repressing miR145-5p, which targets WNT5B, resulting in TAZ activation by alternative WNT signaling. IMP3 also facilitates the transcription of SLUG, which is necessary for TAZ nuclear localization and activation, by a mechanism that is also mediated by WNT5B. These results demonstrate that TAZ can be regulated by an mRNA-binding protein and that this regulation involves the integration of Hippo and alternative WNT-signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp, Samuel I.
2017-01-01
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with very different polysaccharide binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signaling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than expected. These super-bioactive nanostructures may enable many therapies in the horizon involving proteins. PMID:28650443
Function and regulation of MTA1 and MTA3 in malignancies of the female reproductive system.
Brüning, Ansgar; Blankenstein, Thomas; Jückstock, Julia; Mylonas, Ioannis
2014-12-01
The family of metastasis-associated (MTA) genes is a small group of transcriptional co-regulators which are involved in various physiological functions, ranging from lymphopoietic cell differentiation to the development and maintenance of epithelial cell adhesions. By recruiting histone-modifying enzymes to specific promoter sequences, MTA proteins can function both as transcriptional repressors and activators of a number of cancer-relevant proteins, including Snail, E-cadherin, signal transducer and activator of transcriptions (STATs), and the estrogen receptor. Their involvement in the epithelial-mesenchymal transition process and regulatory interactions with estrogen receptor activity has made MTA proteins highly interesting research candidates, especially in the field of hormone-sensitive breast cancer and malignancies of the female reproductive tract. This review focuses on the current knowledge about the function and regulation of MTA1 and MTA3 proteins in gynecological cancer, including ovarian, endometrial, and cervical tumors.
Uncoupling Protein 2 and Metabolic Diseases
Sreedhar, Annapoorna; Zhao, Yunfeng
2017-01-01
Mitochondria are fascinating organelles involved in various cellular-metabolic activities that are integral for mammalian development. Although they perform diverse, yet interconnected functions, mitochondria are remarkably regulated by complex signaling networks. Therefore, it is not surprising that mitochondrial dysfunction is involved in plethora of diseases, including neurodegenerative and metabolic disorders. One of the many factors that lead to mitochondrial-associated metabolic diseases is the uncoupling protein-2, a family of mitochondrial anion proteins present in the inner mitochondrial membrane. Since their discovery, uncoupling proteins have attracted considerable attention due to their involvement in mitochondrial-mediated oxidative stress and energy metabolism. This review attempts to provide a summary of recent developments in the field of uncoupling protein 2 relating to mitochondrial associated metabolic diseases. PMID:28351676
Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min
2016-07-01
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martins-de-Souza, Daniel; Cassoli, Juliana S; Nascimento, Juliana M; Hensley, Kenneth; Guest, Paul C; Pinzon-Velasco, Andres M; Turck, Christoph W
2015-10-01
Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation
Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile
2016-01-01
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137
Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions.
Rezsohazy, René
2014-01-01
Hox proteins are conserved homeodomain transcription factors involved in the control of embryo patterning, organ development, and cell differentiation during animal development and adult life. Although recognizably active in gene regulation, accumulating reports support that Hox proteins are also active in controlling other molecular processes like mRNA translation, DNA repair, initiation of DNA replication, and possibly modulation of signal transduction. Here we review experimental evidence as well as databases entries indicative of non-transcriptional activities of Hox proteins. Copyright © 2013 Wiley Periodicals, Inc.
Torres, Jaume; Surya, Wahyu; Li, Yan; Liu, Ding Xiang
2015-01-01
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity. PMID:26053927
Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.
2013-01-01
The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138
Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection.
Lin, Hung Wen; Thompson, John W; Morris, Kahlilia C; Perez-Pinzon, Miguel A
2011-05-15
Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.
Signal Transducers and Activators of Transcription: STATs-Mediated Mitochondrial Neuroprotection
Lin, Hung Wen; Thompson, John W.; Morris, Kahlilia C.
2011-01-01
Abstract Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia. Antioxid. Redox Signal. 14, 1853–1861. PMID:20712401
Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S
2017-07-15
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen
2017-07-01
γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.
USDA-ARS?s Scientific Manuscript database
It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinan...
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sato, Motohiko; Cismowski, Mary J.; Toyota, Eiji; Smrcka, Alan V.; Lucchesi, Pamela A.; Chilian, William M.; Lanier, Stephen M.
2006-01-01
As part of a broader effort to identify postreceptor signal regulators involved in specific diseases or organ adaptation, we used an expression cloning system in Saccharomyces cerevisiae to screen cDNA libraries from rat ischemic myocardium, human heart, and a prostate leiomyosarcoma for entities that activated G protein signaling in the absence of a G protein coupled receptor. We report the characterization of activator of G protein signaling (AGS) 8 (KIAA1866), isolated from a rat heart model of repetitive transient ischemia. AGS8 mRNA was induced in response to ventricular ischemia but not by tachycardia, hypertrophy, or failure. Hypoxia induced AGS8 mRNA in isolated adult ventricular cardiomyocytes but not in rat aortic smooth muscle cells, endothelial cells, or cardiac fibroblasts, suggesting a myocyte-specific adaptation mechanism involving remodeling of G protein signaling pathways. The bioactivity of AGS8 in the yeast-based assay was independent of guanine nucleotide exchange by Gα, suggesting an impact on subunit interactions. Subsequent studies indicated that AGS8 interacts directly with Gβγ and this occurs in a manner that apparently does not alter the regulation of the effector PLC-β2 by Gβγ. Mechanistically, AGS8 appears to promote G protein signaling by a previously unrecognized mechanism that involves direct interaction with Gβγ. PMID:16407149
Macrophage differentiation increases expression of the ascorbate transporter (SVCT2)
Qiao, Huan; May, James M.
2013-01-01
To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCβI and βII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-κB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCβI/II, MAP kinase, NADPH oxidase, and NF-κB. PMID:19232538
Szymonowicz, Klaudia; Oeck, Sebastian; Malewicz, Nathalie M; Jendrossek, Verena
2018-03-18
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt's activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Camoni, Lorenzo; Di Lucente, Cristina; Pallucca, Roberta; Visconti, Sabina; Aducci, Patrizia
2012-08-01
Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Canonical and non-canonical mechanisms of Nrf2 activation.
Silva-Islas, Carlos Alfredo; Maldonado, Perla D
2018-06-15
Nuclear Factor Erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of genes involved in the metabolism, immune response, cellular proliferation, and other processes; however, the attention has been focused on the study of its ability to induce the expression of proteins involved in the antioxidant defense. Nrf2 is mainly regulated by Kelch-like ECH-associated protein 1 (Keap1), an adapter substrate of Cullin 3 (Cul3) ubiquitin E3 ligase complex. Keap1 represses Nrf2 activity in the cytoplasm by its sequestering, ubiquitination and proteosomal degradation. Nrf2 activation, through the canonical mechanism, is carried out by electrophilic compounds and oxidative stress where some cysteine residues in Keap1 are oxidized, resulting in a decrease in Nrf2 ubiquitination and an increase in its nuclear translocation and activation. In the nucleus, Nrf2 induces a variety of genes involved in the antioxidant defense. Recently a new mechanism of Nrf2 activation has been described, called the non-canonical pathway, where proteins such as p62, p21, dipeptidyl peptidase III (DPP3), wilms tumor gene on X chromosome (WTX) and others are able to disrupt the Nrf2-Keap1 complex, by direct interaction with Keap1 decreasing Nrf2 ubiquitination and increasing its nuclear translocation and activation. In this review, the regulatory mechanisms involved in both canonical and non-canonical Nrf2 activation are discussed. Copyright © 2018. Published by Elsevier Ltd.
2007-03-01
Saccharomyces cerevisiae and model fungus Cryptococcus neoformans as models to understand how the GAP activity of the yeast neurofibromin homologs, Ira1...another genetically tractable fungal model system, Cryptococcus neoformans, and identified two kelch repeat homologs that are involved in mating (Kem1 and...Kem2). To find kelch-repeat proteins involved in G protein signaling, Cryptococcus homologues of Gpb1/2, which interacts with and negatively
Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C
2003-02-01
Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or TR with the RXR receptor and that effects of PPARalpha activation on hepatic PDK2 and PDK4 expression favour a switch towards preferential expression of PDK4.
Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng
2016-05-27
Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Matsuyama, Nobuki; Yasui, Kazuta; Amakishi, Etsuko; Hayashi, Tomoya; Kuroishi, Ayumu; Ishii, Hiroyuki; Matsukura, Harumichi; Tani, Yoshihiko; Furuta, Rika A; Hirayama, Fumiya
2015-07-01
On transfusion, several plasma proteins can cause anaphylaxis in patients deficient in the corresponding plasma proteins. However, little is known about other allergens, which are encountered much more infrequently. Although it has been speculated that an allergen-independent pathway underlying allergic transfusion reactions (ATRs) is elicited by biological response modifiers accumulated in blood components during storage, the exact mechanisms remain unresolved. Furthermore, it is difficult even to determine whether ATRs are induced via allergen-dependent or allergen-independent pathways. To distinguish these two pathways in ATR cases, we established a basophil activation test, in which the basophil-activating ability of supernatants of residual transfused blood of ATR cases to whole blood basophils was assessed in the presence or absence of dasatinib, an inhibitor of IgE-mediated basophil activation. Three of 37 supernatants from the platelet concentrates with ATRs activated panel blood basophils in the absence, but not in the presence, of dasatinib. The basophil activation was inhibited by treatment of anti-fish collagen I MoAb in one case, suggesting that the involvement of fish allergens may have been present in donor plasma. We concluded that unknown non-plasma proteins, some of which had epitopes similar to fish antigens, in blood component may be involved in ATRs via an allergen/IgE-dependent pathway.
Wolfram, Stefanie; Wielsch, Natalie; Hupfer, Yvonne; Mönch, Bettina; Lu-Walther, Hui-Wen; Heintzmann, Rainer; Werz, Oliver; Svatoš, Aleš; Pohnert, Georg
2015-01-01
Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways. PMID:26496085
Chowdhury, Trinath; Sarkar, Manas; Chaudhuri, Biswadeep; Chattopadhyay, Brajadulal; Halder, Umesh Chandra
2015-07-01
A unique protein, bioremediase (UniProt Knowledgebase Accession No.: P86277), isolated from a hot spring bacterium BKH1 (GenBank Accession No.: FJ177512), has shown to exhibit silica leaching activity when incorporated to prepare bio-concrete material. Matrix-assisted laser desorption ionization mass spectrometry analysis suggests that bioremediase is 78% homologous to bovine carbonic anhydrase II though it does not exhibit carbonic anhydrase-like activity. Bioinformatics study is performed for understanding the various physical and chemical parameters of the protein which predicts the involvement of zinc encircled by three histidine residues (His94, His96 and His119) at the active site of the protein. Isothermal titration calorimetric-based thermodynamic study on diethyl pyrocarbonate-modified protein recognizes the presence of Zn(2+) in the enzyme moiety. Exothermic to endothermic transition as observed during titration of the protein with Zn(2+) discloses that there are at least two binding sites for zinc within the protein moiety. Addition of Zn(2+) regains the activity of EDTA chelated bioremediase confirming the presence of extra binding site of Zn(2+) in the protein moiety. Revival of folding pattern of completely unfolded urea-treated protein by Zn(2+) explains the participatory role of zinc in structural stability of the protein. Restoration of the λ max in intrinsic fluorescence emission study of the urea-treated protein by Zn(2+) similarly confirms the involvement of Zn in the refolding of the protein. The utility of bioremediase for silica nanoparticles preparation is observed by field emission scanning electron microscopy.
Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response.
Oshiumi, Hiroyuki; Kouwaki, Takahisa; Seya, Tsukasa
2016-01-01
Type I interferon (IFN) induces many antiviral factors in host cells. RIG-I-like receptors (RLRs) are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs) and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and, thus, cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway.
TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis.
Mahmoud, Shima; Planes, María Dolores; Cabedo, Marc; Trujillo, Cristina; Rienzo, Alessandro; Caballero-Molada, Marcos; Sharma, Sukesh C; Montesinos, Consuelo; Mulet, José Miguel; Serrano, Ramón
2017-07-01
We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H + -ATPase Pma1 (which drives nutrient and K + uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K + uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K + transport. © 2017 Federation of European Biochemical Societies.
Downer, Eric J; Gowran, Aoife; Murphy, Aine C; Campbell, Veronica A
2007-06-14
Cannabis is the most commonly used illegal drug of abuse in Western society. Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana, regulates a variety of neuronal processes including neurotransmitter release and synaptic transmission. An increasing body of evidence suggests that cannabinoids play a key role in the regulation of neuronal viability. In cortical neurons tetrahydrocannabinol has a neurodegenerative effect, the mechanisms of which are poorly understood, but involve the cannabinoid receptor subtype, CB(1). In this study we report that tetrahydrocannabinol (5 muM) evokes a rapid phosphorylation, and thus activation, of the tumour suppressor protein, p53, in a manner involving the cannabinoid CB(1) receptor, and the stress-activated protein kinase, c-jun N-terminal kinase, in cultured cortical neurons. Tetrahydrocannabinol increased expression of the p53-transcriptional target, Bax and promoted Bcl phosphorylation. These events were abolished by the p53 inhibitor, pifithrin-alpha (100 nM). The tetrahydrocannabinol-induced activation of the pro-apoptotic cysteine protease, caspase-3, and DNA fragmentation was also blocked by pifithrin-alpha. A siRNA knockdown of p53 further verified the role of p53 in tetrahydrocannabinol-induced apoptosis. This study demonstrates a novel cannabinoid signalling pathway involving p53 that culminates in neuronal apoptosis.
Xiong, Ying; Zhang, Jie; Liu, Man; An, Mingwei; Lei, Ling; Guo, Wuhua
2014-09-01
Current treatment modalities for various types of hepatic cancer, which has an increasing incidence rate, are inadequate and novel therapies are required. Therefore, identifying targets for liver cancer is becoming increasingly valuable to develop novel methods for therapy. The aim of the present study was to examine the growth activation mechanism of the leptin protein in the liver cancer cell line HepG2. The effects of the leptin protein on cell death were investigated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide analysis. DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis were also performed to detect cell apoptosis. The expression of leptin and three endoplasmic reticulum (ER) stress unfolded protein response (UPR) proteins, including activating transcription factor 6, phosphorylated‑PKR‑like ER kinase (p‑PERK) and inositol requiring protein 1, were investigated for the examination of ER stress. The mRNA UPR proteins were also detected by reverse transcription polymerase chain reaction. The apoptosis‑associated caspase 12 and C/EBP homologous protein (CHOP) was detected by western blot analysis. The expression of or incubation with the leptin protein was able to activate cell growth and inhibit cell death and apoptosis. In cells that expressed leptin or were incubated with leptin protein (pep-LPT), cisplatin‑induced ER stress‑associated mRNA transcription and protein activation were inhibited. Levels of the ER stress UPR pathway protein, PERK, increased significantly in leptin‑silenced cells when treated with cisplatin as compared with those in the leptin‑expressing or pep-LPT cells. Furthermore, caspase 12 activation was inhibited in ex‑LPT, pep‑LPT and HepG2 cells. In conclusion, human leptin protein is involved in promoting the proliferation of HepG2 cells through inhibiting the ER stress‑associated apoptotic pathway. The PERK UPR pathway and the apoptotic factor caspase 12 were found to be involved in the inhibition of apoptosis and enhancement of proliferation.
Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos
2018-05-01
Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis.
Lu, Ying; Wang, Hua-Rong; Li, Han; Cui, Hao-Ran; Feng, Yue-Guang; Wang, Xiao-Yun
2013-09-01
The role of LTO1/ At VKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied in lto1 - 2 mutant, and a potential target of LTO1 was captured. A chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, L-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.
High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ 1
Sullivan, Michael L.; Callis, Judy; Vierstra, Richard D.
1990-01-01
The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667769
Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Soto-Cid, Abraham; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Ortega, Arturo
2008-07-01
Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.
Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D
2001-12-07
The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.
Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster
Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.
Fatty acids and related Kv2 channel blockers: electrophysiology and toxicity on mosquitoes
USDA-ARS?s Scientific Manuscript database
Ligand-gated ion channels form an important superfamily of proteins involved in many biological processes. Among them, the potassium channels constitute a very diverse group involved in neural signaling, neuronal activity and action potential. Among the different types of channel activation, voltage...
Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.
1987-08-01
The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators ofmore » protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.« less
Connecting the dots between bacterial biofilms and ice cream
NASA Astrophysics Data System (ADS)
Stanley-Wall, Nicola R.; MacPhee, Cait E.
2015-12-01
Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.
Connecting the dots between bacterial biofilms and ice cream.
Stanley-Wall, Nicola R; MacPhee, Cait E
2015-12-18
Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.
Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan
2014-08-01
A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina
2014-01-01
ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. PMID:24872593
A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis
USDA-ARS?s Scientific Manuscript database
AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...
Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation.
Bahrani, F K; Sansonetti, P J; Parsot, C
1997-01-01
The type III Mxi-Spa secretion machinery of Shigella flexneri is responsible for secretion of Ipa proteins, which are involved in the entry of bacteria into epithelial cells. Ipa proteins accumulate within bacteria growing in laboratory media, and their secretion is activated upon contact of bacteria with eukaryotic cells. In this study, we have identified a group of chemical compounds, including Congo red, Evans blue, and direct orange, which are able to induce secretion of Ipa proteins by bacteria suspended in phosphate-buffered saline. Parameters of kinetics of activation of Ipa secretion by Congo red were determined by measuring by enzyme-linked immunosorbent assay the amount of IpaC secreted and by investigating the increase in susceptibility of Ipa proteins to proteinase K degradation. Ipa secretion occurred at 37 degrees C, was obtained with 5 to 10 microM Congo red, and was complete within 30 min. In addition, activation of Ipa secretion by Congo red was observed with bacteria harvested throughout the exponential phase of growth but not with bacteria in the stationary phase. The interactions of Congo red and Congo red-related compounds with the Mxi-Spa secretion apparatus might be specific hydrophobic interactions similar to those involved in binding of Congo red to amyloid proteins. PMID:9316999
Raeder, Inger Lin Uttakleiv; Paulsen, Steinar M; Smalås, Arne O; Willassen, Nils Peder
2007-01-01
Vibrio salmonicida is the causative agent of cold-water vibriosis in farmed marine fish species. Adherence of pathogenic bacteria to mucosal surfaces is considered to be the first steps in the infective processes, and proteins involved are regarded as virulence factors. The global protein expression profile of V. salmonicida, grown with and without the presence of fish skin mucus in the synthetic media, was compared. Increased levels of proteins involved in motility, oxidative stress responses, and general stress responses were demonstrated as an effect of growth in the presence of mucus compared to non-mucus containing media. Enhanced levels of the flagellar proteins FlaC, FlaD and FlaE indicate increased motility capacity, while enhanced levels of the heat shock protein DnaK and the chaperonin GroEL indicate a general stress response. In addition, we observed that peroxidases, TPx.Grx and AhpC, involved in the oxidative stress responses, were induced by mucus proteins. The addition of mucus to the culture medium did not significantly alter the growth rate of V. salmonicida. An analysis of mucus proteins suggests that the mucus layer harbours a protein species that potentially possesses catalytic activity against DNA, and a protein with iron chelating activity. This study represents the first V. salmonicida proteomic analysis, and provides specific insight into the proteins necessary for the bacteria to challenge the skin mucus barrier of the fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele
Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites onmore » the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.« less
Sulfated glycopeptide nanostructures for multipotent protein activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptidemore » nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.« less
[Regulation of heat shock gene expression in response to stress].
Garbuz, D G
2017-01-01
Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS protein mRNAs ensure their preferential translation in stress.
Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples.
Tichá, Tereza; Luhová, Lenka; Petřivalský, Marek
2018-01-01
S-nitrosation, the attachment of a nitroso group to cysteine thiols, has been recognized as an important posttranslational modification of proteins by nitric oxide and related reactive nitrogen species. Mechanisms and significance of S-nitrosation in the regulation of the structure and activity of proteins have been extensively studied in animal and plant systems. In plants, protein S-nitrosation is involved in signaling pathways of plant hormones and regulators during plant growth and development and in responses to abiotic and biotic stress stimuli. S-nitrosoglutathione reductase (GSNOR) has been identified as a key enzyme controlling the intracellular level of S-nitrosothiols. GSNOR irreversibly degrades S-nitrosoglutathione (GSNO), the major low molecular weight S-nitrosothiol involved in the formation of protein S-nitrosothiols through transnitrosylation. GSNOR level and activity in plant cells are modulated during plant development and in response to external stimuli such as pathogen infection. In this chapter, we give a detailed description of the immunochemical detection of the GSNOR protein in plant samples.
Möller, André; Xie, Sheila Q.; Hosp, Fabian; Lang, Benjamin; Phatnani, Hemali P.; James, Sonya; Ramirez, Francisco; Collin, Gayle B.; Naggert, Jürgen K.; Babu, M. Madan; Greenleaf, Arno L.; Selbach, Matthias; Pombo, Ana
2012-01-01
RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology. PMID:22199231
Constitutive phospholipid scramblase activity of a G protein-coupled receptor
NASA Astrophysics Data System (ADS)
Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.
2014-10-01
Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.
Dalton, George D; Dewey, William L
2006-02-01
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
The TFIIH subunit Tfb3 regulates cullin neddylation
Rabut, Gwenaël; Le Dez, Gaëlle; Verma, Rati; Makhnevych, Taras; Knebel, Axel; Kurz, Thimo; Boone, Charles; Deshaies, Raymond J.; Peter, Matthias
2011-01-01
Summary Cullin proteins are scaffolds for the assembly of multi-subunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely-varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING-domain of Hrt1 nor did it require the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING-domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 as well as the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING-domain protein Tfb3 controls activation of a subset of cullins. PMID:21816351
Xu, Shucheng
2010-09-01
The role of a calcium-dependent and calmodulin (CaM)-stimulated protein kinase in abscisic acid (ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays). In-gel kinase assays showed that treatments with ABA or H(2)O(2) induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly. Furthermore, we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase II (CaMK II) inhibitor KN-93 or CaM antagonist W-7. Treatments with ABA or H(2)O(2) not only induced the activation of the 52-kDa protein kinase, but also enhanced the total activities of the antioxidant enzymes, including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species (ROS) inhibitor or scavenger. Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H(2)O(2) production. Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger. These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H(2)O(2) plays a pivotal role in ABA signaling. We infer that CaMK acts both upstream and downstream of H(2)O(2), but mainly acts between ABA and H(2)O(2) in ABA-induced antioxidant-defensive signaling.
Zhou, Chao; Liu, LiJuan; Zhuang, Jing; Wei, JunYu; Zhang, TingTing; Gao, ChunDi; Liu, Cun; Li, HuaYao; Si, HongZong; Sun, ChangGang
2018-06-23
BACKGROUND The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. MATERIAL AND METHODS We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. RESULTS According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. CONCLUSIONS The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.
Di Bartolo, Vincenzo; Montagne, Benjamin; Salek, Mogjiborahman; Jungwirth, Britta; Carrette, Florent; Fourtane, Julien; Sol-Foulon, Nathalie; Michel, Frédérique; Schwartz, Olivier; Lehmann, Wolf D; Acuto, Oreste
2007-03-19
The SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is a pivotal element of the signaling machinery controlling T cell receptor (TCR)-mediated activation. Here, we identify 14-3-3epsilon and zeta proteins as SLP-76 binding partners. This interaction was induced by TCR ligation and required phosphorylation of SLP-76 at serine 376. Ribonucleic acid interference and in vitro phosphorylation experiments showed that serine 376 is the target of the hematopoietic progenitor kinase 1 (HPK-1). Interestingly, either S376A mutation or HPK-1 knockdown resulted in increased TCR-induced tyrosine phosphorylation of SLP-76 and phospholipase C-gamma1. Moreover, an SLP-76-S376A mutant induced higher interleukin 2 gene transcription than wild-type SLP-76. These data reveal a novel negative feedback loop involving HPK-1-dependent serine phosphorylation of SLP-76 and 14-3-3 protein recruitment, which tunes T cell activation.
Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional States of Rhodopsin
Ren, Zhong; Ren, Peter X.; Balusu, Rohith; Yang, Xiaojing
2016-01-01
The seven-helical bundle of rhodopsin and other G-protein coupled receptors undergoes structural rearrangements as the transmembrane receptor protein is activated. These structural changes are known to involve tilting and bending of various transmembrane helices. However, the cause and effect relationship among structural events leading to a cytoplasmic crevasse for G-protein binding is less well defined. Here we present a mathematical model of the protein helix and a simple procedure to determine multiple parameters that offer precise depiction of a helical conformation. A comprehensive survey of bovine rhodopsin structures shows that the helical rearrangements during the activation of rhodopsin involve a variety of angular and linear motions such as torsion, unwinding, and sliding in addition to the previously reported tilting and bending. These hitherto undefined motion components unify the results obtained from different experimental approaches, and demonstrate conformational similarity between the active opsin structure and the photoactivated structures in crystallo near the retinal anchor despite their marked differences. PMID:27658480
WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.
Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki
2011-02-04
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.
Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María
2013-01-01
The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999
The use of in vitro transcription to probe regulatory functions of viral protein domains.
Loewenstein, Paul M; Song, Chao-Zhong; Green, Maurice
2007-01-01
Adenoviruses (Ads), like other DNA tumor viruses, have evolved specific regulatory genes that facilitate virus replication by controlling the transcription of other viral genes as well as that of key cellular genes. In this regard, the E1A transcription unit contains multiple protein domains that can transcriptionally activate or repress cellular genes involved in the regulation of cell proliferation and cell differentiation. Studies using in vitro transcription have provided a basis for a molecular understanding of the interaction of viral regulatory proteins with the transcriptional machinery of the cell and continue to inform our understanding of transcription regulation. This chapter provides examples of the use of in vitro transcription to analyze transcriptional activation and transcriptional repression by purified, recombinant Ad E1A protein domains and single amino acid substitution mutants as well as the use of protein-affinity chromatography to identify host cell transcription factors involved in viral transcriptional regulation. A detailed description is provided of the methodology to prepare nuclear transcription extract, to prepare biologically active protein domains, to prepare affinity depleted transcription extracts, and to analyze transcription by primer extension and by run-off assay using naked DNA templates.
Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.
Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian
2006-07-01
The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.
Proteomic plasma profile of psoriatic patients.
Gęgotek, Agnieszka; Domingues, Pedro; Wroński, Adam; Wójcik, Piotr; Skrzydlewska, Elżbieta
2018-06-05
Psoriasis is a chronic, immune-mediated inflammatory skin disease with severe consequences for the whole organism. The lack of complete knowledge of the main factors predisposing an individual to the appearance of psoriatic lesions, has recently led to the search for modifications in biochemical pathways participating in the development of this disease. We therefore aimed to investigate changes in the plasma proteomic profile of patients with psoriasis. A proteomics approach was used to analyze the expression of proteins in plasma from psoriatic patients and healthy controls (sex- and age-matched individuals). The analysis was performed using gel electrophoresis, followed by nanoflow LC-MS/MS using a Q-Exactive OrbiTrap mass spectrometer. Proteomic data indicated a significant decrease in the level of proteins involved in lipid metabolism, such as apolipoprotein M, and proteins involved in the management of vitamin D levels in psoriatic patients' plasma. These changes were accompanied by the expression of proteins involved in immune response and signal transduction. This was particularly evident by the level of transcriptional factors, including AT motif binding factor 1, which regulates excessive cellular proliferation and differentiation. It was also suggested that psoriasis development was associated with increased expression of proteins directly involved in signaling molecule secretion [biotinidase and BAI1-associated protein 3]. In addition, the lipid peroxidation product - 4-hydroxynonenal (4-HNE) generates higher level of adducts with proteins in the plasma of psoriatic patients. Moreover, plasma proteins from healthy subjects creating with 4-HNE adducts were mainly characterized as structural, while in the plasma of psoriatic patients, increased levels of 4-HNE-protein adducts with catalytic activity were observed. The results presented herein confirm the current knowledge about the profile of proteins responsible for the immune response and management of vitamin D in the plasma of psoriatic patients. However, several new proteins were also identified, which are involved in signal transduction and lipid metabolism as well as catalytic activity. The expression or structure of these proteins was shown to change through the course of the development of psoriasis. This knowledge may help contribute to the design of more specific pharmacotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)
1998-01-01
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.
Spadaccio, Cristiano; Coccia, Raffaella; Perluigi, Marzia; Pupo, Gilda; Schininà, Maria Eugenia; Giorgi, Alessandra; Blarzino, Carla; Nappi, Francesco; Sutherland, Fraser W; Chello, Massimo; Di Domenico, Fabio
2016-06-21
oxidative stress is undoubtedly one of the main players in abdominal aortic aneurysm (AAA) pathophysiology. Recent studies in AAA patients reported an increase in the indices of oxidative damage at the tissue level and in biological fluids coupled with the loss of counter-regulatory mechanisms of protection from oxidative stress. We recently reported, in a proteomic analysis of AAA patient sera, changes in the expression of several proteins exerting important modulatory activities on cellular proliferation, differentiation and response to damage. This study aimed to explore the involvement of protein oxidation, at peripheral levels, in AAA. a redox proteomic approach was used to investigate total and specific protein carbonylation and protein-bound 4-hydroxy-2-nonenal (HNE) in the serum of AAA patients compared with age-matched controls. our results show increased oxidative damage to protein as indexed by the total carbonyl levels and total protein-bound HNE. By redox proteomics we identified specific carbonylation of three serum proteins: serum retinol-binding protein, vitamin D-binding protein and fibrinogen α-chain HNE. We also identified increased protein-bound HNE levels for hemopexin, IgK chain C region and IgK chain V-III region SIE. In addition we found a high correlation between specific protein carbonylation and protein-bound HNE and the aortic diameter. Moreover the analysis of serum proteins with antioxidant activity demonstrates the oxidation of albumin together with the overexpression of transferrin, haptoglobin and HSPs 90, 70, 60 and 32. this study support the involvement of oxidative stress in the pathogenesis of AAA and might provide a further degree of knowledge in the cause-effect role of oxidative stress shedding new light on the molecular candidates involved in the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Sunil K.; Kaur, Simarna
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) andmore » Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.« less
Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R; Stuehr, Dennis J; Panda, Koustubh
2016-07-19
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Samborski, Paweł; Grzymisławski, Marian
2015-01-01
Heat shock proteins (HSPs) represent an important element in the body's defense against various damaging factors. The probably also play an important role in the pathogenesis and treatment of several diseases, including autoimmune pathology and neoplasms. Recently, several investigators have focused their attention on the involvement of the HSP70 protein family in the morbid process of inflammatory bowel diseases (IBD). The HSP70 family of is represented by two distinct forms of protein, the HSP72 protein (also known as the HSP70.1 protein), the expression of which is clearly increased in conditions of stress; and the HSP73 (or HSC73) protein, which manifests stable expression. HSP70 proteins are present in the colorectal epithelium. In patients with inflammatory bowel diseases, their expression in significantly increased during the active stage of the disease. In experimental studies, overexpression of HSP70 was found to prevent the development of inflammatory process in the large intestinal mucosa provoked by various damaging factors. In physiological conditions, various mechanisms are considered to be responsible for an increased expression of HSP70. One of them involves lymphocyte activity and the production of cytokines (mainly IL-2). Another suggested mechanism involves the presence of bacteria in the large intestine, including both physiological flora (Lactobacillus GG, Bacteroides fragilis) and pathogenic bacteria (Salmonella, Escherichia coli). HSP70 expression is probably also increased by physical activity. There is also a potential for pharmacological stimulation of HSP70 expression, linked (for example) to geranylgeranylacetone, polaprezinc and mesalazine. Thus, augmentation of HSP70 expression may become a new element in IBD therapy.
Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R.; Stuehr, Dennis J.
2016-01-01
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage. PMID:27382160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka
The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical {beta}-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical {beta}-catenin mediated Wnt signalingmore » but also JNK/AP-1 and NF-{kappa}B signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-{kappa}B pathway. Consistent with the central role of Akt, JNK and NF-{kappa}B in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways.« less
Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming
2012-05-01
Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.
Kutlu, Munir Gunes; Gould, Thomas J
2016-03-01
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.
Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong
2016-01-05
Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.
Cieniewski-Bernard, Caroline; Montel, Valerie; Berthoin, Serge; Bastide, Bruno
2012-01-01
O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.
Proton transfer and protein quake in photoreceptor activation
NASA Astrophysics Data System (ADS)
Xie, Aihua
2002-03-01
Proteins are able to perform an enormous variety of functions, while using only a limited number of underlying processes. One of these is proton transfer, found in a range of receptors and enzymes. It is conceivable that proton transfer is essential in biological energy transduction, but it is less evident how proton transfer is employed in receptor activation during biological signal transduction. An important question regarding receptor activation is how a localized event of detecting a stimulus at the active site drives global conformational changes involving protein surface for signal relay. We will present structural, kinetic and energetic studies on the activation mechanism of a prototype PAS domain photoreceptor, photoactive yellow protein (PYP). Our data reveal that the putative signaling state of PYP upon absorption of a blue photon is formed during a large-amplitude protein quake triggered by the formation of a new buried charge in a hydrophobic pocket at the active site of PYP via intramolecular proton transfer. This mechanism for protein quakes driven by proton transfer and electrostatic interactions may play roles during the functioning of other receptor proteins and non-receptor proteins that require large conformational changes.
The double life of the ribosome: When its protein folding activity supports prion propagation.
Voisset, Cécile; Blondel, Marc; Jones, Gary W; Friocourt, Gaëlle; Stahl, Guillaume; Chédin, Stéphane; Béringue, Vincent; Gillet, Reynald
2017-03-04
It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.
Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.
Gamez, Patrick; Koval, Iryna A; Reedijk, Jan
2004-12-21
The modelling of the active sites of metalloproteins is one of the most challenging tasks in bio-inorganic chemistry. Copper proteins form part of this stimulating field of research as copper enzymes are mainly involved in oxidation bio-reactions. Thus, the understanding of the structure-function relationship of their active sites will allow the design of effective and environmental friendly oxidation catalysts. This perspective illustrates some outstanding structural and functional synthetic models of the active site of copper proteins, with special attention given to models of galactose oxidase and hemocyanin.
Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde
2011-12-01
In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.
ERIC Educational Resources Information Center
Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea
2016-01-01
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…
Rodríguez-Ramiro, Ildefonso; Ramos, Sonia; Bravo, Laura; Goya, Luis; Martín, Maria Ángeles
2012-10-01
Procyanidin B2 (PB2) is a naturally occurring flavonoid widely found in cocoa, red wine and grape juice. Recent studies have suggested that PB2 could protect against oxidative stress- and chemical-induced injury in colonic cells by modulating the endogenous cellular defence. However, the precise mechanism for this protection is not fully understood. Herein, we examined the effect of PB2 on the expression of one of the major antioxidant/detoxificant enzymes related to intestinal protection, the glutathione S-transferase P1 (GSTP1), and the molecular mechanisms involved. Human colonic Caco-2 cells were treated with PB2 at different times and enzymatic activity, and mRNA and protein levels of GSTP1 were evaluated. The nuclear translocation of the transcription factor NF-erythroid 2-related factor (Nrf2) and the phosphorylation states of specific proteins central to intracellular signalling cascades were also investigated. PB2 induced the expression and activity of GSTP1 and the nuclear translocation of Nrf2. Interestingly, two important signalling proteins involved in Nrf2 translocation, the extracellular signal-regulated protein kinases (ERKs) and the p38 mitogen-activated protein kinase (MAPK) were also activated. Further experiments with specific inhibitors of both pathways confirmed their critical role in the beneficial effects induced by PB2. The present results show that PB2 protects against oxidative injury in colonic cells and up-regulate the expression of GSTP1 via a mechanism that involves ERK and p38 MAPK activation and Nrf2 translocation. These results provide a molecular basis for the potential contribution of PB2 in the prevention of oxidative stress-related intestinal injury and gut pathologies.
Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K
2002-08-01
Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.
Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe
2012-03-01
Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.
Lin, L; Zheng, Y; Qu, J; Bao, G
2000-06-01
Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.
Defense-related proteins involved in sugarcane responses to biotic stress
Souza, Thais P.; Dias, Renata O.; Silva-Filho, Marcio C.
2017-01-01
Abstract Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives. PMID:28222203
ERIC Educational Resources Information Center
Morin, Jean-Pascal; Quiroz, Cesar; Mendoza-Viveros, Lucia; Ramirez-Amaya, Victor; Bermudez-Rattoni, Federico
2011-01-01
The immediate early gene (IEG) "Arc" is known to play an important role in synaptic plasticity; its protein is locally translated in the dendrites where it has been involved in several types of plasticity mechanisms. Because of its tight coupling with neuronal activity, "Arc" has been widely used as a tool to tag behaviorally activated networks.…
Rodríguez, R; García-González, M; Guerrero, M G; Lara, C
1994-08-15
Cytoplasmic membranes prepared from nitrate-grown Anacystis nidulans cells exhibit a Mg(2+)-dependent protein kinase activity able to phosphorylate in vitro plasma membrane polypeptides with molecular masses of 98, 93, 83, 47, 44 and 31 kDa. The protein kinase activity was inhibited in cytoplasmic membrane preparations from nitrate-grown cells which had been exposed to ammonium for 5 min. Parallely, ammonium exposure also resulted in a more than two-fold activation of an alkaline phosphatase activity present in the soluble fraction. These results are discussed in relation to the well-known inhibition by ammonium of nitrate transport activity, and a hypothesis for the regulatory mechanism involved is presented.
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi
2003-01-01
Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.
Giampieri, Francesca; Alvarez-Suarez, Josè M; Cordero, Mario D; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Santos-Buelga, Celestino; González-Paramás, Ana M; Astolfi, Paola; Rubini, Corrado; Zizzi, Antonio; Tulipani, Sara; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio
2017-11-01
Dietary polyphenols have been recently proposed as activators of the AMP-activated protein kinase (AMPK) signaling pathway and this fact might explain the relationship between the consumption of polyphenol-rich foods and the slowdown of the progression of aging. In the present work, the effects of strawberry consumption were evaluated on biomarkers of oxidative damage and on aging-associated reductions in mitochondrial function and biogenesis for 8weeks in old rats. Strawberry supplementation increased antioxidant enzyme activities, mitochondrial biomass and functionality, and decreased intracellular ROS levels and biomarkers of protein, lipid and DNA damage (P<0.05). Furthermore, a significant (P<0.05) increase in the expression of the AMPK cascade genes, involved in mitochondrial biogenesis and antioxidant defences, was also detected after strawberry intake. These in vivo results were then verified in vitro on HepG2 cells, confirming the involvement of AMPK in the beneficial effects exerted by strawberry against aging progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B
Zhang, Hongqiao; Forman, Henry Jay
2015-01-01
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921
Melvin, Prasad; Prabhu, S Ashok; Veena, Mariswamy; Shailasree, Sekhar; Petersen, Morten; Mundy, John; Shetty, Shekar H; Kini, K Ramachandra
2015-02-01
Plant mitogen-activated protein kinases (MPKs) transduce signals required for the induction of immunity triggered by host recognition of pathogen-associated molecular patterns. We isolated a full-length cDNA of a group B MPK (PgMPK4) from pearl millet. Autophosphorylation assay of recombinant PgMPK4 produced in Escherichia coli confirmed it as a kinase. Differential accumulation of PgMPK4 mRNA and kinase activity was observed between pearl millet cultivars 852B and IP18292 in response to inoculation with the downy mildew oomycete pathogen Sclerospora graminicola. This increased accumulation of PgMPK4 mRNA, kinase activity as well as nuclear-localization of PgMPK protein(s) was only detected in the S. graminicola resistant cultivar IP18292 with a ~tenfold peak at 9 h post inoculation. In the susceptible cultivar 852B, PgMPK4 mRNA and immuno-detectable nuclear PgMPK could be induced by application of the chemical elicitor β-amino butyric acid, the non-pathogenic bacteria Pseudomonas fluorescens, or by the phytohormones jasmonic acid (JA) or salicylic acid (SA). Furthermore, kinase inhibitor treatments indicated that PgMPK4 is involved in the JA- and SA-mediated expression of three defense genes, lipoxygenase, catalase 3 and polygalacturonase-inhibitor protein. These findings indicate that PgMPK/s contribute to pearl millet defense against the downy mildew pathogen by activating the expression of defense proteins.
Edwards, Andrew M.; Bowden, Maria Gabriela; Brown, Eric L.; Laabei, Maisem; Massey, Ruth C.
2012-01-01
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease. PMID:22905199
Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J
2016-08-01
The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
Park, Minhee; Lim, Jong-Sun; Lee, Hyoung-Joo; Na, Keun; Lee, Min Jung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen
2015-08-07
Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.
Shu, Yingjie; Tao, Yuan; Wang, Shuang; Huang, Liyan; Yu, Xingwang; Wang, Zhankui; Chen, Ming; Gu, Weihong; Ma, Hao
2015-11-01
GmSBH1 involves in response to high temperature and humidity stress. Homeobox transcription factors are key switches that control plant development processes. Glycine max H1 Sbh1 (GmSBH1) was the first homeobox gene isolated from soybean. In the present study, the full ORF of GmSBH1 was isolated, and the encoded protein was found to be a typical class I KNOX homeobox transcription factor. Subcellular localization and transcriptional activation assays showed that GmSBH1 is a nuclear protein and possesses transcriptional activation activity in the homeodomain. The KNOX1 domain was found to play a clear role in suppressing the transcriptional activation activity of GmSBH1. GmSBH1 showed different expression levels among different soybean tissues and was involved in response to high temperature and humidity (HTH) stress in developing soybean seeds. The overexpression of GmSBH1 in Arabidopsis altered leaf and stoma phenotypes and enhanced seed tolerance to HTH stress. Overall, our results indicated that GmSBH1 is involved in growth, development, and enhances tolerance to pre-harvest seed deterioration caused by HTH stress in soybean.
Chemical Genetics Reveals an RGS/G-Protein Role in the Action of a Compound
Fitzgerald, Kevin; Tertyshnikova, Svetlana; Moore, Lisa; Bjerke, Lynn; Burley, Ben; Cao, Jian; Carroll, Pamela; Choy, Robert; Doberstein, Steve; Dubaquie, Yves; Franke, Yvonne; Kopczynski, Jenny; Korswagen, Hendrik; Krystek, Stanley R; Lodge, Nicholas J; Plasterk, Ronald; Starrett, John; Stouch, Terry; Thalody, George; Wayne, Honey; van der Linden, Alexander; Zhang, Yongmei; Walker, Stephen G; Cockett, Mark; Wardwell-Swanson, Judi; Ross-Macdonald, Petra; Kindt, Rachel M
2006-01-01
We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation. PMID:16683034
Finegold, A A; Johnson, D I; Farnsworth, C C; Gelb, M H; Judd, S R; Glomset, J A; Tamanoi, F
1991-01-01
Protein prenylation occurs by modification of proteins with one of at least two isoprenoids, the farnesyl group and the geranylgeranyl group. Protein farnesyltransferases have been identified, but no such enzyme has been identified for geranylgeranylation. We report the identification of an activity in crude soluble yeast extracts that catalyzes the transfer of a geranylgeranyl moiety from geranylgeranyl pyrophosphate to proteins having the C-terminal sequence Cys-Ile-Ile-Leu or Cys-Val-Leu-Leu but not to a similar protein ending with Cys-Ile-Ile-Ser. This activity is dependent upon the CDC43/CAL1 gene, which is involved in budding and the control of cell polarity, but does not require the DPR1/RAM1 gene, which is known to be required for the farnesylation of Ras proteins. These results indicate that the protein geranylgeranyltransferase activity is distinct from the protein farnesyltransferase activity and that its specificity depends in part on the extreme C-terminal leucine in the protein to be prenylated. Images PMID:2034682
Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.
Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude
2009-01-01
Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.
Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun
2012-06-01
Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.
HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin
2007-04-20
Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfectedmore » with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.« less
Inter-domain cross-talk controls the NifA protein activity of Herbaspirillum seropedicae.
Monteiro, R A; de Souza, E M; Wassem, R; Yates, M G; Pedrosa, F O; Chubatsu, L S
2001-11-09
Herbaspirillum seropedicae is an endophytic diazotroph, which colonizes sugar cane, wheat, rice and maize. The activity of NifA, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through a mechanism involving its N-terminal domain. Here we show that this domain interacts specifically in vitro with the N-truncated NifA protein, as revealed by protection against proteolysis, and this interaction caused an inhibitory effect on both the ATPase and DNA-binding activities of the N-truncated NifA protein. We suggest that the N-terminal domain inhibits NifA-dependent transcriptional activation by an inter-domain cross-talk between the catalytic domain of the NifA protein and its regulatory N-terminal domain in response to fixed nitrogen.
The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.
Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik
2009-12-01
Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.
Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer’s Disease Pathology
Rosenberger, Andrea F.N.; Hilhorst, Riet; Coart, Elisabeth; García Barrado, Leandro; Naji, Faris; Rozemuller, Annemieke J.M.; van der Flier, Wiesje M.; Scheltens, Philip; Hoozemans, Jeroen J.M.; van der Vies, Saskia M.
2015-01-01
Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention. PMID:26519433
Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.
Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio
2017-01-01
Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Safitri, Anna; Levina, Aviva; Lee, Joonsup; Carter, Elizabeth A.; Lay, Peter A.
2017-03-01
The prevalence of diabetes, particularly with respect to type 2 diabetes, has reached epidemic proportions and continues to grow worldwide. One of the potential therapeutic targets in the treatment of type 2 diabetes involves the role of protein tyrosine phosphatases in the negative regulation of insulin signaling. The complexes of V(V/IV), Cr(III), W(VI), and Mo(VI), have all been proposed as possible drugs in the treatment of diabetes mellitus. Anti-diabetic activities of V(V/IV), Cr(III), Mo(VI), and W(VI) compounds are likely to be based on similar mechanisms, which involve phosphorylation/dephosphorylation reactions in the glucose uptake and metabolism. In order to clearly understand biological activities and phosphorylation/dephosphorylation reactions involved in anti-diabetic actions of Cr(III), V(V/IV), Mo(VI), and W(VI) complexes, the current research involves the use of cultured insulin-sensitive cells treated with these compounds. These reactions were investigated through vibrational spectroscopy. Protein phosphorylation/dephosphorylation induced conformational changes in secondary protein structure from α-helix to β-sheet, and these changes were detected by the IR spectra, which showed changes in the wavenumber and intensities of signals within the composite protein amide I band.
Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang
2015-01-01
Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507
Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.
Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J
1993-01-01
Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692
Lu, D; Yang, H; Raizada, M K
1996-12-01
Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.
Vishambra, Divya; Srivastava, Malay; Dev, Kamal; Jaiswal, Varun
2017-08-01
Radioresistant bacteria (RRB) are among the most radioresistant organisms and has a unique role in evolution. Along with the evolutionary role, radioresistant organisms play important role in paper industries, bioremediation, vaccine development and possibility in anti-aging and anti-cancer treatment. The study of radiation resistance in RRB was mainly focused on cytosolic mechanisms such as DNA repair mechanism, cell cleansing activity and high antioxidant activity. Although it was known that protein localized on outer areas of cell play role in resistance towards extreme condition but the mechanisms/proteins localized on the outer area of cells are not studied for radioresistance. Considering the fact that outer part of cell is more exposed to radiations and proteins present in outer area of the cell may have role in radioresistance. Localization based comparative study of proteome from RRB and non-radio resistant bacteria was carried out. In RRB 20 unique proteins have been identified. Further domain, structural, and pathway analysis of selected proteins were carried out. Out of 20 proteins, 8 proteins were direct involvement in radioresistance and literature study strengthens this, however, 1 proteins had assumed relation in radioresistance. Selected radioresistant proteins may be helpful for optimal use of RRB in industry and health care. Copyright © 2017 Elsevier Ltd. All rights reserved.
Control of neuronal excitability by Group I metabotropic glutamate receptors.
Correa, Ana Maria Bernal; Guimarães, Jennifer Diniz Soares; Dos Santos E Alhadas, Everton; Kushmerick, Christopher
2017-10-01
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu 1 and mGlu 5 . Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gα q , which can activate PLCβ, leading initially to the formation of IP 3 and diacylglycerol. IP 3 can release Ca 2+ from cellular stores resulting in activation of Ca 2+ -dependent ion channels. Intracellular Ca 2+ , together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Bhoir, Siddhant; Shaik, Althaf; Thiruvenkatam, Vijay; Kirubakaran, Sivapriya
2018-03-19
Human Tousled-like kinases (TLKs) are highly conserved serine/threonine protein kinases responsible for cell proliferation, DNA repair, and genome surveillance. Their possible involvement in cancer via efficient DNA repair mechanisms have made them clinically relevant molecular targets for anticancer therapy. Innovative approaches in chemical biology have played a key role in validating the importance of kinases as molecular targets. However, the detailed understanding of the protein structure and the mechanisms of protein-drug interaction through biochemical and biophysical techniques demands a method for the production of an active protein of exceptional stability and purity on a large scale. We have designed a bacterial expression system to express and purify biologically active, wild-type Human Tousled-like Kinase 1B (hTLK1B) by co-expression with the protein phosphatase from bacteriophage λ. We have obtained remarkably high amounts of the soluble and homogeneously dephosphorylated form of biologically active hTLK1B with our unique, custom-built vector design strategy. The recombinant hTLK1B can be used for the structural studies and may further facilitate the development of new TLK inhibitors for anti-cancer therapy using a structure-based drug design approach.
Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji
2017-10-31
Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.
Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe
2013-01-01
AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294
N-3 polyunsaturated fatty acid regulation of hepatic gene transcription
Jump, Donald B.
2009-01-01
Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914
Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin
2010-01-01
Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418
Kublik, Anja; Deobald, Darja; Hartwig, Stefanie; Schiffmann, Christian L; Andrades, Adarelys; von Bergen, Martin; Sawers, R Gary; Adrian, Lorenz
2016-09-01
Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Rubel, Elisa Terumi; Raittz, Roberto Tadeu; Coimbra, Nilson Antonio da Rocha; Gehlen, Michelly Alves Coutinho; Pedrosa, Fábio de Oliveira
2016-12-15
Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N 2 to NH 4 + by nitrogenase occurs only under limiting conditions of NH 4 + and O 2 . Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function.
Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M
2016-03-01
T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.
Wen, Gaiping; Eder, Klaus
2017-01-01
Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of the SREBP-2 pathway at 0.1 μg TM/mL (P < 0.05). In conclusion, the expression of key genes involved in thyroid hormone synthesis and their critical regulators and of the TSH receptor as well as the uptake of iodide is attenuated in thyrocytes during mild ER stress. Down-regulation of NIS, TPO and TG during ER stress is likely the consequence of impaired TSH/TSHR signaling in concert with reduced expression of critical transcriptional regulators of these genes. PMID:29095946
Wen, Gaiping; Ringseis, Robert; Eder, Klaus
2017-01-01
Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of the SREBP-2 pathway at 0.1 μg TM/mL (P < 0.05). In conclusion, the expression of key genes involved in thyroid hormone synthesis and their critical regulators and of the TSH receptor as well as the uptake of iodide is attenuated in thyrocytes during mild ER stress. Down-regulation of NIS, TPO and TG during ER stress is likely the consequence of impaired TSH/TSHR signaling in concert with reduced expression of critical transcriptional regulators of these genes.
Shirinian, Margret; Kfoury, Youmna; Dassouki, Zeina; El-Hajj, Hiba; Bazarbachi, Ali
2013-01-01
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro. PMID:23966989
Ohmichi, M; Decker, S J; Saltiel, A R
1992-10-01
Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.
Andreu-Vieyra, Claudia; Matzuk, Martin M
2007-02-01
Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.
Lu, Yan; Hall, David A.; Last, Robert L.
