Sample records for involves complex mechanisms

  1. WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism.

    PubMed

    Kast, David J; Zajac, Allison L; Holzbaur, Erika L F; Ostap, E Michael; Dominguez, Roberto

    2015-06-29

    Nucleation-promoting factors (NPFs) control the spatio-temporal activity of Arp2/3 complex in cells]. Thus, WASP and the WAVE complex direct the formation of branched actin networks at the leading edge during cell motility and endo/exocytosis, whereas the WASH complex is involved in endosomal transport. Less understood are WHAMM and JMY, two NPFs with similar domain architecture. JMY is found in the nucleus and the cytosol and is involved in transcriptional regulation, cell motility, and trans-Golgi transport. WHAMM was reported to bind microtubules and to be involved in ER to cis-Golgi transport. Here, we show that WHAMM directs the activity of Arp2/3 complex for autophagosome biogenesis through an actin-comet tail motility mechanism. Macroautophagy--the process by which cytosolic material is engulfed into autophagosomes for degradation and/or recycling--was recently shown to involve actin, but the mechanism is unknown. We found that WHAMM forms puncta that colocalize and comigrate with the autophagy markers LC3, DFCP1, and p62 through a WHAMM-dependent actin-comet tail mechanism. Under starvation, WHAMM and actin are observed at the interface between neighboring autophagosomes, whose number and size increase with WHAMM expression. Interfering with actin polymerization, inhibiting Arp2/3 complex, knocking down WHAMM, or blocking its interaction with Arp2/3 complex through mutagenesis all inhibit comet tail formation and reduce the size and number of autophagosomes. Finally, JMY shows similar localization to WHAMM and could be involved in similar processes. These results reveal a link between Arp2/3-complex-dependent actin assembly and autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effector peptides of the renin-angiotensin system in the central mechanisms of acquired and innate behavior in thirst in rats.

    PubMed

    Vlasenko, R Ya; Kotov, A V

    2007-03-01

    We report here a comparative analysis of the involvement of a number of components of the renin-angiotensin system in the performance of simple and complex forms of drinking behavior and thirst-associated non-drinking types of behavior. On central (intracerebroventricular) microinjection, [des-Asp1]-angiotensin I at doses equieffective to those of angiotensins II and III was found to be involved only in the performance of simple (taking water from the bowl) and linked forms of activity (comfort behavior, stress grooming, orientational-investigative, and feeding behavior). Angiotensin II was involved in the central mechanisms of complex acquired drinking behavior, selectively modulating its key stages (initial, final), while angiotensin III was involved only in the mechanisms of reproduction of the complex skill. All three substances induced "innate patterns of behavior" specific for each compound, these occurring at fixed periods of time after intracerebral microinjection. The effects of these substances were selectively suppressed by the AT1 receptor blocker losartan potassium.

  3. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  4. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  5. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  6. Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing

    2014-03-01

    Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.

  7. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides.

    PubMed

    Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N

    2004-08-18

    Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.

  8. New reactions involving the oxidative O-, N-, and C-phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Ya A.; Aleshkova, M. M.; Polimbetova, G. S.; Levina, L. V.; Petrova, T. V.; Abdreimova, R. R.; Doroshkevich, D. M.

    1993-09-01

    The mechanisms of new catalytic reactions leading to the formation of di-, and tri-alkyl phosphates, di- and tri-alkyl phosphites, phosphoramidites, phosphazenes, phosphines, and phosphine oxides from hydrogen, copper, and zinc phosphides and white and red phosphorus are analysed. The mechanisms of the activation of the reactants by metal complexes and of the reactions involving the oxidative P-O, P-N, and P-C coupling of organic compounds to phosphorus and phosphides are considered. The bibliography includes 124 references.

  9. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.

  10. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia.

    PubMed

    Hernansanz-Agustín, Pablo; Ramos, Elena; Navarro, Elisa; Parada, Esther; Sánchez-López, Nuria; Peláez-Aguado, Laura; Cabrera-García, J Daniel; Tello, Daniel; Buendia, Izaskun; Marina, Anabel; Egea, Javier; López, Manuela G; Bogdanova, Anna; Martínez-Ruiz, Antonio

    2017-08-01

    Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to 'deactive' form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na + /H + antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Cohesin and Human Disease

    PubMed Central

    Liu, Jinglan; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS) is a dominant multisystem disorder caused by a disruption of cohesin function. The cohesin ring complex is composed of four protein subunits and more than 25 additional proteins involved in its regulation. The discovery that this complex also has a fundamental role in long-range regulation of transcription in Drosophila has shed light on the mechanism likely responsible for its role in development. In addition to the three cohesin proteins involved in CdLS, a second multisystem, recessively inherited, developmental disorder, Roberts-SC phocomelia, is caused by mutations in another regulator of the cohesin complex, ESCO2. Here we review the phenotypes of these disorders, collectively termed cohesinopathies, as well as the mechanism by which cohesin disruption likely causes these diseases. PMID:18767966

  12. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  13. New Concepts in Complex Regional Pain Syndrome

    PubMed Central

    Tajerian, Maral; Clark, J David

    2015-01-01

    SYNOPSIS Despite the severe pain and disability associated with Complex Regional Pain Syndrome (CRPS), our lack of understanding of the pathophysiological mechanisms supporting this enigmatic condition prevents the rational design of new therapies, a situation that is frustrating both to the physician and the patient. The following review will highlight some of the mechanisms thought to be involved in the pathophysiology of CRPS in preclinical models and CRPS patients, with the ultimate goal that understanding these mechanisms will lead to the design of efficacious, mechanism-based treatments available to the clinic. PMID:26611388

  14. Hydrolysis mechanisms of BNPP mediated by facial copper(II) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants.

    PubMed

    Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan

    2016-01-28

    The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts.

  15. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance.

    PubMed

    Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Maxwell, Anthony; Bax, Benjamin D

    2018-05-04

    Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.

  16. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance

    PubMed Central

    Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Bax, Benjamin D

    2018-01-01

    Abstract Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA (‘poisoning’) in an analogous fashion to fluoroquinolones, but without the requirement for the water–metal–ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase–DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases. PMID:29538767

  17. Germline Stem Cells: Origin and Destiny

    PubMed Central

    Lehmann, Ruth

    2012-01-01

    Germline stem cells are key to genome transmission to future generations. Over recent years, there have been numerous insights into the regulatory mechanisms that govern both germ cell specification and the maintenance of the germline in adults. Complex regulatory interactions with both the niche and the environment modulate germline stem cell function. This perspective highlights some examples of this regulation to illustrate the diversity and complexity of the mechanisms involved. PMID:22704513

  18. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis.

    PubMed Central

    Liu, Y; Levit, M; Lurz, R; Surette, M G; Stock, J B

    1997-01-01

    Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm. PMID:9405352

  19. Ecological networks and their fragility.

    PubMed

    Montoya, José M; Pimm, Stuart L; Solé, Ricard V

    2006-07-20

    Darwin used the metaphor of a 'tangled bank' to describe the complex interactions between species. Those interactions are varied: they can be antagonistic ones involving predation, herbivory and parasitism, or mutualistic ones, such as those involving the pollination of flowers by insects. Moreover, the metaphor hints that the interactions may be complex to the point of being impossible to understand. All interactions can be visualized as ecological networks, in which species are linked together, either directly or indirectly through intermediate species. Ecological networks, although complex, have well defined patterns that both illuminate the ecological mechanisms underlying them and promise a better understanding of the relationship between complexity and ecological stability.

  20. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis applied to the second reaction path (p2) in mechanism 1 was also taken into account to assess the changes that take place in TS1-i (transition state of mechanism 1) and to perfectly characterize the mechanism described herein.

  1. VOSalophen: a vanadium complex with a stilbene derivative-induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis.

    PubMed

    Machado, Patrícia de A; Morais, Jessica O F; Carvalho, Gustavo S G; Lima, Wallace P; Macedo, Gilson C; Britta, Elizandra A; Nakamura, Celso V; da Silva, Adilson D; Cuin, Alexandre; Coimbra, Elaine S

    2017-08-01

    In our previous work, we demonstrated the promising in vitro effect of VOSalophen, a vanadium complex with a stilbene derivative, against Leishmania amazonensis. Its antileishmanial activity has been associated with oxidative stress in L. amazonensis promastigotes and L. amazonensis-infected macrophages. In the present study, the mechanism involved in the death of parasites after treatment with VOSalophen, as well as in vivo effect in the murine model cutaneous leishmaniasis, has been investigated. Promastigotes of L. amazonensis treated with VOSalophen presented apoptotic cells features, such as cell volume decrease, phosphatidylserine externalization, and DNA fragmentation. An increase in autophagic vacuoles formation in treated promastigotes was also observed, showing that autophagy also may be involved in the death of these parasites. In intracellular amastigotes, DNA fragmentation was observed after treatment with VOSalophen, but this effect was not observed in host cells, highlighting the selective effect of this vanadium complex. In addition, VOSalophen showed activity in the murine model of cutaneous leishmaniasis, without hepatic and renal damages. The outcome described here points out that VOSalophen had promising antileishmanial properties and these data also contribute to the understanding of the mechanisms involved in the death of protozoa induced by metal complexes.

  2. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi K.

    2017-01-01

    Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543

  3. Kinetics and Mechanism of the Reaction of a Ruthenium(VI) Nitrido Complex with HSO3 (-) and SO3 (2-) in Aqueous Solution.

    PubMed

    Wang, Qian; Zhao, Hong Yan; Man, Wai-Lun; Lam, William W Y; Lau, Kai-Chung; Lau, Tai-Chu

    2016-07-25

    The kinetics and mechanism of the reaction of S(IV) (SO3 (2-) +HSO3 (-) ) with a ruthenium(VI) nitrido complex, [(L)Ru(VI) (N)(OH2 )](+) (Ru(VI) N, L=N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3 (-) and SO3 (2-) by Ru(VI) N. A deuterium isotope effect of 4.7 is observed in the HSO3 (-) pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N-S bond formation (partial N-atom transfer) between Ru(VI) N and HSO3 (-) and H(+) transfer from HSO3 (-) to a H2 O molecule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reading, Complexity and the Brain

    ERIC Educational Resources Information Center

    Goswami, Usha

    2008-01-01

    Brain imaging offers a new technology for understanding the acquisition of reading by children. It can contribute novel evidence concerning the key mechanisms supporting reading, and the brain systems that are involved. The extensive neural architecture that develops to support efficient reading testifies to the complex developmental processes…

  5. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  6. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  7. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation.

    PubMed

    Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder

    2017-05-01

    Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.

  8. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis.

    PubMed

    Zhang, Jia; Chen, Linpeng; Yin, Huilin; Jin, Song; Liu, Fei; Chen, Honghan

    2017-06-01

    Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and 13 C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanism of valvular regurgitation.

    PubMed

    Khoo, Nee S; Smallhorn, Jeffery F

    2011-10-01

    Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.

  11. Complex formation equilibria of binary and ternary complexes involving 3,3-bis(1-methylimidazol-2yl)propionic acid and bio-relevant ligands as 1-aminocyclopropane carboxylic acid with reference to plant hormone

    NASA Astrophysics Data System (ADS)

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2014-01-01

    The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.

  12. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  13. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  14. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  15. Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex

    PubMed Central

    Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi

    2014-01-01

    The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399

  16. Exosites in the substrate specificity of blood coagulation reactions.

    PubMed

    Bock, P E; Panizzi, P; Verhamme, I M A

    2007-07-01

    The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.

  17. Minireview: DNA Replication in Plant Mitochondria

    PubMed Central

    Cupp, John D.; Nielsen, Brent L.

    2014-01-01

    Higher plant mitochondrial genomes exhibit much greater structural complexity as compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms. PMID:24681310

  18. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...

  19. Chronic alcohol consumption promotes hepatocarcinogenesis in mice through activation of beta-catenin.

    USDA-ARS?s Scientific Manuscript database

    Alcohol abuse is the most common cause of liver cancer in the United States, Although alcohol effects within the liver have been extensively studied, the mechanism by which alcohol causes liver cancer is complex. One mechanism involves speeding up tumor growth (promotion) by increasing the number of...

  20. Chronic alcohol consumption promotes hepatocarcinogenesis in mice through activation of beta-catenin

    USDA-ARS?s Scientific Manuscript database

    Alcohol abuse is the most common cause of liver cancer in the United States, Although alcohol effects within the liver have been extensively studied, the mechanism by which alcohol causes liver cancer is complex. One mechanism involves speeding up tumor growth (promotion) by increasing the number of...

  1. Brain Mechanisms of Attentional Control.

    ERIC Educational Resources Information Center

    Wilke, Thomas

    Lack of attentional control--inability to concentrate--has often made the difference between successful and unsuccessful performance on the part of athletes. Attention is controlled neurologically by a very complex interaction of a large portion of the cerebrum and is not localized to any one structure. The mechanism involves a memory retrieval…

  2. Argentate(i) and (iii) complexes as intermediates in silver-mediated cross-coupling reactions.

    PubMed

    Weske, Sebastian; Hardin, Richard A; Auth, Thomas; O'Hair, Richard A J; Koszinowski, Konrad; Ogle, Craig A

    2018-04-30

    Despite the potential of silver to mediate synthetically valuable cross-coupling reactions, the operating mechanisms have remained unknown. Here, we use a combination of rapid-injection NMR spectroscopy, electrospray-ionization mass spectrometry, and quantum chemical calculations to demonstrate that these transformations involve argentate(i) and (iii) complexes as key intermediates.

  3. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor.

    PubMed

    Wang, H B; Zhang, Y

    2001-06-15

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system.

  4. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor

    PubMed Central

    Wang, Heng-Bin; Zhang, Yi

    2001-01-01

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system. PMID:11410659

  5. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  6. Structural changes in the oxygen-evolving complex of photosystem II induced by the S 1 to S 2 transition: A combined XRD and QM/MM study

    DOE PAGES

    Askerka, Mikhail; Wang, Jimin; Brudvig, Gary W.; ...

    2014-10-27

    The S 1 → S 2 transition of the oxygen-evolving complex (OEC) of photosystem II does not involve the transfer of a proton to the lumen and occurs at cryogenic temperatures. Therefore, it is commonly thought to involve only Mn oxidation without any significant change in the structure of the OEC. Here, we analyze structural changes upon the S 1 → S 2 transition, as revealed by quantum mechanics/molecular mechanics methods and the isomorphous difference Fourier method applied to serial femtosecond X-ray diffraction data. Lastly, we find that the main structural change in the OEC is in the position ofmore » the dangling Mn and its coordination environment.« less

  7. Effects of surfactants on lipase structure, activity, and inhibition.

    PubMed

    Delorme, Vincent; Dhouib, Rabeb; Canaan, Stéphane; Fotiadu, Frédéric; Carrière, Frédéric; Cavalier, Jean-François

    2011-08-01

    Lipase inhibitors are the main anti-obesity drugs prescribed these days, but the complexity of their mechanism of action is making it difficult to develop new molecules for this purpose. The efficacy of these drugs is known to depend closely on the physico-chemistry of the lipid-water interfaces involved and on the unconventional behavior of the lipases which are their target enzymes. The lipolysis reaction which occurs at an oil-water interface involves complex equilibria between adsorption-desorption processes, conformational changes and catalytic mechanisms. In this context, surfactants can induce significant changes in the partitioning of the enzyme and the inhibitor between the water phase and lipid-water interfaces. Surfactants can be found at the oil-water interface where they compete with lipases for adsorption, but also in solution in the form of micellar aggregates and monomers that may interact with hydrophobic parts of lipases in solution. These various interactions, combined with the emulsification and dispersion of insoluble substrates and inhibitors, can either promote or decrease the activity and the inhibition of lipases. Here, we review some examples of the various effects of surfactants on lipase structure, activity and inhibition, which show how complex the various equilibria involved in the lipolysis reaction tend to be.

  8. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melintescu, A.; Galeriu, D.; Diabate, S.

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  9. Mediator complex dependent regulation of cardiac development and disease.

    PubMed

    Grueter, Chad E

    2013-06-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD. Copyright © 2013. Production and hosting by Elsevier Ltd.

  10. A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes.

    PubMed

    Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M

    2018-01-01

    Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.

  11. Canonical and non-canonical mechanisms of Nrf2 activation.

    PubMed

    Silva-Islas, Carlos Alfredo; Maldonado, Perla D

    2018-06-15

    Nuclear Factor Erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of genes involved in the metabolism, immune response, cellular proliferation, and other processes; however, the attention has been focused on the study of its ability to induce the expression of proteins involved in the antioxidant defense. Nrf2 is mainly regulated by Kelch-like ECH-associated protein 1 (Keap1), an adapter substrate of Cullin 3 (Cul3) ubiquitin E3 ligase complex. Keap1 represses Nrf2 activity in the cytoplasm by its sequestering, ubiquitination and proteosomal degradation. Nrf2 activation, through the canonical mechanism, is carried out by electrophilic compounds and oxidative stress where some cysteine residues in Keap1 are oxidized, resulting in a decrease in Nrf2 ubiquitination and an increase in its nuclear translocation and activation. In the nucleus, Nrf2 induces a variety of genes involved in the antioxidant defense. Recently a new mechanism of Nrf2 activation has been described, called the non-canonical pathway, where proteins such as p62, p21, dipeptidyl peptidase III (DPP3), wilms tumor gene on X chromosome (WTX) and others are able to disrupt the Nrf2-Keap1 complex, by direct interaction with Keap1 decreasing Nrf2 ubiquitination and increasing its nuclear translocation and activation. In this review, the regulatory mechanisms involved in both canonical and non-canonical Nrf2 activation are discussed. Copyright © 2018. Published by Elsevier Ltd.

  12. Apple (Malus H domestica Borkh.) responds to a simulated severe drought: genes common and unique to leaves and bark

    USDA-ARS?s Scientific Manuscript database

    Dehydration is feature of many abiotic stresses, but is more often an agricultural threat on its own. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular genetic responses. These mechanisms are complex and involve various combina...

  13. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    PubMed

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  14. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebrilla, C.B.; Schulze, C.; Schwarz, H.

    The gas-phase reaction of bare Fe/sup +/ atoms with linear alkyl nitriles generates end-on complexes which, depending on geometrical constraints, specifically interact with remote C-H bonds. Based on chain length effect studies and the investigation of labeled precursors, a mechanism is suggested which accounts for the chemospecificity observed for the loss of H/sub 2/ and C/sub 2/H/sub 4/ from RCN/Fe/sup +/ complexes. This mechanism does not follow the analogous reaction of Fe/sup +/ with alkenes and alkynes but involves an initial C-H insertion of the remote CH bonds followed by a C-C insertion.

  16. Nonadiabatic one-electron transfer mechanism for the O-O bond formation in the oxygen-evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi

    2018-04-01

    The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.

  17. Advancing the National and Global Knowledge Economy: The Role of Research Universities in Developing Countries

    ERIC Educational Resources Information Center

    Altbach, Philip G.

    2013-01-01

    Research universities are a central part of all academic systems. They are the key points of international contact and involvement. Research is produced, disseminated and in many cases imported. For developing countries, the mechanisms for the involvement of research universities in the global knowledge economy is complex, and includes issues of…

  18. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  19. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    A steric and kinetic model for the sequence and mechanism of reactions leading to formation of a complex from an antibody, a haptene (quinidine), and a cell membrane (platelets), and to fixation of complement by the complex was deduced from the effects of varying the initial concentration of each component of the complex on the amount of complement fixed, from kinetic aspects of the sequential reactions, and from other chemical and physical properties of the various components involved. Theoretical results calculated using equations based on the model, which were derived by Dr. Terrell L. Hill, were similar in all respects to experimental results. Results of this study were consistent with the possibilities that the protein moiety of a haptenic antigen involved in development of an antibody which attaches to a cell is not necessarily a component of the cell, and that the cell reacts with the antibody by virtue of having a surface favorable for non-specific adsorption of certain haptene-antibody complexes. PMID:13525578

  20. Using Malus sieversii Ledeb., the wild apple progenitor of Malus H domestica Borkh., to identify genes contributing to water use efficiency and potential drought resistance

    USDA-ARS?s Scientific Manuscript database

    Dehydration is a feature of many abiotic stresses, but is more often an agricultural threat in its own right. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular biological responses. These mechanisms are complex and involve vari...

  1. Spoken Language Processing Model: Bridging Auditory and Language Processing to Guide Assessment and Intervention

    ERIC Educational Resources Information Center

    Medwetsky, Larry

    2011-01-01

    Purpose: This article outlines the author's conceptualization of the key mechanisms that are engaged in the processing of spoken language, referred to as the spoken language processing model. The act of processing what is heard is very complex and involves the successful intertwining of auditory, cognitive, and language mechanisms. Spoken language…

  2. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  3. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  4. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models.

    PubMed

    Bignante, Elena Anahi; Ponce, Nicolás Eric; Heredia, Florencia; Musso, Juliana; Krawczyk, María C; Millán, Julieta; Pigino, Gustavo F; Inestrosa, Nibaldo C; Boccia, Mariano M; Lorenzo, Alfredo

    2018-04-01

    Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modeling Events in the Lower Imperial Valley Basin

    NASA Astrophysics Data System (ADS)

    Tian, X.; Wei, S.; Zhan, Z.; Fielding, E. J.; Helmberger, D. V.

    2010-12-01

    The Imperial Valley below the US-Mexican border has few seismic stations but many significant earthquakes. Many of these events, such as the recent El Mayor-Cucapah event, have complex mechanisms involving a mixture of strike-slip and normal slip patterns with now over 30 aftershocks with magnitude over 4.5. Unfortunately, many earthquake records from the Southern Imperial Valley display a great deal of complexity, ie., strong Rayleigh wave multipathing and extended codas. In short, regional recordings in the US are too complex to easily separate source properties from complex propagation. Fortunately, the Dec 30 foreshock (Mw=5.9) has excellent recordings teleseismically and regionally, and moreover is observed with InSAR. We use this simple strike-slip event to calibrate paths. In particular, we are finding record segments involving Pnl (including depth phases) and some surface waves (mostly Love waves) that appear well behaved, ie., can be approximated by synthetics from 1D local models and events modeled with the Cut-and-Paste (CAP) routine. Simple events can then be identified along with path calibration. Modeling the more complicated paths can be started with known mechanisms. We will report on both the aftershocks and historic events.

  6. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm andmore » is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.« less

  7. Cortical Regions Recruited for Complex Active-Learning Strategies and Action Planning Exhibit Rapid Reactivation during Memory Retrieval

    ERIC Educational Resources Information Center

    Voss, Joel L.; Galvan, Ashley; Gonsalves, Brian D.

    2011-01-01

    Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during…

  8. Biomechanics and mechanical signaling in the ovary: a systematic review.

    PubMed

    Shah, Jaimin S; Sabouni, Reem; Cayton Vaught, Kamaria C; Owen, Carter M; Albertini, David F; Segars, James H

    2018-04-24

    Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.