2011-01-01
This work identifies LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), a Zn finger protein that shows disulfide isomerase activity, interacts with the photosystem II (PSII) core complex, and may act in repair of photodamaged PSII complexes. Two mutants of an unannotated small Zn finger containing a thylakoid membrane protein of Arabidopsis thaliana (At1g75690; LQY1) were found to have a lower quantum yield of PSII photochemistry and reduced PSII electron transport rate following high-light treatment. The mutants dissipate more excess excitation energy via nonphotochemical pathways than wild type, and they also display elevated accumulation of reactive oxygen species under high light. After high-light treatment, the mutants have less PSII–light-harvesting complex II supercomplex than wild-type plants. Analysis of thylakoid membrane protein complexes showed that wild-type LQY1 protein comigrates with the PSII core monomer and the CP43-less PSII monomer (a marker for ongoing PSII repair and reassembly). PSII repair and reassembly involve the breakage and formation of disulfide bonds among PSII proteins. Interestingly, the recombinant LQY1 protein demonstrates a protein disulfide isomerase activity. LQY1 is more abundant in stroma-exposed thylakoids, where key steps of PSII repair and reassembly take place. The absence of the LQY1 protein accelerates turnover and synthesis of PSII reaction center protein D1. These results suggest that the LQY1 protein may be involved in maintaining PSII activity under high light by regulating repair and reassembly of PSII complexes. PMID:21586683
Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment
Wilmes, Paul; Wexler, Margaret; Bond, Philip L.
2008-01-01
Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150
Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme
2014-06-01
Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.
Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra
2016-08-01
Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.
Emerging functions of multi-protein complex Mediator with special emphasis on plants.
Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh
2017-10-01
Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.
Zhou, Jiajun; Zhang, Qiang; Henriquez, Joseph E; Crawford, Robert B; Kaminski, Norbert E
2018-05-31
The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation and cell development. In humans, the activation of AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM secretion and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.
Conformational dynamics underlie the activity of the auxin-binding protein, Nt-abp1.
David, K; Carnero-Diaz, E; Leblanc, N; Monestiez, M; Grosclaude, J; Perrot-Rechenmann, C
2001-09-14
The auxin-binding protein 1 (ABP1) has been proposed to be involved in the perception of the phytohormone at the plasma membrane. Site-directed mutagenesis was performed on highly conserved residues at the C terminus of ABP1 to investigate their relative importance in protein folding and activation of a functional response at the plasma membrane. Detailed analysis of the dynamic interaction of the wild-type ABP1 and mutated proteins with three distinct monoclonal antibodies recognizing conformation-dependent epitopes was performed by surface plasmon resonance. The influence of auxin on these interactions was also investigated. The Cys(177) as well as Asp(175) and Glu(176) were identified as critical residues for ABP1 folding and action at the plasma membrane. On the contrary, the C-terminal KDEL sequence was demonstrated not to be essential for auxin binding, interaction with the plasma membrane, or activation of the transduction cascade although it does appear to be involved in the stability of ABP1. Taken together, the results confirmed that ABP1 conformational change is the critical step for initiating the signal from the plasma membrane.
WAVE2 Forms a Complex with PKA and Is Involved in PKA Enhancement of Membrane Protrusions*
Yamashita, Hiroshi; Ueda, Kazumitsu; Kioka, Noriyuki
2011-01-01
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation. PMID:21119216
Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho
2005-12-01
The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.
Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen
2017-08-01
Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.
Correale, Stefania; de Paola, Ivan; Morgillo, Carmine Marco; Federico, Antonella; Zaccaro, Laura; Pallante, Pierlorenzo; Galeone, Aldo; Fusco, Alfredo; Pedone, Emilia; Luque, F Javier; Catalanotti, Bruno
2014-01-01
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.
Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter
2015-09-01
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.
Hou, Xiaoming; Hu, Hongliu; Lin, Ye; Qu, Bo; Gao, Xuejun; Li, Qingzhang
2016-07-01
Milk protein is an important component of milk and a nutritional source for human consumption. To better understand the molecular events underlying synthesis of milk proteins, the global gene expression patterns in mammary glands of dairy cow with high-quality milk (>3% milk protein; >3.5% milk fat) and low-quality milk (<3% milk protein; <3.5% milk fat) were examined via digital gene expression study. A total of 139 upregulated and 66 downregulated genes were detected in the mammary tissues of lactating cows with high-quality milk compared with the tissues of cows with low-quality milk. A pathway enrichment study of these genes revealed that the top 5 pathways that were differentially affected in the tissues of cows with high- versus low-quality milk involved metabolic pathways, cancer, cytokine-cytokine receptor interactions, regulation of the actin cytoskeleton, and insulin signaling. We also found that the G protein-coupled receptor kinase 2 (GRK2) was one of the most highly upregulated genes in lactating mammary tissue with low-quality milk compared with tissue with high-quality milk. The knockdown of GRK2 in cultured bovine mammary epithelial cells enhanced CSN2 expression and activated signaling molecules related to translation, including protein kinase B, mammalian target of rapamycin, and p70 ribosomal protein S6 kinase 1 (S6K1), whereas overexpression of GRK2 had the opposite effects. However, expression of genes involved in the mitogen-activated protein kinase pathway was positively regulated by GRK2. Therefore, GRK2 seems to act as a negative mediator of milk-protein synthesis via the protein kinase B-mammalian target of rapamycin signaling axis. Furthermore, GRK2 may negatively control milk-protein synthesis by activating the mitogen-activated protein kinase pathway in dairy cow mammary epithelial cells. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Barnacle cement: a polymerization model based on evolutionary concepts
Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel
2009-01-01
Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892
Mutational activation of CheA, the protein kinase in the chemotaxis system of Escherichia coli.
Tawa, P.; Stewart, R. C.
1994-01-01
In Escherichia coli and Salmonella typhimurium, appropriate changes of cell swimming patterns are mediated by CheA, an autophosphorylating histidine protein kinase whose activity is regulated by receptor/transducer proteins. The molecular mechanism underlying this regulation remains unelucidated but may involve CheA shifting between high-activity and low-activity conformations. We devised an in vivo screen to search for potential hyperkinase variants of CheA and used this screen to identify two cheA point mutations that cause the CheA protein to have elevated autokinase activity. Each point mutation resulted in alteration of proline 337. In vitro, CheA337PL and CheA337PS autophosphorylated significantly more rapidly than did wild-type CheA. This rate enhancement reflected the higher affinities of the mutant proteins for ATP and an increased rate constant for acquisition by CheA of the gamma-phosphoryl group of ATP within a kinetically defined CheA.ATP complex. In addition, the mutant proteins reacted with ADP more rapidly than did wild-type CheA. We considered the possibility that the mutations served to lock CheA into an activated signaling conformation; however, we found that both mutant proteins were regulated in a normal fashion by the transducer Tsr in the presence of CheW. We exploited the activated properties of one of these mutants to investigate whether the CheA subunits within a CheA dimer make equivalent contributions to the mechanism of trans phosphorylation. Our results indicate that CheA trans phosphorylation may involve active-site residues that are located both in cis and in trans to the autophosphorylation site and that the two protomers of a CheA dimer make nonequivalent contributions in determining the affinity of the ATP-binding site(s) of CheA. Images PMID:8021207
NASA Technical Reports Server (NTRS)
Kim, Soo-Hwan; Roux, Stanley J.
2003-01-01
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.
Cook, W B; Walker, J C
1992-01-01
A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929
Acute myotube protein synthesis regulation by IL-6-related cytokines.
Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A
2017-11-01
IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the American Physiological Society.
Protein Multifunctionality: Principles and Mechanisms
Zaretsky, Joseph Z.; Wreschner, Daniel H.
2008-01-01
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747
Maršálová, Lucie; Vítámvás, Pavel; Hynek, Radovan; Prášil, Ilja T.; Kosová, Klára
2016-01-01
Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley H. marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defense-related proteins from late-embryogenesis abundant family, several chaperones from heat shock protein family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper and nascent polypeptide-associated complex families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H. vulgare indicate plant tissue damage as revealed by enhanced levels of proteins involved in proteasome-dependent protein degradation and proteins related to apoptosis. The results of proteomic analysis clearly indicate differential responses to high salinity and provide more profound insight into biological mechanisms underlying salinity response between two barley species with contrasting salinity tolerance. PMID:27536311
Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes.
Zhang, Yuan; Zhu, Tiebing; Zhang, Xiaotian; Chao, Jie; Hu, Gang; Yao, Honghong
2015-09-04
Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1 receptor (σ-1R). However, the elements downstream of σ-1R in this process remain poorly understood. Thus, we examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine. The expression of HMGB1, σ-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and migration was validated using a siRNA approach. Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of σ-1R, Src, ERK mitogen-activated protein kinase, and downstream NF-κB p65 pathways. Moreover, methamphetamine treatment resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGB1 in astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by methamphetamine, thereby implicating the role of HMGB1 in the activation and migration of C6 cells and primary human astrocytes. This study demonstrated that methamphetamine-mediated activation and migration of astrocytes involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced by methamphetamine.
Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee, E-ma
Ischemia and reperfusion (I/R) is a complex phenomenon involving massive inflammation and cell death. Necroptosis refers to a newly described cell death as “programmed necrosis” that is controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, which is involved in the pathogenesis of several inflammatory diseases. Autophagy is an essential cytoprotective system that is rapidly activated in response to various stimuli and involves crosstalk between different modes of cell death and inflammation. In this study, we investigated pattern changes in necroptosis and its role in autophagy signaling during hepatic I/R. Male C57BL/6 mice were subjected to 60 min of ischemiamore » followed by 3 h reperfusion. Necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.65 mg/kg) was administered intraperitoneally 5 min before reperfusion. Hepatic I/R significantly increased the level of RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome formation, which were attenuated by Nec-1. I/R also significantly increased serum levels of alanine aminotransferase, tumor necrosis factor-α, and interleukin-6, which were attenuated by Nec-1. Meanwhile, hepatic I/R activated autophagy and mitophagy, as evidenced by increased LC3-II, PINK1, and Parkin, and decreased sequestosome 1/p62 protein expression. Nec-1 attenuated these changes and attenuated the increased levels of autophagy-related protein (ATG) 3, ATG7, Rab7, and cathepsin B protein expression during hepatic I/R. Moreover, hepatic I/R activated the extracellular signal-regulated kinase (ERK) pathway, and Nec-1 attenuated this increase. Taken together, our findings suggest that necroptosis contributes to hepatic damage during I/R, which induces autophagy via ERK activation. - Highlights: • Hepatic I/R induces RIP1/RIP3-dependent necroptosis. • Necroptosis contributes to hepatic I/R injury. • Necroptosis activates autophagic flux via ERK activation during hepatic I/R.« less
Investigating neuronal function with optically controllable proteins
Zhou, Xin X.; Pan, Michael; Lin, Michael Z.
2015-01-01
In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603
SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.
Vasilenko, Natalia; Moshynskyy, Igor; Zakhartchouk, Alexander
2010-02-09
The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.
USDA-ARS?s Scientific Manuscript database
Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...
Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata.
Hatano, Naoya; Hamada, Tatsuro
2008-02-01
The genus Nepenthes comprises carnivorous plants that digest insects in pitcher fluid to supplement their nitrogen uptake. In a recent study, two acid proteinases (nepenthesins I and II) were purified from the pitcher fluid. However, no other enzymes involved in prey digestion have been identified, although several enzyme activities have been reported. To identify all the proteins involved, we performed a proteomic analysis of Nepenthes pitcher fluid. The secreted proteins in pitcher fluid were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and several protein bands were detected by silver staining. The proteins were identified by in-gel tryptic digestion, de novo peptide sequencing, and homology searches against public databases. The proteins included homologues of beta-D-xylosidase, beta-1,3-glucanase, chitinase, and thaumatin-like protein, most of which are designated "pathogenesis-related proteins". These proteins presumably inhibit bacterial growth in the pitcher fluid to ensure sufficient nutrients for Nepenthes growth.
Luciferase Protein Complementation Assays for Bioluminescence Imaging of Cells and Mice
Luker, Gary D.; Luker, Kathryn E.
2015-01-01
Summary Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis. PMID:21153371
Venom Protein C activators as diagnostic agents for defects of protein C System.
Ramzan, Faiqah; Asmat, Andleeb
2018-06-18
Background Protein C is a vitamin K dependent plasma zymogen. It prevents clotting by inhibiting clotting by inactivating factor V and factor VIII. Protein C activation pathway involves three steps: (i) Activation of protein C; (ii) Inhibition of coagulation through inactivating factor V and VIII by activated protein C and (iii) Inhibition of activated protein C by plasma protease inhibitors specific for this enzyme. Proteinases converts the zymogen Protein C (PC) of vertebrates into activated PC, which has been detected in several snake venoms. Most PC activators have been purified from venom of snake species belonging to the genera of the Agkistrodon complex. Unlike the physiological thrombin-catalyzed PC activation reaction which requires thrombomodulin as a cofactor, most snake venom activators directly convert the zymogen PC into the catalytically active form which can easily be determined by means of coagulation or chromogenic substrate techniques. Conclusion The fast-acting PC activator Protac® from Agkistrodon contortrix (southern copperhead snake) venom has been found to have broad application in diagnostic practice for the determination of disorders in the PC pathway. Recently, screening assays for the PC pathway have been introduced, based on the observation that the PC pathway is probably the most important physiological barrier against thrombosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.
McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade
2017-01-01
Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.
Plett, Krista L; Raposo, Anita E; Bullivant, Stephen; Anderson, Ian C; Piller, Sabine C; Plett, Jonathan M
2017-03-09
Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of β-tubulin, a key protein in cytoskeleton formation. Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.
Bignante, Elena Anahi; Ponce, Nicolás Eric; Heredia, Florencia; Musso, Juliana; Krawczyk, María C; Millán, Julieta; Pigino, Gustavo F; Inestrosa, Nibaldo C; Boccia, Mariano M; Lorenzo, Alfredo
2018-04-01
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Diaz, Isabel
2012-01-01
Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822
Cross-regulatory protein-protein interactions between Hox and Pax transcription factors.
Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L; Gehring, Walter J
2008-09-09
Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein-protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP-EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein-DNA and protein-RNA interactions; it is also involved in protein-protein interactions.
Scarafoni, Alessio; Ronchi, Alessandro; Prinsi, Bhakti; Espen, Luca; Assante, Gemma; Venturini, Giovanni; Duranti, Marcello
2013-03-01
The general knowledge of defence activity during the first steps of seed germination is still largely incomplete. The present study focused on the proteins released in the exudates of germinating white lupin seeds. During the first 24 h, a release of proteins was observed. Initially (i.e. during the first 12 h), the proteins found in exudates reflected the composition of the seed, indicating a passive extrusion of pre-formed proteins. Subsequently, when the rate of protein release was at its highest, the composition of the released proteome changed drastically. This transition occurred in a short time, indicating that more selective and regulated events, such as secretory processes, took place soon after the onset of germination. The present study considered: (a) the characterization of the proteome accumulated in the germinating medium collected after the appearance of the post-extrusion events; (b) the biosynthetic origin and the modalities that are the basis of protein release outside the seeds; and (c) an assessment of antifungal activity of these exudates. The most represented protein in the exudate was chitinase, which was synthesized de novo. The other proteins are involved in the cellular mechanisms responding to stress events, including biotic ones. This exudate was effectively able to inhibit fungal growth. The results of the present study indicate that seed exudation is a dual-step process that leads to the secretion of selected proteins and thus is not a result of passive leakage. The released proteome is involved in protecting the spermosphere environment and thus may act as first defence against pathogens. © 2013 The Authors Journal compilation © 2013 FEBS.
Wang, Hansen; Kim, Susan S.; Zhuo, Min
2010-01-01
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome. PMID:20457613
Wang, Hansen; Kim, Susan S; Zhuo, Min
2010-07-09
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.
Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction
Bi, Yanlin; Liu, Shuyun; Yu, Xinjuan; Wang, Mingshan; Wang, Yuelan
2014-01-01
Inflammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophosphate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-α are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′ adenosine monophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1–7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis factor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. PMID:25206851
Bhattacharjee, M; Acharya, S; Ghosh, A; Sarkar, P; Chatterjee, S; Kumar, P; Chaudhuri, S
2008-12-01
The specific apoptotic role of T11TS has been well established in glioma animal models. T11TS specifically induces the glioma cells to die an apoptotic death via immune cross-talk with the two intracranial immune competent cells-microglia and the brain-infiltrating lymphocytes. To unearth the molecular cascades operative within the glioma cells and to some extent in the two interacting immunocytes, we had initiated studies where preliminary findings not only had indicated the involvement of death receptors but had also hinted to the involvement of other apoptotic regulators. Hence, to identify the molecular pathway of apoptosis involving other apoptotic regulators in the three cell types, the cells were studied for the intrinsic apoptotic death regulators that were engaged to maintain the mitochondrial membrane integrity. The proteins that were selected could be divided into three broad classes-the Bcl-2 family of proteins-Bid, Bax and Bcl-2; the guardian of the genome p53 and the proteins downstream of mitochondria-Apaf-1, cytochrome c, caspase-9 and caspase-3. Activated Bid as well as maximal p53 expression was observed in the first dose of T11TS thus dually activating the pro-apoptotic Bax in the first and second dose in the glioma cells. Concurrently, the pro-survival protein Bcl-2's expression level was very much down-regulated in the same two doses favoring the internal microenvironment to proceed for apoptosis. High expression of cytochrome c and Apaf-1 and the presence of active caspase-9 and active caspase-3 in all the T11TS-treated tumor-bearing groups further adjudicated apoptosis of the glioma cells with clear involvement of mitochondrial death pathway in the T11TS-treated animals. Even though expression of the apoptotic regulators remained more or less the same indicating the involvement of mitochondria in the two interacting immunocytes, the intensity of expression of these proteins was much lower than the tumor cells. The present work focuses on the mechanistic approach of how T11TS mediates apoptosis and hence is the first approach of its kind in the field of immunology where the immunotherapeutic molecule's mode of action has been worked out.
Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9
Chakrabarti, Subhra Ranjan; Sood, Rashmi; Ganguly, Surajit; Bohlander, Stefan; Shen, Zhiyuan; Nucifora, Giuseppina
1999-01-01
The E-26 transforming specific (ETS)-related gene TEL, also known as ETV6, is involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. The encoded protein contains two functional domains: a helix–loop–helix (HLH) domain (also known as pointed domain) located at the N terminus and a DNA-binding domain located at the C terminus. The HLH domain is involved in protein–protein interaction with itself and other members of the ETS family of transcription factors such as FLI1. TEL is a transcription factor, and we and others have shown that it is a repressor of gene expression. To understand further the role of TEL in the cell, we have used an in vivo interaction system to identify proteins that interact with TEL. We show that a protein, UBC9, interacts specifically with TEL in vitro and in vivo. UBC9 is a member of the family of ubiquitin-conjugating enzymes. These enzymes usually are involved in proteosome-mediated degradation; however, our data suggest that interaction of TEL with UBC9 does not lead to TEL degradation. Our studies show that UBC9 binds to TEL exclusively through the HLH domain of TEL. We also show that TEL expressed as fusion to the DNA-binding domain of Gal4 completely represses a Gal4-responsive promoter, but that the coexpression of UBC9 in the same system restores the activity of the promoter. Targeted point mutation of conserved amino acids in UBC9 essential for enzymatic ubiquitination of proteins does not affect interaction nor transcriptional activity. Based on our data, we conclude that UBC9 physically interacts with TEL through the HLH domain and that the interaction leads to modulation of the transcription activity of TEL. PMID:10377438
Wang, Huan-Huan; Wu, Zhi-Qiang; Qian, Dong; Zaorsky, Nicholas G; Qiu, Ming-Han; Cheng, Jing-Jing; Jiang, Chao; Wang, Juan; Zeng, Xian-Liang; Liu, Chun-Lei; Tian, Li-Jun; Ying, Guo-Guang; Meng, Mao-Bin; Hao, Xi-Shan; Yuan, Zhi-Yong
2018-05-01
To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at ≥10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Ablative HFRT at ≥10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
Malo, Antje; Krüger, Burkhard; Göke, Burkhard; Kubisch, Constanze H
2013-01-01
Endoplasmic reticulum (ER) stress leads to misfolded proteins inside the ER and initiates unfolded protein response (UPR). Unfolded protein response components are involved in pancreatic function and activated during pancreatitis. However, the exact role of ER stress in the exocrine pancreas is unclear. The present study examined the effects of 4-phenylbutyric acid (4-PBA), an ER chaperone, on acini and UPR components. Rat acini were stimulated with cholecystokinin (10 pmol/L to 10 nmol/L) with or without preincubation of 4-PBA. The UPR components were analyzed, including chaperone-binding protein, protein kinaselike ER kinase, X-box-binding protein 1, c-Jun NH(2)-terminal kinase, CCAAT/enhancer-binding protein homologous protein, caspase 3, and apoptosis. Effects of 4-PBA were measured on secretion, calcium, and trypsin activation. 4-Phenylbutyric acid led to an increase of secretion, whereas trypsin activation with supraphysiological cholecystokinin was significantly reduced. 4-Phenylbutyric acid prevented chaperone-binding protein up-regulation, diminished protein kinaselike ER kinase, and c-Jun NH2-terminal kinase phosphorylation, prohibited X-box-binding protein 1 splicing and CCAAT/enhancer-binding protein homologous protein expression, caspase 3 activation, and apoptosis caused by supraphysiological cholecystokinin. By incubation with 4-PBA, beneficial in urea cycle deficiency, it was possible to enhance enzyme secretion to suppress trypsin activation, UPR activation, and proapoptotic pathways. The data hint new perspectives for the use of chemical chaperones in pancreatic diseases.
Nishikawa, C Y; Araújo, L M; Kadowaki, M A S; Monteiro, R A; Steffens, M B R; Pedrosa, F O; Souza, E M; Chubatsu, L S
2012-02-01
Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ(54) co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH(4)Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.
Nishikawa, C.Y.; Araújo, L.M.; Kadowaki, M.A.S.; Monteiro, R.A.; Steffens, M.B.R.; Pedrosa, F.O.; Souza, E.M.; Chubatsu, L.S.
2012-01-01
Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription. PMID:22267004
SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.
Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna
2011-02-04
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.
2011-09-01
poisoning. Toxicology 233: 145-154. 2. Gray AP (1984) Design and structure- activity relationships of antidotes to organophosphorus anticholinesterase ...and is being actively pursued. One approach under investigation is the development of human proteins as bioscavengers that sequester or hydrolyze...the major roles described for SMP30 is in maintaining Ca2+ homeostasis by activating enzymes involved in the regulation of Ca2+ pumps localized in
Protective Immunity to Pre-Erythrocytic Stage Malaria
2011-01-01
2). The activation of these cells appears to involve Ags expressing both a repet- itive epitope to mediate high B cell receptor cross-linking and T...cell epitopes to induce the activation of follicular T- helper (TFH) cells [33]. Particular attenuated virus vac- cines meet these criteria and can...probably depends on the activation of CS-protein-specific CD4 TFH cells. RTS,S-primed CD4 T cells can also be recalled with CS- protein peptides to produce
The emerging roles of β-arrestins in fibrotic diseases
Gu, Yuan-jing; Sun, Wu-yi; Zhang, Sen; Wu, Jing-jing; Wei, Wei
2015-01-01
β-Arrestins and β-arrestin2 are important adaptor proteins and signal transduction proteins that are mainly involved in the desensitization and internalization of G-protein-coupled receptors. Fibrosis is characterized by accumulation of excess extracellular matrix (ECM) molecules caused by chronic tissue injury. If highly progressive, the fibrotic process leads to organ malfunction and, eventually, death. The incurable lung fibrosis, renal fibrosis and liver fibrosis are among the most common fibrotic diseases. Recent studies show that β-arrestins can activate signaling cascades independent of G-protein activation and scaffold many intracellular signaling networks by diverse types of signaling pathways, including the Hedgehog, Wnt, Notch and transforming growth factor-β pathways, as well as downstream kinases such as MAPK and PI3K. These signaling pathways are involved in the pathological process of fibrosis and fibrotic diseases. This β-arrestin-mediated regulation not only affects cell growth and apoptosis, but also the deposition of ECM, activation of inflammatory response and development of fibrotic diseases. In this review, we survey the involvement of β-arrestins in various signaling pathways and highlight different aspects of their regulation of fibrosis. We also discuss the important roles of β-arrestins in the process of fibrotic diseases by regulating the inflammation and deposit of ECM. It is becoming more evident that targeting β-arrestins may offer therapeutic potential for the treatment of fibrotic diseases. PMID:26388156
Functional and Structural Characterization of Zebrafish ASC.
Li, Yajuan; Huang, Yi; Cao, Xiaocong; Yin, Xueying; Jin, Xiangyu; Liu, Sheng; Jiang, Jiansheng; Jiang, Wei; Xiao, Tsan Sam; Zhou, Rongbin; Cai, Gang; Hu, Bing; Jin, Tengchuan
2018-05-23
The zebrafish genome encodes homologs for most of the proteins involved in inflammatory pathways; however, the molecular components and activation mechanisms of fish inflammasomes are largely unknown. ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)) is the only adaptor involved in the formation of multiple types of inflammasomes. Here, we demonstrate that zASC is also involved in inflammasome activation in zebrafish. When overexpressed in vitro and in vivo in zebrafish, both the zASC and zASC pyrin domain (PYD) proteins form speck and filament structures. Importantly, the crystal structures of the N-terminal PYD and C-terminal CARD of zebrafish ASC were determined independently as two separate entities fused to maltose-binding protein (MBP). Structure-guided mutagenesis revealed the functional relevance of the PYD hydrophilic surface found in the crystal lattice. Finally, the fish caspase-1 homolog Caspy, but not the caspase-4/11 homolog Caspy2, interacts with zASC through homotypic PYD-PYD interactions, which differ from those in mammals. These observations establish the conserved and unique structural/functional features of the zASC-dependent inflammasome pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J
2014-05-20
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response. Copyright © 2014 Dodd et al.
NASA Astrophysics Data System (ADS)
Carlier, M.-F.; Helfer, E.; Wade, R.; Haraux, F.
The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein-microtubule system, responsible for flagellar motility, and the kinesin-microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid-protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane-cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.
Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie
2015-06-21
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Muccioli, Giulio G.; Sia, Angela; Muchowski, Paul J.; Stella, Nephi
2009-01-01
Background Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation. Principal Findings Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and α-synuclein. Significance Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid. PMID:19529773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Manisha; Xiao, Yi; Robinson, Howard
Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domainmore » of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Lastly, additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.« less
Shrestha, Manisha; Xiao, Yi; Robinson, Howard; ...
2015-08-28
Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domainmore » of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Lastly, additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.« less
Liu, Y; Levit, M; Lurz, R; Surette, M G; Stock, J B
1997-01-01
Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm. PMID:9405352
Involvement of Bim in Photofrin-mediated photodynamically induced apoptosis.
Wang, Xianwang; He, Xiaobing; Hu, Shujuan; Sun, Anbang; Lu, Chengbiao
2015-01-01
Photodynamic therapy (PDT) is a promising noninvasive technique, which has been successfully applied to the treatment of human cancers. Studies have shown that the Bcl-2 family proteins play important roles in PDT-induced apoptosis. However, whether Bcl-2-interacting mediator of cell death (Bim) is involved in photodynamic treatment remains unknown. In this study, we attempt to determine the effect of Bim on Photofrin photodynamic treatment (PPT)-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells. The translocation of Bim/Bax of the cells were monitored by laser confocal scanning microscope. The levels of Bim protein and activated caspase-3 in cells were detected by western blot assay. Caspase-3 activities were measured by Caspase-3 Fluorogenic Substrate (Ac-DEVD-AFC) analysis. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. The effect of Bim on PPT-induced apoptosis was determined by RNAi. BimL translocated to mitochondria in response to PPT, similar to the downstream pro-apoptotic protein Bax activation. PPT increased the level of Bim and activated caspase-3 in cells and that knockdown of Bim by RNAi significantly protected against caspase-3 activity. PPT-induced apoptosis were suppressed in cells transfected with shRNA-Bim. We demonstrated the involvement of Bim in PPT-induced apoptosis in human ASTC-a-1 lung adenocarcinoma cells and suggested that enhancing Bim activity might be a potential strategy for treating human cancers. © 2015 S. Karger AG, Basel.
Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao
2013-04-01
The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.
O'Mahony, Mark M; Henneberger, Ruth; Selvin, Joseph; Kennedy, Jonathan; Doohan, Fiona; Marchesi, Julian R; Dobson, Alan D W
2015-01-01
A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies.
Wu, M J; Lu, H P; Gu, Z Y; Zhou, Y Q
2016-06-20
Abnormal pressure is an important factor that contributes to bone adaptation in the temporomandibular joint (TMJ). We determined the effect of the mitogen-activated protein kinases (MAPK) pathway on the pressure-induced synovial metaplasia procedure for the TMJ, both in vitro and in vivo. Synovial fibroblasts (SFs) were exacted from rat TMJs and exposed to different hydrostatic pressures. The protein extracts were analyzed to determine the activation of ERK1/2, JNK, and p38. Surgical anterior disc displacement (ADD) was also performed on Japanese rabbits, and the proteins of TMJ were isolated to analyze pressure-induced MAPK activation after 1, 2, 4, and 8 weeks. The results showed that the activation of ERK1/2 and JNK in SFs significantly changed with increasing hydrostatic pressure, whereas p38 activation did not change. Moreover, p38 was activated in animals 1 week after surgical ADD. The levels of p38 gradually increased after 2 and 4 weeks, and then slightly decreased but remained higher than in the control 8 weeks after surgical ADD. Nevertheless, JNK was rarely activated after the ADD treatment. Our findings suggest the involvement of MAPK activation in the pressure-induced synovial metaplasia procedure with pressure loading in TMJ.
Ku, H; Meier, K E
2000-04-14
Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.
Fardoun, Riham Zein; Asghar, Mohammad; Lokhandwala, Mustafa
2009-01-01
Dopamine promotes sodium excretion, in part, via activation of D1 receptors in renal proximal tubules (PT) and subsequent inhibition of Na, K-ATPase. Recently, we have reported that oxidative stress causes D1 receptors-G-protein uncoupling via mechanisms involving Protein Kinase C (PKC) and G-protein Coupled Receptor Kinase 2 (GRK2) in the primary culture of renal PT of Sprague Dawley (SD) rats. There are reports suggesting that redox-sensitive nuclear transcription factor, NF-κB, is activated in conditions associated with oxidative stress. This study was designed to identify the role of NF-κB in oxidative stress–induced defective renal D1 receptor –G-protein coupling and function. Treatment of the PT with hydrogen peroxide (H2O2, 50 μM/20 min) induced the nuclear translocation of NF-κB, increased PKC activity, and triggered the translocation of GRK2 to the proximal tubular membranes. This was accompanied by hyperphosphorylation of D1 receptors and defective D1 receptor-G-protein coupling. The functional consequence of these changes was decreased D1 receptor activation-mediated inhibition of Na, K-ATPase activity. Interestingly, pre-treatment with pyrrolidine dithiocarbamate (PDTC, 25 μM/10min), an NF-κB inhibitor, blocked the H2O2-induced nuclear translocation of NF-κB, increase in PKC activity, as well as GRK2 translocation and hyperphosphorylation of D1 receptors in the proximal tubular membranes. Furthermore, PDTC restored D1 receptor G-protein coupling and D1 receptor agonist-mediated inhibition of the Na, KATPase activity. Therefore, we suggest that oxidative stress causes nuclear translocation of NF-κB in the renal proximal tubules, which contributes to defective D1-receptor-G-protein coupling and function via mechanism involving PKC, membranous translocation of GRK 2, and subsequent phosphorylation of dopamine D1 receptors. PMID:17320758
DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*
Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi
2014-01-01
Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322
Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai
2008-12-01
Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.
Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential
Liu, Jun; Zhang, Zhengqi; Rozovsky, Sharon
2014-01-01
Selenoprotein K (SelK) is a membrane protein involved in antioxidant defense, calcium regulation and the ER-associated protein degradation pathway. We found that SelK exhibits a peroxidase activity with a rate that is low but within the range of other peroxidases. Notably, SelK reduced hydrophobic substrates, such as phospholipid hydroperoxides, which damage membranes. Thus, SelK might be involved in membrane repair or related pathways. SelK was also found to contain a diselenide bond — the first intramolecular bond of that kind reported for a selenoprotein. The redox potential of SelK was −257 mV, significantly higher than that of diselenide bonds in small molecules or proteins. Consequently, SelK can be reduced by thioredoxin reductase. These finding are essential for understanding SelK activity and function. PMID:25117454
Protein arginine methylation/demethylation and cancer
Poulard, Coralie; Corbo, Laura; Le Romancer, Muriel
2016-01-01
Protein arginine methylation is a common post-translational modification involved in numerous cellular processes including transcription, DNA repair, mRNA splicing and signal transduction. Currently, there are nine known members of the protein arginine methyltransferase (PRMT) family, but only one arginine demethylase has been identified, namely the Jumonji domain-containing 6 (JMJD6). Although its demethylase activity was initially challenged, its dual activity as an arginine demethylase and a lysine hydroxylase is now recognized. Interestingly, a growing number of substrates for arginine methylation and demethylation play key roles in tumorigenesis. Though alterations in the sequence of these enzymes have not been identified in cancer, their overexpression is associated with various cancers, suggesting that they could constitute targets for therapeutic strategies. In this review, we present the recent knowledge of the involvement of PRMTs and JMJD6 in tumorigenesis. PMID:27556302
Kinases Involved in Both Autophagy and Mitosis.
Li, Zhiyuan; Zhang, Xin
2017-08-31
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Kinases Involved in Both Autophagy and Mitosis
2017-01-01
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266
Merewitz, Emily B.; Gianfagna, Thomas; Huang, Bingru
2011-01-01
Cytokinins (CKs) may be involved in the regulation of plant adaptation to drought stress. The objectives of the study were to identify proteomic changes in leaves and roots in relation to improved drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera) containing a senescence-activated promoter (SAG12) and the isopentyl transferase (ipt) transgene that increases endogenous CK content. Leaves of SAG12-ipt bentgrass exhibited less severe senescence under water stress, as demonstrated by maintaining lower electrolyte leakage and lipid peroxidation, and higher photochemical efficiency (Fv/Fm), compared with the null transformant (NT) plants. SAG12-ipt plants had higher root/shoot ratios and lower lipid peroxidation in leaves under water stress than the NT plants. The suppression of drought-induced leaf senescence and root dieback in the transgenic plants was associated with the maintenance of greater antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). The SAG12-ipt and NT plants exhibited differential protein expression patterns under well-watered and drought conditions in both leaves and roots. Under equivalent leaf water deficit (47% relative water content), SAG12-ipt plants maintained higher abundance of proteins involved in (i) energy production within both photosynthesis and respiration [ribulose 1,5-bisphosphate carboxylase (RuBisCO) and glyceraldehyde phosphate dehydrogenase (GAPDH)]; (ii) amino acid synthesis (methionine and glutamine); (iii) protein synthesis and destination [chloroplastic elongation factor (EF-Tu) and protein disulphide isomerases (PDIs)]; and (iv) antioxidant defence system (catalase and peroxidase) than the NT plants. These results suggest that increased endogenous CKs under drought stress may directly or indirectly regulate protein abundance and enzymatic activities involved in the above-mentioned metabolic processes, thereby enhancing plant drought tolerance. PMID:21831843
Bocian-Ostrzycka, Katarzyna M.; Łasica, Anna M.; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J.; Drabik, Karolina; Dobosz, Aneta M.; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K.
2015-01-01
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity. PMID:26500620
Bocian-Ostrzycka, Katarzyna M; Łasica, Anna M; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J; Drabik, Karolina; Dobosz, Aneta M; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K
2015-01-01
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Douglas, Andrew E.; Heim, Jennifer A.; Shen, Feng; Almada, Luciana L.; Riobo, Natalia A.; Fernández-Zapico, Martin E.; Manning, David R.
2011-01-01
Smoothened (Smo) is a seven-transmembrane (7-TM) receptor that is essential to most actions of the Hedgehog family of morphogens. We found previously that Smo couples to members of the Gi family of heterotrimeric G proteins, which in some cases are integral although alone insufficient in the activation of Gli transcription factors through Hedgehog signaling. In response to a report that the G12/13 family is relevant to Hedgehog signaling as well, we re-evaluated the coupling of Smo to one member of this family, G13, and investigated the capacity of this and other G proteins to activate one or more of forms of Gli. We found no evidence that Smo couples directly to G13. We found nonetheless that Gα13 and to some extent Gαq and Gα12 are able to effect activation of Gli(s). This capacity is realized in some cells, e.g. C3H10T1/2, MC3T3, and pancreatic cancer cells, but not all cells. The mechanism employed is distinct from that achieved through canonical Hedgehog signaling, as the activation does not involve autocrine signaling or in any other way require active Smo and does not necessarily involve enhanced transcription of Gli1. The activation by Gα13 can be replicated through a Gq/G12/13-coupled receptor, CCKA, and is attenuated by inhibitors of p38 mitogen-activated protein kinase and Tec tyrosine kinases. We posit that G proteins, and perhaps G13 in particular, provide access to Gli that is independent of Smo and that they thus establish a basis for control of at least some forms of Gli-mediated transcription apart from Hedgehogs. PMID:21757753
Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep
2015-12-01
Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.
Gagaoua, Mohammed; Terlouw, E M Claudia; Micol, Didier; Boudjellal, Abdelghani; Hocquette, Jean-François; Picard, Brigitte
2015-08-05
Many studies on color biochemistry and protein biomarkers were undertaken in post-mortem beef muscles after ≥24 hours. The present study was conducted on Longissimus thoracis muscles of 21 Blond d'Aquitaine young bulls to evaluate the relationships between protein biomarkers present during the early post-mortem and known to be related to tenderness and pH decline and color development. pH values at 45 min, 3 h, and 30 h post-mortem were correlated with three, seven, and six biomarkers, respectively. L*a*b* color coordinates 24 h post-mortem were correlated with nine, five, and eight protein biomarkers, respectively. Regression models included Hsp proteins and explained between 47 and 59% of the variability between individuals in pH and between 47 and 65% of the variability in L*a*b* color coordinates. Proteins correlated with pH and/or color coordinates were involved in apoptosis or had antioxidative or chaperone activities. The main results include the negative correlations between pH45 min, pH3 h, and pHu and Prdx6, which may be explained by the antioxidative and phospholipase activities of this biomarker. Similarly, inducible Hsp70-1A/B and μ-calpain were correlated with L*a*b* coordinates, due to the protective action of Hsp70-1A/B on the proteolytic activities of μ-calpain on structural proteins. Correlations existed further between MDH1, ENO3, and LDH-B and pH decline and color stability probably due to the involvement of these enzymes in the glycolytic pathway and, thus, the energy status of the cell. The present results show that research using protein indicators may increase the understanding of early post-mortem biological mechanisms involved in pH and beef color development.
PIAS1 interacts with FLASH and enhances its co-activation of c-Myb
2011-01-01
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci. PMID:21338522
Stope, Matthias B; Schubert, Tina; Staar, Doreen; Rönnau, Cindy; Streitbörger, Andreas; Kroeger, Nils; Kubisch, Constanze; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin
2012-06-01
Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.
Kanika, Nirmala D; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J; Melman, Arnold; Davies, Kelvin D
2011-05-01
• To investigate the role that oxidative stress plays in the development of diabetic cystopathy. • Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month- old diabetic rats was carried out using microarray analysis. • Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. • The activity of protein degradation pathways was assessed using Western blot analysis. • Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10(-10)). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. • It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. • This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. • Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. © 2010 THE AUTHORS; BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.
Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki
2015-10-01
Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.
Ramos, Márcio V; Brito, Daniel; Freitas, Cléverson D T; Gonçalves, José Francisco C; Porfirio, Camila T M N; Lobo, Marina D P; Monteiro-Moreira, Ana Cristina O; Souza, Luiz A C; Fernandes, Andreia V
2018-04-19
Seeds of native species from the rain forest (Amazon) are source of chitinases and their protein extracts exhibited strong and broad antifungal activity. Numerous plant species native to the Amazon have not yet been chemically studied. Studies of seeds are scarcer, since adversities in accessing study areas and seasonality pose constant hurdles to systematic research. In this study, proteins were extracted from seeds belonging to endemic Amazon species and were investigated for the first time. Proteolytic activity, peptidase inhibitors, and chitinases were identified, but chitinolytic activity predominated. Four proteins were purified through chromatography and identified as lectin and chitinases by MS/MS analyses. The proteins were examined for inhibition of a phytopathogen (Fusarium oxysporum). Analyses by fluorescence microscopy suggested binding of propidium iodide to DNA of fungal spores, revealing that spore integrity was lost when accessed by the proteins. Further structural and functional analyses of defensive proteins belonging to species facing highly complex ecosystems such as Amazonia should be conducted, since these could provide new insights into specificity and synergism involving defense proteins of plants submitted to a very complex ecosystem.
Redox Regulation of Protein Kinases
Truong, Thu H.; Carroll, Kate S.
2015-01-01
Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002
Cellular degradation activity is maintained during aging in long-living queen bees.
Hsu, Chin-Yuan; Qiu, Jiantai Timothy; Chan, Yu-Pei
2016-11-01
Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.
Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick
2016-08-12
Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J; Zúñiga-León, Eduardo; Reyes-Vivas, Horacio; Fernández, Francisco J; Fierro, Francisco
2016-10-06
The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC-MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed.
Turner, Joel G.; Dawson, Jana; Cubitt, Christopher L.; Baz, Rachid; Sullivan, Daniel M.
2014-01-01
Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40 kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors are being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and the addition of alkylating agents (melphalan), anthracyclines (doxorubicin and daunomycin), BRAF inhibitors, platinum drugs (cisplatin and oxaliplatin), proteosome inhibitors (bortezomib and carfilzomib), or tyrosine-kinase inhibitors (imatinib). Also, the sequence of treatment may be important for combination therapy. We found that the most effective treatment regimen involved first priming the cancer cells with the CRM1 inhibitor followed by doxorubicin, bortezomib, carfilzomib, or melphalan. This order sensitized both de novo and acquired drug-resistant cancer cell lines. PMID:24631834
Ziegler, Susanne; Eiseler, Tim; Scholz, Rolf-Peter; Beck, Alexander; Link, Gisela; Hausser, Angelika
2011-03-01
The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14-3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration.
Tran, Minh D
2011-04-04
Amyloid precursor protein (APP) is ubiquitously expressed in a variety of tissues but is predominantly expressed in the brain. The expression of APP has been well studied in neurons but little is known about its presence in astrocytes. The study presented here shows that purinergic signaling is involved in the production and secretion of APP in primary cultures of rat cortical astrocytes. Extracellular ATP caused an increase in APP production and release in a time- and concentration-dependent manner and was inhibited by antagonists of P2 receptors. Further agonist and antagonist studies revealed involvement of P2Y2 and P2Y4 receptors in nucleotide-stimulated production and release of APP. In addition, signaling studies with various protein kinase inhibitors demonstrated that blockade of mitogen-activated protein kinases, but not Akt, inhibited nucleotide-stimulated APP expression and release. These results indicate that APP production and secretion can be regulated by activation of P2Y2/4 receptors coupled to protein kinase signaling pathways and suggest that astrocytes can be a potential source of APP. Published by Elsevier Ireland Ltd.
Benzoate Mediates Repression of C4-Dicarboxylate Utilization in “Aromatoleum aromaticum” EbN1
Trautwein, Kathleen; Grundmann, Olav; Wöhlbrand, Lars; Eberlein, Christian; Boll, Matthias
2012-01-01
Diauxic growth was observed in anaerobic C4-dicarboxylate-adapted cells of “Aromatoleum aromaticum” EbN1 due to preferred benzoate utilization from a substrate mixture of a C4-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C4-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C4-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C4-dicarboxylate uptake seems to be a main determinant for the observed diauxie. PMID:22081395
Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J
2014-03-01
Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. Copyright © 2014 Elsevier Inc. All rights reserved.
Gould, Thomas J.; Wilkinson, Derek S.; Yildirim, Emre; Poole, Rachel L. F.; Leach, Prescott T.; Simmons, Steven J.
2014-01-01
Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular regulated signaling kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 hours but not 2 hours post-training, delineating time points for STM (2 hours) and LTM (4 hours and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 hours but not 2 hours post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. PMID:24457151
Rivas, Daniel; Akter, Rahima; Duque, Gustavo
2007-01-01
Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630
NASA Astrophysics Data System (ADS)
Wollenberg, Lance A.
Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover, applications of immobilized P450 enzyme constructs will also be used for monitoring protein-protein interaction and metabolite production with the use of immobilized-P450 bioreactor constructs. This work provides insight into the effect on catalytic activity caused by both P450 aggregation as well as isoform-specific protein-protein interactions and provides insight in the production of biosynthetically produced drug metabolites
Proteins in phytohormone signaling pathways for abiotic stress in plants
USDA-ARS?s Scientific Manuscript database
Plant hormones and their signaling network systems have an essential role in activating and regulating plant responses to both biotic and abiotic stress factors. This chapter describes proteins that are involved in hormone biosynthesis, long distance and intra-cellular transport, the signaling sensi...
P53 protein in proliferation, repair and apoptosis of cells.
Wawryk-Gawda, Ewelina; Chylińska-Wrzos, Patrycja; Lis-Sochocka, Marta; Chłapek, Katarzyna; Bulak, Kamila; Jędrych, Marian; Jodłowska-Jędrych, Barbara
2014-05-01
The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro
2008-01-04
Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less
The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch.
Mauney, Christopher H; Rogers, LeAnn C; Harris, Reuben S; Daniel, Larry W; Devarie-Baez, Nelmi O; Wu, Hanzhi; Furdui, Cristina M; Poole, Leslie B; Perrino, Fred W; Hollis, Thomas
2017-12-01
Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.
Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity
Kwok, Showming; Lee, Claudia; Sánchez, Susana A.; Hazlett, Theodore L.; Gratton, Enrico; Hayashi, Yasunori
2008-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo. PMID:18302935
α-Crystallins Are Small Heat Shock Proteins: Functional and Structural Properties.
Tikhomirova, T S; Selivanova, O M; Galzitskaya, O V
2017-02-01
During its life cycle, a cell can be subjected to various external negative effects. Many proteins provide cell protection, including small heat shock proteins (sHsp) that have chaperone-like activity. These proteins have several important functions involving prevention of apoptosis and retention of cytoskeletal integrity; also, sHsp take part in the recovery of enzyme activity. The action mechanism of sHsp is based on the binding of hydrophobic regions exposed to the surface of a molten globule. α-Crystallins presented in chordate cells as two αA- and αB-isoforms are the most studied small heat shock proteins. In this review, we describe the main functions of α-crystallins, features of their secondary and tertiary structures, and examples of their partners in protein-protein interactions.
An efficient way of studying protein-protein interactions involving HIF-α, c-Myc, and Sp1.
To, Kenneth K-W; Huang, L Eric
2013-01-01
Protein-protein interaction is an essential biochemical event that mediates various cellular processes including gene expression, intracellular signaling, and intercellular interaction. Understanding such interaction is key to the elucidation of mechanisms of cellular processes in biology and diseases. The hypoxia-inducible transcription factor HIF-1α possesses a non-transcriptional activity that competes with c-Myc for Sp1 binding, whereas its isoform HIF-2α lacks Sp1-binding activity due to phosphorylation. Here, we describe the use of in vitro translation to effectively investigate the dynamics of protein-protein interactions among HIF-1α, c-Myc, and Sp1 and to demonstrate protein phosphorylation as a molecular determinant that functionally distinguishes HIF-2α from HIF-1α.
Mouguelar, Valeria S; Cabada, Marcelo O; Coux, Gabriela
2011-05-01
Integrins are cell adhesion molecules that are thought to be involved in sperm-oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported by Xenopus laevis studies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibian Bufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest that B. arenarum fertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors in B. arenarum oocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
SNF1-Related Protein Kinases Type 2 Are Involved in Plant Responses to Cadmium Stress1[C][W
Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymańska, Katarzyna; Żmieńko, Agnieszka; Krzywińska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Skłodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grażyna
2012-01-01
Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd2+ showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd2+ treatment. Our data show significantly lower Cd2+-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions. PMID:22885934
Function and regulation of heat shock factor 2 during mouse embryogenesis
Rallu, M.; Loones, Mt.; Lallemand, Y.; Morimoto, R.; Morange, M.; Mezger, V.
1997-01-01
The spontaneous expression of heat shock genes during development is well documented in many animal species, but the mechanisms responsible for this developmental regulation are only poorly understood. In vertebrates, additional heat shock transcription factors, distinct from the heat shock factor 1 (HSF1) involved in the stress response, were suggested to be involved in this developmental control. In particular, the mouse HSF2 has been found to be active in testis and during preimplantation development. However, the role of HSF2 and its mechanism of activation have remained elusive due to the paucity of data on its expression during development. In this study, we have examined HSF2 expression during the postimplantation phase of mouse development. Our data show a developmental regulation of HSF2, which is expressed at least until 15.5 days of embryogenesis. It becomes restricted to the central nervous system during the second half of gestation. It is expressed in the ventricular layer of the neural tube which contains mitotically active cells but not in postmitotic neurons. Parallel results were obtained for mRNA, protein, and activity levels, demonstrating that the main level of control was transcriptional. The detailed analysis of the activity of a luciferase reporter gene under the control of the hsp70.1 promoter, as well as the description of the protein expression patterns of the major heat shock proteins in the central nervous system, show that HSF2 and heat shock protein expression domains do not coincide. This result suggests that HFS2 might be involved in other regulatory developmental pathways and paves the way to new functional approaches. PMID:9122205
Santucci, Laura; Candiano, Giovanni; Anglani, Franca; Bruschi, Maurizio; Tosetto, Enrica; Cremasco, Daniela; Murer, Luisa; D'Ambrosio, Chiara; Scaloni, Andrea; Petretto, Andrea; Caridi, Gianluca; Rossi, Roberta; Bonanni, Alice; Ghiggeri, Gian Marco
2016-01-01
Definition of the urinary protein composition would represent a potential tool for diagnosis in many clinical conditions. The use of new proteomic technologies allows detection of genetic and post-trasductional variants that increase sensitivity of the approach but complicates comparison within a heterogeneous patient population. Overall, this limits research of urinary biomarkers. Studying monogenic diseases are useful models to address this issue since genetic variability is reduced among first- and second-degree relatives of the same family. We applied this concept to Dent's disease, a monogenic condition characterised by low-molecular-weight proteinuria that is inherited following an X-linked trait. Results are presented here on a combined proteomic approach (LC-mass spectrometry, Western blot and zymograms for proteases and inhibitors) to characterise urine proteins in a large family (18 members, 6 hemizygous patients, 6 carrier females, and 6 normals) with Dent's diseases due to the 1070G>T mutation of the CLCN5. Gene ontology analysis on more than 1000 proteins showed that several clusters of proteins characterised urine of affected patients compared to carrier females and normal subjects: proteins involved in extracellular matrix remodelling were the major group. Specific analysis on metalloproteases and their inhibitors underscored unexpected mechanisms potentially involved in renal fibrosis. Studying with new-generation techniques for proteomic analysis of the members of a large family with Dent's disease sharing the same molecular defect allowed highly repetitive results that justify conclusions. Identification in urine of proteins actively involved in interstitial matrix remodelling poses the question of active anti-fibrotic drugs in Dent's patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Liu; Sha, Haibo; Davisson, Robin L.; Qi, Ling
2013-01-01
Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress. PMID:23548904
Braun, L; Ghebrehiwet, B; Cossart, P
2000-04-03
InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.