  9. Endocrinology of human parturition.

    PubMed

    Vannuccini, Silvia; Bocchi, Caterina; Severi, Filiberto M; Challis, John R; Petraglia, Felice

    2016-06-01

    The mechanisms involved in human pregnancy maintenance and parturition are highly complex and involve mother, fetus and placenta. The "final common pathway" to delivery is composed by inflammatory and endocrine interactive paths that tip the balance in favor of coordinated uterine contractility and cervical dilation. These mechanisms involve a shift from progesterone to estrogen dominance, CRH action, increased sensitivity to oxytocin, gap junction formation, and increased prostaglandins activity. Complementary changes in the cervix involve a decrease in progesterone dominance and the actions of prostaglandins and relaxin, via connective tissue alterations, leading to cervical softening and dilation. Neuronal, hormonal, inflammatory and immune pathways participate in initiation of labor and the utero-placental unit plays a major role in the synthesis and release of parturition mediators. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres

    PubMed Central

    Song, Shufei

    2018-01-01

    Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres. PMID:29642537

  11. Microbial multicellular development: mechanical forces in action.

    PubMed

    Rivera-Yoshida, Natsuko; Arias Del Angel, Juan A; Benítez, Mariana

    2018-06-06

    Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. EARP, a multisubunit tethering complex involved in endocytic recycling

    PubMed Central

    Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S.

    2015-01-01

    Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061

  13. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake

    PubMed Central

    Delgado, María J.; Cerdá-Reverter, José M.; Soengas, José L.

    2017-01-01

    The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model. PMID:28694769

  14. Mechanism and Substrate Recognition of Human Holo ACP Synthase

    PubMed Central

    Bunkoczi, Gabor; Pasta, Saloni; Joshi, Anil; Wu, Xiaoqiu; Kavanagh, Kathryn L.; Smith, Stuart; Oppermann, Udo

    2007-01-01

    Summary Mammals utilize a single phosphopantetheinyl transferase for the posttranslational modification of at least three different apoproteins: the carrier protein components of cytosolic and mitochondrial fatty acid synthases and the aminoadipate semialdehyde reductase involved in lysine degradation. We determined the crystal structure of the human phosphopantetheinyl transferase, a eukaryotic phosphopantetheinyl transferase characterized, complexed with CoA and Mg2+, and in ternary complex with CoA and ACP. The involvement of key residues in ligand binding and catalysis was confirmed by mutagenesis and kinetic analysis. Human phosphopantetheinyl transferase exhibits an α/β fold and 2-fold pseudosymmetry similar to the Sfp phosphopantetheinyl transferase from Bacillus subtilis. Although the bound ACP exhibits a typical four-helix structure, its binding is unusual in that it is facilitated predominantly by hydrophobic interactions. A detailed mechanism is proposed describing the substrate binding and catalytic process. PMID:18022563

  15. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  16. Ligand Recognition by A-Class Eph Receptors: Crystal Structures of the EphA2 Ligand-Binding Domain and the EphA2/ephrin-A1 Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himanen, J.; Goldgur, Y; Miao, H

    2009-01-01

    Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules.more » This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.« less

  17. Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions

    PubMed Central

    Yuen, Eunice Y.; Wei, Jing

    2017-01-01

    Abstract Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be “U-shaped,” depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. PMID:29016816

  18. Molecular and Epigenetic Mechanisms for the Complex Effects of Stress on Synaptic Physiology and Cognitive Functions.

    PubMed

    Yuen, Eunice Y; Wei, Jing; Yan, Zhen

    2017-11-01

    Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be "U-shaped," depending upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex effects of stress will help to develop novel strategies to cope with stress-related mental disorders. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  19. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  20. On the Structural Plasticity of the Human Genome: Chromosomal Inversions Revisited

    PubMed Central

    Alves, Joao M; Lopes, Alexandra M; Chikhi, Lounès; Amorim, António

    2012-01-01

    With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. PMID:23730202

  1. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  2. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments.

    PubMed

    Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K

    2003-03-19

    The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.

  3. Mitochondrial Ion Channels in Cancer Transformation

    PubMed Central

    Madamba, Stephen M.; Damri, Kevin N.; Dejean, Laurent M.; Peixoto, Pablo M.

    2015-01-01

    Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process. PMID:26090338

  4. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum

    PubMed Central

    OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling

    2018-01-01

    Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS. PMID:29503638

  5. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum.

    PubMed

    OuYang, Qiuli; Tao, Nengguo; Zhang, Miaoling

    2018-01-01

    Citral exhibits strong antifungal activity against Penicillium digitatum . In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.

  6. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  7. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affectmore » cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.« less

  8. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  9. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  10. Modelling the molecular mechanisms of aging

    PubMed Central

    Mc Auley, Mark T.; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M.; Morgan, Amy E.

    2017-01-01

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field. PMID:28096317

  11. Effects of cyproterone acetate on sexual arousal patterns of pedophiles.

    PubMed

    Bradford, J M; Pawlak, A

    1993-12-01

    The antiandrogen treatment of sexual offenders has been shown to reduce the recidivism rate. The mechanism of action has been assumed to be through asexualization with its secondary effects on sexual behavior. This study shows that the mechanism may be more complex and may involve a differential effect on sexual arousal patterns. Treatment responses may differ in high and low plasma testosterone groups.

  12. Quantum-chemical Calculations in the Study of Antitumour Compounds

    NASA Astrophysics Data System (ADS)

    Luzhkov, V. B.; Bogdanov, G. N.

    1986-01-01

    The results of quantum-chemical calculations on antitumour preparations concerning the mechanism of their action at the electronic and molecular levels and structure-activity correlations are discussed in this review. Preparations whose action involves alkylating and free-radial mechanisms, complex-forming agents, and antimetabolites are considered. Modern quantum-chemical methods for calculations on biologically active substances are described. The bibliography includes 106 references.

  13. Complex Flow: Workshop Report; January 17-18, 2012, University of Colorado, Boulder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-06-01

    The Department of Energy's Wind Program organized a two-day workshop designed to examine complex wind flow into and out of the wind farm environment and the resulting impacts on the mechanical workings of individual wind turbines. An improved understanding of these processes will subsequently drive down the risk involved for wind energy developers, financiers, and owner/operators, thus driving down the cost of energy.

  14. Biofluid mechanics--an interdisciplinary research area of the future.

    PubMed

    Liepsch, Dieter

    2006-01-01

    Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.

  15. Marr's levels and the minimalist program.

    PubMed

    Johnson, Mark

    2017-02-01

    A simple change to a cognitive system at Marr's computational level may entail complex changes at the other levels of description of the system. The implementational level complexity of a change, rather than its computational level complexity, may be more closely related to the plausibility of a discrete evolutionary event causing that change. Thus the formal complexity of a change at the computational level may not be a good guide to the plausibility of an evolutionary event introducing that change. For example, while the Minimalist Program's Merge is a simple formal operation (Berwick & Chomsky, 2016), the computational mechanisms required to implement the language it generates (e.g., to parse the language) may be considerably more complex. This has implications for the theory of grammar: theories of grammar which involve several kinds of syntactic operations may be no less evolutionarily plausible than a theory of grammar that involves only one. A deeper understanding of human language at the algorithmic and implementational levels could strengthen Minimalist Program's account of the evolution of language.

  16. Pointing and tracking space mechanism for laser communication

    NASA Technical Reports Server (NTRS)

    Brunschvig, A.; Deboisanger, M.

    1994-01-01

    Space optical communication is considered a promising technology regarding its high data rate and confidentiality capabilities. However, it requires today complex satellite systems involving highly accurate mechanisms. This paper aims to highlight the stringent requirements which had to be fulfilled for such a mechanism, the way an existing design has been adapted to meet these requirements, and the main technical difficulties which have been overcome thanks to extensive development tests throughout the C/D phase initiated in 1991. The expected on-orbit performance of this mechanism is also presented.

  17. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentatemore » chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.« less

  18. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    PubMed Central

    2017-01-01

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5′-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2′-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ∼1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water. PMID:28640600

  19. Actomyosin-dependent formation of the mechanosensitive talin–vinculin complex reinforces actin anchoring

    PubMed Central

    Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe

    2014-01-01

    The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin–vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin–talin–vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton. PMID:24452080

  20. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  1. Regulation of microtubule nucleation mediated by γ-tubulin complexes.

    PubMed

    Sulimenko, Vadym; Hájková, Zuzana; Klebanovych, Anastasiya; Dráber, Pavel

    2017-05-01

    The microtubule cytoskeleton is critically important for spatio-temporal organization of eukaryotic cells. The nucleation of new microtubules is typically restricted to microtubule organizing centers (MTOCs) and requires γ-tubulin that assembles into multisubunit complexes of various sizes. γ-Tubulin ring complexes (TuRCs) are efficient microtubule nucleators and are associated with large number of targeting, activating and modulating proteins. γ-Tubulin-dependent nucleation of microtubules occurs both from canonical MTOCs, such as spindle pole bodies and centrosomes, and additional sites such as Golgi apparatus, nuclear envelope, plasma membrane-associated sites, chromatin and surface of pre-existing microtubules. Despite many advances in structure of γ-tubulin complexes and characterization of γTuRC interacting factors, regulatory mechanisms of microtubule nucleation are not fully understood. Here, we review recent work on the factors and regulatory mechanisms that are involved in centrosomal and non-centrosomal microtubule nucleation.

  2. The effect of menadione on glutathione S-transferase A1 (GSTA1): c-Jun N-terminal kinase (JNK) complex dissociation in human colonic adenocarcinoma Caco-2 cells.

    PubMed

    Adnan, Humaira; Antenos, Monica; Kirby, Gordon M

    2012-10-02

    Glutathione S-transferases (GSTs) act as modulators of mitogen-activated protein kinase signal transduction pathways via a mechanism involving protein-protein interactions. We have demonstrated that GSTA1 forms complexes with JNK and modifies JNK activation during cellular stress, but the factors that influence complex association and dissociation are unknown. We hypothesized that menadione causes dissociation of GSTA1-JNK complexes, activates JNK, and the consequences of menadione exposure depend on GSTA1 expression. We demonstrate that menadione causes GSTA1-JNK dissociation and JNK activation in preconfluent Caco-2 cells, whereas postconfluent cells are resistant to this effect. Moreover, preconfluent cells are more sensitive than postconfluent cells to menadione-induced cytotoxicity. Activation of JNK is transient since removal of menadione causes GSTA1 to re-associate with JNK reducing cytotoxicity. Over-expression and knockdown of GSTA1 did not alter JNK activation by menadione or sensitivity to menadione-induced cytotoxicity. These results indicate that GSTA1-JNK complex integrity does not affect the ability of menadione to activate JNK. N-acetyl cysteine prevents GSH depletion and blocks menadione-induced complex dissociation, JNK activation and inhibits menadione-induced cytotoxicity. JNK activation and inhibits menadione-induced cytotoxicity. The data suggest that the mechanism of menadione-induced JNK activation involves the production of reactive oxygen species, likely superoxide anion, and intracellular GSH levels play an important role in preventing GSTA1-JNK complex dissociation, subsequent JNK activation and induction of cytotoxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Why individual thermo sensation and pain perception varies? Clue of disruptive mutations in TRPVs from 2504 human genome data.

    PubMed

    Ghosh, Arijit; Kaur, Navneet; Kumar, Abhishek; Goswami, Chandan

    2016-09-02

    Every individual varies in character and so do their sensory functions and perceptions. The molecular mechanism and the molecular candidates involved in these processes are assumed to be similar if not same. So far several molecular factors have been identified which are fairly conserved across the phylogenetic tree and are involved in these complex sensory functions. Among all, members belonging to Transient Receptor Potential (TRP) channels have been widely characterized for their involvement in thermo-sensation. These include TRPV1 to TRPV4 channels which reveal complex thermo-gating behavior in response to changes in temperature. The molecular evolution of these channels is highly correlative with the thermal response of different species. However, recent 2504 human genome data suggest that these thermo-sensitive TRPV channels are highly variable and carry possible deleterious mutations in human population. These unexpected findings may explain the individual differences in terms of complex sensory functions.

  4. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    PubMed

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  5. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    PubMed

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force

    NASA Astrophysics Data System (ADS)

    Grubmuller, Helmut; Heymann, Berthold; Tavan, Paul

    1996-02-01

    The force required to rupture the streptavidin-biotin complex was calculated here by computer simulations. The computed force agrees well with that obtained by recent single molecule atomic force microscope experiments. These simulations suggest a detailed multiple-pathway rupture mechanism involving five major unbinding steps. Binding forces and specificity are attributed to a hydrogen bond network between the biotin ligand and residues within the binding pocket of streptavidin. During rupture, additional water bridges substantially enhance the stability of the complex and even dominate the binding inter-actions. In contrast, steric restraints do not appear to contribute to the binding forces, although conformational motions were observed.

  7. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    PubMed

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  8. Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.

    PubMed

    Lery, Letícia M S; Bitar, Mainá; Costa, Mauricio G S; Rössle, Shaila C S; Bisch, Paulo M

    2010-12-22

    G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.

  9. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation.

    PubMed

    Popinako, A; Antonov, M; Dibrova, D; Chemeris, A; Sokolova, O S

    2018-02-05

    The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Nucleation promoting factors regulate the expression and localization of Arp2/3 complex during meiosis of mouse oocytes.

    PubMed

    Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2012-01-01

    The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.

  11. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

    PubMed Central

    Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T

    2016-01-01

    Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060

  12. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  13. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  14. A structural equation modelling approach to explore the role of B vitamins and immune markers in lung cancer risk.

    PubMed

    Baltar, Valéria Troncoso; Xun, Wei W; Johansson, Mattias; Ferrari, Pietro; Chuang, Shu-Chun; Relton, Caroline; Ueland, Per Magne; Midttun, Øivind; Slimani, Nadia; Jenab, Mazda; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; Kaaks, Rudolf; Rohrmann, Sabine; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, Bas; Boshuizen, Hendriek; van Gils, Carla H; Onland-Moret, N Charlotte; Agudo, Antonio; Barricarte, Aurelio; Navarro, Carmen; Rodríguez, Laudina; Castaño, José Maria Huerta; Larrañaga, Nerea; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E; Crowe, Francesca; Gallo, Valentina; Norat, Teresa; Krogh, Vittorio; Masala, Giovanna; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Rasmuson, Torgny; Hallmans, Göran; Roswall, Nina; Tjønneland, Anne; Riboli, Elio; Brennan, Paul; Vineis, Paolo

    2013-08-01

    The one-carbon metabolism (OCM) is considered key in maintaining DNA integrity and regulating gene expression, and may be involved in the process of carcinogenesis. Several B-vitamins and amino acids have been implicated in lung cancer risk, via the OCM directly as well as immune system activation. However it is unclear whether these factors act independently or through complex mechanisms. The current study applies structural equations modelling (SEM) to further disentangle the mechanisms involved in lung carcinogenesis. SEM allows simultaneous estimation of linear relations where a variable can be the outcome in one equation and the predictor in another, as well as allowing estimation using latent variables (factors estimated by correlation matrix). A large number of biomarkers have been analysed from 891 lung cancer cases and 1,747 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Four putative mechanisms in the OCM and immunity were investigated in relation to lung cancer risk: methionine-homocysteine metabolism, folate cycle, transsulfuration, and mechanisms involved in inflammation and immune activation, all adjusted for tobacco exposure. The hypothesized SEM model confirmed a direct and protective effect for factors representing methionine-homocysteine metabolism (p = 0.020) and immune activation (p = 0.021), and an indirect protective effect of folate cycle (p = 0.019), after adjustment for tobacco smoking. In conclusion, our results show that in the investigation of the involvement of the OCM, the folate cycle and immune system in lung carcinogenesis, it is important to consider complex pathways (by applying SEM) rather than the effects of single vitamins or nutrients (e.g. using traditional multiple regression). In our study SEM were able to suggest a greater role of the methionine-homocysteine metabolism and immune activation over other potential mechanisms.

  15. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine.

    PubMed

    Otsuka, Shotaro; Ellenberg, Jan

    2018-02-01

    The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  16. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    PubMed

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Mechanism and Regulation of Gene Expression by Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2004-07-01

    the nature, regulation and mechanism of action of these factors can facilitate the development of anti-prostatic cancer therapy. The general objective...response to other signal transduction pathways) during prostate cancer development . This approach might provide new drug development insights into...G. Roeder. 2000. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol

  18. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.

    PubMed

    Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G

    2013-08-01

    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, J.F.

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{submore » 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.« less

  20. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  1. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond.

    PubMed

    Compe, Emmanuel; Egly, Jean-Marc

    2016-06-02

    Transcription factor IIH (TFIIH) is a multiprotein complex involved in both transcription and DNA repair, revealing a striking functional link between these two processes. Some of its subunits also belong to complexes involved in other cellular processes, such as chromosome segregation and cell cycle regulation, emphasizing the multitasking capabilities of this factor. This review aims to depict the structure of TFIIH and to dissect the roles of its subunits in different cellular mechanisms. Our understanding of the biochemistry of TFIIH has greatly benefited from studies focused on diseases related to TFIIH mutations. We address the etiology of these disorders and underline the fact that TFIIH can be considered a promising target for therapeutic strategies.

  2. Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios

    NASA Astrophysics Data System (ADS)

    Rao, Parthib; Schaefer, Laura

    2017-11-01

    Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.

  3. Damage Control: Cellular Mechanisms of Plasma Membrane Repair

    PubMed Central

    Andrews, Norma W.; de Almeida, Patricia E.; Corrotte, Matthias

    2014-01-01

    Summary When wounded, eukaryotic cells reseal in a few seconds. Ca2+ influx induces exocytosis of lysosomes, a process previously thought to promote repair by “patching” wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase triggers endocytosis of lesions, followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal, which are distinct from the “patch” model. PMID:25150593

  4. The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?

    PubMed

    Crofts, Antony R; Holland, J Todd; Victoria, Doreen; Kolling, Derrick R J; Dikanov, Sergei A; Gilbreth, Ryan; Lhee, Sangmoon; Kuras, Richard; Kuras, Mariana Guergova

    2008-01-01

    Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.

  5. Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs.

    PubMed

    Fuxe, Kjell; Borroto-Escuela, Dasiel O; Tarakanov, Alexander O; Romero-Fernandez, Wilber; Ferraro, Luca; Tanganelli, Sergio; Perez-Alea, Mileidys; Di Palma, Michael; Agnati, Luigi F

    2014-01-01

    This review is focused on the D2 heteroreceptor complexes within the ventral striatum with their receptor-receptor interactions and relevance for the treatment of schizophrenia. A "guide-and-clasp" manner for receptor-receptor interactions is proposed where "adhesive guides" may be amino acid triplet homologies, which were determined for different kinds of D2 heteroreceptor complexes. The first putative D2 heteroreceptor complex to be discovered in relation to schizophrenia was the A2A-D2 heteroreceptor complex where antagonistic A2A-D2 receptor-receptor interactions were demonstrated after A2A agonist treatment in the ventral striatum. The A2A agonist CGS 21680 with atypical antipsychotic properties may at least in part act by increasing β-arrestin2 signaling over the D2 protomer in the A2A-D2 heteroreceptor complex in the ventral striatum. The antagonistic NTS1-D2 interactions in the NTS1-D2 heteroreceptor complex in the ventral striatum are proposed as one molecular mechanism for the potential antipsychotic effects of NT. Indications were obtained that the psychotic actions of the 5-HT2AR hallucinogens LSD and DOI can involve enhancement of D2R protomer signaling via a biased agonist action at the 5-HT2A protomer in the D2-5-HT2A heteroreceptor complex in the ventral striatum. Facilitatory allosteric D2likeR-OTR interactions in heteroreceptor complexes in nucleus accumbens may have a role in social and emotional behaviors. By blocking the D2 protomers of these heteroreceptor complexes, antipsychotics can fail to reduce the negative symptoms of schizophrenia. The discovery of different types of D2 heteroreceptor complexes gives an increased understanding of molecular mechanisms involved in causing schizophrenia and new strategies for its treatment and understanding the side effects of antipsychotics. © 2014 Elsevier B.V. All rights reserved.

  6. NOVEL MARKERS OF AIR POLLUTION-INDUCED VASCULAR TOXICITY

    EPA Science Inventory

    The results of this project should be a handful of biological markers that can be subsequently used to: 1) identify susceptible individuals, 2) identify causal components of the complex air pollution mixture, and 3) better understand the biological mechanisms involved in air p...

  7. Architecture and Robust Networks

    DTIC Science & Technology

    2011-08-18

    supercritical Hopf bifurcation). Thus at least in this model, oscillations have no direct purpose but are side effects of hard tradeoffs crucial to...The HRV tradeoffs already involve more complex mechanisms in (9) than in (1), but both models need expansion to include control of redox (and CO2

  8. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  9. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease.

    PubMed

    Singh, Pragyan; Saha, Upasana; Paira, Sunirmal; Das, Biswadip

    2018-05-11

    Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?

    PubMed

    Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R

    2018-03-16

    Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.

  11. Arenavirus Budding: A Common Pathway with Mechanistic Differences

    PubMed Central

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-01

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement. PMID:23435234

  12. Chromosome rearrangements via template switching between diverged repeated sequences

    PubMed Central

    Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.

    2014-01-01

    Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035

  13. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.

    PubMed

    Sun, Cuixia; Dai, Lei; Gao, Yanxiang

    2017-02-10

    The anti-solvent co-precipitation method was used to fabricate the zein-propylene glycol alginate (PGA) binary complex with different mass ratios of zein to PGA (20:1, 10:1, 5:1, 2:1 and 1:1) at pH 4.0. Results showed that attractive electrostatic interaction between zein and PGA occurred and negatively charged binary complex with large size and high turbidity was formed due to the charge neutralization. Hydrogen bonding and hydrophobic effects were involved in the interactions between zein and PGA, leading to the changed secondary structure and improved thermal stability of zein. Aggregates in the irregular shape with large size were obviously observed in the AFM images. PGA alone exhibited a fine filamentous network structure, while zein-PGA binary complex showed a rough branch-like pattern and the surface of "branch" was closely adsorbed by lots of spherical zein particles. Q in zein-PGA binary complex dispersions presented the improved photochemical and thermal stability. The potential mechanism of a two-step process was proposed to explain the formation of zein-PGA binary complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hilbert complexes of nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2016-12-01

    We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.

  15. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci

    PubMed Central

    Shelburne, Samuel A.; Davenport, Michael T.; Keith, David B.; Musser, James M.

    2009-01-01

    Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction. PMID:18508271

  16. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    PubMed

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  17. Cell Signaling Experiments Driven by Optical Manipulation

    PubMed Central

    Difato, Francesco; Pinato, Giulietta; Cojoc, Dan

    2013-01-01

    Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758

  18. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  19. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation.