Kurabe, Nobuya; Mori, Mayumi; Kurokawa, Jun; Taniguchi, Kaori; Aoyama, Hisatoshi; Atsuda, Kazuhiro; Nishijima, Akemi; Odawara, Nariaki; Harada, Saori; Nakashima, Katsuhiko; Arai, Satoko; Miyazaki, Toru
2010-01-01
Insulin secretion and glucose transport are the major mechanisms to balance glucose homeostasis. Recently, we found that the death effector domain-containing DEDD inhibits cyclin-dependent kinase 1 (Cdk1) function, thereby preventing Cdk1-dependent inhibitory phosphorylation of S6 kinase 1 (S6K1), downstream of phosphatidylinositol 3-kinase (PI3K), which overall results in maintenance of S6K1 activity. Here we newly show that DEDD forms a complex with Akt and heat-shock protein 90 (Hsp90), and supports the stability of both proteins. Hence, in DEDD−/− mice, Akt protein levels are diminished in skeletal muscles and adipose tissues, which interferes with the translocation of glucose transporter 4 (GLUT4) upon insulin stimulation, leading to inefficient incorporation of glucose in these organs. Interestingly, as for the activation of S6K1, suppression of Cdk1 is involved in the stabilization of Akt protein by DEDD, since diminishment of Cdk1 in DEDD−/− cells via siRNA expression or treatment with a Cdk1-inhibitor, increases both Akt and Hsp90 protein levels. Such multifaceted involvement of DEDD in glucose homeostasis by supporting both insulin secretion (via maintenance of S6K1 activity) and glucose uptake (via stabilizing Akt protein), may suggest an association of DEDD-deficiency with the pathogenesis of type 2 diabetes mellitus. PMID:20043882
Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing
2014-03-01
Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.
Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L
2003-02-01
Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.
Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.
2003-01-01
Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479
Tat-APE1/ref-1 protein inhibits TNF-{alpha}-induced endothelial cell activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung
2008-03-28
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-{alpha}-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-{alpha}-induced monocyte adhesion and vascular cell adhesion molecule-1 expressionmore » in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.« less
Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus.
Gómez-Gómez, L; Rubio-Moraga, A; Ahrazem, O
2011-03-01
Plants have developed many mechanisms to protect themselves against most potential microbial pathogens and diseases. Among these mechanisms, pathogenesis-related proteins are produced as part of the active defence to prevent attack. In this study, a full-length cDNA encoding the CsPR10 protein was identified in fresh saffron stigmas (Crocus sativus). The deduced amino acid sequence from the nucleotide sequence of the coding region showed homology with PR10 proteins. The clone expressed as a protein in fusion with a GST tag produced a 47-kDa protein in E. coli. CsPR10 had ribonuclease activity, with features common to class II-type ribonucleases; its specific activity was quantified as 68.8 U·mg(-1) protein, thus falling within the range of most PR10 proteins exhibiting RNase activity. Antifungal activity of CsPR10 was assayed against Verticillium dahliae, Penicillium sp. and Fusarium oxysporum. CsPR10 inhibited only F. oxysporum growth, and antifungal potency was reflected in a IC(50) of 8.3 μm. Expression analysis showed the presence of high transcript levels in anther and tepal tissues, low levels in stigmas and roots, and no signal detected in leaves. This protein seems to be involved in the active defence response through activation of the jasmonic acid pathway. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
USDA-ARS?s Scientific Manuscript database
Ozone uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to ozone were compar...
ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction
Sun, Sheng; Zhou, Xi; Corvera, Joe; Gallick, Gary E; Lin, Sue-Hwa; Kuang, Jian
2015-01-01
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors. PMID:27462417
Error-prone repair and translesion synthesis III: the activation of UmuD (or less is more).
Bridges, Bryn A
2005-08-15
Following DNA damage to Escherichia coli bacteria, RecA protein is activated by binding to single stranded DNA and cleaves its own gene repressor (LexA protein). Two papers from Graham Walker's laboratory showed that several bacterial genes in addition to RecA are repressed by the LexA repressor and are inducible following DNA damage [C.J. Keyon, G.C. Walker, DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli, in: Proceedings of the National Academy of Sciences of the United States of America 77, 1980, pp. 2819--2823] and predicted that one of them (UmuD) might itself be subject to activation by a further cleavage reaction involving activated RecA protein [K.L. Perry, S.J. Elledge, B.B. Mitchell, L. Marsh, G.C. Walker, umuD,C and mucA,B operans whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology, in: Proceedings of the National Academy of Sciences of the United States of America 82, 1985, pp. 4331--4335]. The processed form of UmuD, termed UmuD', later proved to be a subunit of DNA polymerase V, a key enzyme involved in translesion synthesis.
Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G
1995-06-01
We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.
Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana
2008-11-18
There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.
Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana
2008-01-01
Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent. PMID:19017389
Proteolytic activity during senescence of plants
NASA Technical Reports Server (NTRS)
Huffaker, R. C.
1990-01-01
Although information has rapidly developed concerning the intracellular localization of plant proteins, relatively few reports concern the intracellular location of endo- and exo-proteolytic activities. Relatively few proteases have been purified, characterized, and associated with a specific cellular location. With the exception of the processing proteases involved in transport of proteins across membranes, little progress has yet been made concerning determination of in vivo products of specific proteases. Information on the turnover of individual proteins and the assessment of rate-limiting steps in pathways as proteins are turned over is steadily appearing. Since chloroplasts are the major site of both protein synthesis and, during senescence, degradation, it was important to show unambiguously that chloroplasts can degrade their own constituents. Another important contribution was to obtain evidence that the chloroplasts contain proteases capable of degrading their constituents. This work has been more tenuous because of the low activities found and the possibility of contamination by vacuolar enzymes during the isolation of organelles. The possible targeting of cytoplasmic proteins for degradation by facilitating their transport into vacuoles is a field which hopefully will develop more rapidly in the future. Information on targeting of proteins for degradation via the ubiquitin (Ub) degradation pathway is developing rapidly. Future research must determine how much unity exists across the different eukaryotic systems. At present, it has important implications for protein turnover in plants, since apparently Ub is involved in the degradation of phytochrome. Little information has been developed regarding what triggers increased proteolysis with the onset of senescence, although it appears to involve protein synthesis. Thus far, the evidence indicates that the complement of proteases prior to senescence is sufficient to carry out the observed protein degradation. This field of study has great practical implications, e.g. maintaining photosynthesis during seed-fill in order to obtain greater crop yields. The current use of stay green' variants in the populations of several crop plants to produce increased yields shows the potential for future development. The near future should see exciting discoveries in these areas of research that will have far reaching effects on the construction of transgenic plants for future research accomplishments and agricultural use.
AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis
Xu, Xiang Ming; Møller, Simon Geir
2006-01-01
Iron–sulfur (Fe–S) clusters are vital prosthetic groups for Fe–S proteins involved in fundamental processes such as electron transfer, metabolism, sensing and signaling. In plants, sulfur (SUF) protein-mediated Fe–S cluster biogenesis involves iron acquisition and sulfur mobilization, processes suggested to be plastidic. Here we have shown that AtSufE in Arabidopsis rescues growth defects in SufE-deficient Escherichia coli. In contrast to other SUF proteins, AtSufE localizes to plastids and mitochondria interacting with the plastidic AtSufS and mitochondrial AtNifS1 cysteine desulfurases. AtSufE activates AtSufS and AtNifS1 cysteine desulfurization, and AtSufE activity restoration in either plastids or mitochondria is not sufficient to rescue embryo lethality in AtSufE loss-of-function mutants. AtSufE overexpression induces AtSufS and AtNifS1 expression, which in turn leads to elevated cysteine desulfurization activity, chlorosis and retarded development. Our data demonstrate that plastidic and mitochondrial Fe–S cluster biogenesis shares a common, essential component, and that AtSufE acts as an activator of plastidic and mitochondrial desulfurases in Arabidopsis. PMID:16437155
Quercetin, not caffeine, is a major neuroprotective component in coffee.
Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L
2016-10-01
Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-10-19
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-01-01
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041
Roy Choudhury, Swarup; Pandey, Sona
2017-05-01
Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G-protein complex. We have recently established that in Arabidopsis, the regulator of G-protein signaling (RGS1) protein and a lipid-hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase-activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid-hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys 259 ) is directly involved in RGS1-PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid-mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal-response output. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie
2015-09-01
A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.
Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N
2000-02-18
Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione¿, a PI3-kinase inhibitor, attenuated only calcitonin gene-related peptide-induced ERK and not P38 MAPK activation. Thus, these data suggest that activation of ERK by calcitonin gene-related peptide involves a H89-sensitive protein kinase A and a wortmannin-sensitive PI3-kinase while activation of p38 MAPK by calcitonin gene-related peptide involves only the H89 sensitive pathway and is independent of PI3 kinase. This also suggests that although both ERK and P38 can be activated by protein kinase A, the distal signaling components to protein kinase A in the activation of these two kinases (ERK and P38) are different.
APP processing and the APP-KPI domain involvement in the amyloid cascade.
Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B
2005-01-01
Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.
Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.
Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni
2018-01-30
BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.
Davis, Monica M.; Primrose, David A.; Hodgetts, Ross B.
2008-01-01
Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria. PMID:18519585
The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress.
Nwugo, Chika C; Huerta, Alfredo J
2011-02-04
The best known silicon (Si)-accumulating plant, rice (Oryza sativa L.), stores most of its Si in leaves, but the importance of Si has been limited to a mechanical role. Our initial studies showed that Si-induced cadmium (Cd) tolerance is mediated by the enhancement of instantaneous water-use-efficiency, carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO), and light-use-efficiency in leaves of rice plants. In this study, we investigated changes in the rice leaf proteome in order to identify molecular mechanisms involved in Si-induced Cd tolerance. Our study identified 60 protein spots that were differentially regulated due to Cd and/or Si treatments. Among them, 50 were significantly regulated by Si, including proteins associated with photosynthesis, redox homeostasis, regulation/protein synthesis, pathogen response and chaperone activity. Interestingly, we observed a Si-induced up-regulation of a class III peroxidase and a thaumatin-like protein irrespective of Cd treatment, in addition to a Cd-induced up-regulation of protein disulfide isomerase, a HSP70 homologue, a NADH-ubiquinone oxidoreductase, and a putative phosphogluconate dehydrogenase, especially in the presence of Si. Taken together, our study sheds light on molecular mechanisms involved in Si-induced Cd tolerance in rice leaves and suggests a more active involvement of Si in plant physiological processes than previously proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orfali, Nina; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.; McKenna, Sharon L.
Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL.more » Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.« less
Osipiuk, Jerzy; Mulligan, Rory; Bargassa, Monireh; Hamilton, John E; Cunningham, Mark A; Joachimiak, Andrzej
2012-06-01
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1-116, and the C-terminal one includes residues 117-125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid.
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA
2014-01-07
The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.
AMP-activated protein kinase: Role in metabolism and therapeutic implications.
Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas
2006-11-01
AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.
Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity?
Maj, Mary C; Raha, Sandeep; Myint, Tomoko; Robinson, Brian H
2004-01-01
We had previously suggested that phosphorylation of proteins by mitochondrial kinases regulate the activity of NADH/CoQ oxidoreductase. Initial data showed that pyruvate dehydrogenase kinase (PDK) and cAMP-dependent protein kinase A (PKA) phosphorylate mitochondrial membrane proteins. Upon phosphorylation with crude PDK, mitochondria appeared to be deficient in NADH/cytochrome c reductase activity associated with increased superoxide production. Conversely, phosphorylation by PKA resulted in increased NADH/cytochrome c reductase activity and decreased superoxide formation. Current data confirms PKA involvement in regulating Complex I activity through phosphorylation of an 18 kDa subunit. Beef heart NADH/ cytochrome c reductase activity increases to 150% of control upon incubation with PKA and ATP-gamma-S. We have cloned the four human isoforms of PDK and purified beef heart Complex I. Incubation of mitochondria with PDK isoforms and ATP did not alter Complex I activity or superoxide production. Radiolabeling of mitochondria and purified Complex I with PDK failed to reveal phosphorylated proteins.
Jiang, Nong-hui; Jiang, Bo; Zhang, Yong-yan; Wu, Bo; Hu, Min-lun; Zeng, Ji-wu; Yan, Hua-xue; Yi, Gan-jun; Zhong, Guang-yan
2015-01-01
Root samples of ‘Sanhu’ red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings. PMID:26046530
Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua
2015-01-01
Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5–MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases. PMID:26136265
Identification of signalling cascades involved in red blood cell shrinkage and vesiculation.
Kostova, Elena B; Beuger, Boukje M; Klei, Thomas R L; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K; van Bruggen, Robin
2015-04-16
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca(2+) ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)-Akt (protein kinase B) pathway, the Jak-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the Raf-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation.
Identification of signalling cascades involved in red blood cell shrinkage and vesiculation
Kostova, Elena B.; Beuger, Boukje M.; Klei, Thomas R.L.; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick; van den Berg, Timo K.; van Bruggen, Robin
2015-01-01
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. PMID:25757360
Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus.
Qi, Hang; Fu, Hui; Dong, Xiufang; Feng, Dingding; Li, Nan; Wen, Chengrong; Nakamura, Yoshimasa; Zhu, Beiwei
2016-05-01
Autolysis easily happens to sea cucumber (Stichopus japonicus, S. japonicus) for external stimulus like UV exposure causing heavy economic losses. Therefore, it is meaningful to reveal the mechanism of S. japonicas autolysis. In the present study, to examine the involvement of apoptosis induction in UVA-induced autolysis of S. japonicas, we investigated the biochemical events including the DNA fragmentation, caspase-3 activation, mitogen-activated protein kinases (MAPKs) phosphorylation and free radical formation. Substantial morphological changes such as intestine vomiting and dermatolysis were observed in S. japonicus during the incubation after 1-h UVA irradiation (10W/m(2)). The degradation of the structural proteins and enhancement of cathepsin L activity were also detected, suggesting the profound impact of proteolysis caused by the UVA irradiation even for 1h. Furthermore, the DNA fragmentation and specific activity of caspase-3 was increased up to 12h after UVA irradiation. The levels of phosphorylated p38 mitogen activated protein kinase (MAPK) and phosphorylated c-Jun.-N-terminal kinase (JNK) were significantly increased by the UVA irradiation for 1h. An electron spin resonance (ESR) analysis revealed that UVA enhanced the free radical formation in S. japonicas, even through we could not identify the attributed species. These results suggest that UVA-induced autolysis in S. japonicas at least partially involves the oxidative stress-sensitive apoptosis induction pathway. These data present a novel insight into the mechanisms of sea cucumber autolysis induced by external stress. Copyright © 2016 Elsevier B.V. All rights reserved.
Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor
2016-11-01
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.
Negrete-Díaz, José Vicente; Duque-Feria, Paloma; Andrade-Talavera, Yuniesky; Carrión, Miriam; Flores, Gonzalo; Rodríguez-Moreno, Antonio
2012-04-01
Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Chaperokine-induced signal transduction pathways.
Asea, Alexzander
2003-01-01
A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects--known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise.
Chaperokine-Induced Signal Transduction Pathways
Asea, Alexzander
2007-01-01
A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects - known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise. PMID:14686091
Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming
2016-01-01
Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420
Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R
2016-01-01
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
SUMO proteases as potential targets for cancer therapy.
Bialik, Piotr; Woźniak, Katarzyna
2017-12-08
Sumoylation is one of the post-translational modifications of proteins, responsible for the regulation of many cellular processes, such as DNA replication and repair, transcription, signal transduction and nuclear transport. During sumoylation, SUMO proteins are covalently attached to the ε-amino group of lysine in target proteins via an enzymatic cascade that requires the sequential action of E1, E2 and E3 enzymes. An important aspect of sumoylation is its reversibility, which involves SUMO-specific proteases called SENPs. SENPs (sentrin/SUMO-specific proteases) catalyze the deconjugation of SUMO proteins using their isopeptidase activity. These enzymes participate through hydrolase activity in the reaction of SUMO protein maturation, which involves the removal of a short fragment on the C-terminus of SUMO inactive form and exposure two glycine residues. SENPs are important for maintaining the balance between sumoylated and desumoylated proteins required for normal cellular physiology. Six SENP isoforms (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7) have been identified in mammals. These SENPs can be divided into three subfamilies based on their sequence homology, substrate specificity and subcellular localization. Results of studies indicate the role of SUMO proteases in the development of human diseases including cancer, suggesting that these proteins may be attractive targets for new drugs.
Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven
2018-04-01
Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.
Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian
2013-01-01
Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001
Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian
2013-01-01
Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05), and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05). Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.
[Fanconi anemia: cellular and molecular features].
Macé, G; Briot, D; Guervilly, J-H; Rosselli, F
2007-02-01
Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.
Chirackal Manavalan, Anil Paul; Kober, Alexandra; Metso, Jari; Lang, Ingrid; Becker, Tatjana; Hasslitzer, Karin; Zandl, Martina; Fanaee-Danesh, Elham; Pippal, Jyotsna Brijesh; Sachdev, Vinay; Kratky, Dagmar; Stefulj, Jasminka; Jauhiainen, Matti; Panzenboeck, Ute
2014-01-01
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral (“brain parenchymal”) compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB. PMID:24369175
Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir
2014-01-01
Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis.
Goswami, Dinesh G; Tewari-Singh, Neera; Dhar, Deepanshi; Kumar, Dileep; Agarwal, Chapla; Ammar, David A; Kant, Rama; Enzenauer, Robert W; Petrash, J Mark; Agarwal, Rajesh
2016-02-01
To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to the vesicating agent, nitrogen mustard (NM), a bifunctional alkylating analog of the chemical warfare agent sulfur mustard. Toxic effects and associated mechanisms were examined in maximally affected corneal tissue using corneal cultures and human corneal epithelial (HCE) cells exposed to NM. Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation, and levels of vascular endothelial growth factor, cyclooxygenase 2, and matrix metalloproteinase-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53, and H2A.X ser139 levels. NM exposure also induced caspase-3 and poly ADP ribose polymerase cleavage, suggesting their involvement in NM-induced apoptotic death in the rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in cyclooxygenase 2, matrix metalloproteinase-9, and vascular endothelial growth factor levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation, and neovascularization. NM exposure also induced activation of activator protein 1 transcription factor proteins and upstream signaling pathways including mitogen-activated protein kinases and Akt protein kinase, suggesting that these could be key factors involved in NM-induced corneal injury. Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant-induced ocular injuries, which could be helpful in the development of targeted therapies.
Rahman, Safikur; Rehman, Md Tabish; Singh, Laishram R; Warepam, Marina; Ahmad, Faizan; Dar, Tanveer Ali
2015-01-01
Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea's harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea's effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction.
NASA Astrophysics Data System (ADS)
Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.
2004-08-01
The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.
Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Vila, Virginia; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda
2004-12-17
Cyclooxygenase-2 is transiently induced upon cell activation or viral infections, resulting in inflammation and modulation of the immune response. Here we report that A238L, an African swine fever virus protein, efficiently inhibits cyclooxygenase-2 gene expression in Jurkat T cells and in virus-infected Vero cells. Transfection of Jurkat cells stably expressing A238L with cyclooxygenase-2 promoter-luciferase constructs containing 5'-terminal deletions or mutations in distal or proximal nuclear factor of activated T cell (NFAT) response elements revealed that these sequences are involved in the inhibition induced by A238L. Overexpression of a constitutively active version of the calcium-dependent phosphatase calcineurin or NFAT reversed the inhibition mediated by A238L on cyclooxygenase-2 promoter activation, whereas overexpression of p65 NFkappaB had no effect. A238L does not modify the nuclear localization of NFAT after phorbol 12-myristate 13-acetate/calcium ionophore stimulation. Moreover, we show that the mechanism by which the viral protein down-regulates cyclooxygenase-2 activity does not involve inhibition of the binding between NFAT and its specific DNA sequences into the cyclooxygenase-2 promoter. Strikingly, A238L dramatically inhibited the transactivation mediated by a GAL4-NFAT fusion protein containing the N-terminal transactivation domain of NFAT1. Taken together, these data indicate that A238L down-regulates cyclooxygenase-2 transcription through the NFAT response elements, being NFAT-dependent transactivation implicated in this down-regulation.
Dong, Yan; Fang, Xianping; Yang, Yong; Xue, Gang-Ping; Chen, Xian; Zhang, Weilin; Wang, Xuming; Yu, Chulang; Zhou, Jie; Mei, Qiong; Fang, Wang; Yan, Chengqi; Chen, Jianping
2017-01-01
The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological responses to SBPH infestation. PMID:29089949
Molecular and biochemical characterization of tomato farnesyl-protein transferase.
Schmitt, D; Callan, K; Gruissem, W
1996-10-01
The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.
Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio
2014-06-24
Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression. Copyright © 2014 Elsevier B.V. All rights reserved.
Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.
Siddique, Muhammad Asim; Grossmann, Jonas; Gruissem, Wilhelm; Baginsky, Sacha
2006-12-01
We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.
Hippe, Hans-Joerg; Wieland, Thomas
2006-08-01
The activation of heterotrimeric G proteins induced by G protein coupled receptors (GPCR) is generally believed to occur by a GDP/GTP exchange at the G protein alpha -subunit. Nevertheless, nucleoside diphosphate kinase (NDPK) and the beta-subunit of G proteins (Gbeta) participate in G protein activation by phosphate transfer reactions leading to the formation of GTP from GDP. Recent work elucidated the role of these reactions. Apparently, the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers in which NDPK B acts as a histidine kinase phosphorylating Gbeta at His266. Out of this high energetic phosphoamidate bond the phosphate can be transferred specifically onto GDP. The formed GTP binds to the G protein alpha-subunit and thus activates the respective G protein. Evidence is presented, that this process occurs independent of the classical GPCR-induced GTP/GTP exchange und thus contributes, e.g. to the regulation of basal cAMP synthesis in cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays withmore » two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavaliers, M.; Ossenkopp, K.P.
1990-02-26
One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKCmore » activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.« less
Ha, Shin-Woo; Weitzmann, M Neale; Beck, George R
2014-06-24
We recently identified an engineered bioactive silica-based nanoparticle formulation (designated herein as NP1) that stimulates in vitro differentiation and mineralization of osteoblasts, the cells responsible for bone formation, and increases bone mineral density in young mice in vivo. The results demonstrate that these nanoparticles have intrinsic biological activity; however, the intracellular fate and a complete understanding of the mechanism(s) involved remains to be elucidated. Here we investigated the cellular mechanism(s) by which NP1 stimulates differentiation and mineralization of osteoblasts. We show that NP1 enters the cells through a caveolae-mediated endocytosis followed by stimulation of the mitogen activated protein kinase ERK1/2 (p44/p42). Our findings further revealed that NP1 stimulates autophagy including the processing of LC3β-I to LC3β-II, a key protein involved in autophagosome formation, which is dependent on ERK1/2 signaling. Using a variant of NP1 with cobalt ferrite magnetic metal core (NP1-MNP) to pull down associated proteins, we found direct binding of LC3β and p62, two key proteins involved in autophagosome formation, with silica nanoparticles. Interestingly, NP1 specifically interacts with the active and autophagosome associated form of LC3β (LC3β-II). Taken together, the stimulation of autophagy and associated signaling suggests a cellular mechanism for the stimulatory effects of silica nanoparticles on osteoblast differentiation and mineralization.
2015-01-01
We recently identified an engineered bioactive silica-based nanoparticle formulation (designated herein as NP1) that stimulates in vitro differentiation and mineralization of osteoblasts, the cells responsible for bone formation, and increases bone mineral density in young mice in vivo. The results demonstrate that these nanoparticles have intrinsic biological activity; however, the intracellular fate and a complete understanding of the mechanism(s) involved remains to be elucidated. Here we investigated the cellular mechanism(s) by which NP1 stimulates differentiation and mineralization of osteoblasts. We show that NP1 enters the cells through a caveolae-mediated endocytosis followed by stimulation of the mitogen activated protein kinase ERK1/2 (p44/p42). Our findings further revealed that NP1 stimulates autophagy including the processing of LC3β-I to LC3β-II, a key protein involved in autophagosome formation, which is dependent on ERK1/2 signaling. Using a variant of NP1 with cobalt ferrite magnetic metal core (NP1-MNP) to pull down associated proteins, we found direct binding of LC3β and p62, two key proteins involved in autophagosome formation, with silica nanoparticles. Interestingly, NP1 specifically interacts with the active and autophagosome associated form of LC3β (LC3β-II). Taken together, the stimulation of autophagy and associated signaling suggests a cellular mechanism for the stimulatory effects of silica nanoparticles on osteoblast differentiation and mineralization. PMID:24806912
Bansal, Amolak S; Bhaskaran, Sree; Bansal, Rhea A
2012-06-26
Several different foods have been implicated in inducing the delayed and very significant vomiting and sometimes diarrhea that occurs in food protein-induced enterocolitis syndrome. While immunoglobulin E is not involved, the mechanism(s) that result in the food-induced gastrointestinal symptoms are unclear, although T cell activation has been considered. We report four cases of food protein-induced enterocolitis syndrome caused by different solid foods and without concomitant immunoglobulin E sensitization to milk and soya. Clinical and laboratory evidence of type I immunoglobulin E mediated food reactivity and food-induced T cell activation was absent in each case. Case 1 concerned a 20-month-old South Asian boy who had experienced four episodes of severe vomiting with flaccidity since four months of age and two hours after consuming rice.Case 2 involved a nine-month-old Caucasian boy who had suffered three episodes of severe vomiting with flaccidity since six months of age and three hours after consuming wheat.The child in Case 3 was a 16-month-old Caucasian boy who had suffered three episodes of severe vomiting with flaccidity since nine months of age and two hours after consuming cod.Case 4 involved a 15-month-old South Asian boy who had suffered three episodes of severe vomiting since eight months of age and two hours after consuming chicken. In children with recurrent marked delayed vomiting after the ingestion of specific foods and in whom bronchospasm, skin rash and angioedema are absent, food protein-induced enterocolitis syndrome should be considered. Skin prick testing and specific immunoglobulin E antibodies are negative and the mechanism of the vomiting is unclear. We speculate whether food protein-induced oligoclonal T cell activation may be present. This has similarities to various animal models and improvement may involve deletion of these T cells.
Nakamura, T; Lipton, S A
2007-07-01
Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.
Gu, Feng; Chauhan, Ved; Chauhan, Abha
2013-12-01
Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (P<0.05). Although there was no significant difference in GR activity between autism and control groups, 40% of autistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be related to decreased protein expression of GCLM. Copyright © 2013 Elsevier Inc. All rights reserved.
Chatterjee, Kaushiki; AlSharif, Dina; Mazza, Christina; Syar, Palwasha; Al Sharif, Mohamed; Fata, Jimmie E
2018-02-21
Cervical cancer is one of the most common cancers in women living in developing countries. Due to a lack of affordable effective therapy, research into alternative anticancer compounds with low toxicity such as dietary polyphenols has continued. Our aim is to determine whether two structurally similar plant polyphenols, resveratrol and pterostilbene, exhibit anticancer and anti-HPV (Human papillomavirus) activity against cervical cancer cells. To determine anticancer activity, extensive in vitro analyses were performed. Anti-HPV activity, through measuring E6 protein levels, subsequent downstream p53 effects, and caspase-3 activation, were studied to understand a possible mechanism of action. Both polyphenols are effective agents in targeting cervical cancer cells, having low IC50 values in the µM range. They decrease clonogenic survival, reduce cell migration, arrest cells at the S-phase, and reduce the number of mitotic cells. These findings were significant, with pterostilbene often being more effective than resveratrol. Resveratrol and to a greater extent pterostilbene downregulates the HPV oncoprotein E6, induces caspase-3 activation, and upregulates p53 protein levels. Results point to a mechanism that may involve the downregulation of the HPV E6 oncoprotein, activation of apoptotic pathways, and re-establishment of functional p53 protein, with pterostilbene showing greater efficacy than resveratrol.
Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C
2013-04-26
The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells
Nakagawa, K.; Lokugamage, K.G.; Makino, S.
2017-01-01
Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623
Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming
2017-09-16
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Vílchez, José D.; Salto, Rafael; Manzano, Manuel; Sevillano, Natalia; Campos, Nefertiti; Argilés, Josep M.; Rueda, Ricardo; López‐Pedrosa, José M.
2015-01-01
Abstract Background L‐Leu and its metabolite β‐hydroxy‐β‐methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L‐Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L‐Leu and HMB in myotubes grown in the absence of any catabolic stimuli. Methods Studies were conducted in vitro using rat L6 myotubes under normal growth conditions (non‐involving L‐Leu‐deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined. Results Only HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein‐1, and eIF4E. HMB was significantly more effective than L‐Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L‐Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α‐keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α‐keto isocaproate into HMB. In these transfected cells, L‐Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α‐keto isocaproate dioxygenase. Conclusion Our results suggest that HMB is an active L‐Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure. PMID:27065075
Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E
2014-02-14
Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.
Zhu, Yuanyuan; Liang, Xinle; Zhang, Hong; Feng, Wei; Liu, Ye; Zhang, Fuming; Linhardt, Robert J
2017-05-02
Aspergillus oryzae koji plays a crucial role in fermented food products due to the hydrolytic activities of secreted enzymes. In the present study, we performed a comparative secretome analysis of the industrial strain of Aspergillus oryzae 3.042 and its spontaneous mutantZJGS-LZ-21. One hundred and fifty two (152) differential protein spots were excised (p<0.05), and 25 proteins were identified. Of the identified proteins, 91.3% belonged to hydrolytic enzymes acting on carbohydrates or proteins. Consistent with their enzyme activities, the expression of 14 proteins involved in the degradation of cellulose, hemicellulose, starch and proteins, increased in the ZJGS-LZ-21isolate. In particular, increased levels of acid protease (Pep) may favor the degradation of soy proteins in acidic environments and promote the cleavage of allergenic soybean proteins in fermentation, resulting in improvements of product safety and quality. The ZJGS-LZ-21 isolate showed higher protein secretion and increased hydrolytic activities than did strain 3.042, indicating its promising application in soybean paste fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.
Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis
Liu, Yannan; Tan, Tanya; Jia, Wenzhuo; Lugea, Aurelia; Mareninova, Olga; Waldron, Richard T.; Pandol, Stephen J.
2014-01-01
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. PMID:25035113
Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A
2015-09-01
G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs. Copyright © 2015 John Wiley & Sons, Inc.
Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A.; Gurevich, Vsevolod V.; Lambert, Nevin A.
2015-01-01
G protein-coupled receptors (GPCRs) represent ~25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Functionally selective or biased ligands activate one of these two pathways and may be superior medications for certain diseases states. The identification of these ligands requires robust drug screening assays for both G protein and arrestin activity. Here we describe in detail the technical aspects of two bioluminescence resonance energy (BRET)-based assays that can be used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect recruitment of arrestin to unmodified GPCRs. PMID:26331887
Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S
2014-05-01
The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.
Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M
2009-07-01
The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.
Bertolde, Fabiana Z.; Almeida, Alex-Alan F.; Pirovani, Carlos P.
2014-01-01
Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor. PMID:25289700
Bertolde, Fabiana Z; Almeida, Alex-Alan F; Pirovani, Carlos P
2014-01-01
Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor.
Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel
2010-04-01
Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARdelta activation as a pharmacological target to prevent insulin resistance.
Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won
2016-02-20
Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.
Geng, Xiaofang; Xu, Tiantian; Niu, Zhipeng; Zhou, Xiaochun; Zhao, Lijun; Xie, Zhaohui; Xue, Deming; Zhang, Fuchun; Xu, Cunshuan
2014-01-01
Following amputation, the newt has the remarkable ability to regenerate its limb, and this process involves dedifferentiation, proliferation and differentiation. To investigate the potential proteome during a dynamic network of Chinese fire-bellied newt limb regeneration (CNLR), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrum (MS) were applied to examine changes in the proteome that occurred at 11 time points after amputation. Meanwhile, several proteins were selected to validate their expression levels by Western blot. The results revealed that 1476 proteins had significantly changed as compared to the control group. Gene Ontology annotation and protein network analysis by Ingenuity Pathway Analysis 9.0 (IPA) software suggested that the differentially expressed proteins were involved in 33 kinds of physiological activities including signal transduction, cell proliferation, cell differentiation, etc. Among these proteins, 407 proteins participated in cell differentiation with 212 proteins in the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte, and 37 proteins participated in signaling pathways of BCC, CRH, CXCR4, GnRH, GPCR and IL1 which regulated cell differentiation and redifferentiation. On the other hand, the signal transduction activity and cell differentiation activity were analyzed by IPA based on the changes in the expression of these proteins. The results showed that BCC, CRH, CXCR4, GnRH, GPCR and IL1 signaling pathways played an important role in regulating the differentiation of skin cell, myocyte, neurocyte, chondrocyte and osteocyte during CNLR. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Regulation of Son of sevenless by the membrane-actin linker protein ezrin
Geißler, Katja J.; Jung, M. Juliane; Riecken, Lars Björn; Sperka, Tobias; Cui, Yan; Schacke, Stephan; Merkel, Ulrike; Markwart, Robby; Rubio, Ignacio; Than, Manuel E.; Breithaupt, Constanze; Peuker, Sebastian; Seifert, Reinhard; Kaupp, Ulrich Benjamin; Herrlich, Peter; Morrison, Helen
2013-01-01
Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras. PMID:24297905
Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir
2014-01-01
Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis. PMID:25473301
Strittmatter, Gerhard E; Garstkiewicz, Martha; Sand, Jennifer; Grossi, Serena; Beer, Hans-Dietmar
2016-01-01
Inflammasomes comprise a group of protein complexes, which activate the protease caspase-1 upon sensing a variety of stress factors. Active caspase-1 in turn cleaves and thereby activates the pro-inflammatory cytokines prointerleukin (IL)-1β and -18, and induces unconventional protein secretion (UPS) of mature IL-1β, IL-18, as well as of many other proteins involved in and required for induction of inflammation. Human primary keratinocytes (HPKs) represent epithelial cells able to activate caspase-1 in an inflammasome-dependent manner upon irradiation with a physiological dose of ultraviolet B (UVB) light. Here, we describe the isolation of keratinocytes from human skin, their cultivation, and induction of caspase-1-dependent UPS upon UVB irradiation as well as its siRNA- and chemical-mediated inhibition. In contrast to inflammasome activation of professional immune cells, UVB-irradiated HPKs represent a robust and physiological cell culture system for the analysis of UPS induced by active caspase-1.
Recombinant DHX33 Protein Possesses Dual DNA/RNA Helicase Activity.
Wang, Xingshun; Ge, Wei; Zhang, Yandong
2018-06-13
RNA helicase DHX33 has been shown to participate in a variety of cellular activities, including ribosome biogenesis, protein translation, and gene transcription. We and others further discovered that DHX33 is strongly expressed in several types of human cancers and plays important roles in promoting cancer cell proliferation. To better understand the molecular mechanism for DHX33 in exerting its biological functions, we purified recombinant DHX33 and performed biochemical studies in vitro. DHX33 protein was found to have ATPase activity that is dependent on DNA or RNA duplexes. The ATPase activity of DHX33 is coupled with its RNA/DNA unwinding activity. If a key residue in the ATP binding site were mutated, the mutant DHX33 could not unwind DNA/RNA duplexes. Furthermore, a deletion mutant of a RKK motif previously identified to be involved in ribosome DNA binding could still unwind DNA duplexes, albeit with reduced efficiency. In summary, our study reveals that purified DHX33 protein possesses unwinding activity toward DNA and RNA duplexes.
Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens.
Eldridge, Matthew J G; Shenoy, Avinash R
2015-02-01
Inflammasomes - molecular platforms for caspase-1 activation - have emerged as common hubs for a number of pathways that detect and respond to bacterial pathogens. Caspase-1 activation results in the secretion of bioactive IL-1β and IL-18 and pyroptosis, and thus launches a systemic immune and inflammatory response. In this review we discuss signal transduction leading to 'canonical' and 'non-canonical' activation of caspase-1 through the involvement of upstream caspases. Recent studies have identified a growing number of regulatory networks involving guanylate binding proteins, protein kinases, ubiquitylation and necroptosis related pathways that modulate inflammasome responses and immunity to bacterial infection. By being able to respond to extracellular, vacuolar and cytosolic bacteria, their cytosolic toxins or ligands for cell surface receptors, inflammasomes have emerged as important sentinels of infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé
2011-07-01
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Ishida, A; Sueyoshi, N; Shigeri, Y; Kameshita, I
2008-01-01
Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in intracellular Ca2+ signaling pathways. There is growing evidence that CaMKs are involved in the pathogenic mechanisms underlying various human diseases. In this review, we begin by briefly summarizing our knowledge of the involvement of CaMKs in the pathogenesis of various diseases suggested to be caused by the dysfunction/dysregulation or aberrant expression of CaMKs. It is widely known that the activities of CaMKs are strictly regulated by protein phosphorylation/dephosphorylation of specific phosphorylation sites. Since phosphorylation status is balanced by protein kinases and protein phosphatases, the mechanism of dephosphorylation/deactivation of CaMKs, corresponding to their ‘switching off', is extremely important, as is the mechanism of phosphorylation/activation corresponding to their ‘switching on'. Therefore, we focus on the regulation of multifunctional CaMKs by protein phosphatases. We summarize the current understanding of negative regulation of CaMKs by protein phosphatases. We also discuss the biochemical properties and physiological significance of a protein phosphatase that we designated as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), and those of its homologue CaMKP-N. Pharmacological applications of CaMKP inhibitors are also discussed. These compounds may be useful not only for exploring the physiological functions of CaMKP/CaMKP-N, but also as novel chemotherapies for various diseases. PMID:18454172
Salivary proteomics in lichen planus: A relationship with pathogenesis?
Souza, M M; Florezi, G P; Nico, Mms; de Paula, F; Paula, F M; Lourenço, S V
2018-01-30
Oral lichen planus is a chronic, T-cell-mediated, inflammatory disease that affects the oral cavity. The oral lichen planus pathogenesis is still unclear, however, the main evidence is that the mechanisms of activation of different T lymphocyte pathway induce apoptosis with an increase in Th1 and Th17 subtypes cells, triggered by the release of cytokines. This study analysed saliva proteomics to identify protein markers that might be involved in the pathogenesis and development of the disease. Proteins differentially expressed by oral lichen planus and healthy controls were screened using mass spectrometry; the proteins found in oral lichen planus were subjected to bioinformatics analysis, including gene ontology and string networks analysis. The multiplex analysis validation allowed the correlation between the proteins identified and the involved cytokines in Th17 response. One hundred and eight proteins were identified in oral lichen planus, of which 17 proteins showed a high interaction between them and indicated an association with the disease. Expression of these proteins was correlated with the triggering of cytokines, more specifically the Th17 cells. Proteins, such as S100A8, S100A9, haptoglobin, can trigger cytokines and might be associated with a pathological function and antioxidant activities in oral lichen planus. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko
2016-01-01
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560
Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo
Cheryan, Vino T.; Wu, Wenjuan; Cui, Cindy Qiuzhi; Polin, Lisa A.; Pass, Harvey I.; Dou, Q. Ping; Rishi, Arun K.; Wali, Anil
2012-01-01
The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent. PMID:22912669
Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.
1999-01-01
The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831
Brain Na+, K+-ATPase Activity In Aging and Disease
de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López
2014-01-01
Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways, enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na+, K+-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy. PMID:25018677
Single-Molecule Spectroscopy and Imaging Studies of Protein Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter
2012-04-01
Enzymatic reactions and protein-protein interactions are traditionally studied at the ensemble level, despite significant static and dynamic inhomogeneities. Subtle conformational changes play a crucial role in protein functions, and these protein conformations are highly dynamic rather than being static. We applied AFM-enhanced single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of T4 lysozyme and HPPK enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation. Our new approach is applicable to a wide range of single-molecule FRET measurements for protein conformational changes under enzymatic reactions.
Recent advances in inflammasome biology.
Place, David E; Kanneganti, Thirumala-Devi
2018-02-01
The inflammasome is a complex of proteins that through the activity of caspase-1 and the downstream substrates gasdermin D, IL-1β, and IL-18 execute an inflammatory form of cell death termed pyroptosis. Activation of this complex often involves the adaptor protein ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. Here we discuss new regulatory mechanisms that have been identified for the canonical inflammasomes, the most recently identified NLRP9b inflammasome, and the new gasdermin family of proteins that mediate pyroptosis and other forms of regulated cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, Tahise M; da Silva, Fernanda R; Bonatto, Diego; Neves, Diana M; Morillon, Raphael; Maserti, Bianca E; Filho, Mauricio A Coelho; Costa, Marcio G C; Pirovani, Carlos P; Gesteira, Abelmon S
2015-03-03
Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.
Tridente, Giuseppe; Bason, Caterina; Sivori, Simona; Beri, Ruggero; Dolcino, Marzia; Valletta, Enrico; Corrocher, Roberto; Puccetti, Antonio
2006-01-01
Background Celiac disease is a small intestine inflammatory disorder with multiple organ involvement, sustained by an inappropriate immune response to dietary gluten. Anti-transglutaminase antibodies are a typical serological marker in patients with active disease, and may disappear during a gluten-free diet treatment. Involvement of infectious agents and innate immunity has been suggested but never proven. Molecular mimicry is one of the mechanisms that links infection and autoimmunity. Methods and Findings In our attempt to clarify the pathogenesis of celiac disease, we screened a random peptide library with pooled sera of patients affected by active disease after a pre-screening with the sera of the same patients on a gluten-free diet. We identified a peptide recognized by serum immunoglobulins of patients with active disease, but not by those of patients on a gluten-free diet. This peptide shares homology with the rotavirus major neutralizing protein VP-7 and with the self-antigens tissue transglutaminase, human heat shock protein 60, desmoglein 1, and Toll-like receptor 4. We show that antibodies against the peptide affinity-purified from the sera of patients with active disease recognize the viral product and self-antigens in ELISA and Western blot. These antibodies were able to induce increased epithelial cell permeability evaluated by transepithelial flux of [3H] mannitol in the T84 human intestinal epithelial cell line. Finally, the purified antibodies induced monocyte activation upon binding Toll-like receptor 4, evaluated both by surface expression of activation markers and by production of pro-inflammatory cytokines. Conclusions Our findings show that in active celiac disease, a subset of anti-transglutaminase IgA antibodies recognize the viral protein VP-7, suggesting a possible involvement of rotavirus infection in the pathogenesis of the disease, through a mechanism of molecular mimicry. Moreover, such antibodies recognize self-antigens and are functionally active, able to increase intestinal permeability and induce monocyte activation. We therefore provide evidence for the involvement of innate immunity in the pathogenesis of celiac disease through a previously unknown mechanism of engagement of Toll-like receptor 4. PMID:16984219
Gonzalez-Gronow, Mario; Fiedler, Jenny L; Farias Gomez, Cristian; Wang, Fang; Ray, Rupa; Ferrell, Paul D; Pizzo, Salvatore V
2017-08-26
Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys 91 residue of the MBP NH 2 -terminal region Asp 82 -Pro 99 , and the binding of Pg via a lysine-dependent mechanism to the Lys 122 residue of the MBP COOH-terminal region Leu 109 -Gly 126 . In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology. Copyright © 2017 Elsevier Inc. All rights reserved.
Regulatory crosstalk by protein kinases on CFTR trafficking and activity
NASA Astrophysics Data System (ADS)
Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter
2016-01-01
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis.
Dzierlenga, Anika L; Cherrington, Nathan J
2018-03-01
Nonalcoholic steatohepatitis (NASH) remodels the expression and function of genes and proteins that are critical for drug disposition. This study sought to determine whether disruption of membrane protein trafficking pathways in human NASH contributes to altered localization of multidrug resistance-associated protein 2 (MRP2). A comprehensive immunoblot analysis assessed the phosphorylation, membrane translocation, and expression of transporter membrane insertion regulators, including several protein kinases (PK), radixin, MARCKS, and Rab11. Radixin exhibited a decreased phosphorylation and total expression, whereas Rab11 had an increased membrane localization. PKCδ, PKCα, and PKA had increased membrane activation, whereas PKCε had a decreased phosphorylation and membrane expression. Radixin dephosphorylation may activate MRP2 membrane retrieval in NASH; however, the activation of Rab11/PKCδ and PKA/PKCα suggest an activation of membrane insertion pathways as well. Overall these data suggest an altered regulation of protein trafficking in human NASH, although other processes may be involved in the regulation of MRP2 localization. © 2018 Wiley Periodicals, Inc.
Odorants selectively activate distinct G protein subtypes in olfactory cilia.
Schandar, M; Laugwitz, K L; Boekhoff, I; Kroner, C; Gudermann, T; Schultz, G; Breer, H
1998-07-03
Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.
Cornelius, Carolin; Koverech, Guido; Crupi, Rosalia; Di Paola, Rosanna; Koverech, Angela; Lodato, Francesca; Scuto, Maria; Salinaro, Angela T.; Cuzzocrea, Salvatore; Calabrese, Edward J.; Calabrese, Vittorio
2014-01-01
Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process. PMID:24959146
Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni
2017-01-01
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570
The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory.
Basu, Sreetama; Lamprecht, Raphael
2018-01-01
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Adaptor proteins in protein kinase C-mediated signal transduction.
Schechtman, D; Mochly-Rosen, D
2001-10-01
Spatial and temporal organization of signal transduction is essential in determining the speed and precision by which signaling events occur. Adaptor proteins are key to organizing signaling enzymes near their select substrates and away from others in order to optimize precision and speed of response. Here, we describe the role of adaptor proteins in determining the specific function of individual protein kinase C (PKC) isozymes. These isozyme-selective proteins were called collectively RACKs (receptors for activated C-kinase). The role of RACKs in PKC-mediated signaling was determined using isozyme-specific inhibitors and activators of the binding of each isozyme to its respective RACK. In addition to anchoring activated PKC isozymes, RACKs anchor other signaling enzymes. RACK1, the anchoring protein for activated betaIIPKC, binds for example, Src tyrosine kinase, integrin, and phosphodiesterase. RACK2, the epsilonPKC-specific RACK, is a coated-vesicle protein and thus is involved in vesicular release and cell-cell communication. Therefore, RACKs are not only adaptors for PKC, but also serve as adaptor proteins for several other signaling enzymes. Because at least some of the proteins that bind to RACKs, including PKC itself, regulate cell growth, modulating their interactions with RACKs may help elucidate signaling pathways leading to carcinogenesis and could result in the identification of novel therapeutic targets.
Khan, Shamila; Cole, Nerida; Hume, Emma B H; Garthwaite, Linda L; Nguyen-Khuong, Terry; Walsh, Bradley J; Willcox, Mark D P
2016-10-01
Staphylococcus is a leading cause of microbial keratitis, characterized by destruction of the cornea by bacterial exoproteins and host-associated factors. The aim of this study was to compare extracellular and cell-associated proteins produced by two different isolates of S. aureus, a virulent clinical isolate (Staph 38) and a laboratory strain (Staphylococcus aureus 8325-4) of weaker virulence in the mouse keratitis model. Proteins were analyzed using 2D polyacrylamide gel electrophoresis and identified by subsequent mass spectrometry. Activity of staphylococcal adhesins was assessed by allowing strains to bind to various proteins adsorbed onto polymethylmethacrylate squares. Thirteen proteins in the extracellular fraction and eight proteins in the cell-associated fractions after bacterial growth were produced in increased amounts in the clinical isolate Staph 38. Four of these proteins were S. aureus virulence factor adhesins, fibronectin binding protein A, staphopain, glyceraldehyde-3-phosphate dehydrogenase 2 and extracellular adherence protein. The clinical isolate Staph 38 adhered to a greater extent to all mammalian proteins tested, indicating the potential of the adhesins to be active on its surface. Other proteins with increased expression in Staph 38 included potential moonlighting proteins and proteins involved in transcription or translation. This is the first demonstration of the proteome of S. aureus isolates from keratitis. These results indicate that the virulent clinical isolate produces more potentially important virulence factors compared to the less virulent laboratory strain and these may be associated with the ability of a S. aureus strain to cause more severe keratitis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering
Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...
2015-01-27
Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less
Non-encapsidation Activities of the Capsid Proteins of Positive-strand RNA Viruses
Ni, Peng; Kao, C. Cheng
2013-01-01
Viral capsid proteins (CPs) are characterized by their role in forming protective shells around viral genomes. However, CPs have additional and important roles in the virus infection cycles and in the cellular response to infection. These activities involve CP binding to RNAs in both sequence-specific and nonspecific manners as well as association with other proteins. This review focuses on CPs of both plant and animal-infecting viruses with positive-strand RNA genomes. We summarize the structural features of CPs and describe their modulatory roles in viral translation, RNA-dependent RNA synthesis, and host defense responses. PMID:24074574
Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean
1998-01-01
NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734
The ABCD's of 5'-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy.
Weidling, Ian; Swerdlow, Russell H
2016-07-01
This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86. © 2016 International Society for Neurochemistry.
Yanashima, Kensuke; Chieosilapatham, Panjit; Yoshimoto, Eri; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François
2017-08-01
Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds. We report that IDR-1018 stimulates various functions of human mast cells. IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways. IDR-1018 will be a useful therapeutic agent for wound healing.
Gene Networks and Functional Features of Gravitropic response in Rice Shoot Bases
NASA Astrophysics Data System (ADS)
Hu, Liwei; Zang, Aiping; Ai, Qianru; Chen, Haiying; Li, Lin; Li, Rui; Su, Feng; Chen, Xijiang; Rong, Hui; Dou, Xianying; Reinhold-Hurek, Barbara; Li, Qi; Cai, Weiming
To delineate key genes and the corresponding physiological functions as well as the coordina-tion of genes involved in the gravitropism of rice shoot bases, we used whole-genome microarray analysis of upper and lower parts of rice shoot bases at 0.5 h and 6 h after gravistimulation. And bio-information analysis was applied including GO-analysis, expression tendency and net-work analysis. In the lower shoot bases, auxin-mediated signaling pathway and glutathione transferase activity with the biggest enrichment were activated at 0.5 h, while cytokinin stimu-lus and photosynthesis were activated at 6 h. Meanwhile, several processes were suppressed in the lower shoot bases, including: xyloglucan:xyloglucosyl transferase activity, glucan metabolic processes, and ATPase activity at 0.5 h; and tRNA isopentenyltransferase activity, and chiti-nase activity, etc. at 6 h. Gene expression profile responding to gravistimulation suggested that the asymmetrically activation of several phytohormone signaling pathways including auxin, gib-berellin and cytokinin brassinolide ethylene and cytokinin-related genes were involved in the differentially growth between the upper and lower parts of rice shoot bases, and so do cell wall-related genes. Topological analysis of the coexpression networks revealed the core statue of AY177699.1(apetala3-like protein) and AK105103.1 at 0.5 h; AK062612.1 (ethylene response factor) and AK099932.1 (lectin-like receptor kinase 72) at 6 h. All the core factors have the function "response to endogenous stimulus". Additionally, AK108057.1(similar to germin-like protein precursor) was discovered as the most important core gene in the upper shoot bases in 6h after gravistimualtion while AK067424.1(cellulose synthase-like protein), AK120101.1 (Zinc finger, B-box domain containing protein) and CR278698 (ATPase associated with various cel-lular activities cellulose synthase-like protein) contribute equally to gravitropic response in the lower shoot bases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala
Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis.more » Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.« less
Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin
2016-02-11
The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that involved in the biosynthesis of amino acids. Upon N deprivation, the glycolytic pathway was up-regulated, while the activity of the tricarboxylic acid cycle was retarded, thus, leading more carbon flux to fatty acid biosynthesis. Moreover, the pentose phosphate pathway was up-regulated, then this would increase the production of NADPH. Together, coordinated regulation of central carbon metabolism upon N limitation, provides more carbon flux to acetyl-CoA and NADPH for fatty acid biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanling; Sato, Masaaki; Guo, Yuan
2014-10-15
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations weremore » not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.
1991-05-01
In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In searchmore » of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.« less
Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress.