    PubMed

    Tai, Chao; Li, Yanbin; Yin, Yongguang; Scinto, Leonard J; Jiang, Guibin; Cai, Yong

    2014-07-01

    Photodegradation is the major pathway of methylmercury (MeHg) degradation in many surface waters. However, the mechanism of MeHg photodegradation is still not completely understood. Dissolved organic matter (DOM) is expected to play a critical role in MeHg photodegradation. By using several techniques, including N2/O2 purging and the addition of stable isotope (Me(201)Hg), scavengers, competing ligands, and a singlet oxygen ((1)O2) generator, the role played by MeHg-DOM complexation in MeHg photodegradation of Everglades surface water was investigated. DOM appeared to be involved in MeHg photodegradation via the formation MeHg-DOM complexes based on three findings: (1) MeHg was quickly photodegraded in solutions containing DOM extracts; (2) degradation of MeHg did not occur in deionized water; and (3) addition of competing complexation reagents (dithiothreitol-DTT) dramatically prohibited the photodegradation of MeHg in Everglades water. Further experiments indicated that free radicals/reactive oxygen species, including hydroxyl radical (·OH), (1)O2, triplet excited state of DOM ((3)DOM*), and hydrated electron (e(-)aq), played a minor role in MeHg photodegradation in Everglades water, based on the results of scavenger addition, (1)O2 generator addition and N2/O2 purging. A pathway, involving direct photodegradation of MeHg-DOM complexes via intramolecular electron transfer, is proposed as the dominant mechanism for MeHg photodegradation in Everglades water.

  20. Structure and dynamics of thylakoids in land plants.

    PubMed

    Pribil, Mathias; Labs, Mathias; Leister, Dario

    2014-05-01

    Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.

  1. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. Aftermore » silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.« less

  2. Role of NFkappaB in an animal model of complex regional pain syndrome-type I (CRPS-I).

    PubMed

    de Mos, Marissa; Laferrière, André; Millecamps, Magali; Pilkington, Mercedes; Sturkenboom, Miriam C J M; Huygen, Frank J P M; Coderre, Terence J

    2009-11-01

    NFkappaB is involved in several pathogenic mechanisms that are believed to underlie the complex regional pain syndrome (CRPS), including ischemia, inflammation and sensitization. Chronic postischemia pain (CPIP) has been developed as an animal model that mimics the symptoms of CRPS-I. The possible involvement of NFkappaB in CRPS-I was studied using CPIP rats. Under sodium pentobarbital anesthesia, a tourniquet was placed around the rat left ankle joint, producing 3 hours of ischemia, followed by rapid reperfusion (IR injury). NFkappaB was measured in nuclear extracts of muscle and spinal cord tissue using ELISA. Moreover, the anti-allodynic (mechanical and cold) effect was tested for systemic, intrathecal, or intraplantar treatment with the NFkappaB inhibitor pyrrolidine dithiocarbamate (PDTC). At 2 and 48 hours after IR injury, NFkappaB was elevated in muscle and spinal cord of CPIP rats compared to shams. At 7 days, NFkappaB levels were normalized in muscle, but still elevated in spinal cord tissue. Systemic PDTC treatment relieved mechanical and cold allodynia in a dose-dependent manner, lasting for at least 3 hours. Intrathecal-but not intraplantar-administration also relieved mechanical allodynia. The results suggest that muscle and spinal NFkappaB plays a role in the pathogenesis of CPIP and potentially of human CRPS. Using the CPIP model, we demonstrate that NFkappaB is involved in the development of allodynia after a physical injury (ischemia and reperfusion) without direct nerve trauma. Since CPIP animals exhibit many features of human CRPS-I, this observation indicates a potential role for NFkappaB in human CRPS.

  3. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism.

    PubMed

    Puri, Mayank; Company, Anna; Sabenya, Gerard; Costas, Miquel; Que, Lawrence

    2016-06-20

    Detailed studies of oxygen atom exchange (OAE) between H2(18)O and synthetic non-heme oxoiron(IV) complexes supported by tetradentate and pentadentate ligands provide evidence that they proceed by a common mechanism but within two different kinetic regimes, with OAE rates that span 2 orders of magnitude. The first kinetic regime involves initial reversible water association to the Fe(IV) complex, which is evidenced by OAE rates that are linearly dependent on [H2(18)O] and H2O/D2O KIEs of 1.6, while the second kinetic regime involves a subsequent rate determining proton-transfer step between the bound aqua and oxo ligands that is associated with saturation behavior with [H2(18)O] and much larger H2O/D2O KIEs of 5-6. [Fe(IV)(O)(TMC)(MeCN)](2+) (1) and [Fe(IV)(O)(MePy2TACN)](2+) (9) are examples of complexes that exhibit kinetic behavior in the first regime, while [Fe(IV)(O)(N4Py)](2+) (3), [Fe(IV)(O)(BnTPEN)](2+) (4), [Fe(IV)(O)(1Py-BnTPEN)](2+) (5), [Fe(IV)(O)(3Py-BnTPEN)](2+) (6), and [Fe(IV)(O)(Me2Py2TACN)](2+) (8) represent complexes that fall in the second kinetic regime. Interestingly, [Fe(IV)(O)(PyTACN)(MeCN)](2+) (7) exhibits a linear [H2(18)O] dependence below 0.6 M and saturation above 0.6 M. Analysis of the temperature dependence of the OAE rates shows that most of these complexes exhibit large and negative activation entropies, consistent with the proposed mechanism. One exception is complex 9, which has a near-zero activation entropy and is proposed to undergo ligand-arm dissociation during the RDS to accommodate H2(18)O binding. These results show that the observed OAE kinetic behavior is highly dependent on the nature of the supporting ligand and are of relevance to studies of non-heme oxoiron(IV) complexes in water or acetonitrile/water mixtures for applications in photocatalysis and water oxidation chemistry.

  4. Mechanisms of genesis of variant translocation in chronic myeloid leukemia are not correlated with ABL1 or BCR deletion status or response to imatinib therapy.

    PubMed

    Richebourg, Steven; Eclache, Virginie; Perot, Christine; Portnoi, Marie-France; Van den Akker, Jacqueline; Terré, Christine; Maareck, Odile; Soenen, Valérie; Viguié, Franck; Laï, Jean-Luc; Andrieux, Joris; Corm, Sélim; Roche-Lestienne, Catherine

    2008-04-15

    Many published studies have indicated that various mechanisms could be involved in the genesis of variant chronic myelogeneous leukemia (CML) translocations. These are mainly one-step or two-step mechanisms, associated or not with deletions adjacent to the translocation junction on der(9) or der(22) chromosomes (or both). Based on the mechanism of genesis, it has been suggested that the complexity may affect the occurrence of ABL1 and BCR deletions (either or both), or may be associated with the CML disease course, and thus could determine the response to imatinib therapy. Through a retrospective molecular cytogenetic study of 41 CML patients with variant Philadelphia chromosome (Ph), we explored the genesis of these variant rearrangements and analyzed the correlation with deletion status and imatinib efficiency. Our results confirmed that the one-step mechanism is the most frequent, evidenced in 30 of 41 patients (73%); 3 patients demonstrated other more complex multistep events and 8 patients (19.5%) harbored ABL1 or BCR deletions that are not significantly associated with the complexity of translocation genesis. We also found no association between one-step, two-step, or multistep mechanisms and the response to imatinib therapy.

  5. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    PubMed Central

    2011-01-01

    Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256

  6. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development.

    PubMed

    Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng

    2016-05-27

    Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Where the thoughts dwell: the physiology of neuronal-glial "diffuse neural net".

    PubMed

    Verkhratsky, Alexei; Parpura, Vladimir; Rodríguez, José J

    2011-01-07

    The mechanisms underlying the production of thoughts by exceedingly complex cellular networks that construct the human brain constitute the most challenging problem of natural sciences. Our understanding of the brain function is very much shaped by the neuronal doctrine that assumes that neuronal networks represent the only substrate for cognition. These neuronal networks however are embedded into much larger and probably more complex network formed by neuroglia. The latter, although being electrically silent, employ many different mechanisms for intercellular signalling. It appears that astrocytes can control synaptic networks and in such a capacity they may represent an integral component of the computational power of the brain rather than being just brain "connective tissue". The fundamental question of whether neuroglia is involved in cognition and information processing remains, however, open. Indeed, a remarkable increase in the number of glial cells that distinguishes the human brain can be simply a result of exceedingly high specialisation of the neuronal networks, which delegated all matters of survival and maintenance to the neuroglia. At the same time potential power of analogue processing offered by internally connected glial networks may represent the alternative mechanism involved in cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC.

    PubMed

    Zhang, Ning; Chan, Cecilia W S; Sanchez-Guerrero, Estella; Khachigian, Levon M

    2012-06-01

    Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.

  9. Executive Functions and the Improvement of Thinking Abilities: The Intervention in Reading Comprehension

    PubMed Central

    García-Madruga, Juan A.; Gómez-Veiga, Isabel; Vila, José Ó.

    2016-01-01

    In this paper, we propose a preliminary theory of executive functions that address in a specific way their relationship with working memory (WM) and higher-level cognition. It includes: (a) four core on-line WM executive functions that are involved in every novel and complex cognitive task; (b) two higher order off-line executive functions, planning and revision, that are required to resolving the most complex intellectual abilities; and (c) emotional control that is involved in any complex, novel and difficult task. The main assumption is that efficiency on thinking abilities may be improved by specific instruction or training on the executive functions necessary to solving novel and complex tasks involved in these abilities. Evidence for the impact of our training proposal on WM's executive functions involved in higher-level cognitive abilities comes from three studies applying an adaptive program designed to improve reading comprehension in primary school students by boosting the core WM's executive functions involved in it: focusing on relevant information, switching (or shifting) between representations or tasks, connecting incoming information from text with long-term representations, updating of the semantic representation of the text in WM, and inhibition of irrelevant information. The results are consistent with the assumption that cognitive enhancements from the training intervention may have affected not only a specific but also a more domain-general mechanism involved in various executive functions. We discuss some methodological issues in the studies of effects of WM training on reading comprehension. The perspectives and limitations of our approach are finally discussed. PMID:26869961

  10. Conflict Resolution in the Genome: How Transcription and Replication Make It Work.

    PubMed

    Hamperl, Stephan; Cimprich, Karlene A

    2016-12-01

    The complex machineries involved in replication and transcription translocate along the same DNA template, often in opposing directions and at different rates. These processes routinely interfere with each other in prokaryotes, and mounting evidence now suggests that RNA polymerase complexes also encounter replication forks in higher eukaryotes. Indeed, cells rely on numerous mechanisms to avoid, tolerate, and resolve such transcription-replication conflicts, and the absence of these mechanisms can lead to catastrophic effects on genome stability and cell viability. In this article, we review the cellular responses to transcription-replication conflicts and highlight how these inevitable encounters shape the genome and impact diverse cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spectroscopic Case-Based Studies in a Flipped Quantum Mechanics Course

    NASA Astrophysics Data System (ADS)

    Shipman, Steven

    2015-06-01

    Students in a flipped Quantum Mechanics course were expected to apply their knowledge of spectroscopy to a variety of case studies involving complex mixtures of chemicals. They used simulated data, prepared in advance by the instructor, to determine the major chemical constituents of complex mixtures. Students were required to request the appropriate data in order to ultimately make plausible guesses about the composition of the mixtures, allowing them ownership over the discovery process. This talk will describe how these activities worked in practice, give caveats for instructors who wish to adopt them in the future, and discuss how the results of these exercises can be used for both formative and summative assessment.

  12. DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.

    PubMed

    Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes R; Fristrup, Peter

    2015-02-16

    The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss

    PubMed Central

    Jeney, Viktória

    2017-01-01

    Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766

  14. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  15. Behavioral genetics and taste

    PubMed Central

    Boughter, John D; Bachmanov, Alexander A

    2007-01-01

    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste. PMID:17903279

  16. Quality of Community Life among Rural Residents: An Integrated Model

    ERIC Educational Resources Information Center

    Auh, Seongyeon; Cook, Christine C.

    2009-01-01

    The purpose of this research was to explore the relationships among housing satisfaction, community attachment and community satisfaction and the complex mechanisms involved in predicting community satisfaction among residents in rural communities. The role of housing satisfaction and community attachment in predicting community satisfaction was…

  17. Moving Material into Space Without Rockets.

    ERIC Educational Resources Information Center

    Cheng, R. S.; Trefil, J. S.

    1985-01-01

    In response to conventional rocket demands on fuel supplies, electromagnetic launches were developed to give payloads high velocity using a stationary energy source. Several orbital mechanics problems are solved including a simple problem (radial launch with no rotation) and a complex problem involving air resistance and gravity. (DH)

  18. Formation and mechanics of granular waves in gravity and shallow overland flow

    USDA-ARS?s Scientific Manuscript database

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...

  19. Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex.

    PubMed

    Mezencev, Roman

    2015-01-01

    Since the discovery of its anticancer activity in 1970s, cisplatin and its analogs have become widely used in clinical practice, being administered to 40-80% of patients undergoing chemotherapy for solid tumors. The fascinating story of this drug continues to evolve presently, which includes advances in our understanding of complexity of molecular mechanisms involved in its anticancer activity and drug toxicity. While genomic DNA has been generally recognized as the most critical pharmacological target of cisplatin, the results reported across multiple disciplines suggest that other targets and molecular interactions are likely involved in the anticancer mode of action, drug toxicity and resistance of cancer cells to this remarkable anticancer drug. This article reviews interactions of cisplatin with non-DNA targets, including RNAs, proteins, phospholipids and carbohydrates in the context of its pharmacological activity and drug toxicity. Some of these non-DNA targets and associated mechanisms likely act in a highly concerted manner towards the biological outcome in cisplatin-treated tumors; therefore, the understanding of complexity of cisplatin interactome may open new avenues for modulation of its clinical efficacy or for designing more efficient platinum-based anticancer drugs to reproduce the success of cisplatin in the treatment of highly curable testicular germ cell tumors in its therapeutic applications to other cancers.

  20. Energy transfer in a mechanically trapped exciplex.

    PubMed

    Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto

    2009-07-15

    Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.

  1. Processing of energy materials in electromagnetic field

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Kuzmina, L. V.; Gazenaur, E. G.; Krasheninin, V. I.

    2015-09-01

    This paper presents the research results of complex impact of mechanical stress and electromagnetic field on the defect structure of energy materials. As the object of research quite a typical energy material - silver azide was chosen, being a model in chemistry of solids. According to the experiments co-effect of magnetic field and mechanical stress in silver azide crystals furthers multiplication, stopper breakaway, shift of dislocations, and generation of superlattice dislocations - micro-cracks. A method of mechanical and electric strengthening has been developed and involves changing the density of dislocations in whiskers.

  2. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

  3. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    PubMed Central

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  4. Combining research approaches to advance our understanding of drug addiction.

    PubMed

    van den Bree, Marianne B M

    2005-04-01

    Drug addiction is a complex behavior, likely to be influenced by various genes, environmental factors, and gene-gene and gene-environment interactions. Various aspects of addiction are studied by different disciplines. Animal studies are increasing insight into brain regions and genes associated with addiction. Epidemiologic studies are establishing the factors increasing risk for initiation and continuation of substance use. Twin and adoption studies are increasing our understanding of the complex mechanisms involved in substance use, including comorbidity and gene environment interaction. Finally, molecular genetic studies in humans are starting to yield some converging findings. It is argued and illustrated with examples that greater awareness of progress in other disciplines can speed up our understanding of the complex processes involved in addiction. This should help our ability to identify who is at increased risk of becoming addicted and the development of prevention and intervention strategies targeted at an individual's specific needs.

  5. Nucleation Promoting Factors Regulate the Expression and Localization of Arp2/3 Complex during Meiosis of Mouse Oocytes

    PubMed Central

    Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2012-01-01

    The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division. PMID:23272233

  6. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera L.)

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees one critical set of behaviors contributing to the welfare of a colony are involved with nest thermoregulation. Worker honey bees co...

  7. Mapping the lipoylation site of Arabidopsis thaliana plastidial dihydrolipoamide S-acetyltransferase using mass spectrometry and site-directed mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Background: The catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys residues in the primary ...

  8. Adaptation of neuronal signaling and cell stress response pathways in a multigenic response of Drosophila melanogaster to DDT selection

    USDA-ARS?s Scientific Manuscript database

    The adaptation of insect populations to insecticidal control is a continual threat human health and sustainable agriculture practices, but many complex genomic mechanisms involved remain poorly understood. A systems approach was applied to investigate the interconnections between structural and func...

  9. Neurophysiological Factors in Human Information Processing Capacity

    ERIC Educational Resources Information Center

    Ramsey, Nick F.; Jansma, J. M.; Jager, G.; Van Raalten, T.; Kahn, R. S.

    2004-01-01

    What determines how well an individual can manage the complexity of information processing demands when several tasks have to be executed simultaneously? Various theoretical frameworks address the mechanisms of information processing and the changes that take place when processes become automated, and brain regions involved in various types of…

  10. Protein adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  11. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a combined Docking and QM/MM MD Study.

    NASA Astrophysics Data System (ADS)

    Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.

    2017-10-01

    Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.

  12. Structural Basis for the Interaction of the Golgi-Associated Retrograde Protein (GARP) Complex with the t-SNARE Syntaxin 6

    PubMed Central

    Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor

    2016-01-01

    Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592

  13. Position-effect variegation revisited: HUSHing up heterochromatin in human cells.

    PubMed

    Timms, Richard T; Tchasovnikarova, Iva A; Lehner, Paul J

    2016-04-01

    Much of what we understand about heterochromatin formation in mammals has been extrapolated from forward genetic screens for modifiers of position-effect variegation (PEV) in the fruit fly Drosophila melanogaster. The recent identification of the HUSH (Human Silencing Hub) complex suggests that more recent evolutionary developments contribute to the mechanisms underlying PEV in human cells. Although HUSH-mediated repression also involves heterochromatin spreading through the reading and writing of the repressive H3K9me3 histone modification, clear orthologues of HUSH subunits are not found in Drosophila but are conserved in vertebrates. Here we compare the insights into the mechanisms of PEV derived from genetic screens in the fly, the mouse and in human cells, review what is currently known about the HUSH complex and discuss the implications of HUSH-mediated silencing for viral latency. Future studies will provide mechanistic insight into HUSH complex function and reveal the relationship between HUSH and other epigenetic silencing complexes. © 2016 WILEY Periodicals, Inc.

  14. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  15. Pre-attentive processing of spectrally complex sounds with asynchronous onsets: an event-related potential study with human subjects.

    PubMed

    Tervaniemi, M; Schröger, E; Näätänen, R

    1997-05-23

    Neuronal mechanisms involved in the processing of complex sounds with asynchronous onsets were studied in reading subjects. The sound onset asynchrony (SOA) between the leading partial and the remaining complex tone was varied between 0 and 360 ms. Infrequently occurring deviant sounds (in which one out of 10 harmonics was different in pitch relative to the frequently occurring standard sound) elicited the mismatch negativity (MMN), a change-specific cortical event-related potential (ERP) component. This indicates that the pitch of standard stimuli had been pre-attentively coded by sensory-memory traces. Moreover, when the complex-tone onset fell within temporal integration window initiated by the leading-partial onset, the deviants elicited the N2b component. This indexes that involuntary attention switch towards the sound change occurred. In summary, the present results support the existence of pre-perceptual integration mechanism of 100-200 ms duration and emphasize its importance in switching attention towards the stimulus change.

  16. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    PubMed

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases

    PubMed Central

    Beurel, Eleonore; Grieco, Steven F.; Jope, Richard S.

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders. PMID:25435019

  18. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    PubMed

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  19. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex

    PubMed Central

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials. PMID:23974205

  20. Perspective: Quantum mechanical methods in biochemistry and biophysics.

    PubMed

    Cui, Qiang

    2016-10-14

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  1. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.

    PubMed

    Kaiser, Marcus; Varier, Sreedevi

    2011-01-01

    Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.

  2. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

    PubMed

    Tang, Hong-Wen; Hu, Yanhui; Chen, Chiao-Lin; Xia, Baolong; Zirin, Jonathan; Yuan, Min; Asara, John M; Rabinow, Leonard; Perrimon, Norbert

    2018-05-01

    Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology.

    PubMed

    List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.

  4. Structural Basis of Rap Phosphatase Inhibition by Phr Peptides

    PubMed Central

    Gallego del Sol, Francisca; Marina, Alberto

    2013-01-01

    Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR), are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr) through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change. PMID:23526880

  5. CTCF-KDM4A complex correlates with histone modifications that negatively regulate CHD5 gene expression in cancer cell lines

    PubMed Central

    Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto

    2018-01-01

    Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202

  6. Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii.

    PubMed

    Dubertret, G; Mirshahi, A; Mirshahi, M; Gerard-Hirne, C; Tremolieres, A

    1994-12-01

    The phosphatidylglycerol containing the unusual delta 3-trans hexadecenoic fatty acid is specifically found in photosynthetic membranes of eukaryotic organisms. Its involvement in the biogenesis and the structure of the light-harvesting chlorophyll a/b-protein complex has been evidenced by in vivo targeting this lipid to photosynthetic membranes of Chlamydomonas reinhardtii mutants lacking this lipid. In the mf1 and mf2 mutants, this deficiency results in (a) the absence of the oligomeric light-harvesting complex of photosystem 2; (b) an extensive destacking of thylakoid membranes; (c) a very low 77-K fluorescence emission in the photosystem-2 region. We show in this paper that these deficiencies result from modifications in the pigment and polypeptide compositions of the photosystem-2 light-harvesting complex; it contains less chlorophyll b and some of its constitutive polypeptides are absent or reduced in amount, while immunologically related polypeptides of lower molecular mass accumulate. The direct involvement of the lack of trans-C16: 1-phosphatidylglycerol in these deficiencies is evidenced by the partial restoration of normal characteristics of the light-harvesting complex (pigment and polypeptide composition, oligomerization) after liposome-mediated, in vivo incorporation of this lipid into the photosynthetic membranes of the mf2 mutant. Trans-C16:1-phosphatidylglycerol, therefore, is involved in the biogenesis of the photosystem-2 light-harvesting chlorophyll a/b-protein complex through a mechanism that may prevent degradation processes. Its contribution to the structural conformation of neosynthesized monomers and to their organization into stable oligomeric form is discussed.

  7. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress.

    PubMed

    Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan

    2018-08-01

    Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.

  8. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods

    PubMed Central

    Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2016-01-01

    Abstract Background Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. Aims To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Methods & Procedures Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in‐therapy discussions and post‐therapy interviews, which are analysed using Framework Analysis. Outcomes & Results Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers’ skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. Conclusions & Implications These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. PMID:27882642

  9. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods.

    PubMed

    Johnson, Fiona M; Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2017-05-01

    Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in-therapy discussions and post-therapy interviews, which are analysed using Framework Analysis. Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers' skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. © 2016 Royal College of Speech and Language Therapists.

  10. Transcriptome Analysis of a Rotenone Model of Parkinsonism Reveals Complex I-Tied and -Untied Toxicity Mechanisms Common to Neurodegenerative Diseases

    PubMed Central

    Cabeza-Arvelaiz, Yofre; Schiestl, Robert H.