Manolopoulos, K N; Klotz, L-O; Korsten, P; Bornstein, S R; Barthel, A
2010-11-01
Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.
Lin, Ying-Hung; Ke, Chih-Chun; Wang, Ya-Yun; Chen, Mei-Feng; Chen, Tsung-Ming; Ku, Wei-Chi; Chiang, Han-Sun; Yeh, Chung-Hsin
2017-01-05
According to recent estimates, 2%-15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins ( MGCRABGAPs ) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP-RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Hyperforin: To Be or Not to Be an Activator of TRPC(6).
Friedland, Kristina; Harteneck, Christian
2015-01-01
Meantime, it is well accepted that hyperforin, the chemical instable phloroglucinol derivative of Hypericum perforatum, St. John's wort, is the pharmacophore of St. John's wort extracts. With the decline of this scientific discussion, another controversial aspect has been arisen, the question regarding the underlying mechanism leading to the pharmacological profile of the plant extract used in therapy of depression. We will summarize the different concepts described for hyperforin's antidepressive activity. Starting with unspecific protein-independent mechanisms due to changes in pH, we will summarize data of protein-based concepts beginning with concepts based on involvement of a variety of proteins and will finally present concepts based on the modulation of a single protein.
Morrison, W J; Dhar, A; Shukla, S D
1989-01-01
The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF (100 nM for 5 seconds) stimulated incorporation of 32P into proteins and caused [3H]InsP3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [3H]InsP3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [3H]InsP3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF.
Routh, Satya B; Sankaranarayanan, Rajan
2017-01-01
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations. © 2017 Elsevier Inc. All rights reserved.
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-06-06
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.
Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A
2005-01-01
In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma. PMID:15928660
Nucleophosmin regulates the stability and transcriptional activity of p53.
Colombo, Emanuela; Marine, Jean-Christophe; Danovi, Davide; Falini, Brunangelo; Pelicci, Pier Giuseppe
2002-07-01
Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phosphoprotein that continuously shuttles between the nucleus and cytoplasm. It has been proposed to function in ribosomal protein assembly and transport, and also as a molecular chaperone that prevents proteins from aggregating in the crowded environment of the nucleolus. The NPM gene is involved in several tumour-associated chromosome translocations, which have resulted in the formation of fusion proteins that retain the amino terminus of NPM, including NPM ALK, NPM RAR and NPM MLF1 (ref. 6). It is generally thought that the NPM component is not involved in the transforming potential of these fusion proteins, but instead provides a dimerization interface for the oligomerization and the oncogenic conversion of the various NPM partners (ALK, RAR, MLF1). Here we show that NPM interacts directly with the tumour suppressor p53, regulates the increase in stability and transcriptional activation of p53 after different types of stress, and induces p53-dependent premature senescence on overexpression in diploid fibroblasts. These findings indicate that NPM is a crucial regulator of p53 and suggest that alterations of the NPM function by NPM fusion proteins might lead to deregulation of p53 in tumours.
Wang, Qian; Fujioka, Hisashi; Nussenzweig, Victor
2005-01-01
Plasmodium sporozoites develop within oocysts residing in the mosquito midgut. Mature sporozoites exit the oocysts, enter the hemolymph, and invade the salivary glands. The circumsporozoite (CS) protein is the major surface protein of salivary gland and oocyst sporozoites. It is also found on the oocyst plasma membrane and on the inner surface of the oocyst capsule. CS protein contains a conserved motif of positively charged amino acids: region II-plus, which has been implicated in the initial stages of sporozoite invasion of hepatocytes. We investigated the function of region II-plus by generating mutant parasites in which the region had been substituted with alanines. Mutant parasites produced normal numbers of sporozoites in the oocysts, but the sporozoites were unable to exit the oocysts. In in vitro as well, there was a profound delay, upon trypsin treatment, in the release of mutant sporozoites from oocysts. We conclude that the exit of sporozoites from oocysts is an active process that involves the region II-plus of CS protein. In addition, the mutant sporozoites were not infective to young rats. These findings provide a new target for developing reagents that interfere with the transmission of malaria. PMID:16201021
2009-01-01
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD. PMID:20035627
F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast.
Qiu, Cui; Yi, Yuan-Yuan; Lucena, Rafael; Wu, Meng-Juan; Sun, Jia-Hao; Wang, Xi; Jin, Quan-Wen; Wang, Yamei
2018-02-02
The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1- Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process. © 2018. Published by The Company of Biologists Ltd.
Kumar, Rajnish; Moche, Martin; Winblad, Bengt; Pavlov, Pavel F
2017-10-27
FK506 binding protein of 51 kDa (FKBP51) is a heat shock protein 90 (Hsp90) co-chaperone involved in the regulation of steroid hormone receptors activity. It is known for its role in various regulatory pathways implicated in mood and stress-related disorders, cancer, obesity, Alzheimer's disease and corticosteroid resistant asthma. It consists of two FKBP12 like active peptidyl prolyl isomerase (PPIase) domains (an active FK1 and inactive FK2 domain) and one tetratricopeptide repeat (TPR) domain that mediates interaction with Hsp90 via its C-terminal MEEVD peptide. Here, we report a combined x-ray crystallography and molecular dynamics study to reveal the binding mechanism of Hsp90 MEEVD peptide to the TPR domain of FKBP51. The results demonstrated that the Hsp90 C-terminal peptide binds to the TPR domain of FKBP51 with the help of di-carboxylate clamp involving Lys272, Glu273, Lys352, Asn322, and Lys329 which are conserved throughout several di-carboxylate clamp TPR proteins. Interestingly, the results from molecular dynamics study are also in agreement to the complex structure where all the contacts between these two partners were consistent throughout the simulation period. In a nutshell, our findings provide new opportunity to engage this important protein-protein interaction target by small molecules designed by structure based drug design strategy.
The regulation of smooth muscle contractility by zipper-interacting protein kinase.
Ihara, Eikichi; MacDonald, Justin A
2007-01-01
Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.
Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.
MacPherson, Rebecca E K; Peters, Sandra J
2015-07-01
The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism.
2017-01-01
Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang IIinduced vascular aging as a dietary supplement. PMID:29725214
Osipiuk, Jerzy; Mulligan, Rory; Bargassa, Monireh; Hamilton, John E.; Cunningham, Mark A.; Joachimiak, Andrzej
2012-01-01
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1–116, and the C-terminal one includes residues 117–125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid. PMID:22493430
Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi
2016-03-16
Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.
Tan, Juan; Qiao, Wentao; Wang, Jian; Xu, Fengwen; Li, Yue; Zhou, Jun; Chen, Qimin; Geng, Yunqi
2008-01-01
Interferon-induced proteins (IFPs) exert multiple functions corresponding to diverse interferon signals. However, the intracellular functions of many IFPs are not fully characterized. Here, we report that IFP35, a member of the IFP family with a molecular mass of 35 kDa, can interact with the bovine Tas (BTas) regulatory protein of bovine foamy virus (BFV). The interaction involves NID2 (IFP35/Nmi homology domain) of IFP35 and the central domain of BTas. The overexpression of IFP35 disturbs the ability of BTas to activate viral-gene transcription and inhibits viral replication. The depletion of endogenous IFP35 by interfering RNA can promote the activation of BFV, suggesting an inhibitory function of IFP35 in viral-gene expression. In addition, IFP35 can interact with the homologous regulatory protein of prototype FV and arrest viral replication and repress viral transcription. Our study suggests that IFP35 may represent a novel pathway of interferon-mediated antiviral activity in host organisms that plays a role in the maintenance of FV latency. PMID:18305040
Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401
Boussardon, Clément; Avon, Alexandra; Kindgren, Peter; Bond, Charles S; Challenor, Michael; Lurin, Claire; Small, Ian
2014-09-01
In flowering plants, RNA editing involves deamination of specific cytidines to uridines in both mitochondrial and chloroplast transcripts. Pentatricopeptide repeat (PPR) proteins and multiple organellar RNA editing factor (MORF) proteins have been shown to be involved in RNA editing but none have been shown to possess cytidine deaminase activity. The DYW domain of some PPR proteins contains a highly conserved signature resembling the zinc-binding active site motif of known nucleotide deaminases. We modified these highly conserved amino acids in the DYW motif of DYW1, an editing factor required for editing of the ndhD-1 site in Arabidopsis chloroplasts. We demonstrate that several amino acids of this signature motif are required for RNA editing in vivo and for zinc binding in vitro. We conclude that the DYW domain of DYW1 has features in common with cytidine deaminases, reinforcing the hypothesis that this domain forms part of the active enzyme that carries out RNA editing in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Phosphoglycerolipids are master players in plant hormone signal transduction.
Janda, Martin; Planchais, Severine; Djafi, Nabila; Martinec, Jan; Burketova, Lenka; Valentova, Olga; Zachowski, Alain; Ruelland, Eric
2013-06-01
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C
1989-04-01
The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.
Identification of an inducible regulator of c-myb expression during T-cell activation.
Phan, S C; Feeley, B; Withers, D; Boxer, L M
1996-01-01
Resting T cells express very low levels of c-Myb protein. During T-cell activation, c-myb expression is induced and much of the increase in expression occurs at the transcriptional level. We identified a region of the c-myb 5' flanking sequence that increased c-myb expression during T-cell activation. In vivo footprinting by ligation-mediated PCR was performed to correlate in vivo protein binding with functional activity. A protein footprint was visible over this region of the c-myb 5' flanking sequence in activated T cells but not in unactivated T cells. An electrophoretic mobility shift assay (EMSA) with nuclear extract from activated T cells and an oligonucleotide of this binding site demonstrated a new protein-DNA complex, referred to as CMAT for c-myb in activated T cells; this complex was not present in unactivated T cells. Because the binding site showed some sequence similarity with the nuclear factor of activated T cells (NFAT) binding site, we compared the kinetics of induction of the two binding complexes and the molecular masses of the two proteins. Studies of the kinetics of induction showed that the NFAT EMSA binding complex appeared earlier than the CMAT complex. The NFAT protein migrated more slowly in a sodium dodecyl sulfate-polyacrylamide gel than the CMAT protein did. In addition, an antibody against NFAT did not cross-react with the CMAT protein. The appearance of the CMAT binding complex was inhibited by both cyclosporin A and rapamycin. The CMAT protein appears to be a novel inducible protein involved in the regulation of c-myb expression during T-cell activation. PMID:8628306
Slawson, Chad; Housley, Michael P; Hart, Gerald W
2006-01-01
O-GlcNAc is an ubiquitous post-translational protein modification consisting of a single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins. Recent work has begun to uncover the functional roles of O-GlcNAc in cellular processes. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cell's capacity to grow and divide, and regulates gene transcription. This review will focus on recent work involving O-GlcNAc in sensing the environment and regulating signaling cascades. (c) 2005 Wiley-Liss, Inc.
Abiotic stress responses in plants: roles of calmodulin-regulated proteins.
Virdi, Amardeep S; Singh, Supreet; Singh, Prabhjeet
2015-01-01
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Abiotic stress responses in plants: roles of calmodulin-regulated proteins
Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet
2015-01-01
Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296
Starostina, Elena; Xu, Aiguo; Lin, Heping; Pikielny, Claudio W
2009-01-02
Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons.
17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells.
Royer, Carine; Lucas, Thaís F G; Lazari, Maria F M; Porto, Catarina S
2012-04-01
The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.
He, Baoming; Yu, Liang; Li, Suping; Xu, Fei; Yang, Lili; Ma, Shuai; Guo, Yi
2018-04-01
Cranial nerve involvement frequently involves neuron damage and often leads to psychiatric disorder caused by multiple inducements. Lurasidone is a novel antipsychotic agent approved for the treatment of cranial nerve involvement and a number of mental health conditions in several countries. In the present study, the neuroprotective effect of lurasidone by antagonist activities on histamine was investigated in a rat model of cranial nerve involvement. The antagonist activities of lurasidone on serotonin 5‑HT7, serotonin 5‑HT2A, serotonin 5‑HT1A and serotonin 5‑HT6 were analyzed, and the preclinical therapeutic effects of lurasidone were examined in a rat model of cranial nerve involvement. The safety, maximum tolerated dose (MTD) and preliminary antitumor activity of lurasidone were also assessed in the cranial nerve involvement model. The therapeutic dose of lurasidone was 0.32 mg once daily, administered continuously in 14‑day cycles. The results of the present study found that the preclinical prescriptions induced positive behavioral responses following treatment with lurasidone. The MTD was identified as a once daily administration of 0.32 mg lurasidone. Long‑term treatment with lurasidone for cranial nerve involvement was shown to improve the therapeutic effects and reduce anxiety in the experimental rats. In addition, treatment with lurasidone did not affect body weight. The expression of the language competence protein, Forkhead‑BOX P2, was increased, and the levels of neuroprotective SxIP motif and microtubule end‑binding protein were increased in the hippocampal cells of rats with cranial nerve involvement treated with lurasidone. Lurasidone therapy reinforced memory capability and decreased anxiety. Taken together, lurasidone treatment appeared to protect against language disturbances associated with negative and cognitive impairment in the rat model of cranial nerve involvement, providing a basis for its use in the clinical treatment of patients with cranial nerve involvement.
Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang
2013-01-01
Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan
2010-11-26
Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular sensitivity to anticancer treatments. These findings may provide pivotal insights in the context of fractionated radiation-based therapeutic interventions in brain cancer.« less
Nutrition and physical activity for the prevention and treatment of age-related sarcopenia.
Bosaeus, Ingvar; Rothenberg, Elisabet
2016-05-01
Sarcopenia, defined as loss of skeletal muscle mass and function, is associated with adverse outcomes such as physical disability, impaired quality of life and increased mortality. Several mechanisms are involved in the development of sarcopenia. Potentially modifiable factors include nutrition and physical activity. Protein metabolism is central to the nutritional issues, along with other potentially modifying nutritional factors as energy balance and vitamin D status. An increasing but still incomplete knowledge base has generated recent recommendations on an increased protein intake in the elderly. Several factors beyond the total amount of protein consumed emerge as potentially important in this context. A recent summit examined three hypotheses: (1) A meal threshold; habitually consuming 25-30 g protein at breakfast, lunch and dinner provides sufficient protein to effectively stimulate muscle protein anabolism; (2) Protein quality; including high-quality protein at each meal improves postprandial muscle protein synthesis; and (3) performing physical activity in close temporal proximity to a high-quality protein meal enhances muscle anabolism. Optimising the potential for muscle protein anabolism by consuming an adequate amount of high-quality protein at each meal, in combination with physical activity, appears as a promising strategy to prevent or delay the onset of sarcopenia. However, results of interventions are inconsistent, and well-designed, standardised studies evaluating exercise or nutrition interventions are needed before guidelines can be developed for the prevention and treatment of age-related sarcopenia.
Bellik, Lydia; Vinci, Maria Cristina; Filippi, Sandra; Ledda, Fabrizio; Parenti, Astrid
2005-10-01
We have previously shown that hypoxia makes vascular smooth muscle cells (VSMCs) responsive to placental growth factor (PlGF) through the induction of functional fms-like tyrosine kinase (Flt-1) receptors. The aim of this study was to investigate the molecular mechanisms involved in the PlGF effects on proliferation and contraction of VSMCs previously exposed to hypoxia (3% O2). In cultured rat VSMCs exposed to hypoxia, PlGF increased the phosphorylation of protein kinase B (Akt), p38 and STAT3; activation of STAT3 was higher than that of other kinases. In agreement with this finding, the proliferation of hypoxia-treated VSMCs in response to PlGF was significantly impaired by the p38 and the phosphatidylinositol 3-kinase inhibitors SB202190 and LY294002, respectively, and was almost completely prevented by AG490, a janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor. Since hypoxia was able to reverse the vasorelaxant effect of PlGF into a vasoconstrictor response, the mechanism of this latter effect was also investigated. Significant Flt-1 activity was measured in isolated preparations from rat aorta exposed to hypoxia. Inhibitors of mitogen-activated protein kinase kinase, Akt and STAT3 induced a modest inhibition of the vasoconstrictor response to PlGF, while the p38 inhibitor SB202190 markedly impaired the PlGF-induced contractile response. These effects were selectively mediated by Flt-1 without any involvement of foetal liver kinase-1 receptors. These data are the first evidence that different intracellular pathways activated by Flt-1 receptor in VSMCs are involved in diverse biological effects of PlGF: while mitogen activated protein kinase kinase/extracellular signal regulated kinase(1/2) and JAK/STAT play a role in VSMC proliferation, p38 is involved in VSMC contraction. These findings may highlight the role of PlGF in vascular pathology.
Chen, Ming; Pang, Bo; Du, Ya-Nan; Zhang, Yi-Peng; Liu, Wen
2017-06-01
2,2'-Bipyridine (2,2'-BiPy) is an attractive core structure present in a number of biologically active natural products, including the structurally related antibiotics caerulomycins (CAEs) and collismycins (COLs). Their biosynthetic pathways share a similar key 2,2'-BiPy-l-leucine intermediate, which is desulfurated or sulfurated at C5, arises from a polyketide synthase/nonribosomal peptide synthetase hybrid assembly line. Focusing on the common off-line modification steps, we here report that the removal of the "auxiliary" l-leucine residue relies on the metallo-dependent amidohydrolase activity of CaeD or ColD. This activity leads to the production of similar 2,2'-BiPy carboxylate products that then receive an oxime functionality that is characteristic for both CAEs and COLs. Unlike many metallo-dependent amidohydrolase superfamily proteins that have been previously reported, these proteins (particularly CaeD) exhibited a strong zinc ion-binding capacity that was proven by site-specific mutagenesis studies to be essential to proteolytic activity. The kinetics of the conversions that respectively involve CaeD and ColD were analyzed, showing the differences in the efficiency and substrate specificity of these two proteins. These findings would generate interest in the metallo-dependent amidohydrolase superfamily proteins that are involved in the biosynthesis of bioactive natural products.
Urinary Protein Biomarker Analysis
2017-10-01
monitoring, in the case of low-risk cancers, to radiation or surgical procedures for higher risk cancers (Bill-Axelson et al., N. Engl. J. Med., 370:932...the methods can include administering at least one of watchful waiting, active surveillance, surgery, radiation , hormone therapy, chemotherapy...macrophage inflammatory protein 1-α (MIP1α), and tonsillar lymphocyte LD78 α Protein (LD78-α), CCL3 is a monokine involved in the acute inflammatory state
Sharma, Neeru M; Patel, Kaushik P
2017-01-01
Introduction Nitric oxide (NO) synthesized via neuronal nitric oxide synthase (nNOS) plays a significant role in regulation/modulation of autonomic control of circulation. Various pathological states are associated with diminished nNOS expression and blunted autonomic effects of NO in the central nervous system (CNS) including heart failure, hypertension, diabetes mellitus, chronic renal failure etc. Therefore, elucidation of the molecular mechanism/s involved in dysregulation of nNOS is essential to understand the pathogenesis of increased sympathoexcitation in these diseased states. Areas Covered nNOS is a highly regulated enzyme, being regulated at transcriptional and posttranslational levels via protein-protein interactions and modifications viz. phosphorylation, ubiquitination, and sumoylation. The enzyme activity of nNOS also depends on the optimal concentration of substrate, cofactors and association with regulatory proteins. This review focuses on the posttranslational regulation of nNOS in the context of normal and diseased states within the CNS. Expert Opinion Gaining insight into the mechanism/s involved in the regulation of nNOS would provide novel strategies for manipulating nNOS directed therapeutic modalities in the future, including catalytically active dimer stabilization and protein-protein interactions with intracellular protein effectors. Ultimately, this is expected to provide tools to improve autonomic dysregulation in various diseases such as heart failure, hypertension, and diabetes. PMID:27885874
The stimulatory Gα(s) protein is involved in olfactory signal transduction in Drosophila.
Deng, Ying; Zhang, Weiyi; Farhat, Katja; Oberland, Sonja; Gisselmann, Günter; Neuhaus, Eva M
2011-04-07
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gα(s) plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO₂ responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gα(s) also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gα(s) plays a role in the OR mediated signaling cascade in Drosophila.
A Central Role for Thiols in Plant Tolerance to Abiotic Stress
Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela
2013-01-01
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272
1996-01-01
GPI-anchored surface proteins mediate many important functions, including transport, signal transduction, adhesion, and protection against complement. They cluster into glycolipid-based membrane domains and caveolae, plasmalemmal vesicles involved in the transcytosis and endocytosis of these surface proteins. However, in lymphocytes, neither the characteristic flask shaped caveolae nor caveolin, a transmembrane protein typical of caveolae, have been observed. Here, we show that the GPI-anchored CD59 molecule on Jurkat T cells is internalized after cross-linking, a process inhibited by nystatin, a sterol chelating agent. Clustered CD59 molecules mostly accumulate in non-coated invaginations of the lymphocyte membrane before endocytosis, in marked contrast with the pattern of CD3-TCR internalization. Cytochalasin H blocked CD59 internalization in lymphocytes, but neither CD3 internalization nor transferrin uptake. Confocal microscopy analysis of F-actin distribution within lymphocytes showed that CD59 clusters were associated with patches of polymerized actin. Also, we found that internalization of CD59 was prevented by the protein kinase C inhibitor staurosporine and by the protein kinase A activator forskolin. Thus, in lymphocytes, as in other cell types, glycolipid-based domains provide sites of integration of signaling pathways involved in GPI-anchored protein endocytosis. This process, which is regulated by both protein kinase C and A activity, is tightly controlled by the dynamic organization of actin cytoskeleton, and may be critical for polarized contacts of circulating cells. PMID:8666664
Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.
2013-01-01
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157
Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.
Grembecka, Jolanta; He, Shihan; Shi, Aibin; Purohit, Trupta; Muntean, Andrew G; Sorenson, Roderick J; Showalter, Hollis D; Murai, Marcelo J; Belcher, Amalia M; Hartley, Thomas; Hess, Jay L; Cierpicki, Tomasz
2012-01-29
Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin-MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein-mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.
Peroxisomal Proteostasis Involves a Lon Family Protein That Functions as Protease and Chaperone*
Bartoszewska, Magdalena; Williams, Chris; Kikhney, Alexey; Opaliński, Łukasz; van Roermund, Carlo W. T.; de Boer, Rinse; Veenhuis, Marten; van der Klei, Ida J.
2012-01-01
Proteins are subject to continuous quality control for optimal proteostasis. The knowledge of peroxisome quality control systems is still in its infancy. Here we show that peroxisomes contain a member of the Lon family of proteases (Pln). We show that Pln is a heptameric protein and acts as an ATP-fueled protease and chaperone. Hence, Pln is the first chaperone identified in fungal peroxisomes. In cells of a PLN deletion strain peroxisomes contain protein aggregates, a major component of which is catalase-peroxidase. We show that this enzyme is sensitive to oxidative damage. The oxidatively damaged, but not the native protein, is a substrate of the Pln protease. Cells of the pln strain contain enhanced levels of catalase-peroxidase protein but reduced catalase-peroxidase enzyme activities. Together with the observation that Pln has chaperone activity in vitro, our data suggest that catalase-peroxidase aggregates accumulate in peroxisomes of pln cells due to the combined absence of Pln protease and chaperone activities. PMID:22733816
Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J
2013-04-16
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.
Protective activity of green tea against free radical- and glucose-mediated protein damage.
Nakagawa, Takako; Yokozawa, Takako; Terasawa, Katsutoshi; Shu, Seiji; Juneja, Lekh Raj
2002-04-10
Protein oxidation and glycation are posttranslational modifications that are implicated in the pathological development of many age-related disease processes. This study investigated the effects of green tea extract, and a green tea tannin mixture and its components, on protein damage induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (a free radical generator) and glucose in in vitro assay systems. We found that green tea extract can effectively protect against protein damage, and showed that its action is mainly due to tannin. In addition, it was shown that the chemical structures of tannin components are also involved in this activity, suggesting that the presence of the gallate group at the 3 position plays the most important role in the protective activity against protein oxidation and glycation, and that there is also a contribution by the hydroxyl group at the 5' position in the B ring and the sterical structure. These findings demonstrate the mechanisms of the usefulness of green tea in protein oxidation- and glycation-associated diseases.
Ujang, Jorim Anak; Kwan, Soon Hong; Ismail, Mohd Nazri; Lim, Boon Huat; Noordin, Rahmah; Othman, Nurulhasanah
2016-01-01
Excretory-secretory (ES) proteins of E. histolytica are thought to play important roles in the host invasion, metabolism, and defence. Elucidation of the types and functions of E. histolytica ES proteins can further our understanding of the disease pathogenesis. Thus, the aim of this study is to use proteomics approach to better understand the complex ES proteins of the protozoa. E. histolytica ES proteins were prepared by culturing the trophozoites in protein-free medium. The ES proteins were identified using two mass spectrometry tools, namely, LC-ESI-MS/MS and LC-MALDI-TOF/TOF. The identified proteins were then classified according to their biological processes, molecular functions, and cellular components using the Panther classification system (PantherDB). A complementary list of 219 proteins was identified; this comprised 201 proteins detected by LC-ESI-MS/MS and 107 proteins by LC-MALDI-TOF/TOF. Of the 219 proteins, 89 were identified by both mass-spectrometry systems, while 112 and 18 proteins were detected exclusively by LC-ESI-MS/MS and LC-MALDI-TOF/TOF respectively. Biological protein functional analysis using PantherDB showed that 27% of the proteins were involved in metabolic processes. Using molecular functional and cellular component analyses, 35% of the proteins were found to be involved in catalytic activity, and 21% were associated with the cell parts. This study showed that complementary use of LC-ESI-MS/MS and LC-MALDI-TOF/TOF has improved the identification of ES proteins. The results have increased our understanding of the types of proteins excreted/secreted by the amoeba and provided further evidence of the involvement of ES proteins in intestinal colonisation and evasion of the host immune system, as well as in encystation and excystation of the parasite.
Treffon, Janina; Block, Desiree; Moche, Martin; Reiss, Swantje; Fuchs, Stephan; Engelmann, Susanne; Becher, Dörte; Langhanki, Lars; Mellmann, Alexander; Peters, Georg; Kahl, Barbara C
2018-04-11
Adaptation of S. aureus to the hostile environment of CF airways resulted in changed abundance of proteins involved in energy metabolism, cellular processes, transport and binding, but most importantly in an iron-scavenging phenotype and increased activity of superoxide dismutase M.