    2012-01-01

    The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs. PMID:22970289

  11. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles

    PubMed Central

    Tang, Grace Y.; Pribisko, Melanie A.; Henning, Ryan K.; Lim, Punnajit; Termini, John; Gray, Harry B.; Grubbs, Robert H.

    2015-01-01

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates. PMID:25867444

  12. An in vitro enzymatic assay to measure transcription inhibition by gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles.

    PubMed

    Tang, Grace Y; Pribisko, Melanie A; Henning, Ryan K; Lim, Punnajit; Termini, John; Gray, Harry B; Grubbs, Robert H

    2015-03-18

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates.

  13. Therapies in inborn errors of oxidative metabolism

    PubMed Central

    Schiff, Manuel; Bénit, Paule; Jacobs, Howard T.; Vockley, Jerry; Rustin, Pierre

    2014-01-01

    Mitochondrial diseases encompass a wide range of presentations and mechanisms, dictating a need to consider both broad-based and disease-specific therapies. The manifestations of mitochondrial dysfunction and the response to therapy vary between individuals. This probably reflects the genetic complexity of mitochondrial biology, which requires an excess of 2000 genes for proper function, with numerous interfering epigenetic and environmental factors. Accordingly, we are increasingly aware of the complexity of these diseases which involve far more than merely decreased ATP supply. Indeed, recent therapeutic progress has addressed only specific disease entities. In this review present and prospective therapeutic approaches will be discussed on the basis of targets and mechanism of action, but with a broad outlook on their potential applications. PMID:22633959

  14. Single-Molecule Spectroscopy and Imaging Studies of Protein Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2012-04-01

    Enzymatic reactions and protein-protein interactions are traditionally studied at the ensemble level, despite significant static and dynamic inhomogeneities. Subtle conformational changes play a crucial role in protein functions, and these protein conformations are highly dynamic rather than being static. We applied AFM-enhanced single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of T4 lysozyme and HPPK enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation. Our new approach is applicable to a wide range of single-molecule FRET measurements for protein conformational changes under enzymatic reactions.

  15. Genetics of Vitiligo

    PubMed Central

    Spritz, Richard; Andersen, Genevieve

    2016-01-01

    Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533

  16. Exploration of the mechanisms of temperature-dependent grain boundary mobility: Search for the common origin of ultrafast grain boundary motion

    DOE PAGES

    O’Brien, C. J.; Foiles, S. M.

    2016-04-19

    The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5,more » 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. Furthermore, this provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.« less

  17. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles

    PubMed Central

    Tanaka, Kozo; Kitamura, Etsushi; Kitamura, Yoko; Tanaka, Tomoyuki U.

    2007-01-01

    In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms. PMID:17620411

  18. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  19. Learning and memory: Steroids and epigenetics.

    PubMed

    Colciago, Alessandra; Casati, Lavinia; Negri-Cesi, Paola; Celotti, Fabio

    2015-06-01

    Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Immunotherapy for glioblastoma: playing chess, not checkers.

    PubMed

    Jackson, Christopher M; Lim, Michael

    2018-04-24

    Patients with glioblastoma (GBM) exhibit a complex state of immune dysfunction involving multiple mechanisms of local, regional, and systemic immune suppression and tolerance. These pathways are now being identified and their relative contributions explored. Delineating how these pathways are interrelated is paramount to effectively implementing immunotherapy for GBM. Copyright ©2018, American Association for Cancer Research.

  1. Interactions of flavanoids with bradykinin in aqueous solution

    Treesearch

    B. Berke; F.L. Tobiason; T. Hatano; C Cheze; J. Vercauteren; Richard W. Hemingway

    1999-01-01

    Complexation with proteins is central to much of the biological and industrial significance of plant polyphenols. Definition of the interaction of these two classes of biopolymers has, therefore, been studied for decades. The most important mechanism seems to involve hydrophobic interactions and also hydrogen bonding, but to a smaller extent. Study of specific...

  2. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like...

  3. Design and Development of a Web-Based Interactive Software Tool for Teaching Operating Systems

    ERIC Educational Resources Information Center

    Garmpis, Aristogiannis

    2011-01-01

    Operating Systems (OS) is an important and mandatory discipline in many Computer Science, Information Systems and Computer Engineering curricula. Some of its topics require a careful and detailed explanation from the instructor as they often involve theoretical concepts and somewhat complex mechanisms, demanding a certain degree of abstraction…

  4. Abnormal Moral Reasoning in Complete and Partial Callosotomy Patients

    ERIC Educational Resources Information Center

    Miller, Michael B.; Sinnott-Armstrong, Walter; Young, Liane; King, Danielle; Paggi, Aldo; Fabri, Mara; Polonara, Gabriele; Gazzaniga, Michael S.

    2010-01-01

    Recent neuroimaging studies suggest lateralized cerebral mechanisms in the right temporal parietal junction are involved in complex social and moral reasoning, such as ascribing beliefs to others. Based on this evidence, we tested 3 anterior-resected and 3 complete callosotomy patients along with 22 normal subjects on a reasoning task that…

  5. Visible Light Photocatalysis of [2+2] Styrene Cycloadditions via Energy Transfer

    PubMed Central

    Lu, Zhan; Yoon, Tehshik P.

    2012-01-01

    Hip to be square: Styrenes participate in [2+2] cycloadditions upon irradiation with visible light in the presence of an iridium(III) polypyridyl complex. In contrast to previous reports of visible light photoredox catalysis, the mechanism of this process involves photosensitization by energy transfer and not electron transfer. PMID:22965321

  6. Real quantum cybernetics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    1987-05-01

    It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.

  7. Ethanol and thermotolerance in the bioconversion of xylose by yeasts

    Treesearch

    Thomas W. Jeffries; Yong-Su Jin

    2000-01-01

    The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are...

  8. Vascular lumen formation.

    PubMed

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  9. Fish pigmentation and the melanocortin system.

    PubMed

    Cal, Laura; Suarez-Bregua, Paula; Cerdá-Reverter, José Miguel; Braasch, Ingo; Rotllant, Josep

    2017-09-01

    The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

    PubMed

    Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok

    2014-01-01

    Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  11. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  12. Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation?

    PubMed

    Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S Jill; Kovalchuk, Igor; Pogribny, Igor

    2003-08-28

    Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural "open-field" radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [3H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.

  13. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  14. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  15. The biochemical basis for thermoregulation in heat-producing flowers

    PubMed Central

    Umekawa, Yui; Seymour, Roger S.; Ito, Kikukatsu

    2016-01-01

    Thermoregulation (homeothermy) in animals involves a complex mechanism involving thermal receptors throughout the body and integration in the hypothalamus that controls shivering and non-shivering thermogenesis. The flowers of some ancient families of seed plants show a similar degree of physiological thermoregulation, but by a different mechanism. Here, we show that respiratory control in homeothermic spadices of skunk cabbage (Symplocarpus renifolius) is achieved by rate-determining biochemical reactions in which the overall thermodynamic activation energy exhibits a negative value. Moreover, NADPH production, catalyzed by mitochondrial isocitrate dehydrogenase in a chemically endothermic reaction, plays a role in the pre-equilibrium reaction. We propose that a law of chemical equilibrium known as Le Châtelier’s principle governs the homeothermic control in skunk cabbage. PMID:27095582

  16. Induced antiviral innate immunity in Drosophila.

    PubMed

    Lamiable, Olivier; Imler, Jean-Luc

    2014-08-01

    Immunity to viral infections in the model organism Drosophila melanogaster involves both RNA interference and additional induced responses. The latter include not only cellular mechanisms such as programmed cell death and autophagy, but also the induction of a large set of genes, some of which contribute to the control of viral replication and resistance to infection. This induced response to infection is complex and involves both virus-specific and cell-type specific mechanisms. We review here recent developments, from the sensing of viral infection to the induction of signaling pathways and production of antiviral effector molecules. Our current understanding, although still partial, validates the Drosophila model of antiviral induced immunity for insect pests and disease vectors, as well as for mammals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Transport mechanisms in Schottky diodes realized on GaN

    NASA Astrophysics Data System (ADS)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  18. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    PubMed

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  19. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis

    PubMed Central

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-01-01

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed. PMID:28850088

  20. Effect of the order of He{sup +} and H{sup +} ion co-implantation on damage generation and thermal evolution of complexes, platelets, and blisters in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daghbouj, N.; Faculté des Sciences de Monastir, Université de Monastir, Monastir; Cherkashin, N., E-mail: nikolay.cherkashin@cemes.fr

    2016-04-07

    Hydrogen and helium co-implantation is nowadays used to efficiently transfer thin Si layers and fabricate silicon on insulator wafers for the microelectronic industry. The synergy between the two implants which is reflected through the dramatic reduction of the total fluence needed to fracture silicon has been reported to be strongly influenced by the implantation order. Contradictory conclusions on the mechanisms involved in the formation and thermal evolution of defects and complexes have been drawn. In this work, we have experimentally studied in detail the characteristics of Si samples co-implanted with He and H, comparing the defects which are formed followingmore » each implantation and after annealing. We show that the second implant always ballistically destroys the stable defects and complexes formed after the first implant and that the redistribution of these point defects among new complexes drives the final difference observed in the samples after annealing. When H is implanted first, He precipitates in the form of nano-bubbles and agglomerates within H-related platelets and nano-cracks. When He is implanted first, the whole He fluence is ultimately used to pressurize H-related platelets which quickly evolve into micro-cracks and surface blisters. We provide detailed scenarios describing the atomic mechanisms involved during and after co-implantation and annealing which well-explain our results and the reasons for the apparent contradictions reported at the state of the art.« less

  1. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?

    PubMed Central

    Wiegmann, Daniel D.; Hebets, Eileen A.; Gronenberg, Wulfila; Graving, Jacob M.; Bingman, Verner P.

    2016-01-01

    Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms. PMID:27014008

  2. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis

    PubMed Central

    Fuchs, Margit; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N.

    2015-01-01

    The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. PMID:26496431

  3. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

    PubMed

    Fuchs, Margit; Luthold, Carole; Guilbert, Solenn M; Varlet, Alice Anaïs; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N

    2015-10-01

    The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.

  4. Absent movement-related cortical potentials in children with primary motor stereotypies.

    PubMed

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A; Vorbach, Sherry; Singer, Harvey S; Hallett, Mark

    2014-08-01

    The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown, with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about 1 second before the onset of a voluntary movement. Early MRCPs preceded self-paced arm movements in 8 of 10 children with motor stereotypies and in 6 of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies. © 2013 International Parkinson and Movement Disorder Society.

  5. Absent movement-related cortical potentials in children with primary motor stereotypies

    PubMed Central

    Houdayer, Elise; Walthall, Jessica; Belluscio, Beth A.; Vorbach, Sherry; Singer, Harvey S.; Hallett, Mark

    2013-01-01

    Background The underlying pathophysiologic mechanism for complex motor stereotypies in children is unknown with hypotheses ranging from an arousal to a motor control disorder. Movement-related cortical potentials (MRCPs), representing the activation of cerebral areas involved in the generation of movements, precede and accompany self-initiated voluntary movements. The goal of this study was to compare cerebral activity associated with stereotypies to that seen with voluntary movements in children with primary complex motor stereotypies. Methods Electroencephalographic (EEG) activity synchronized with video recording was recorded in 10 children diagnosed with primary motor stereotypies and 7 controls. EEG activity related to stereotypies and self-paced arm movements were analyzed for presence or absence of early or late MRCP, a steep negativity beginning about one second before the onset of a voluntary movement. Results Early MRCPs preceded self-paced arm movements in 8 out of 10 children with motor stereotypies and in 6 out of 7 controls. Observed MRCPs did not differ between groups. No MRCP was identified before the appearance of a complex motor stereotypy. Conclusions Unlike voluntary movements, stereotypies are not preceded by MRCPs. This indicates that premotor areas are likely not involved in the preparation of these complex movements and suggests that stereotypies are initiated by mechanisms different from voluntary movements. Further studies are required to determine the site of the motor control abnormality within cortico-striatal-thalamo-cortical pathways and to identify whether similar findings would be found in children with secondary stereotypies. PMID:24259275

  6. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  7. Current perspectives on behavioural and cellular mechanisms of illness anorexia.

    PubMed

    Asarian, Lori; Langhans, Wolfgang

    2005-12-01

    Here we review our current understanding of the integration of immune, neural, metabolic and endocrine signals involved in the generation of anorexia during acute infection, with the focus on anorexia elicited by peripheral administration of bacterial lipopolysaccharide (LPS). We chose to limit this review to peripheral LPS-anorexia because the mechanisms underlying this response may also be valid for anorexia during other types of acute or chronic infections, with slight differences in the duration of anorexia, levels of circulating concentrations of pro-inflammatory cytokines and hypermetabolism. Evidence so far indicates that LPS-anorexia is a complex response beneficial to host defence that involves both peripheral and central action of pro-inflammatory cytokines, other immune factors, such as prostanoids, and neurotransmitters, such as serotonin. One interesting characteristic of LPS-anorexia is its sexual differentiation, an aspect mainly mediated by the gonadal hormone estradiol. Understanding the behavioural and molecular mechanisms of LPS-anorexia may even provide useful leads for identifying mechanisms of eating disorders in humans.

  8. Self-organizing periodicity in development: organ positioning in plants.

    PubMed

    Bhatia, Neha; Heisler, Marcus G

    2018-02-08

    Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding. © 2018. Published by The Company of Biologists Ltd.

  9. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review.

    PubMed

    Nawaz, Fahim; Naeem, Muhammad; Zulfiqar, Bilal; Akram, Asim; Ashraf, Muhammad Yasin; Raheel, Muhammad; Shabbir, Rana Nauman; Hussain, Rai Altaf; Anwar, Irfan; Aurangzaib, Muhammad

    2017-07-01

    Brassinosteroids (BRs) are steroidal plant hormones involved in regulation of physiological and molecular processes to ameliorate various biotic and abiotic stresses. Exogenous application of BRs to improve stress tolerance in plants has recently become a high research priority. Several studies have revealed the involvement of these steroidal hormones in upregulation of stress-related defense genes and their cross talk with other metabolic pathways. This is likely to stimulate research on many unanswered questions regarding their role in enhancing the ability of plants to tolerate adverse environmental conditions. Thus, this review appraises new insights on mechanisms mediating BR-regulated changes in plants, focused mainly on their involvement in regulation of physiological and molecular mechanisms under stress conditions. Herein, examples of BR-stimulated modulation of antioxidant defense system and upregulation of transcription factors in plants exposed to various biotic (bacterial, viral, and fungal attack) and abiotic stresses (drought, salinity, heat, low temperature, and heavy metal stress) are discussed. Based on these insights, future research in the current direction can be helpful to increase our understanding of BR-mediated complex and interrelated processes under stress conditions.

  10. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen.

    PubMed

    Miyamoto, Sayuri; Nantes, Iseli L; Faria, Priscila A; Cunha, Daniela; Ronsein, Graziella E; Medeiros, Marisa H G; Di Mascio, Paolo

    2012-10-01

    The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O(2)((1)Δ(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [(18)O(2)((1)Δ(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

  11. Calculation of Expectation Values of Operators in the Complex Scaling Method

    DOE PAGES

    Papadimitriou, G.

    2016-06-14

    In the complex scaling method (CSM) provides with a way to obtain resonance parameters of particle unstable states by rotating the coordinates and momenta of the original Hamiltonian. It is convenient to use an L 2 integrable basis to resolve the complex rotated or complex scaled Hamiltonian H θ , with θ being the angle of rotation in the complex energy plane. Within the CSM, resonance and scattering solutions have fall-off asymptotics. Furthermore, one of the consequences is that, expectation values of operators in a resonance or scattering complex scaled solution are calculated by complex rotating the operators. In thismore » work we are exploring applications of the CSM on calculations of expectation values of quantum mechanical operators by using the regularized backrotation technique and calculating hence the expectation value using the unrotated operator. Moreover, the test cases involve a schematic two-body Gaussian model and also applications using realistic interactions.« less

  12. Cardiovirus Leader proteins bind exportins: Implications for virus replication and nucleocytoplasmic trafficking inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciomperlik, Jessica J.; Basta, Holly A.; Palmenberg, Ann C., E-mail: acpalmen@wisc.edu

    2016-01-15

    Cardiovirus Leader proteins (L{sub X}) inhibit cellular nucleocytoplasmic trafficking by directing host kinases to phosphorylate Phe/Gly-containing nuclear pore proteins (Nups). Resolution of the Mengovirus L{sub M} structure bound to Ran GTPase, suggested this complex would further recruit specific exportins (karyopherins), which in turn mediate kinase selection. Pull-down experiments and recombinant complex reconstitution now confirm that Crm1 and CAS exportins form stable dimeric complexes with encephalomyocarditis virus L{sub E}, and also larger complexes with L{sub E}:Ran. shRNA knockdown studies support this idea. Similar activities could be demonstrated for recombinant L{sub S} and L{sub T} from Theiloviruses. When mutations were introduced tomore » alter the L{sub E} zinc finger domain, acidic domain, or dual phosphorylation sites, there was reduced exportin selection. These regions are not involved in Ran interactions, so the Ran and Crm1 binding sites on L{sub E} must be non-overlapping. The involvement of exportins in this mechanism is important to viral replication and the observation of trafficking inhibition by L{sub E}.« less

  13. The genetics of insomnia--evidence for epigenetic mechanisms?

    PubMed

    Palagini, Laura; Biber, Knut; Riemann, Dieter

    2014-06-01

    Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic mechanisms in the development and maintenance of insomnia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Essential Requirements for Robust Signaling in Hfq Dependent Small RNA Networks

    PubMed Central

    Adamson, David N.; Lim, Han N.

    2011-01-01

    Bacteria possess networks of small RNAs (sRNAs) that are important for modulating gene expression. At the center of many of these sRNA networks is the Hfq protein. Hfq's role is to quickly match cognate sRNAs and target mRNAs from among a large number of possible combinations and anneal them to form duplexes. Here we show using a kinetic model that Hfq can efficiently and robustly achieve this difficult task by minimizing the sequestration of sRNAs and target mRNAs in Hfq complexes. This sequestration can be reduced by two non-mutually exclusive kinetic mechanisms. The first mechanism involves heterotropic cooperativity (where sRNA and target mRNA binding to Hfq is influenced by other RNAs bound to Hfq); this cooperativity can selectively decrease singly-bound Hfq complexes and ternary complexes with non-cognate sRNA-target mRNA pairs while increasing cognate ternary complexes. The second mechanism relies on frequent RNA dissociation enabling the rapid cycling of sRNAs and target mRNAs among different Hfq complexes; this increases the probability the cognate ternary complex forms before the sRNAs and target mRNAs degrade. We further demonstrate that the performance of sRNAs in isolation is not predictive of their performance within a network. These findings highlight the importance of experimentally characterizing duplex formation in physiologically relevant contexts with multiple RNAs competing for Hfq. The model will provide a valuable framework for guiding and interpreting these experiments. PMID:21876666

  15. Cytoplasmic FANCA-FANCC Complex Interacts and Stabilizes the Cytoplasm-dislocalized Leukemic Nucleophosmin Protein (NPMc)*

    PubMed Central

    Du, Wei; Li, Jie; Sipple, Jared; Chen, Jianjun; Pang, Qishen

    2010-01-01

    Eight of the Fanconi anemia (FA) proteins form a core complex that activates the FA pathway. Some core complex components also form subcomplexes for yet-to-be-elucidated functions. Here, we have analyzed the interaction between a cytoplasmic FA subcomplex and the leukemic nucleophosmin (NPMc). Exogenous NPMc was degraded rapidly in FA acute myeloid leukemia bone marrow cells. Knockdown of FANCA or FANCC in leukemic OCI/AML3 cells induced rapid degradation of endogenous NPMc. NPMc degradation was mediated by the ubiquitin-proteasome pathway involving the IBR-type RING-finger E3 ubiquitin ligase IBRDC2, and genetic correction of FA-A or FA-C lymphoblasts prevented NPMc ubiquitination. Moreover, cytoplasmic FANCA and FANCC formed a cytoplasmic complex and interacted with NPMc. Using a patient-derived FANCC mutant and a nuclearized FANCC, we demonstrated that the cytoplasmic FANCA-FANCC complex was essential for NPMc stability. Finally, depletion of FANCA and FANCC in NPMc-positive leukemic cells significantly increased inflammation and chemoresistance through NF-κB activation. Our findings not only reveal the molecular mechanism involving cytoplasmic retention of NPMc but also suggest cytoplasmic function of FANCA and FANCC in NPMc-related leukemogenesis. PMID:20864535

  16. A functional TOC complex contributes to gravity signal transduction in Arabidopsis

    PubMed Central

    Strohm, Allison K.; Barrett-Wilt, Greg A.; Masson, Patrick H.

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism. PMID:24795735

  17. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    PubMed

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  18. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    PubMed

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  19. Exploring interaction of TNF and orthopoxviral CrmB protein by surface plasmon resonance and free energy calculation.

    PubMed

    Ivanisenko, Nikita V; Tregubchak, Tatiana V; Saik, Olga V; Ivanisenko, Vladimir A; Shchelkunov, Sergei N

    2014-01-01

    Inhibition of the activity of the tumor necrosis factor (TNF) has become the main strategy for treating inflammatory diseases. The orthopoxvirus TNF-binding proteins can bind and efficiently neutralize TNF. To analyze the mechanisms of the interaction between human (hTNF) or mouse (mTNF) TNF and the cowpox virus N-terminal binding domain (TNFBD-CPXV), also the variola virus N-terminal binding domain (TNFBD-VARV) and to define the amino acids most importantly involved in the formation of complexes, computer models, derived from the X-ray structure of a homologous hTNF/TNFRII complex, were used together with experiments. The hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV, and mTNF/TNFBD-VARV complexes were used in the molecular dynamics (MD) simulations and MM/GBSA free energy calculations. The complexes were ordered as hTNF/TNFBD-CPXV, hTNF/TNFBD-VARV, mTNF/TNFBD-CPXV and mTNF/TNFBD-VARV according to increase in the binding affinity. The calculations were in agreement with surface plasmon resonance (SPR) measurements of the binding constants. Key residues involved in complex formation were identified.

  20. Intracellular coordination of potyviral RNA functions in infection

    PubMed Central

    Mäkinen, Kristiina; Hafrén, Anders

    2014-01-01

    Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions. PMID:24723931

  1. Intracellular coordination of potyviral RNA functions in infection.

    PubMed

    Mäkinen, Kristiina; Hafrén, Anders

    2014-01-01

    Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions.

  2. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    PubMed

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  3. Interference from related actions in spoken word production: Behavioural and fMRI evidence.

    PubMed

    de Zubicaray, Greig; Fraser, Douglas; Ramajoo, Kori; McMahon, Katie

    2017-02-01

    Few investigations of lexical access in spoken word production have investigated the cognitive and neural mechanisms involved in action naming. These are likely to be more complex than the mechanisms involved in object naming, due to the ways in which conceptual features of action words are represented. The present study employed a blocked cyclic naming paradigm to examine whether related action contexts elicit a semantic interference effect akin to that observed with categorically related objects. Participants named pictures of intransitive actions to avoid a confound with object processing. In Experiment 1, body-part related actions (e.g., running, walking, skating, hopping) were named significantly slower compared to unrelated actions (e.g., laughing, running, waving, hiding). Experiment 2 employed perfusion functional Magnetic Resonance Imaging (fMRI) to investigate the neural mechanisms involved in this semantic interference effect. Compared to unrelated actions, naming related actions elicited significant perfusion signal increases in frontotemporal cortex, including bilateral inferior frontal gyrus (IFG) and hippocampus, and decreases in bilateral posterior temporal, occipital and parietal cortices, including intraparietal sulcus (IPS). The findings demonstrate a role for temporoparietal cortex in conceptual-lexical processing of intransitive action knowledge during spoken word production, and support the proposed involvement of interference resolution and incremental learning mechanisms in the blocked cyclic naming paradigm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cytotoxicity of Manganese (III) Complex in Human Breast Adenocarcinoma Cell Line Is Mediated by the Generation of Reactive Oxygen Species Followed by Mitochondrial Damage.

    PubMed

    Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab

    2016-11-01

    Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC 50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS. © The Author(s) 2016.

  5. Emotional tagging--a simple hypothesis in a complex reality.

    PubMed

    Bergado, Jorge A; Lucas, Morgan; Richter-Levin, Gal

    2011-06-01

    At the psychological level, the notion that emotional events may be better remembered is a long accepted view. Its translation into neurobiological mechanisms has led to the proposal of the 'emotional tag' concept, according to which, the activation of the amygdala by emotionality would result in modulation of neural plasticity in brain regions (e.g. hippocampus) involved in forming memory of the emotional event. In line with this idea, amygdala activation (by electrical stimulation or exposure to an emotional event) has been demonstrated to affect synaptic plasticity in the hippocampus. Furthermore, the mechanisms associated with the formation of a 'synaptic tag', which is a mechanism proposed to explain the specificity of synaptic plasticity, could subserve the effects of the 'emotional tag' on synaptic plasticity in the hippocampus. The literature reviewed here supports this view but points also to additional factors that should be taken into consideration, such as intensity, duration, controllability of the emotional experience, age of exposure and relations between the emotional aspects of the experience and the event-to-be-remembered. These factors do not only affect the behavioral outcome of the stressful experience but also find their expression in variations in the neuronal and biochemical pathways that are activated, and in the way those will interact with memory formation mechanisms. While adding complexity to the notion of the 'emotional tag', taking such factors into consideration is likely to bring us closer to elucidating the neural mechanisms involved in emotional memory modulation and to our understanding of the neurobiology of associated disorders, such as PTSD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies

    PubMed Central

    Fitch, W. Tecumseh; Huber, Ludwig; Bugnyar, Thomas

    2015-01-01

    Human language and social cognition are closely linked: advanced social cognition is necessary for children to acquire language, and language allows forms of social understanding (and, more broadly, culture) that would otherwise be impossible. Both “language” and “social cognition” are complex constructs, involving many independent cognitive mechanisms, and the comparative approach provides a powerful route to understanding the evolution of such mechanisms. We provide a broad comparative review of mechanisms underlying social intelligence in vertebrates, with the goal of determining which human mechanisms are broadly shared, which have evolved in parallel in other clades, and which, potentially, are uniquely developed in our species. We emphasize the importance of convergent evolution for testing hypotheses about neural mechanisms and their evolution. PMID:20346756

  7. Transformations of organic compounds under the action of mechanical stress

    NASA Astrophysics Data System (ADS)

    Dubinskaya, Aleksandra M.

    1999-08-01

    Transformations of organic compounds (monomeric and polymeric) under the action of mechanical stress are considered. Two types of processes occur under these conditions. The first type involves disordering and amorphisation of crystal structure and conformational transformations as a result of rupture of intermolecular bonds. The second type includes mechanochemical reactions activated by deformation of valence bonds and angles under mechanical stress, namely, the rupture of bonds, oxidation and hydrolysis. Data on the organic mechanochemical synthesis of new compounds or molecular complexes are systematised and generalised. It is demonstrated that mechanical treatment ensures mass transfer and the contact of reacting species in these reactions. Proteins are especially sensitive to mechanical stress and undergo denaturation; enzymes are inactivated. The bibliography includes 115 references.

  8. On a Possible Unified Scaling Law for Volcanic Eruption Durations

    PubMed Central

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-01-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425

  9. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    PubMed

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  10. Operational Issues: What Science in Available?

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.

    1997-01-01

    Flight/duty/rest considerations involve two highly complex factors: the diverse demands of aviation operations and human physiology (especially sleep and circadian rhythms). Several core operational issues related to fatigue have been identified, such as minimum rest requirements, duty length, flight time considerations, crossing multiple time zones, and night flying. Operations also can involve on-call reserve status and callout, delays due to unforeseen circumstances (e.g., weather, mechanical), and on-demand flights. Over 40 years of scientific research is now available to apply to these complex issues of flight/duty/rest requirements. This research involves controlled 'laboratory studies, simulations, and data collected during regular flight operations. When flight/duty/rest requirements are determined they are typically based on a variety of considerations, such as operational demand, safety, economic, etc. Rarely has the available, state-of-the-art science been a consideration along with these other factors when determining flight/duty/rest requirements. While the complexity of the operational demand and human physiology precludes an absolute solution, there is an opportunity to take full advantage of the current scientific data. Incorporating these data in a rational operational manner into flight/duty/rest requirements can improve flight crew performance, alertness, and ultimately, aviation safety.

  11. The neural correlates of strategic reading comprehension: cognitive control and discourse comprehension.

    PubMed

    Moss, Jarrod; Schunn, Christian D; Schneider, Walter; McNamara, Danielle S; Vanlehn, Kurt

    2011-09-15

    Neuroimaging studies of text comprehension conducted thus far have shed little light on the brain mechanisms underlying strategic learning from text. Thus, the present study was designed to answer the question of what brain areas are active during performance of complex reading strategies. Reading comprehension strategies are designed to improve a reader's comprehension of a text. For example, self-explanation is a complex reading strategy that enhances existing comprehension processes. It was hypothesized that reading strategies would involve areas of the brain that are normally involved in reading comprehension along with areas that are involved in strategic control processes because the readers are intentionally using a complex reading strategy. Subjects were asked to reread, paraphrase, and self-explain three different texts in a block design fMRI study. Activation was found in both executive control and comprehension areas, and furthermore, learning from text was associated with activation in the anterior prefrontal cortex (aPFC). The authors speculate that the aPFC may play a role in coordinating the internal and external modes of thought that are necessary for integrating new knowledge from texts with prior knowledge. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Three-dimensional mapping in the electrophysiological laboratory.

    PubMed

    Maury, Philippe; Monteil, Benjamin; Marty, Lilian; Duparc, Alexandre; Mondoly, Pierre; Rollin, Anne

    2018-06-07

    Investigation and catheter ablation of cardiac arrhythmias are currently still based on optimal knowledge of arrhythmia mechanisms in relation to the cardiac anatomy involved, in order to target their crucial components. Currently, most complex arrhythmias are investigated using three-dimensional electroanatomical navigation systems, because these are felt to optimally integrate both the anatomical and electrophysiological features of a given arrhythmia in a given patient. In this article, we review the technical background of available three-dimensional electroanatomical navigation systems, and their potential use in complex ablations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. [A complex interplay of hormones, neuro-transmitters, neuropeptides and immunity cells is responsible for the control of eating].

    PubMed

    Rondanelli, M

    1997-09-01

    Food-seeking behaviour is a complex mechanism which involves an interplay of hormones, neurotransmitters, neuropeptides and immunity cells. In this review the important role of the cooperation between the SNC system, the endocrine system and in particular the immune system in the control of eating is underlined. Like stress and depression, in fact the regulation of eating represents another example of the interplay between these three systems and it is secondary to a bidirectional dialogue between the center and the periphery.

  14. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones

    PubMed Central

    Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin

    2017-01-01

    A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960

  15. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury.

    PubMed

    Zhang, Ying-Ying; Li, Hai-Xia; Chen, Yin-Ying; Fang, Hong; Yu, Ya-Nan; Liu, Jun; Jing, Zhi-Wei; Wang, Zhong; Wang, Yong-Yan

    2014-03-01

    Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations. © 2013 John Wiley & Sons Ltd.

  16. Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

    NASA Astrophysics Data System (ADS)

    Barrios, Lizandra; Rubayo-Soneira, Jesús; González-Lezana, Tomás

    2016-03-01

    Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0 ,j = 1) → SH + H and Si + O2(v = 0 ,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

  17. Evidence that polycystins are involved in Hydra cnidocyte discharge.

    PubMed

    McLaughlin, Susan

    2017-03-01

    Like other cnidarians, the freshwater organism Hydra is characterized by the possession of cnidocytes (stinging cells). Most cnidocytes are located on hydra tentacles, where they are organized along with sensory cells and ganglion cells into battery complexes. The function of the battery complexes is to integrate multiple types of stimuli for the regulation of cnidocyte discharge. The molecular mechanisms controlling the discharge of cnidocytes are not yet fully understood, but it is known that discharge depends on extracellular Ca 2+ and that mechanically induced cnidocyte discharge can be enhanced by the presence of prey extracts and other chemicals. Experiments in this paper show that a PKD2 (polycystin 2) transient receptor potential (TRP) channel is expressed in hydra tentacles and bases. PKD2 (TRPP) channels belong to the TRP channel superfamily and are non-selective Ca 2+ channels involved in the transduction of both mechanical and chemical stimuli in other organisms. Non-specific PKD2 channel inhibitors Neo (neomycin) and Gd 3+ (gadolinium) inhibit both prey capture and cnidocyte discharge in hydra. The PKD2 activator Trip (triptolide) enhances cnidocyte discharge in both starved and satiated hydra and reduces the inhibition of cnidocyte discharge caused by Neo. PKD1 and 2 proteins are known to act together to transduce mechanical and chemical stimuli; in situ hybridization experiments show that a PKD1 gene is expressed in hydra tentacles and bases, suggesting that polycystins play a direct or indirect role in cnidocyte discharge.

  18. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-10-17

    Oxygenated monoterpenes citral and carvacrol are common constituents of many essential oils (EOs) that have been extensively studied as antimicrobial agents but whose mechanisms of microbial inactivation have not been totally elucidated. A recent study described a mechanism of Escherichia coli death for (+)-limonene, a hydrocarbon monoterpene also frequently present in EOs, similar to the common mechanism proposed for bactericidal antibiotics. This mechanism involves the formation of Fenton-mediated hydroxyl radical, a reactive oxygen species (ROS), via tricarboxylic acid (TCA) cycle, which would ultimately inactivate cells. Our objective was to determine whether E. coli MG1655 inactivation by citral and carvacrol follows a similar mechanism of cell death. Challenging experiments with 300μL/L citral and 100μL/L carvacrol inactivated at least 2.5log10cycles of exponentially growing cells in 3h under aerobic conditions. The presence of thiourea (an ROS scavenger) reduced cell inactivation in 2log10cycles, demonstrating the role of ROS in cell death. Decreased resistance of a ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) indicated that citral and carvacrol caused oxidative damage to DNA. Although the mechanism of E. coli inactivation by carvacrol and citral was similarly mediated by ROS, their formation did not follow the same pathways described for (+)-limonene and bactericidal drugs because neither Fenton reaction nor NADH production via the TCA cycle was involved in cell death. Moreover, further experiments demonstrated antimicrobial activity of citral and carvacrol in anaerobic environments without the involvement of ROS. As a consequence, cell death by carvacrol and citral in anaerobiosis follows a different mechanism than that observed under aerobic conditions. These results demonstrated a different mechanism of inactivation by citral and carvacrol with regard to (+)-limonene and bactericidal antibiotics, indicating the complexity of the mechanisms of bacterial inactivation among EO constituents. Advancements in the description of these mechanisms will help in extending and improving the use of these compounds as natural antimicrobials. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer.

    PubMed

    Sun, Dejuan; Zhu, Lingjuan; Zhao, Yuqian; Jiang, Yingnan; Chen, Lixia; Yu, Yang; Ouyang, Liang

    2018-04-01

    Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small-molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small-molecule agent for TNBC treatment and illuminate its potential mechanisms. Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP-LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine-induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine-induced autophagy. iTRAQ-based proteomics analysis was used to explore the underlying mechanisms. We have demonstrated that Fluoxetine had remarkable anti-proliferative activities and induced autophagic cell death in MDA-MB-231 and MDA-MB-436 cells. The mechanism for Fluoxetine-induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK-mTOR-ULK complex axis. Further iTRAQ-based proteomics and network analyses revealed that Fluoxetine-induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif-1. These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy. © 2017 John Wiley & Sons Ltd.

  20. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  1. Linking definitions, mechanisms, and modeling of drought-induced tree death.

    PubMed

    Anderegg, William R L; Berry, Joseph A; Field, Christopher B

    2012-12-01

    Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Advances in sepsis research derived from animal models.

    PubMed

    Männel, Daniela N

    2007-09-01

    Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.

  3. Spectral investigations on binding of DNA-CTMA complex with tetrameric copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Venkat, Narayanan; Haley, Joy E.; Swiger, Rachel; Zhu, Lei; Wei, Xiaoliang; Ouchen, Fahima; Grote, James G.

    2013-10-01

    The binding of DNA-CTMA (Deoxyribonucleic acid-cetyltrimethylammonium) complex with two tetrameric Copper Phthalocyanine (CuPc) systems, substituted with carboxylic acid (CuPc-COOH) and derivatized further as an imidazolium salt (CuPc-COOR), was investigated in dimethylsulfoxide (DMSO) solutions using UV/Visible Spectroscopy. Absorbance changes at 685 nm (Q band of the CuPc) were monitored as a function of DNA-CTMA added to the dye solution and stock concentrations of DNA-CTMA in DMSO were varied to facilitate observation of the full binding process. Our findings indicated that while binding with DNA-CTMA was more well-defined in the case of CuPc-COOH, the binding profile of the CuPc-COOR showed initial growth followed by decay in its Q-band absorbance which was indicative of a more complex binding mechanism involving the dye and DNA-CTMA. Preliminary findings from photophysical studies involving the CuPc tetramers and DNA-CTMA are also discussed in this paper.

  4. The search for a hippocampal engram.

    PubMed

    Mayford, Mark

    2014-01-05

    Understanding the molecular and cellular changes that underlie memory, the engram, requires the identification, isolation and manipulation of the neurons involved. This presents a major difficulty for complex forms of memory, for example hippocampus-dependent declarative memory, where the participating neurons are likely to be sparse, anatomically distributed and unique to each individual brain and learning event. In this paper, I discuss several new approaches to this problem. In vivo calcium imaging techniques provide a means of assessing the activity patterns of large numbers of neurons over long periods of time with precise anatomical identification. This provides important insight into how the brain represents complex information and how this is altered with learning. The development of techniques for the genetic modification of neural ensembles based on their natural, sensory-evoked, activity along with optogenetics allows direct tests of the coding function of these ensembles. These approaches provide a new methodological framework in which to examine the mechanisms of complex forms of learning at the level of the neurons involved in a specific memory.

  5. The search for a hippocampal engram

    PubMed Central

    Mayford, Mark

    2014-01-01

    Understanding the molecular and cellular changes that underlie memory, the engram, requires the identification, isolation and manipulation of the neurons involved. This presents a major difficulty for complex forms of memory, for example hippocampus-dependent declarative memory, where the participating neurons are likely to be sparse, anatomically distributed and unique to each individual brain and learning event. In this paper, I discuss several new approaches to this problem. In vivo calcium imaging techniques provide a means of assessing the activity patterns of large numbers of neurons over long periods of time with precise anatomical identification. This provides important insight into how the brain represents complex information and how this is altered with learning. The development of techniques for the genetic modification of neural ensembles based on their natural, sensory-evoked, activity along with optogenetics allows direct tests of the coding function of these ensembles. These approaches provide a new methodological framework in which to examine the mechanisms of complex forms of learning at the level of the neurons involved in a specific memory. PMID:24298162

  6. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  7. Redox-regulated Export of the Major Histocompatibility Complex Class I-Peptide Complexes from the Endoplasmic Reticulum

    PubMed Central

    Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon

    2009-01-01

    In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919

  8. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity

    PubMed Central

    Mullett, Steven J.; Hinkle, David A.

    2011-01-01

    Parkinson’s disease (PD) brains show evidence of mitochondrial respiratory Complex I deficiency, oxidative stress, and neuronal death. Complex I-inhibiting neurotoxins, such as the pesticide rotenone, cause neuronal death and parkinsonism in animal models. We have previously shown that DJ-1 over-expression in astrocytes augments their capacity to protect neurons against rotenone, that DJ-1 knock-down impairs astrocyte-mediated neuroprotection against rotenone, and that each process involves astrocyte-released factors. To further investigate the mechanism behind these findings, we developed a high-throughput, plate-based bioassay that can be used to assess how genetic manipulations in astrocytes affect their ability to protect co-cultured neurons. We used this bioassay to show that DJ-1 deficiency-induced impairments in astrocyte-mediated neuroprotection occur solely in the presence of pesticides that inhibit Complex I (rotenone, pyridaben, fenazaquin, and fenpyroximate); not with agents that inhibit Complexes II-V, that primarily induce oxidative stress, or that inhibit the proteasome. This is a potentially PD-relevant finding because pesticide exposure is epidemiologically-linked with an increased risk for PD. Further investigations into our model suggested that astrocytic glutathione and heme oxygenase-1 anti-oxidant systems are not central to the neuroprotective mechanism. PMID:21219333

  9. Isolating Attention Systems: A Cognitive-Anatomical Analysis. Cognitive Science Program, Technical Report No. 86-3.

    ERIC Educational Resources Information Center

    Posner, Michael I.; And Others

    Recently, knowledge of the mechanisms of visual-spatial attention has improved due to studies employing single cell recording with alert monkeys and studies using performance analysis of neurological patients. These studies suggest that a complex neural network including parts of the posterior parietal lobe and midbrain are involved in covert…

  10. Application of Intelligent Tutoring Technology to an Apparently Mechanical Task.

    ERIC Educational Resources Information Center

    Newman, Denis

    The increasing automation of many occupations leads to jobs that involve understanding and monitoring the operation of complex computer systems. One case is PATRIOT, an air defense surface-to-air missile system deployed by the U.S. Army. Radar information is processed and presented to the operators in highly abstract form. The system identifies…

  11. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model.

    PubMed

    León, I E; Cadavid-Vargas, J F; Tiscornia, I; Porro, V; Castelli, S; Katkar, P; Desideri, A; Bollati-Fogolin, M; Etcheverry, S B

    2015-10-01

    Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.

  12. N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes.

    PubMed

    Hertig, C M; Butz, S; Koch, S; Eppenberger-Eberhardt, M; Kemler, R; Eppenberger, H M

    1996-01-01

    The spatio-temporal appearance and distribution of proteins forming the intercalated disc were investigated in adult rat cardiomyocytes (ARC). The 'redifferentiation model' of ARC involves extensive remodelling of the plasma membrane and of the myofibrillar apparatus. It represents a valuable system to elucidate the formation of cell-cell contact between cardiomyocytes and to assess the mechanisms by which different proteins involved in the cell-cell adhesion process are sorted in a precise manner to the sites of function. Appearance of N-cadherin, the catenins and connexin43 within newly formed adherens and gap junctions was studied. Here first evidence is provided for a formation of two distinct and separable N-cadherin/catenin complexes in cardiomyocytes. Both complexes are composed of N-cadherin and alpha-catenin which bind to either beta-catenin or plakoglobin in a mutually exclusive manner. The two N-cadherin/catenin complexes are assumed to be functionally involved in the formation of cell-cell contacts in ARC; however, the differential appearance and localization of the two types of complexes may also point to a specific role during ARC differentiation. The newly synthesized beta-catenin containing complex is more abundant during the first stages in culture after ARC isolation, while the newly synthesized plakoglobin containing complex progressively accumulates during the morphological changes of ARC. ARC formed a tissue-like pattern in culture whereby the new cell-cell contacts could be dissolved through Ca2+ depletion. Presence of cAMP and replenishment of Ca2+ content in the culture medium not only allowed reformation of cell-cell contacts but also affected the relative protein ratio between the two N-cadherin/catenin complexes, increasing the relative amount of newly synthesized beta-catenin over plakoglobin at a particular stage of ARC differentiation. The clustered N-cadherin/catenin complexes at the plasma membrane appear to be a prerequisite for the following gap junction formation; a temporal sequence of the appearance of adherens junction proteins and of gap junctions forming connexin-43 is suggested.

  13. Phosphorylation of human INO80 is involved in DNA damage tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki

    Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less

  14. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    PubMed

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab

    PubMed Central

    Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J.; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F.; Yan, Jinghua

    2017-01-01

    Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. PMID:28165004

  16. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.

    PubMed

    Harrison, E H; Hussain, M M

    2001-05-01

    Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase (PTL), and intestinal brush border enzyme, phospholipase B. Recent work on the carboxylester lipase (CEL) knockout mouse suggests that CEL may not be involved in dietary retinyl ester digestion. The possible roles of the pancreatic lipase-related proteins (PLRP) 1 and 2 and other enzymes require further investigation. Unesterified retinol is taken up by the enterocytes, perhaps involving both diffusion and protein-mediated facilitated transport. Once in the cell, retinol is complexed with cellular retinol-binding protein type 2 (CRBP2) and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). Retinol not bound to CRBP2 is esterified by acyl-CoA acyltransferase (ARAT). The retinyl esters are incorporated into chylomicrons, intestinal lipoproteins that transport other dietary lipids such as triglycerides, phospholipids, and cholesterol. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph.

  17. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  18. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1983-01-01

    Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.

  19. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less

  20. True and masked three-coordinate T-shaped platinum(II) intermediates.

    PubMed

    Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí

    2013-01-01

    Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.

  1. Crystal Structure of the Heme d1 Biosynthesis Enzyme NirE in Complex with Its Substrate Reveals New Insights into the Catalytic Mechanism of S-Adenosyl-l-methionine-dependent Uroporphyrinogen III Methyltransferases*

    PubMed Central

    Storbeck, Sonja; Saha, Sayantan; Krausze, Joern; Klink, Björn U.; Heinz, Dirk W.; Layer, Gunhild

    2011-01-01

    During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate. PMID:21632530

  2. White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.

    1986-01-01

    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.