NASA Technical Reports Server (NTRS)
Morre, D. James
2002-01-01
The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.
Zhang, Y; LeRoy, G; Seelig, H P; Lane, W S; Reinberg, D
1998-10-16
Histone acetylation and deacetylation were found to be catalyzed by structurally distinct, multisubunit complexes that mediate, respectively, activation and repression of transcription. ATP-dependent nucleosome remodeling, mediated by different multisubunit complexes, was thought to be involved only in transcription activation. Here we report the isolation of a protein complex that contains both histone deacetylation and ATP-dependent nucleosome remodeling activities. The complex contains the histone deacetylases HDAC1/2, histone-binding proteins, the dermatomyositis-specific autoantigen Mi2beta, a polypeptide related to the metastasis-associated protein 1, and a novel polypeptide of 32 kDa. Patients with dermatomyositis have a high rate of malignancy. The finding that Mi2beta exists in a complex containing histone deacetylase and nucleosome remodeling activities suggests a role for chromatin reorganization in cancer metastasis.
Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni
2013-12-01
PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
In silico analysis of fragile histidine triad involved in regression of carcinoma.
Rasheed, Muhammad Asif; Tariq, Fatima; Afzal, Sara; Mannanv, Shazia
2017-04-01
Hepatocellular carcinoma (HCCa) is a primary malignancy of the liver. Many different proteins are involved in HCCa including insulin growth factor (IGF) II , signal transducers and activators of transcription (STAT) 3, STAT4, mothers against decapentaplegic homolog 4 (SMAD 4), fragile histidine triad (FHIT) and selective internal radiation therapy (SIRT) etc. The present study is based on the bioinformatics analysis of FHIT protein in order to understand the proteomics aspect and improvement of the diagnosis of the disease based on the protein. Different information related to protein were gathered from different databases, including National Centre for Biotechnology Information (NCBI) Gene, Protein and Online Mendelian Inheritance in Man (OMIM) databases, Uniprot database, String database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Moreover, the structure of the protein and evaluation of the quality of the structure were included from Easy modeler programme. Hence, this analysis not only helped to gather information related to the protein at one place, but also analysed the structure and quality of the protein to conclude that the protein has a role in carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamparter, Christina L.
The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 hmore » induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity induces apoptosis, involving ROS. • This inhibition of activity also reduces NFκB expression independently of ROS. • Reduced Cbp/p300 acetyltransferase activity may contribute to VPA teratogenesis.« less
Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C
NASA Technical Reports Server (NTRS)
Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1994-01-01
Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.
G protein-coupled receptor kinase 2 positively regulates epithelial cell migration
Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico
2008-01-01
Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319
Nuclear pore proteins are involved in the biogenesis of functional tRNA.
Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C
1996-05-01
Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA.
Lactobacillus acidophilus—Rutin Interplay Investigated by Proteomics
Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna
2015-01-01
Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus. PMID:26544973
Lactobacillus acidophilus-Rutin Interplay Investigated by Proteomics.
Mazzeo, Maria Fiorella; Lippolis, Rosa; Sorrentino, Alida; Liberti, Sarah; Fragnito, Federica; Siciliano, Rosa Anna
2015-01-01
Dietary polyphenols are bioactive molecules that beneficially affect human health, due to their anti-oxidant, anti-inflammatory, cardio-protective and chemopreventive properties. They are absorbed in a very low percentage in the small intestine and reach intact the colon, where they are metabolized by the gut microbiota. Although it is well documented a key role of microbial metabolism in the absorption of polyphenols and modulation of their biological activity, molecular mechanisms at the basis of the bacteria-polyphenols interplay are still poorly understood. In this context, differential proteomics was applied to reveal adaptive response mechanisms that enabled a potential probiotic Lactobacillus acidophilus strain to survive in the presence of the dietary polyphenol rutin. The response to rutin mainly modulated the expression level of proteins involved in general stress response mechanisms and, in particular, induced the activation of protein quality control systems, and affected carbohydrate and amino acid metabolism, protein synthesis and cell wall integrity. Moreover, rutin triggered the expression of proteins involved in oxidation-reduction processes.This study provides a first general view of the impact of dietary polyphenols on metabolic and biological processes of L. acidophilus.
Ye, Min; Wu, Qundan; Zhang, Min; Huang, Jinbei
2016-10-01
Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (P<0.01). Mechanistic studies revealed that lycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.
Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof
Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.
2016-03-29
Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.
Ji, Xiaofei; Wang, Ying; Zhang, Cong; Bai, Xinfeng; Zhang, Weican
2014-01-01
Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and β-glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the β-glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the β-glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface β-glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii. PMID:24837387
Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.
1998-01-01
Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108
Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells.
Sánchez-Gómez, F J; González-Morena, J M; Vida, Y; Pérez-Inestrosa, E; Blanca, M; Torres, M J; Pérez-Sala, D
2017-03-01
Allergic reactions to β-lactams are among the most frequent causes of drug allergy and constitute an important clinical problem. Drug covalent binding to endogenous proteins (haptenation) is thought to be required for activation of the immune system. Nevertheless, neither the nature nor the role of the drug protein targets involved in this process is fully understood. Here, we aim to identify novel intracellular targets for haptenation by amoxicillin (AX) and their cellular fate. We have treated B lymphocytes with either AX or a biotinylated analog (AX-B). The identification of protein targets for haptenation by AX has been approached by mass spectrometry and immunoaffinity techniques. In addition, intercellular communication mediated by the delivery of vesicles loaded with AX-B-protein adducts has been explored by microscopy techniques. We have observed a complex pattern of AX-haptenated proteins. Several novel targets for haptenation by AX in B lymphocytes have been identified. AX-haptenated proteins were detected in cell lysates and extracellularly, either as soluble proteins or in lymphocyte-derived extracellular vesicles. Interestingly, exosomes from AX-B-treated cells showed a positive biotin signal in electron microscopy. Moreover, they were internalized by endothelial cells, thus supporting their involvement in intercellular transfer of haptenated proteins. These results represent the first identification of AX-mediated haptenation of intracellular proteins. Moreover, they show that exosomes can constitute a novel vehicle for haptenated proteins, and raise the hypothesis that they could provide antigens for activation of the immune system during the allergic response. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel
2015-07-01
The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves.
Xu, Qingshan; Wang, Yu; Ding, Zhaotang; Fan, Kai; Ma, Dexin; Zhang, Yongliang; Yin, Qi
2017-06-01
Tea (Camellia sinensis (L.) O. Kuntze), is an aluminum (Al) hyperaccumulator and grows well in acid soils. Although Al-induced growth of tea plant has been studied, the proteomic profiles of tea plants in response to Al are unclear. In the present study, the proteomic profiles in tea roots and leaves under Al stress were investigated using iTRAQ proteomics approach. In total, 755 and 1059 differentially expressed proteins were identified in tea roots and leaves, respectively. KEGG enrichment analysis showed that the differentially expressed proteins in roots were mainly involved in 11 pathways whereas those from leaves were mainly involved in 9 pathways. Abundance of most protein functions in glycolytic metabolism were enhanced in tea roots, and proteins involved in photosynthesis were stimulated in tea leaves. The protein ferulate-5-hydroxylase (F5H) in lignin biosynthetic pathway was down-regulated in both roots and leaves. Furthermore, antioxidant enzymes (ascorbate peroxidase, catalase and glutathione S-transferase) and citrate synthesis were accumulated in tea roots in response to Al. The results indicated that active photosynthesis and glycolysis as well as increased activities of antioxidant enzymes can be considered as a possible reason for the stimulatory effects of Al on the growth of tea plants. Additionally, the down-regulation of F5H and the binding of Al and phenolic acids may reduce the accumulation of lignin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Farnesol-induced apoptosis in Candida albicans.
Shirtliff, Mark E; Krom, Bastiaan P; Meijering, Roelien A M; Peters, Brian M; Zhu, Jingsong; Scheper, Mark A; Harris, Megan L; Jabra-Rizk, Mary Ann
2009-06-01
Farnesol, a precursor in the isoprenoid/sterol pathway, was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. Farnesol is involved in the inhibition of germination and biofilm formation by C. albicans and can be cytotoxic at certain concentrations. In addition, we have shown that farnesol can trigger apoptosis in mammalian cells via the classical apoptotic pathways. In order to elucidate the mechanism behind farnesol cytotoxicity in C. albicans, the response to farnesol was investigated, using proteomic analysis. Global protein expression profiles demonstrated significant changes in protein expression resulting from farnesol exposure. Among the downregulated proteins were those involved in metabolism, glycolysis, protein synthesis, and mitochondrial electron transport and the respiratory chain, whereas proteins involved in folding, protection against environmental and oxidative stress, actin cytoskeleton reorganization, and apoptosis were upregulated. Cellular changes that accompany apoptosis (regulated cell death) were further analyzed using fluorescent microscopy and gene expression analysis. The results indicated reactive oxygen species accumulation, mitochondrial degradation, and positive terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) in the farnesol-exposed cells concurrent with increased expression of antioxidant-encoding and drug response genes. More importantly, the results demonstrated farnesol-induced upregulation of the caspase gene MCA1 and the intracellular presence of activated caspases. In conclusion, this study demonstrated that farnesol promotes apoptosis in C. albicans through caspase activation, implying an important physiological role for farnesol in the fungal cell life cycle with important implications for adaptation and survival.
Escobedo, Galileo; Soldevila, Gloria; Ortega-Pierres, Guadalupe; Chávez-Ríos, Jesús Ramsés; Nava, Karen; Fonseca-Liñán, Rocío; López-Griego, Lorena; Hallal-Calleros, Claudia; Ostoa-Saloma, Pedro; Morales-Montor, Jorge
2010-01-01
MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design. PMID:20145710
Jančinová, Viera; Pažoureková, Silvia; Lucová, Marianna; Perečko, Tomáš; Mihalová, Danica; Bauerová, Katarína; Nosáľ, Radomír; Drábiková, Katarína
2015-09-01
Hydroxychloroquine is used in the therapy of rheumatoid arthritis or lupus erythematosus. Although these diseases are often accompanied by activation of neutrophils, there are still few data relating to the impact of hydroxychloroquine on these cells. We investigated the effect of orally administered hydroxychloroquine on neutrophil oxidative burst in rats with adjuvant arthritis. In human neutrophils, extra- and intracellular formation of oxidants, mobilisation of intracellular calcium and the phosphorylation of proteins regulating NADPH oxidase assembly were analysed. Administration of hydroxychloroquine decreased the concentration of oxidants in blood of arthritic rats. The inhibition was comparable with the reference drug methotrexate, yet it was not accompanied by a reduction in neutrophil count. When both drugs were co-applied, the effect became more pronounced. In isolated human neutrophils, treatment with hydroxychloroquine resulted in reduced mobilisation of intracellular calcium, diminished concentration of external oxidants and in decreased phosphorylation of Ca(2+)-dependent protein kinase C isoforms PKCα and PKCβII, which regulate activation of NADPH oxidase on plasma membrane. On the other hand, no reduction was observed in intracellular oxidants or in the phosphorylation of p40(phox) and PKCδ, two proteins directing the oxidase assembly to intracellular membranes. Hydroxychloroquine reduced neutrophil-derived oxidants potentially involved in tissue damage and protected those capable to suppress inflammation. The observed effects may represent a new mechanism involved in the anti-inflammatory activity of this drug. Copyright © 2015 Elsevier B.V. All rights reserved.
Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi
2016-01-15
Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.
Perrin-Terrin, Anne-Sophie; Jeton, Florine; Pichon, Aurelien; Frugière, Alain; Richalet, Jean-Paul; Bodineau, Laurence; Voituron, Nicolas
2016-01-01
Many studies seek to identify and map the brain regions involved in specific physiological regulations. The proto-oncogene c-fos, an immediate early gene, is expressed in neurons in response to various stimuli. The protein product can be readily detected with immunohistochemical techniques leading to the use of c-FOS detection to map groups of neurons that display changes in their activity. In this article, we focused on the identification of brainstem neuronal populations involved in the ventilatory adaptation to hypoxia or hypercapnia. Two approaches were described to identify involved neuronal populations in vivo in animals and ex vivo in deafferented brainstem preparations. In vivo, animals were exposed to hypercapnic or hypoxic gas mixtures. Ex vivo, deafferented preparations were superfused with hypoxic or hypercapnic artificial cerebrospinal fluid. In both cases, either control in vivo animals or ex vivo preparations were maintained under normoxic and normocapnic conditions. The comparison of these two approaches allows the determination of the origin of the neuronal activation i.e., peripheral and/or central. In vivo and ex vivo, brainstems were collected, fixed, and sliced into sections. Once sections were prepared, immunohistochemical detection of the c-FOS protein was made in order to identify the brainstem groups of cells activated by hypoxic or hypercapnic stimulations. Labeled cells were counted in brainstem respiratory structures. In comparison to the control condition, hypoxia or hypercapnia increased the number of c-FOS labeled cells in several specific brainstem sites that are thus constitutive of the neuronal pathways involved in the adaptation of the central respiratory drive. PMID:27167092
Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry
Qiu, Haibo; Wang, Yinsheng
2009-01-01
DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins which are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level. PMID:19714816
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.
Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi
2010-04-01
Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.
How much do we know about the coupling of G-proteins to serotonin receptors?
2014-01-01
Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis. PMID:25011628
How much do we know about the coupling of G-proteins to serotonin receptors?
Giulietti, Matteo; Vivenzio, Viviana; Piva, Francesco; Principato, Giovanni; Bellantuono, Cesario; Nardi, Bernardo
2014-07-10
Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis.
Molecular interactions between the olive and the fruit fly Bactrocera oleae
2012-01-01
Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction. PMID:22694925
Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu
2007-09-01
There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.
Inhibitory Effect of Gabaculine on 5-Aminolevulinate Dehydratase Activity in Radish Seedlings 1
Tchuinmogne, Simo J.; Huault, Claude; Aoues, Abdelkader; Balangé, Alain P.
1989-01-01
We have compared the activity of 5-aminolevulinate dehydratase (5-ALAD) with the amount of protein detected by specific antibodies in rocket immunoelectrophoresis. Parallel kinetic evolutions of enzymic activity and amount of antigen were observed in radish (Raphanus sativus L.) cotyledons, both in complete darkness or under standard far red light involving phytochrome. However, the treatment of seedlings with gabaculine leads to an important decrease in enzymic activity, while the specific protein content is maintained. This inhibition is not overcome by the addition of glutamic acid, but by 5-aminolevulinic acid which points to a specific control of 5-ALAD activity by its substrate. As there is no discrepancy between the enzymic activity and the amount of antigen during the time course development of seedlings, this could confirm a coordinate cellular control between 5-aminolevulinic acid formation and 5-ALAD protein synthesis, both being amplified by the action of phytochrome. PMID:16666925
Kravitz, Martine Szyper; Shoenfeld, Yehuda
2006-09-01
Apoptotic defects and impaired clearance of cellular debris are considered key events in the development of autoimmunity, as they can contribute to autoantigen overload and might be involved in the initiation of an autoimmune response. The C1q protein and mannose-binding lectin are activators of the complement system. The pentraxins are a group of highly conserved proteins including the short pentraxins, C-reactive protein and serum amyloid P, and the long pentraxin family member, pentraxin 3, all of which are involved in innate immunity and in acute-phase responses. In addition to their role in innate immunity and inflammation, each of these proteins participates in the removal of damaged and apoptotic cells. In this article, we discuss the clinical significance of different levels of these proteins, their role in the induction of or protection against autoimmunity, and the presence of specific autoantibodies against them in various autoimmune diseases.
Scott, Glynis; Leopardi, Sonya; Parker, Lorelle; Babiarz, Laura; Seiberg, Miri; Han, Rujiing
2003-09-01
Recent work shows that the G-protein-coupled receptor proteinase activated receptor-2 activates signals that stimulate melanosome uptake in keratinocytes in vivo and in vitro. The Rho family of GTP-binding proteins is involved in cytoskeletal remodeling during phagocytosis. We show that proteinase-activated receptor-2 mediated phagocytosis in human keratinocytes is Rho dependent and that proteinase-activated receptor-2 signals to activate Rho. In contrast, Rho activity did not affect either proteinase-activated receptor-2 activity or mRNA and protein levels. We explored the signaling mechanisms of proteinase-activated receptor-2 mediated Rho activation in human keratinocytes and show that activation of proteinase-activated receptor-2, either through specific proteinase-activated receptor-2 activating peptides or through trypsinization, elevates cAMP in keratinocytes. Proteinase-activated receptor-2 mediated Rho activation was pertussis toxin insensitive and independent of the protein kinase A signaling pathway. These data are the first to show that proteinase-activated receptor-2 mediated phagocytosis is Rho dependent and that proteinase-activated receptor-2 signals to Rho and cAMP in keratinocytes. Because phagocytosis of melanosomes is recognized as an important mechanism for melanosome transfer to keratinocytes, these results suggest that Rho is a critical signaling intermediate in melanosome uptake in keratinocytes.
Craig, Jeffrey M; Earle, Elizabeth; Canham, Paul; Wong, Lee H; Anderson, Melissa; Choo, K H Andy
2003-12-01
We have examined the metaphase chromosomal localization of 15 proteins that have previously been described as involved in mammalian chromatin modification and/or transcriptional modulation. Immunofluorescence data indicate that all the proteins localize to human and mouse centromeres, a neocentromere, and the active centromere of a dicentric chromosome, with six of these proteins (Sin3A, PCAF, MYST, MBD2, ORC2, P300/CBP) being demonstrated at mammalian centromeres for the first time. Most of these proteins fall into two distinct chromosomal distribution patterns: (a) kinetochore-associated proteins (Sin3A, PCAF, MYST and BAF180), which colocalize with metaphase kinetochores, but not any of the pericentric and other major heterochromatic regions; and (b) heterochromatin-associated proteins (MeCP2, MBD1, MBD2, ATRX, HP1alpha, HDAC1, HDAC2, DNMT1 and DNMT3b), which colocalize with centromeric/pericentric heterochromatin and all other major heterochromatic sites. A heterogeneous third group (c) consists of the origin recognition complex subunit ORC2 and the histone acetyltransferase P300/CBP, which associate generally with kinetochores in humans and centromeric/pericentric heterochromatin in mouse, with some minor differences in localization. These observations indicate an extensive sharing of protein components involved in chromatin modification at gene loci, centromeres and various chromosomal heterochromatic landmarks. The definition of distinct patterns of chromosomal distribution for these proteins provides a useful basis for the further investigation of the broad-ranging roles of these proteins.
Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P
2013-06-10
We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Schönhusen, U; Kuhla, S; Zitnan, R; Wutzke, K D; Huber, K; Moors, S; Voigt, J
2007-05-01
This study was designed to investigate the effect of soy protein inclusion in milk replacer diets for goat kids on protein, RNA, and DNA contents in small intestinal mucosa, on the importance of RNA biosynthesis from dietary RNA precursors for mucosal RNA synthesis, and on the activities of enzymes involved in nucleotide degradation in small intestinal mucosa. Diets were based on cow's milk. In the control group, 35% of the milk protein was replaced by casein (CN) protein, and in the soy group (SPAA), the same amount of milk protein was replaced by soy protein supplemented with essential AA known to be at lower concentrations in soy than in CN (Thr, Val, Ile, Leu, His, Lys, Met). Diets were isonitrogenous and isoenergetic. At 47 d of age, goats were harvested and samples of proximal, middle, and distal jejunal mucosa were collected 5 h after feeding 15N-labeled RNA from yeast (13 mg/kg of body weight). Growth and feed conversion did not differ between the control and SPAA kids. Mucosal protein concentrations were lower in the SPAA than the control kids. Concentrations of RNA and DNA did not differ between feeding groups, but in all kids mucosal RNA concentrations were higher in proximal than in middle and distal jejunum. Protein:RNA ratios were higher in the control than the SPAA kids and were lowest in proximal jejunum. Activities of alkaline phosphatase in enterocytes were higher in proximal than in middle and distal jejunum. Activities of mucosal xanthine oxidase were highest in distal jejunum and were higher in the SPAA than the control kids, especially in the middle and distal sites. The 15N-enrichment of mucosal RNA was higher in the control than the SPAA kids, especially in distal jejunum, and was lowest in distal jejunum. In contrast, 15N-enrichment of urea in plasma tended to be higher and Gly concentration in plasma was lower in the SPAA than the control kids. Data indicate that protein content and the protein:RNA ratio were lower in jejunal mucosa of goat kids fed milk replacer with partial replacement of CN protein by soy protein. These findings were accompanied by a lower level of reutilization of preformed dietary RNA precursors for RNA biosynthesis in jejunal mucosa and a higher activity of xanthine oxidase. Thus, feeding soy protein instead of CN protein reduced the incorporation of preformed dietary RNA precursors for RNA biosynthesis in the mucosa and activated key enzymes involved in nucleic acid breakdown.
Hydrogen sulfide ameliorates aging-associated changes in the kidney.
Lee, Hak Joo; Feliers, Denis; Barnes, Jeffrey L; Oh, Sae; Choudhury, Goutam Ghosh; Diaz, Vivian; Galvan, Veronica; Strong, Randy; Nelson, James; Salmon, Adam; Kevil, Christopher G; Kasinath, Balakuntalam S
2018-04-01
Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H 2 S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H 2 S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H 2 S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18-19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H 2 S deficiency. Administration of H 2 S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.
Serneels, Joke; Tournu, Hélène; Van Dijck, Patrick
2012-01-01
The ability to form hyphae in the human pathogenic fungus Candida albicans is a prerequisite for virulence. It contributes to tissue infection, biofilm formation, as well as escape from phagocytes. Cell elongation triggered by human body temperature involves the essential heat shock protein Hsp90, which negatively governs a filamentation program dependent upon the Ras-protein kinase A (PKA) pathway. Tight regulation of Hsp90 function is required to ensure fast appropriate response and maintenance of a wide range of regulatory and signaling proteins. Client protein activation by Hsp90 relies on a conformational change of the chaperone, whose ATPase activity is competitively inhibited by geldanamycin. We demonstrate a novel regulatory mechanism of heat- and Hsp90-dependent induced morphogenesis, whereby the nonreducing disaccharide trehalose acts as a negative regulator of Hsp90 release. By means of a mutant strain deleted for Gpr1, the G protein-coupled receptor upstream of PKA, we demonstrate that elevated trehalose content in that strain, resulting from misregulation of enzymatic activities involved in trehalose metabolism, disrupts the filamentation program in response to heat. Addition of geldanamycin does not result in hyphal extensions at 30 °C in the gpr1Δ/gpr1Δ mutant as it does in wild type cells. In addition, validamycin, a specific inhibitor of trehalase, the trehalose-degrading enzyme, inhibits cell elongation in response to heat and geldanamycin. These results place Gpr1 as a regulator of trehalose metabolism in C. albicans and illustrate that trehalose modulates Hsp90-dependent activation of client proteins and signaling pathways leading to filamentation in the human fungal pathogen. PMID:22952228
Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Del Aguila, Carmen; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda
2006-01-01
African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.
Mincheva, Stefka; Garcera, Ana; Gou-Fabregas, Myriam; Encinas, Mario; Dolcet, Xavier; Soler, Rosa M
2011-04-27
In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKβ kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKβ phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKβ, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.
Kopyl'chuk, G P; Buchkovskaia, I M
2014-01-01
The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.
Cassava root membrane proteome reveals activities during storage root maturation.
Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya
2016-01-01
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Fernández, L; Flores-Morales, A; Lahuna, O; Sliva, D; Norstedt, G; Haldosén, L A; Mode, A; Gustafsson, J A
1998-04-01
Signal transducers and activators of transcription (Stat) proteins are latent cytoplasmic transcription factors that are tyrosine phosphorylated by Janus kinases (Jak) in response to GH and other cytokines. GH activates Stat5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation. However, the mechanisms that turn off the GH-activated Jak2/Stat5 pathway are unknown. Continuous exposure to GH of BRL-4 cells, a rat hepatoma cell line stably transfected with rat GH receptor, induces a rapid but transient activation of Jak2 and Stat5. GH-induced Stat5 DNA-binding activity was detected after 2 min and reached a maximum at 10 min. Continued exposure to GH resulted in a desensitization characterized by 1) a rapid decrease in Stat5 DNA-binding activity. The rate of decrease of activity was rapid up to 1 h of GH treatment, and the remaining activity declined slowly thereafter. The activity of Stat5 present after 5 h is still higher than the control levels and almost 10-20% with respect to maximal activity at 10 min; and 2) the inability of further GH treatment to reinduce activation of Stat5. In contrast, with transient exposures of BRL-4 cells to GH, Stat5 DNA-binding activity could repeatedly be induced. GH-induced Jak2 and Stat5 activities were independent of ongoing protein synthesis. However, Jak2 tyrosine phosphorylation and Stat5 DNA-binding activity were prolonged for at least 4 h in the presence of cycloheximide, which suggests that the maintenance of desensitization requires ongoing protein synthesis. Furthermore, inhibition of protein synthesis potentiated GH-induced transcriptional activity in BRL-4 cells transiently transfected with SPIGLE1CAT, a reporter plasmid activated by Stat5. GH-induced Jak2 and Stat5 activation were not affected by D609 or mepacrine, both inhibitors of phospholipase C. However, in the presence of D609 and mepacrine, GH maintained prolonged Jak2 and Stat5 activation. Transactivation of SPIGLE1 by GH was potentiated by mepacrine and D609 but not by the phospholipase A2 inhibitor AACOCF3. Thus, a regulatory circuit of GH-induced transcription through the Jak2/Stat5-signaling pathway includes a prompt GH-induced activation of Jak2/Stat5 followed by a negative regulatory response; ongoing protein synthesis and intracellular signaling pathways, where phospholipase C activity is involved, play a critical role to desensitize the GH-activated Jak2/Stat5-signaling pathway.