  3. Respiration and heart rate complexity: Effects of age and gender assessed by band-limited transfer entropy

    PubMed Central

    Nemati, Shamim; Edwards, Bradley A.; Lee, Joon; Pittman-Polletta, Benjamin; Butler, James P.; Malhotra, Atul

    2013-01-01

    Aging and disease are accompanied with a reduction of complex variability in the temporal patterns of heart rate. This reduction has been attributed to a break down of the underlying regulatory feedback mechanisms that maintain a homeodynamic state. Previous work has established the utility of entropy as an index of disorder, for quantification of changes in heart rate complexity. However, questions remain regarding the origin of heart rate complexity and the mechanisms involved in its reduction with aging and disease. In this work we use a newly developed technique based on the concept of band-limited transfer entropy to assess the aging-related changes in contribution of respiration and blood pressure to entropy of heart rate at different frequency bands. Noninvasive measurements of heart beat interval, respiration, and systolic blood pressure were recorded from 20 young (21–34 years) and 20 older (68–85 years) healthy adults. Band-limited transfer entropy analysis revealed a reduction in high-frequency contribution of respiration to heart rate complexity (p < 0.001) with normal aging, particularly in men. These results have the potential for dissecting the relative contributions of respiration and blood pressure-related reflexes to heart rate complexity and their degeneration with normal aging. PMID:23811194

  4. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  5. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.

    PubMed

    Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.

  6. Change in nomenclature for the immunologic synapse from Troxis Necrosis to trogocytosis.

    PubMed

    French, Samuel W

    2017-10-01

    The immunologic synapse mechanism of liver necrosis was termed Troxis Necrosis meaning "nibbling". (Wang MX et al. and French SW. Exp Mol Pathol 2001, 71: 137-146). This mechanism of liver injury was first named "Piecemeal Necrosis" by Hans Popper. It is involved in autoimmune hepatitis, HCV, HBV, primary biliary cirrhosis and steatohepatitis. This process involves the T cell receptor (TCR) which binds to the hepatocyte antigen presenting major histocompatibility complex (MHC) on the hepatocytic plasma membrane which quickly leads to the removal of the complex from the liver and uptake by the CD4 lymphocyte. This process is performed by the immunologic synapse now called trogocytosis meaning "gnaw" (Martinez-Martin N et al., Immunity 2011, 35: 208-222 and Dustin ML, Cancer Immunol Res 2014, 2: 1023-1033). The repeated episodes of uptake of the hepatocyte bite by bite causes the hepatocyte to slowly disappear like the Cheshire cat. This immunological synapse process is also involved in drug hepatitis, Hashimoto's thyroiditis, type I diabetes, autoimmune adrenalitis, autoimmune gastritis and cancer therapy. Treatment of Alzheimer's disease is also now being studied with PD-L1 antibody as used in the treatment of cancer allowing recruitment of disease modifying leukocytes to the sites of brain pathology (Schwartz M. Science 2017, 357: 254-255). Acknowledgement: Supported by a Grant from NIAAAUO1-021898. Copyright © 2017. Published by Elsevier Inc.

  7. Gut microbiome and bone.

    PubMed

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  8. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  9. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization.

    PubMed

    Bernardes, Amanda; Souza, Paulo C T; Muniz, João R C; Ricci, Clarisse G; Ayers, Stephen D; Parekh, Nili M; Godoy, André S; Trivella, Daniela B B; Reinach, Peter; Webb, Paul; Skaf, Munir S; Polikarpov, Igor

    2013-08-23

    Peroxisome proliferator-activated receptors (PPARs) are members of a superfamily of nuclear transcription factors. They are involved in mediating numerous physiological effects in humans, including glucose and lipid metabolism. PPARα ligands effectively treat dyslipidemia and have significant antiinflammatory and anti-atherosclerotic activities. These effects and their ligand-dependent activity make nuclear receptors obvious targets for drug design. Here, we present the structure of the human PPARα in complex with WY14643, a member of fibrate class of drug, and a widely used PPAR activator. The crystal structure of this complex suggests that WY14643 induces activation of PPARα in an unusual bipartite mechanism involving conventional direct helix 12 stabilization and an alternative mode that involves a second ligand in the pocket. We present structural observations, molecular dynamics and activity assays that support the importance of the second site in WY14643 action. The unique binding mode of WY14643 reveals a new pattern of nuclear receptor ligand recognition and suggests a novel basis for ligand design, offering clues for improving the binding affinity and selectivity of ligand. We show that binding of WY14643 to PPARα was associated with antiinflammatory disease in a human corneal cell model, suggesting possible applications for PPARα ligands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage

    PubMed Central

    Yun, Ze; Jin, Shuai; Ding, Yuduan; Wang, Zhuang; Gao, Huijun; Pan, Zhiyong; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2012-01-01

    Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)–CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses. PMID:22323274

  11. Biomechanics of plant-insect interactions.

    PubMed

    Whitney, Heather M; Federle, Walter

    2013-02-01

    Plant-insect interactions are determined by both chemical and physical mechanisms. Biomechanical factors play an important role across many ecological situations, including pollination, herbivory and plant carnivory, and have led to complex adaptations in both plants and insects. However, while mechanical factors involved in some highly specific interactions have been elucidated, more generalised effects may be widespread but are more difficult to isolate, due to the multifunctional properties of the plant surfaces and tissues where interactions occur. Novel methodologies are being developed to investigate the mechanisms of biomechanical interactions and discover to what extent adaptive structures could be exploited via biomimetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO 2 -PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  13. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  14. Post-transcriptional trafficking and regulation of neuronal gene expression.

    PubMed

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  15. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanismmore » was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.« less

  16. Structural and Functional Analyses of the Proteins Involved in the Iron-Sulfur Cluster Biosynthesis

    NASA Astrophysics Data System (ADS)

    Wada, Kei

    The iron-sulfur (Fe-S) clusters are ubiquitous prosthetic groups that are required to maintain such fundamental life processes as respiratory chain, photosynthesis and the regulation of gene expression. Assembly of intracellular Fe-S cluster requires the sophisticated biosynthetic systems called ISC and SUF machineries. To shed light on the molecular mechanism of Fe-S cluster assembly mediated by SUF machinery, several structures of the SUF components and their sub-complex were determined. The structural findings together with biochemical characterization of the core-complex (SufB-SufC-SufD complex) have led me to propose a working model for the cluster biosynthesis in the SUF machinery.

  17. Reaction pathways in atomistic models of thin film growth

    NASA Astrophysics Data System (ADS)

    Lloyd, Adam L.; Zhou, Ying; Yu, Miao; Scott, Chris; Smith, Roger; Kenny, Steven D.

    2017-10-01

    The atomistic processes that form the basis of thin film growth often involve complex multi-atom movements of atoms or groups of atoms on or close to the surface of a substrate. These transitions and their pathways are often difficult to predict in advance. By using an adaptive kinetic Monte Carlo (AKMC) approach, many complex mechanisms can be identified so that the growth processes can be understood and ultimately controlled. Here the AKMC technique is briefly described along with some special adaptions that can speed up the simulations when, for example, the transition barriers are small. Examples are given of such complex processes that occur in different material systems especially for the growth of metals and metallic oxides.

  18. Examining the Interactome of Huperzine A by Magnetic Biopanning

    PubMed Central

    Guo, Wei; Liu, Shupeng; Peng, Jinliang; Wei, Xiaohui; Sun, Ye; Qiu, Yangsheng; Gao, Guangwei; Wang, Peng; Xu, Yuhong

    2012-01-01

    Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules. PMID:22615909

  19. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications.

    PubMed

    Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J

    2017-10-20

    The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.

  20. PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1.

    PubMed

    Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina

    2016-11-01

    Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.

  1. PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1

    PubMed Central

    Vogt, Julia; Wernstedt, Annekatrin; Ripperger, Tim; Pabst, Brigitte; Zschocke, Johannes; Kratz, Christian; Wimmer, Katharina

    2016-01-01

    Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5′-part from the 3′-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms. PMID:27329736

  2. Steps in Prostate Cancer Progression that lead to Bone Metastasis

    PubMed Central

    Jin, Jung-Kang; Dayyani, Farshid; Gallick, Gary E.

    2011-01-01

    Prostate cancer is a complex disease in which metastasis to the bone is the main cause of death. Initial stages of metastasis are generally similar to those for most solid tumors; however, the mechanisms that underlie the homing of prostate tumor cells to the bone remain incompletely understood. Prostate cancer bone metastasis is also a microenvironment-driven disease, involving bi-directional interactions between the tumor and the bone microenvironment. In this review, we discuss the current understanding of the biologic processes and regulatory factors involved in the metastasis of prostate cancer cells, and their specific properties that promote growth in bone. Although many of these processes still need to be fully elucidated, a better understanding of the complex tumor/microenvironment interplay is slowly leading to more effective therapies for patients with prostate cancer bone metastases. PMID:21365645

  3. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  4. Pharmacological targets of breast cancer stem cells: a review.

    PubMed

    Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar

    2018-05-01

    Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

  5. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  6. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  7. Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code.

    PubMed

    Routh, Satya B; Sankaranarayanan, Rajan

    2017-01-01

    The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations. © 2017 Elsevier Inc. All rights reserved.

  8. A Rich-Club Organization in Brain Ischemia Protein Interaction Network

    PubMed Central

    Alawieh, Ali; Sabra, Zahraa; Sabra, Mohammed; Tomlinson, Stephen; Zaraket, Fadi A.

    2015-01-01

    Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for developing successful interventions. In an innovative approach, we use literature mining, natural language processing and systems biology tools to construct, annotate and curate a brain ischemia interactome. The curated interactome includes proteins that are deregulated after cerebral ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-club organization indicating the presence of a densely interconnected hub structure of prominent contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent pathways and highlighted the critical role of the complement and coagulation cascade in the initiation and amplification of injury starting by activation of the rich-club. We performed an in-silico screen for putative interventions that have pleiotropic effects on rich-club components and we identified estrogen as a prominent candidate. Our findings show that complex network analysis of disease related interactomes may lead to a better understanding of pathogenic mechanisms and provide cost-effective and mechanism-based discovery of candidate therapeutics. PMID:26310627

  9. Water oxidation chemistry of photosystem II.

    PubMed Central

    Vrettos, John S; Brudvig, Gary W

    2002-01-01

    The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878

  10. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" vs. "Pull" Mechanisms and Comparison between O2 and Benzoquinone.

    PubMed

    Diao, Tianning; Stahl, Shannon S

    2014-12-14

    Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O 2 to promote similar reactions with a series of "unligated" π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a "pull" mechanism in which O 2 traps the Pd 0 intermediate following reversible C-O bond-formation from an allyl-palladium(II) species. A "push" mechanism, involving oxidatively induced C-O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a "push" mechanism seems to be operative.

  11. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.

    PubMed

    Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier

    2004-01-01

    Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.

  12. Organic photochemical storage of solar energy. Progress report, February 1, 1979-January 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G. II

    1980-02-01

    Study of valence isomerization of organic compounds has focused on two mechanisms of photosensitization involving either electron donor-acceptor interaction or energy transfer. The quenching of fluorescent sensitizers by isomerizable substrates results in the formation of excited complexes. These sensitizer-substrate pairs are highly polarized, leading to changes in bond order for the substrates. For several substrates such as quadricyclene, hexamethyldewarbenzene, and a nonbornadiene derivative, this perturbation results in efficient valence isomerization. Isomerization observed on irradiation of charge transfer complexes of isomerizable substrates is consistent with a similar exciplex - template mechanism. The energy transfer mechanism of photosensitization has been studied bymore » measuring the temperature dependence of quantum yield for isomerization of dimethyl norbornadiene-2,3-dicarboxylate sensitized by benzanthrone. From temperature and quencher concentration profiles quenching constants have been obtained which are consistent with an endoergic triplet energy transfer mechanism. The thermal upconversion of the low energy triplet of benzanthrone results in a threefold increase in isomerization quantum yield over a 90/sup 0/ temperature range.« less

  13. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  14. Decoding the role of regulatory element polymorphisms in complex disease.

    PubMed

    Vockley, Christopher M; Barrera, Alejandro; Reddy, Timothy E

    2017-04-01

    Genetic variation in gene regulatory elements contributes to diverse human diseases, ranging from rare and severe developmental defects to common and complex diseases such as obesity and diabetes. Early examples of regulatory mechanisms of human diseases involve large chromosomal rearrangements that change the regulatory connections within the genome. Single nucleotide variants in regulatory elements can also contribute to disease, potentially via demonstrated associations with changes in transcription factor binding, enhancer activity, post-translational histone modifications, long-range enhancer-promoter interactions, or RNA polymerase recruitment. Establishing causality between non-coding genetic variants, gene regulation, and disease has recently become more feasible with advances in genome-editing and epigenome-editing technologies. As establishing causal regulatory mechanisms of diseases becomes routine, functional annotation of target genes is likely to emerge as a major bottleneck for translation into patient benefits. In this review, we discuss the history and recent advances in understanding the regulatory mechanisms of human disease, and new challenges likely to be encountered once establishing those mechanisms becomes rote. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  16. An Alternative Mechanism for the Methylation of Phosphoethanolamine Catalyzed by Plasmodium falciparum Phosphoethanolamine Methyltransferase*♦

    PubMed Central

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; Guallar, Victor

    2014-01-01

    The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT. PMID:25288796

  17. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE PAGES

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.; ...

    2014-10-06

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  18. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saen-oon, Suwipa; Lee, Soon Goo; Jez, Joseph M.

    Here, the phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical S n2-type methyl transfer frommore » S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.« less

  19. A Novel Approach to Primary Cell Culture for Octopus vulgaris Neurons

    PubMed Central

    Maselli, Valeria; Xu, Fenglian; Syed, Naweed I.; Polese, Gianluca; Di Cosmo, Anna

    2018-01-01

    Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors—including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors. PMID:29666582

  20. Challenge of biomechanics.

    PubMed

    Volokh, K Y

    2013-06-01

    The application of mechanics to biology--biomechanics--bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or planning treatment to a disease. The notion of interpreting empirical data without theory is unscientific and unsound. This paper attempts to fortify the importance of biomechanics and invigorate research efforts for those engineers and mechanicians who are not yet involved in the field. It is not aimed here, however, to give an overview of biomechanics. Instead, three unsolved problems are formulated to challenge the readers. At the micro-scale, the problem of the structural organization and integrity of the living cell is presented. At the meso-scale, the enigma of fingerprint formation is discussed. At the macro-scale, the problem of predicting aneurysm ruptures is reviewed. It is aimed here to attract the attention of engineers and mechanicians to problems in biomechanics which, in the author's opinion, will dominate the development of engineering and mechanics in forthcoming years.

  1. Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Busch, Nathan Adams

    1995-01-01

    The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.

  2. Interaction Network and Localization of Brucella abortus Membrane Proteins Involved in the Synthesis, Transport, and Succinylation of Cyclic β-1,2-Glucans

    PubMed Central

    Guidolin, Leticia S.; Morrone Seijo, Susana M.; Guaimas, Francisco F.

    2015-01-01

    ABSTRACT Cyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating synthesis with the transport and modification. PMID:25733613

  3. Towards understanding the complexity of cardiovascular oscillations: Insights from information theory.

    PubMed

    Javorka, Michal; Krohova, Jana; Czippelova, Barbora; Turianikova, Zuzana; Lazarova, Zuzana; Wiszt, Radovan; Faes, Luca

    2018-07-01

    Cardiovascular complexity is a feature of healthy physiological regulation, which stems from the simultaneous activity of several cardiovascular reflexes and other non-reflex physiological mechanisms. It is manifested in the rich dynamics characterizing the spontaneous heart rate and blood pressure variability (HRV and BPV). The present study faces the challenge of disclosing the origin of short-term HRV and BPV from the statistical perspective offered by information theory. To dissect the physiological mechanisms giving rise to cardiovascular complexity in different conditions, measures of predictive information, information storage, information transfer and information modification were applied to the beat-to-beat variability of heart period (HP), systolic arterial pressure (SAP) and respiratory volume signal recorded non-invasively in 61 healthy young subjects at supine rest and during head-up tilt (HUT) and mental arithmetics (MA). Information decomposition enabled to assess simultaneously several expected and newly inferred physiological phenomena, including: (i) the decreased complexity of HP during HUT and the increased complexity of SAP during MA; (ii) the suppressed cardiorespiratory information transfer, related to weakened respiratory sinus arrhythmia, under both challenges; (iii) the altered balance of the information transferred along the two arms of the cardiovascular loop during HUT, with larger baroreflex involvement and smaller feedforward mechanical effects; and (iv) an increased importance of direct respiratory effects on SAP during HUT, and on both HP and SAP during MA. We demonstrate that a decomposition of the information contained in cardiovascular oscillations can reveal subtle changes in system dynamics and improve our understanding of the complexity changes during physiological challenges. Copyright © 2018. Published by Elsevier Ltd.

  4. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells.

    PubMed

    Leon, I E; Porro, V; Di Virgilio, A L; Naso, L G; Williams, P A M; Bollati-Fogolín, M; Etcheverry, S B

    2014-01-01

    Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.

  5. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  6. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  7. Gi- and Gs-coupled GPCRs show different modes of G-protein binding.

    PubMed

    Van Eps, Ned; Altenbach, Christian; Caro, Lydia N; Latorraca, Naomi R; Hollingsworth, Scott A; Dror, Ron O; Ernst, Oliver P; Hubbell, Wayne L

    2018-03-06

    More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, G s , and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, G i , using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-G i complex, G i engages rhodopsin in a manner distinct from previous GPCR-G s structures, providing insight into specificity determinants. Copyright © 2018 the Author(s). Published by PNAS.

  8. Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets

    NASA Astrophysics Data System (ADS)

    Weschler, C. J.; Mandich, M. L.; Graedel, T. E.

    1986-04-01

    Dissolved transition metal ions (TMI) are common constituents of atmospheric droplets. They are known to catalyze sulfur oxidation in droplets and are suspected of being involved in other chemical processes as well. We have reviewed the relevant equilibrium constants and chemical reactions of the major TMI (iron, manganese, copper, and nickel), their ability to form complexes in aqueous solution, and their potential involvement in photochemical processes in atmospheric droplets. Among the results are the following: (1) The major Fe(III) species in atmospheric water droplets are [Fe(OH)(H2O)5]2+, [Fe(OH)2(H2O)4]+, and [Fe(SO3)(H2O)5]+; the partitioning among these complexes is a function of pH. In contrast, Cu(II), Mn(II), and Ni(II) exist almost entirely in the droplets as hexaquo complexes. (2) Within the tropospheric solar spectrum, some of the complexes of Fe(III) have large absorption cross-sections. In this work we report cross-section data for several of the complexes. Absorption of solar photons by such complexes is generally followed by cleavage, which in the same process reduces the iron (III) atom and produces a reactive free radical. This mechanism has the potential to be a significant and heretofore unappreciated source of free radicals in atmospheric droplets. (3) TMI participate in redox reactions with H2O2 and its associated species HO2· and O2-. These reactions furnish the potential for catalytic cycles involving TMI in atmospheric droplets under a variety of illumination and acidity conditions. (4) A number of organic processes in atmospheric droplets may involve TMI. Among these processes are the production and destruction of alkylhydroperoxides, the chemical chains linking RO2· radicals to stable alcohols and acids, and the oxidation of aliphatic aldehydes to organic acids.

  9. Involvement of GTA protein NC2β in Neuroblastoma pathogenesis suggests that it physiologically participates in the regulation of cell proliferation

    PubMed Central

    Di Pietro, Cinzia; Ragusa, Marco; Barbagallo, Davide; Duro, Laura R; Guglielmino, Maria R; Majorana, Alessandra; Giunta, Veronica; Rapisarda, Antonella; Tricarichi, Elisa; Miceli, Marco; Angelica, Rosario; Grillo, Agata; Banelli, Barbara; Defferari, Isabella; Forte, Stefano; Laganà, Alessandro; Bosco, Camillo; Giugno, Rosalba; Pulvirenti, Alfredo; Ferro, Alfredo; Grzeschik, Karl H; Di Cataldo, Andrea; Tonini, Gian P; Romani, Massimo; Purrello, Michele

    2008-01-01

    Background The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. Results To verify our hypothesis, we analyzed the involvement in Neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2β (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2α (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2β mRNA had also genomic deletions at the corresponding locus. Conclusion Our data show that NC2β is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2β, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells. PMID:18538002

  10. Involvement of GTA protein NC2beta in neuroblastoma pathogenesis suggests that it physiologically participates in the regulation of cell proliferation.

    PubMed

    Di Pietro, Cinzia; Ragusa, Marco; Barbagallo, Davide; Duro, Laura R; Guglielmino, Maria R; Majorana, Alessandra; Giunta, Veronica; Rapisarda, Antonella; Tricarichi, Elisa; Miceli, Marco; Angelica, Rosario; Grillo, Agata; Banelli, Barbara; Defferari, Isabella; Forte, Stefano; Laganà, Alessandro; Bosco, Camillo; Giugno, Rosalba; Pulvirenti, Alfredo; Ferro, Alfredo; Grzeschik, Karl H; Di Cataldo, Andrea; Tonini, Gian P; Romani, Massimo; Purrello, Michele

    2008-06-06

    The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. To verify our hypothesis, we analyzed the involvement in neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2beta (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2alpha (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2beta mRNA had also genomic deletions at the corresponding locus. Our data show that NC2beta is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2beta, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells.

  11. [Organ damage and cardiorenal syndrome in acute heart failure].

    PubMed

    Casado Cerrada, Jesús; Pérez Calvo, Juan Ignacio

    2014-03-01

    Heart failure is a complex syndrome that affects almost all organs and systems of the body. Signs and symptoms of organ dysfunction, in particular kidney dysfunction, may be accentuated or become evident for the first time during acute decompensation of heart failure. Cardiorenal syndrome has been defined as the simultaneous dysfunction of both the heart and the kidney, regardless of which of the two organs may have suffered the initial damage and regardless also of their previous functional status. Research into the mechanisms regulating the complex relationship between the two organs is prompting the search for new biomarkers to help physicians detect renal damage in subclinical stages. Hence, a preventive approach to renal dysfunction may be adopted in the clinical setting in the near future. This article provides a general overview of cardiorenal syndrome and an update of the physiopathological mechanisms involved. Special emphasis is placed on the role of visceral congestion as an emergent mechanism in this syndrome. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  12. Platypus chain reaction: directional and ordered meiotic pairing of the multiple sex chromosome chain in Ornithorhynchus anatinus.

    PubMed

    Daish, Tasman; Casey, Aaron; Grützner, Frank

    2009-01-01

    Monotremes are phylogenetically and phenotypically unique animals with an unusually complex sex chromosome system that is composed of ten chromosomes in platypus and nine in echidna. These chromosomes are alternately linked (X1Y1, X2Y2, ...) at meiosis via pseudoautosomal regions and segregate to form spermatozoa containing either X or Y chromosomes. The physical and epigenetic mechanisms involved in pairing and assembly of the complex sex chromosome chain in early meiotic prophase I are completely unknown. We have analysed the pairing dynamics of specific sex chromosome pseudoautosomal regions in platypus spermatocytes during prophase of meiosis I. Our data show a highly coordinated pairing process that begins at the terminal Y5 chromosome and completes with the union of sex chromosomes X1Y1. The consistency of this ordered assembly of the chain is remarkable and raises questions about the mechanisms and factors that regulate the differential pairing of sex chromosomes and how this relates to potential meiotic silencing mechanisms and alternate segregation.

  13. Technology, expertise and social cognition in human evolution.

    PubMed

    Stout, Dietrich; Passingham, Richard; Frith, Christopher; Apel, Jan; Chaminade, Thierry

    2011-04-01

    Paleolithic stone tools provide concrete evidence of major developments in human behavioural and cognitive evolution. Of particular interest are evolving cognitive mechanisms implied by the cultural transmission of increasingly complex prehistoric technologies, hypothetically including motor resonance, causal reasoning and mentalizing. To test the relevance of these mechanisms to specific Paleolithic technologies, we conducted a functional magnetic resonance imaging study of Naïve, Trained and Expert subjects observing two toolmaking methods of differing complexity and antiquity: the simple 'Oldowan' method documented by the earliest tools 2.5 million years ago; and the more complex 'Acheulean' method used to produce refined tools 0.5 million years ago. Subjects observed 20-s video clips of an expert demonstrator, followed by behavioural tasks designed to maintain attention. Results show that observational understanding of Acheulean toolmaking involves increased demands for the recognition of abstract technological intentions. Across subject groups, Acheulean compared with Oldowan toolmaking was associated with activation of left anterior intraparietal and inferior frontal sulci, indicating the relevance of resonance mechanisms. Between groups, Naïve subjects relied on bottom-up kinematic simulation in the premotor cortex to reconstruct unfamiliar intentions, and Experts employed a combination of familiarity-based sensorimotor matching in the posterior parietal cortex and top-down mentalizing involving the medial prefrontal cortex. While no specific differences between toolmaking technologies were found for Trained subjects, both produced frontal activation relative to Control, suggesting focused engagement with toolmaking stimuli. These findings support motor resonance hypotheses for the evolutionary origins of human social cognition and cumulative culture, directly linking these hypotheses with archaeologically observable behaviours in prehistory. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Computational Modeling of Morphogenesis Regulated by Mechanical Feedback

    PubMed Central

    Ramasubramanian, Ashok; Taber, Larry A.

    2008-01-01

    Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms. PMID:17318485

  15. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    NASA Astrophysics Data System (ADS)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  16. Endocrine Responses to Resistance Exercise,

    DTIC Science & Technology

    1987-08-30

    resistance training responses of selected hormones related to acute stress and growth promoting actions. Hormonal mechanisms appear to be involved with ...an important determinant of hormonal response. Still. little is known with regard to other single and multiple factor variables (e.g.. rest period...hormone through a direct interaction with a cytoplasmic receptor leading to the typical migration of the hormone-receptor complex to the nucleus

  17. Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas-exchange and peroxidase activity in Arabidopsis thaliana L

    USDA-ARS?s Scientific Manuscript database

    Ozone uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to ozone were compar...

  18. An unexpected mechanism of hydrosilylation by a silyl hydride complex of molybdenum.

    PubMed

    Khalimon, Andrey Y; Ignatov, Stanislav K; Simionescu, Razvan; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2012-01-16

    Carbonyl hydrosilylation catalyzed by (ArN)Mo(H)(SiH(2)Ph)(PMe(3))(3) (3) is unusual in that it does not involve the expected Si-O elimination from intermediate (ArN)Mo(SiH(2)Ph)(O(i)Pr)(PMe(3))(2) (7). Instead, 7 reversibly transfers β-CH hydrogen from the alkoxide ligand to metal.

  19. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    PubMed

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    NASA Astrophysics Data System (ADS)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  1. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  2. mTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system.

    PubMed

    Miao, Linqing; Yang, Liu; Huang, Haoliang; Liang, Feisi; Ling, Chen; Hu, Yang

    2016-03-30

    Injured mature CNS axons do not regenerate in mammals. Deletion of PTEN, the negative regulator of PI3K, induces CNS axon regeneration through the activation of PI3K-mTOR signaling. We have conducted an extensive molecular dissection of the cross-regulating mechanisms in axon regeneration that involve the downstream effectors of PI3K, AKT and the two mTOR complexes (mTORC1 and mTORC2). We found that the predominant AKT isoform in CNS, AKT3, induces much more robust axon regeneration than AKT1 and that activation of mTORC1 and inhibition of GSK3β are two critical parallel pathways for AKT-induced axon regeneration. Surprisingly, phosphorylation of T308 and S473 of AKT play opposite roles in GSK3β phosphorylation and inhibition, by which mTORC2 and pAKT-S473 negatively regulate axon regeneration. Thus, our study revealed a complex neuron-intrinsic balancing mechanism involving AKT as the nodal point of PI3K, mTORC1/2 and GSK3β that coordinates both positive and negative cues to regulate adult CNS axon regeneration.

  3. In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field.

    PubMed

    Efremova, Maria V; Veselov, Maxim M; Barulin, Alexander V; Gribanovsky, Sergey L; Le-Deygen, Irina M; Uporov, Igor V; Kudryashova, Elena V; Sokolsky-Papkov, Marina; Majouga, Alexander G; Golovin, Yuri I; Kabanov, Alexander V; Klyachko, Natalia L

    2018-04-24

    Magnetomechanical modulation of biochemical processes is a promising instrument for bioengineering and nanomedicine. This work demonstrates two approaches to control activity of an enzyme, α-chymotrypsin immobilized on the surface of gold-coated magnetite magnetic nanoparticles (GM-MNPs) using a nonheating low-frequency magnetic field (LF MF). The measurement of the enzyme reaction rate was carried out in situ during exposure to the magnetic field. The first approach involves α-chymotrypsin-GM-MNPs conjugates, in which the enzyme undergoes mechanical deformations with the reorientation of the MNPs under LF MF (16-410 Hz frequency, 88 mT flux density). Such mechanical deformations result in conformational changes in α-chymotrypsin structure, as confirmed by infrared spectroscopy and molecular modeling, and lead to a 63% decrease of enzyme initial activity. The second approach involves an α-chymotrypsin-GM-MNPs/trypsin inhibitor-GM-MNPs complex, in which the activity of the enzyme is partially inhibited. In this case the reorientation of MNPs in the field leads to disruption of the enzyme-inhibitor complex and an almost 2-fold increase of enzyme activity. The results further demonstrate the utility of magnetomechanical actuation at the nanoscale for the remote modulation of biochemical reactions.

  4. The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order

    DOE PAGES

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-02-17

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less

  5. The ‘active life’ of Hsp90 complexes☆

    PubMed Central

    Prodromou, Chrisostomos

    2012-01-01

    Hsp90 forms a variety of complexes differing both in clientele and co-chaperones. Central to the role of co-chaperones in the formation of Hsp90 complexes is the delivery of client proteins and the regulation of the ATPase activity of Hsp90. Determining the mechanisms by which co-chaperones regulate Hsp90 is essential in understanding the assembly of these complexes and the activation and maturation of Hsp90's clientele. Mechanistically, co-chaperones alter the kinetics of the ATP-coupled conformational changes of Hsp90. The structural changes leading to the formation of a catalytically active unit involve all regions of the Hsp90 dimer. Their complexity has allowed different orthologues of Hsp90 to evolve kinetically in slightly different ways. The interaction of the cytosolic Hsp90 with a variety of co-chaperones lends itself to a complex set of different regulatory mechanisms that modulate Hsp90's conformation and ATPase activity. It also appears that the conformational switches of Hsp90 are not necessarily coupled under all circumstances. Here, I described different co-chaperone complexes and then discuss in detail the mechanisms and role that specific co-chaperones play in this. I will also discuss emerging evidence that post-translational modifications also affect the ATPase activity of Hsp90, and thus complex formation. Finally, I will present evidence showing how Hsp90's active site, although being highly conserved, can be altered to show resistance to drug binding, but still maintain ATP binding and ATPase activity. Such changes are therefore unlikely to significantly alter Hsp90's interactions with client proteins and co-chaperones. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90) PMID:21840346

  6. Regulation of floral stem cell termination in Arabidopsis

    PubMed Central

    Sun, Bo; Ito, Toshiro

    2015-01-01

    In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061

  7. Elucidating the Pathogenesis of Pre-eclampsia Using In Vitro Models of Spiral Uterine Artery Remodelling.

    PubMed

    McNally, Ross; Alqudah, Abdelrahim; Obradovic, Danilo; McClements, Lana

    2017-10-23

    The aim of the study is to perform a critical assessment of in vitro models of pre-eclampsia using complementary human and cell line-based studies. Molecular mechanisms involved in spiral uterine artery (SUA) remodelling and trophoblast functionality will also be discussed. A number of proteins and microRNAs have been implicated as key in SUA remodelling, which could be explored as early biomarkers or therapeutic targets for prevention of pre-eclampsia. Various 2D and 3D in vitro models involving trophoblast cells, endothelial cells, immune cells and placental tissue were discussed to elucidate the pathogenesis of pre-eclampsia. Nevertheless, pre-eclampsia is a multifactorial disease, and the mechanisms involved in its pathogenesis are complex and still largely unknown. Further studies are required to provide better understanding of the key processes leading to inappropriate placental development which is the root cause of pre-eclampsia. This new knowledge could identify novel biomarkers and treatment strategies.

  8. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation

    PubMed Central

    Gomez, D; Homer-Vanniasinkam, S; Graham, AM; Prasad, KR

    2007-01-01

    Liver ischaemic preconditioning (IPC) is known to protect the liver from the detrimental effects of ischaemic-reperfusion injury (IRI), which contributes significantly to the morbidity and mortality following major liver surgery. Recent studies have focused on the role of IPC in liver regeneration, the precise mechanism of which are not completely understood. This review discusses the current understanding of the mechanism of liver regeneration and the role of IPC in this setting. Relevant articles were reviewed from the published literature using the Medline database. The search was performed using the keywords “liver”, “ischaemic reperfusion”, “ischaemic preconditioning”, “regeneration”, “hepatectomy” and “transplantation”. The underlying mechanism of liver regeneration is a complex process involving the interaction of cytokines, growth factors and the metabolic demand of the liver. IPC, through various mediators, promotes liver regeneration by up-regulating growth-promoting factors and suppresses growth-inhibiting factors as well as damaging stresses. The increased understanding of the cellular mechanisms involved in IPC will enable the development of alternative treatment modalities aimed at promoting liver regeneration following major liver resection and transplantation. PMID:17278187

  9. Resistive thrust production can be as crucial as added mass mechanisms for inertial undulatory swimmers

    NASA Astrophysics Data System (ADS)

    Piñeirua, M.; Godoy-Diana, R.; Thiria, B.

    2015-08-01

    In this Rapid Communication, we address a crucial point regarding the description of moderate to high Reynolds numbers aquatic swimmers. For decades, swimming animals have been classified in two different families of propulsive mechanisms based on the Reynolds number: the resistive swimmers, using local friction to produce the necessary thrust force for locomotion at low Reynolds number, and the reactive swimmers, lying in the high Reynolds range, and using added mass acceleration (described by perfect fluid theory). However, inertial swimmers are also systems that dissipate energy, due to their finite size, therefore involving strong resistive contributions, even for high Reynolds numbers. Using a complete model for the hydrodynamic forces, involving both reactive and resistive contributions, we revisit here the physical mechanisms responsible for the thrust production of such swimmers. We show, for instance, that the resistive part of the force balance is as crucial as added mass effects in the modeling of the thrust force, especially for elongated species. The conclusions brought by this work may have significant contributions to the understanding of complex swimming mechanisms, especially for the future design of artificial swimmers.

  10. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    PubMed

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Function of YY1 in Long-Distance DNA Interactions

    PubMed Central

    Atchison, Michael L.

    2014-01-01

    During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation. PMID:24575094

  12. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    PubMed

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  13. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans

    PubMed Central

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2016-01-01

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. PMID:28007841

  14. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans.

    PubMed

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2017-02-09

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans , the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. Copyright © 2017 Erdelyi et al.

  15. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect.

    PubMed

    Fong, Clifford W

    2016-06-01

    The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic-electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt-X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*(-) (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•(-), O2•(-) but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  17. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans.

    PubMed

    Alam, Md Ashiqul; Kamlangdee, Niyom; Kelly, Joan M

    2017-08-01

    Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.

  18. Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins*

    PubMed Central

    Suryo Rahmanto, Yohan; Kalinowski, Danuta S.; Lane, Darius J. R.; Lok, Hiu Chuen; Richardson, Vera; Richardson, Des R.

    2012-01-01

    Nitrogen monoxide (NO) markedly affects intracellular iron metabolism, and recent studies have shown that molecules traditionally involved in drug resistance, namely GST and MRP1 (multidrug resistance-associated protein 1), are critical molecular players in this process. This is mediated by interaction of these proteins with dinitrosyl-dithiol-iron complexes (Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670–7675; Lok, H. C., Suryo Rahmanto, Y., Hawkins, C. L., Kalinowski, D. S., Morrow, C. S., Townsend, A. J., Ponka, P., and Richardson, D. R. (2012) J. Biol. Chem. 287, 607–618). These complexes are bioavailable, have a markedly longer half-life compared with free NO, and form in cells after an interaction between iron, NO, and glutathione. The generation of dinitrosyl-dithiol-iron complexes acts as a common currency for NO transport and storage by MRP1 and GST P1-1, respectively. Understanding the biological trafficking mechanisms involved in the metabolism of NO is vital for elucidating its many roles in cellular signaling and cytotoxicity and for development of new therapeutic targets. PMID:22262835

  19. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants.

    PubMed

    Samanta, Subhasis; Thakur, Jitendra K

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

  20. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants

    PubMed Central

    Samanta, Subhasis; Thakur, Jitendra K.

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes. PMID:26442070

  1. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.

    PubMed

    Cheng, Lixiang; Wang, Yuping; He, Qiang; Li, Huijun; Zhang, Xiaojing; Zhang, Feng

    2016-08-31

    Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.

  2. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    PubMed

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of the influence of external stimulus on protein-nucleic acid complex through multiscale computations

    NASA Astrophysics Data System (ADS)

    Gosai, Agnivo

    The concomitant detection, monitoring and analysis of biomolecules have assumed utmost importance in the field of medical diagnostics as well as in different spheres of biotechnology research such as drug development, environmental hazard detection and biodefense. There is an increased demand for the modulation of the biological response for such detection / sensing schemes which will be facilitated by the sensitive and controllable transmission of external stimuli. Electrostatic actuation for the controlled release/capture of biomolecules through conformational transformations of bioreceptors provides an efficient and feasible mechanism to modulate biological response. In addition, electrostatic actuation mechanism has the advantage of allowing massively parallel schemes and measurement capabilities that could ultimately be essential for biomedical applications. Experiments have previously demonstrated the unbinding of thrombin from its aptamer in presence of small positive electrode potential whereas the complex remained associated in presence of small negative potentials / zero potential. However, the nanoscale physics/chemistry involved in this process is not clearly understood. In this thesis a combination of continuum mechanics based modeling and a variety of atomistic simulation techniques have been utilized to corroborate the aforementioned experimental observations. It is found that the computational approach can satisfactorily predict the dynamics of the electrically excited aptamer-thrombin complex as well as provide an analytical model to characterize the forced binding of the complex.

  4. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers.

    PubMed

    Di Domenico, Marina; Giovane, Giancarlo; Kouidhi, Soumaya; Iorio, Rosamaria; Romano, Maurizio; De Francesco, Francesco; Feola, Antonia; Siciliano, Camilla; Califano, Luigi; Giordano, Antonio

    2017-03-31

    Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.

  5. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex.

    PubMed

    Lee, Kwangkook; Zhong, Xiaofen; Gu, Shenyan; Kruel, Anna Magdalena; Dorner, Martin B; Perry, Kay; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2014-06-20

    How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A. Copyright © 2014, American Association for the Advancement of Science.

  6. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.

    PubMed

    De Munari, Annalisa; Semiao, Andrea Joana Correia; Antizar-Ladislao, Blanca

    2013-06-15

    Nanofiltration (NF) is a well-established process used in drinking water production to effectively remove Natural Organic Matter (NOM) and organic micropollutants. The presence of NOM has been shown to have contrasting results on micropollutant retention by NF membranes and removal mechanisms are to date poorly understood. The permeate water quality can therefore vary during operation and its decrease would be an undesired outcome for potable water treatment. It is hence important to establish the mechanisms involved in the removal of organic micropollutants by NF membranes in the presence of NOM. In this study, the retention mechanisms of pesticide Endosulfan (ES) in the presence of humic acids (HA) by two NF membranes, TFC-SR2 and TFC-SR3, a "loose" and a "tight" membrane, respectively, were elucidated. The results showed that two mechanisms were involved: (1) the formation of ES-HA complexes (solute-solute interactions), determined from solid-phase micro-extraction (SPME), increased ES retention, and (2) the interactions between HA and the membrane (solute-membrane interactions) increased membrane molecular weight cut-off (MWCO) and decreased ES retention. HA concentration, pH, and the ratio between micropollutant molecular weight (MW) and membrane MWCO were shown to influence ES retention mechanisms. In the absence of HA-membrane interactions at pH 4, an increase of HA concentration increased ES retention from 60% to 80% for the TFC-SR2 and from 80% to 95% for the TFC-SR3 due to ES-HA complex formation. At pH 8, interactions between HA and the loose TFC-SR2 increased the membrane MWCO from 460 to 496 g/mol and ES retention decreased from 55% to 30%, as HA-membrane interactions were the dominant mechanism for ES retention. In contrast, for the "tight" TFC-SR3 membrane the increase in the MWCO (from 165 to 179 g/mol), was not sufficient to decrease ES retention which was dominated by ES-HA interactions. Quantification of the contribution of both solute-solute interactions and solute-membrane interactions is hence fundamental in understanding the removal mechanisms of micropollutant by NF membranes in the presence of NOM in order to optimize the treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Influence of chirality on vibrational and relaxational properties of (S)- and (R,S)-ibuprofen/methyl-β-cyclodextrin inclusion complexes: an INS and QENS study.

    PubMed

    Crupi, Vincenza; Guella, Graziano; Longeville, Stéphane; Majolino, Domenico; Mancini, Ines; Paciaroni, Alessandro; Rossi, Barbara; Venuti, Valentina

    2013-10-03

    In this paper, we analyze the internal picosecond dynamics of enantiomeric ((S)-) and racemic ((R,S)-) ibuprofen (IBP), when forming inclusion complexes, in solid state, with methyl-β-cyclodextrin (Me-β-CD), by inelastic and quasi elastic neutron scattering. The study was aimed at understanding, by the analysis of the vibrational and relaxational properties of the inclusion complexes also with respect to the single components, if and how the differences in the structural properties of the hydrogen bond (HB) network of (S)- and (R,S)-IBP can have influence on the complexation process triggered by "host-guest" interactions, whose detailed knowledge is retained as a prerequisite for enantiodiscrimination. From the results, a similar complexation mechanism for (S)- and (R,S)-IBP is argued, with a preferred penetration mode involving the isopropyl group of IBP.

  8. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    PubMed

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  9. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  11. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  12. Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A

    PubMed Central

    Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain

    2013-01-01

    The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605

  13. 3D Volumetric Strain Modelling of Eruptions at Soufrière Hills Volcano Montserrat

    NASA Astrophysics Data System (ADS)

    Young, N. K.; Gottsmann, J.

    2015-12-01

    Volumetric strain data has captured a number of Vulcanian explosions at Soufrière Hills Volcano, Montserrat, which involve the uppermost part of the magmatic system. We previously used volumetric strain data from during one of these explosions to elucidate the geometry of the shallow plumbing system and crustal mechanics at Montserrat for mechanically plausible depressurisation amplitudes. Our results from both forward and inverse 2D models found that it was necessary to incorporate a mechanically weak shallow crust and mechanically compliant halo of material around the highest part of the SHV magmatic system i.e. the conduit, in order to implement geologically realistic conditions of depressurisation and rock strength. However, this model lacks complexity that cannot be implemented in a 2D environment. Here, in the first study of its kind, we use Finite Element Analysis of volumetric strain data in a 3D domain incorporating topography and mechanical complexities as imaged by seismic and gravimetric data. Our model implements topography from a DEM covering the island and surrounding bathymetry and include the mechanically stiff extinct volcanic cores of the Silver Hills and the Centre Hills. Here we present our preliminary findings from the 3D strain modelling and the effect of the extinct volcanic cores on strain partitioning on Montserrat.

  14. "Extracting" the key fragment in ETS-10 crystallization and its application in AM-6 assembly.

    PubMed

    Guo, Meiling; Feng, Zhaochi; Li, Guanna; Hofmann, Jan P; Pidko, Evgeny A; Magusin, Pieter C M M; Guo, Qiang; Weckhuysen, Bert M; Hensen, Emiel J M; Fan, Fengtao; Li, Can

    2012-09-17

    The mechanism of crystallization of microporous titanosilicate ETS-10 was investigated by Raman spectroscopy combined with (29)Si magic-angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three-membered ring species is shown to be the key step in the hydrothermal synthesis of ETS-10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO(2) particles. These insights into the mechanism of ETS-10 growth led to the successful development of a new synthesis route to the vanadosilicate AM-6 that involves the use of intermediates that contain three-membered ring species as an initiator. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Functions and Mechanisms of Sleep

    PubMed Central

    Zielinski, Mark R.; McKenna, James T.; McCarley, Robert W.

    2017-01-01

    Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep. PMID:28413828

  16. Uncovering the Mystery of Gliding Motility in the Myxobacteria

    PubMed Central

    Nan, Beiyan; Zusman, David R.

    2012-01-01

    Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630

  17. Vibrational dynamics of vocal folds using nonlinear normal modes.

    PubMed

    Pinheiro, Alan P; Kerschen, Gaëtan

    2013-08-01

    Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Thermo-mechanical behavior of power electronic packaging assemblies: From characterization to predictive simulation of lifetimes

    NASA Astrophysics Data System (ADS)

    Dalverny, O.; Alexis, J.

    2018-02-01

    This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.

  19. The dysbindin gene in major depression: an association study.

    PubMed

    Zill, Peter; Baghai, Thomas C; Engel, Rolf; Zwanzger, Peter; Schüle, Cornelius; Eser, Daniela; Behrens, Stefanie; Rupprecht, Rainer; Möller, Hans-Jürgen; Ackenheil, Manfred; Bondy, Brigitta

    2004-08-15

    The pathophysiological mechanisms, as well as the molecular loci of antidepressant drug action have not yet been established, but recent models proposed that several adaptive mechanisms in signal transduction cascades beyond the receptor and reuptake systems are involved in antidepressant action and play an important role in the etiology of affective disorders. In this context, the dysbindin gene (dystrobrevin-binding-protein 1, DTNBP1), which was recently reported to be associated with schizophrenia seems to be an interesting candidate gene for affective disorders. Dysbindin is widely expressed in the human brain and binds to the dystrophin-associated protein complex (DPC) which appears to be involved in signal transduction pathways, which have been repeatedly investigated and described as altered or disturbed in affective disorders [McLeod et al. [2003: Psychopharmacol Bull 35:24-41]; Brambilla et al. [2003: Mol Psychiatry 8:721-737

  20. Oxidases and Peroxidases in Cardiovascular and Lung Disease: New Concepts in Reactive Oxygen Species Signaling

    PubMed Central

    Ghouleh, Imad Al; Khoo, Nicholas K.H.; Knaus, Ulla G.; Griendling, Kathy K.; Touyz, Rhian M.; Thannickal, Victor J.; Barchowsky, Aaron; Nauseef, William M.; Kelley, Eric E.; Bauer, Phillip M.; Darley-Usmar, Victor; Shiva, Sruti; Cifuentes-Pagano, Eugenia; Freeman, Bruce A.; Gladwin, Mark T.; Pagano, Patrick J.

    2011-01-01

    Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even in environmental toxicity. The complexity of this family’s effects on cellular processes stems from the fact that there are 7 members, each with unique tissue distribution, cellular localization and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophillic fatty acids has impact on many redox sensitive pathologies, and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. The following review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh’s Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, and encompasses further interaction and discussion among the presenters. PMID:21722728

  1. Responses of the pulp, periradicular and soft tissues following trauma to the permanent teeth.

    PubMed

    Yu, C Y; Abbott, P V

    2016-03-01

    Trauma to the permanent teeth involves not only the teeth but also the pulp, the periodontal ligament, alveolar bone, gingiva and other associated structures. There are many variations in the types of injuries with varying severity and often a tooth may sustain more than one injury at the same time. In more severe trauma cases, there are many different cellular systems of mineralized hard and unmineralized soft tissues involved, each with varying potential for healing. Furthermore, the responses of the different tissues may be interrelated and dependent on each other. Hence, healing subsequent to dental trauma has long been known to be very complex. Because of this complexity, tissue responses and the consequences following dental trauma have been confusing and puzzling for many clinicians. In this review, the tissue responses are described under the tissue compartments typically involved following dental trauma: the pulp, periradicular and associated soft tissues. The factors involved in the mechanisms of trauma are analysed for their effects on the tissue responses. A thorough understanding of the possible tissue responses is imperative for clinicians to overcome the confusion and manage dental trauma adequately and conservatively in order to minimize the consequences following trauma. © 2016 Australian Dental Association.

  2. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    PubMed

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  3. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder

    PubMed Central

    Wittenborn, A. K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N.

    2016-01-01

    Background Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. Method We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. Results The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Conclusions Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention. PMID:26621339

  4. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  5. Bioinformatics and expressional analysis of cDNA clones from floral buds

    NASA Astrophysics Data System (ADS)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.

  6. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    PubMed

    Kimata-Ariga, Yoko; Hase, Toshiharu

    2014-01-01

    Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  7. Micromechanisms of deformation in shales

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Gharbi, H.; Hallais, S.; Dimanov, A.; Bornert, M.; Picard, D.; Mezni, M.; Conil, N.

    2017-12-01

    One of the envisaged solutions for nuclear wastes disposal is underground repository in shales. For this purpose, the Callovo Oxfordian (Cox) argillaceous formation is extensively studied. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified illite-smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material. Two sets of experiments were performed, at two scales on three bedding orientations (90°, 45° and 0°). The first set was dedicated to uniaxial deformation followed with an optical set-up with a pixel resolution of 0.55µm. These experiments allowed us to see the fracture propagation with different patterns depending on the bedding orientation. For the second set of experiments, an experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. We aimed at characterizing the mechanical anisotropy and the mechanisms involved in the deformation, with an image resolution below the micormeter. The observed sample surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. In both cases, digital images were acquired at different loading stages during the deformation process and Digital Image Correlation Technique (DIC) was applied in order to retrieve full strain fields at various scales from sample scale to microstructure scale. The analysis allows for identification of the active mechanisms, their relationships to the microstructure and their interactions.

  8. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model.

    PubMed

    Santos, Priscila L; Brito, Renan G; Oliveira, Marlange A; Quintans, Jullyana S S; Guimarães, Adriana G; Santos, Márcio R V; Menezes, Paula P; Serafini, Mairim R; Menezes, Irwin R A; Coutinho, Henrique D M; Araújo, Adriano A S; Quintans-Júnior, Lucindo J

    2016-08-15

    Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour.

    PubMed

    Wiley, R H

    2013-02-01

    Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.

  10. Experimental and theoretical identification of a four- acoustic-inputs/two-vibration-outputs hearing system

    NASA Astrophysics Data System (ADS)

    Balaji, P. A.

    1999-07-01

    A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.

  11. Illustrations of mathematical modeling in biology: epigenetics, meiosis, and an outlook.

    PubMed

    Richards, D; Berry, S; Howard, M

    2012-01-01

    In the past few years, mathematical modeling approaches in biology have begun to fulfill their promise by assisting in the dissection of complex biological systems. Here, we review two recent examples of predictive mathematical modeling in plant biology. The first involves the quantitative epigenetic silencing of the floral repressor gene FLC in Arabidopsis, mediated by a Polycomb-based system. The second involves the spatiotemporal dynamics of telomere bouquet formation in wheat-rye meiosis. Although both the biology and the modeling framework of the two systems are different, both exemplify how mathematical modeling can help to accelerate discovery of the underlying mechanisms in complex biological systems. In both cases, the models that developed were relatively minimal, including only essential features, but both nevertheless yielded fundamental insights. We also briefly review the current state of mathematical modeling in biology, difficulties inherent in its application, and its potential future development.

  12. The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.

    PubMed

    Jobe, Thomas H.; Helgason, Cathy M.

    1998-04-01

    Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.

  13. Infrared spectra of SF6-.HCOOH.Arn (n=0-2): Infrared triggered reaction and Ar-induced reactive inhibition

    NASA Astrophysics Data System (ADS)

    Schneider, Holger; Takahashi, Kaito; Skodje, Rex T.; Weber, J. Mathias

    2009-05-01

    We present the infrared spectra of SF6-ṡHCOOHṡArm (m =0-2) complexes. We find that the binding motif involves a single hydrogen bond between the SF6- anion and the OH group of the formic acid, with the CH group weakly tethered to a neighboring F atom. Similar to the case of hydrated SF6-, the SF bond involved in the (OH-F) bond is significantly stretched and weakened by the attachment of the HCOOH ligand. The bare complex undergoes reaction upon infrared absorption in the CH/OH stretching region of the formic acid moiety, leading predominantly to the formation of SF4-+2HF+CO2. The reaction can be inhibited by attachment of two Ar atoms. We discuss a likely reaction mechanism in the framework of ab initio calculations, suggesting that reaction proceeds via tunneling through the potential barrier.

  14. Isolation and Preparation of Extracellular Proteins from Lignocellulose Degrading Fungi for Comparative Proteomic Studies Using Mass Spectrometry.

    PubMed

    Gruninger, Robert J; Tsang, Adrian; McAllister, Tim A

    2017-01-01

    Fungi utilize a unique mechanism of nutrient acquisition involving extracellular digestion. To understand the biology of these microbes, it is important to identify and characterize the function of proteins that are secreted and involved in this process. Mass spectrometry-based proteomics is a powerful tool to study complex mixtures of proteins and understand how the proteins produced by an organism change in response to different conditions. Many fungi are efficient decomposers of plant cell wall, and anaerobic fungi are well recognized for their ability to digest lignocellulose. Here, we outline a protocol for the enrichment and isolation of proteins secreted by anaerobic fungi after growth on simple (glucose) and complex (straw and alfalfa hay) carbon sources. We provide detailed instruction on generating protein fragments and preparing these for proteomic analysis using reversed phase chromatography and mass spectrometry.

  15. Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models

    PubMed Central

    Manini, Ivana; Caponnetto, Federica; Bartolini, Anna; Ius, Tamara; Mariuzzi, Laura; Di Loreto, Carla; Cesselli, Daniela

    2018-01-01

    The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used. PMID:29300332

  16. Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms for organometallic complexes

    NASA Astrophysics Data System (ADS)

    Our studies of reactions of metal carbonyl cations and anions have shown that metal carbonyl cations can catalyze CO exchange reactions on metal carbonyl anions. This result provides further evidence for a mechanism involving attack of the metal carbonyl anion on a carbon of the metal carbonyl cation in CO(exp 2+) transfer reactions. Reaction of metal carbonyl anions with metal carbonyl halides is a common approach to formation of metal-metal bonds. We have begun to use kinetic data and product analysis to understand the formation of homobimetallic versus heterobimetallic products in such reactions. Initial data indicate a nucleophilic attack, possibly through a ring-slippage mechanism.

  17. Facile conversion of a coordinated nitro group into an aqua group: acid-induced nitro-to-nitro rearrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, W.G.

    1987-11-18

    The nitro complex (NH/sub 3/)/sub 5/CoNO/sub 2//sup 2 +/ reacts rapidly and completely with neat anhydrous trifluoromethanesulfonic acid to generate the aqua species (NH/sub 3/)/sub 5/CoOH/sub 2//sup 3 +/. Oxygen-17 NMR results show that the oxygen in the bound water is derived from the original nitro group. A mechanism involving acid-catalyzed nitrogen-to-oxygen nitrite rearrangement is considered. The relationship between the mechanisms for oxygen scrambling and acid-catalyzed loss of NO/sup +/ from the nitrito linkage isomer is discussed, together with the mechanism for the present reaction. 20 references, 1 figure.

  18. A Comparative Study of Iron Uptake Mechanisms in Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step1[W][OA

    PubMed Central

    Sutak, Robert; Botebol, Hugo; Blaiseau, Pierre-Louis; Léger, Thibaut; Bouget, François-Yves; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2012-01-01

    We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface. PMID:23033141

  19. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress

    PubMed Central

    Farnese, Fernanda S.; Menezes-Silva, Paulo E.; Gusman, Grasielle S.; Oliveira, Juraci A.

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary. PMID:27148300

  20. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress.

    PubMed

    Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  1. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity.

    PubMed

    Moussa, Rayan S; Park, Kyung Chan; Kovacevic, Zaklina; Richardson, Des R

    2018-03-20

    Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Nature and Nurture: the complex genetics of myopia and refractive error

    PubMed Central

    Wojciechowski, Robert

    2010-01-01

    The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761

  3. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes.

    PubMed

    Volcic, Meta; Karl, Sabine; Baumann, Bernd; Salles, Daniela; Daniel, Peter; Fulda, Simone; Wiesmüller, Lisa

    2012-01-01

    NF-κB is involved in immune responses, inflammation, oncogenesis, cell proliferation and apoptosis. Even though NF-κB can be activated by DNA damage via Ataxia telangiectasia-mutated (ATM) signalling, little was known about an involvement in DNA repair. In this work, we dissected distinct DNA double-strand break (DSB) repair mechanisms revealing a stimulatory role of NF-κB in homologous recombination (HR). This effect was independent of chromatin context, cell cycle distribution or cross-talk with p53. It was not mediated by the transcriptional NF-κB targets Bcl2, BAX or Ku70, known for their dual roles in apoptosis and DSB repair. A contribution by Bcl-xL was abrogated when caspases were inhibited. Notably, HR induction by NF-κB required the targets ATM and BRCA2. Additionally, we provide evidence that NF-κB interacts with CtIP-BRCA1 complexes and promotes BRCA1 stabilization, and thereby contributes to HR induction. Immunofluorescence analysis revealed accelerated formation of replication protein A (RPA) and Rad51 foci upon NF-κB activation indicating HR stimulation through DSB resection by the interacting CtIP-BRCA1 complex and Rad51 filament formation. Taken together, these results define multiple NF-κB-dependent mechanisms regulating HR induction, and thereby providing a novel intriguing explanation for both NF-κB-mediated resistance to chemo- and radiotherapies as well as for the sensitization by pharmaceutical intervention of NF-κB activation.

  4. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    PubMed

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  5. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    PubMed Central

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (∼65% vs. ∼35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5′-end of mRNA. PMID:15630022

  6. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism

    PubMed Central

    2014-01-01

    We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)]n (L = Br–, CH3CN, pyridine, PMe3, SCN–, CO, BH4–; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)]n with labile ligands (L = Br–, CH3CN, BH4–) and NH spacers are efficient catalysts for the hydrogenation of both ketones and aldehydes to alcohols under mild conditions, while those containing inert ligands (L = pyridine, PMe3, SCN–, CO) are catalytically inactive. Interestingly, complex [Fe(PNPMe-iPr)(H)(CO)(Br)], featuring NMe spacers, is an efficient catalyst for the chemoselective hydrogenation of aldehydes. The first type of complexes involves deprotonation of the PNP ligand as well as heterolytic dihydrogen cleavage via metal-alkoxide cooperation, but no reversible aromatization/deprotonation of the PNP ligand. In the case of the N-methylated complex the mechanism remains unclear, but obviously does not allow bifunctional activation of dihydrogen. The experimental results complemented by DFT calculations strongly support an insertion of the C=O bond of the carbonyl compound into the Fe–H bond. PMID:27642211

  7. Knowledge Development Generic Framework Concept

    DTIC Science & Technology

    2008-12-18

    requirements. The conceptual model serves as a communication interface among analysts, military staff, and other actors involved [22015] Systems Analysis will...It designates all long- lived basic mechanisms of material and institutional kind, which guarantee the functioning of a complex community . 2.2.3.2...cooperation with users) • Analyze and decide whether it is better to communicate an information object automatically (“document-to-people”) or via human

  8. Biased and unbiased perceptual decision-making on vocal emotions.

    PubMed

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  9. Defense Against Pathogens: Structural Insights into the Mechanism of Chitin Induced Activation of Innate Immunity.

    PubMed

    Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae

    2017-11-24

    Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  11. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans

    PubMed Central

    Tops, Bastiaan B. J.; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C.; Plasterk, Ronald H. A.; Ketting, René F.

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of ∼250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step. PMID:15653635

  12. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    PubMed Central

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  13. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?

    PubMed

    Aznar, Aude; Dellagi, Alia

    2015-06-01

    Microorganisms use siderophores to obtain iron from the environment. In pathogenic interactions, siderophores are involved in iron acquisition from the host and are sometimes necessary for the expression of full virulence. This review summarizes the main data describing the role of these iron scavengers in animal and plant defence systems. To protect themselves against iron theft, mammalian hosts have developed a hypoferremia strategy that includes siderophore-binding molecules called siderocalins. In addition to microbial ferri-siderophore sequestration, siderocalins are involved in triggering immunity. In plants, no similar mechanisms have been described and many fewer data are available, although recent advances have shed light on the role of siderophores in plant-pathogen interactions. Siderophores can trigger immunity in plants in several contexts. The most frequently described situation involving siderophores is induced systemic resistance (ISR) triggered by plant-growth-promoting rhizobacteria. Although ISR responses have been observed after treating roots with certain siderophores, the underlying mechanisms are poorly understood. Immunity can also be triggered by siderophores in leaves. Siderophore perception in plants appears to be different from the well-known perception mechanisms of other microbial compounds, known as microbe-associated molecular patterns. Scavenging iron per se appears to be a novel mechanism of immunity activation, involving complex disturbance of metal homeostasis. Receptor-specific recognition of siderophores has been described in animals, but not in plants. The review closes with an overview of the possible mechanisms of defence activation, via iron scavenging by siderophores or specific siderophore recognition by the plant host. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis.

    PubMed

    Choi, Eunyoung; Han, Cecil; Park, Inju; Lee, Boyeon; Jin, Sora; Choi, Heejin; Kim, Do Han; Park, Zee Yong; Eddy, Edward M; Cho, Chunghee

    2008-12-12

    To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.

  15. Recognition mechanism of p63 by the E3 ligase Itch

    PubMed Central

    Bellomaria, Alessia; Barbato, Gaetano; Melino, Gerry; Paci, Maurizio; Melino, Sonia

    2012-01-01

    The HECT-containing E3 ubiquitin ligase Itch mediates the degradation of several proteins, including p63 and p73, involved in cell specification and fate. Itch contains four WW domains, which are essential for recognition on the target substrate, which contains a short proline-rich sequence. Several signaling complexes containing these domains have been associated with human diseases such as muscular dystrophy, Alzheimer’s or Huntington’s diseases. To gain further insight into the structural determinants of the Itch-WW2 domain, we investigated its interaction with p63. We assigned, by 3D heteronuclear NMR experiments, the backbone and side chains of the uniformly ¹³C-¹⁵N-labeled Itch-WW2. In vitro interaction of Itch-WW2 domain with p63 was studied using its interactive p63 peptide, pep63. Pep63 is an 18-mer peptide corresponding to the region from 534–551 residue of p63, encompassing the PPxY motif that interacts with the Itch-WW domains, and we identified the residues involved in this molecular recognition. Moreover, here, a strategy of stabilization of the conformation of the PPxY peptide has been adopted, increasing the WW-ligand binding. We demonstrated that cyclization of pep63 leads to an increase of both the biological stability of the peptide and of the WW-ligand complex. Stable metal-binding complexes of the pep63 have been also obtained, and localized oxidative damage on Itch-WW2 domain has been induced, demonstrating the possibility of use of metal-pep63 complexes as models for the design of metal drugs to inhibit the Itch-WW-p63 recognition in vivo. Thus, our data suggest a novel strategy to study and inhibit the recognition mechanism of Itch E3-ligase. PMID:22935697

  16. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.

    PubMed

    Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G

    2015-10-01

    The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.

  17. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.

    2015-09-15

    Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope.more » Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays. - Highlights: • We present HPV16-Fab complexes from neutralizing mAbs: H16.1A, H16.14J, and H263.A2. • The structure-function analysis revealed predominantly monovalent binding of each mAb. • Capsid–Fab interactions involved multiple loops from symmetry related L1 proteins. • Besides the known FG and HI loops, epitope mapping also identified DE, EF, and BC loops. • Neutralizing assays complement the structures to show multiple neutralization mechanisms.« less

  18. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  19. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008

  20. Kinetics of the iodine- and bromine-mediated transport of halide ions: demonstration of an interfacial complexation mechanism.

    PubMed Central

    Klotz, K H; Benz, R

    1993-01-01

    Stationary and kinetic experiments were performed on lipid bilayer membranes to study the mechanism of iodine- and bromine-mediated halide transport in detail. The stationary conductance data suggested that four different 1:1 complexes between I2 and Br2 and the halides I- and Br- were responsible for the observed conductance increase by iodine and bromine (I3-, I2Br-, Br2I-, and Br3-). Charge pulse experiments allowed the further elucidation of the transport mechanism. Only two of three exponential voltage relaxations predicted by the Läuger model could be resolved under all experimental conditions. This means that either the heterogeneous complexation reactions kR (association) and kD (dissociation) were too fast to be resolved or that the neutral carriers were always in equilibrium within the membrane. Experiments at different carrier and halide concentrations suggested that the translocation of the neutral carrier is much faster than the other processes involved in carrier-mediated ion transport. The model was modified accordingly. From the charge pulse data at different halide concentrations, the translocation rate constant of the complexed carriers, kAS, the dissociation constant, kD, and the total surface concentration of charged carriers, NAS, could be evaluated from one single charge pulse experiment. The association rate of the complex, kR, could be obtained in some cases from the plot of the stationary conductance data as a function of the halide concentration in the aqueous phase. The translocation rate constant, kAS, of the different complexes is a function of the image force and of the Born charging energy. It increases 5000-fold from Br3- to I3- because of an enlarged ion radius. PMID:8312500

  1. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.

    PubMed

    Wang, Zhihua; Zhang, Xiao-Jing; Ji, Yan-Xiao; Zhang, Peng; Deng, Ke-Qiong; Gong, Jun; Ren, Shuxun; Wang, Xinghua; Chen, Iris; Wang, He; Gao, Chen; Yokota, Tomohiro; Ang, Yen Sin; Li, Shen; Cass, Ashley; Vondriska, Thomas M; Li, Guangping; Deb, Arjun; Srivastava, Deepak; Yang, Huang-Tian; Xiao, Xinshu; Li, Hongliang; Wang, Yibin

    2016-10-01

    Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.

  2. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction.

    PubMed

    Sotomayor, Marcos; Weihofen, Wilhelm A; Gaudet, Rachelle; Corey, David P

    2012-12-06

    Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.

  3. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.

    PubMed Central

    Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R

    1993-01-01

    A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361

  4. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events.

    PubMed

    Feller, Liviu; Khammissa, Razia A G; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  5. On the Free Energy That Drove Primordial Anabolism

    PubMed Central

    Kaufmann, Michael

    2009-01-01

    A key problem in understanding the origin of life is to explain the mechanism(s) that led to the spontaneous assembly of molecular building blocks that ultimately resulted in the appearance of macromolecular structures as they are known in modern biochemistry today. An indispensable thermodynamic prerequisite for such a primordial anabolism is the mechanistic coupling to processes that supplied the free energy required. Here I review different sources of free energy and discuss the potential of each form having been involved in the very first anabolic reactions that were fundamental to increase molecular complexity and thus were essential for life. PMID:19468343

  6. Mechanisms of phosphenes in irradiated patients

    PubMed Central

    Mathis, Thibaud; Vignot, Stephane; Leal, Cecila; Caujolle, Jean-Pierre; Maschi, Celia; Mauget-Faÿsse, Martine; Kodjikian, Laurent; Baillif, Stéphanie; Herault, Joel; Thariat, Juliette

    2017-01-01

    Anomalous visual perceptions have been reported in various diseases of the retina and visual pathways or can be experienced under specific conditions in healthy individuals. Phosphenes are perceptions of light in the absence of ambient light, occurring independently of the physiological and classical photonic stimulation of the retina. They are a frequent symptom in patients irradiated in the region of the central nervous system (CNS), head and neck and the eyes. Phosphenes have historically been attributed to complex physical phenomena such as Cherenkov radiation. While phosphenes are related to Cherenkov radiation under high energy photon/electron irradiation conditions, physical phenomena are unlikely to be responsible for light flashes at energies used for ocular proton therapy. Phosphenes may involve a direct role for ocular photoreceptors and possible interactions between cones and rods. Other mechanisms involving the retinal ganglion cells or ultraweak biophoton emission and rhodopsin bleaching after exposure to free radicals are also likely to be involved. Despite their frequency as shown in our preliminary observations, phosphenes have been underreported probably because their mechanism and impact are poorly understood. Recently, phosphenes have been used to restore the vision and whether they might predict vision loss after therapeutic irradiation is a current field of investigation. We have reviewed and also investigated here the mechanisms related to the occurrence of phosphenes in irradiated patients and especially in patients irradiated by proton therapy for ocular tumors. PMID:28969095

  7. Ruthenium(II) polypyridyl complexes as dual inhibitors of telomerase and topoisomerase.

    PubMed

    Liao, Guoliang; Chen, Xiang; Wu, Jingheng; Qian, Chen; Wang, Yi; Ji, Liangnian; Chao, Hui

    2015-09-14

    One novel ruthenium polypyridyl complex, [Ru(bpy)2(icip)](2+) (1), and two previously reported ruthenium polypyridyl complexes, [Ru(bpy)2(pdppz)](2+) ()2 and [Ru(bpy)2(tactp)](2+) (3) (bpy = 2,2'-bipyridine, icip = 2-(indeno[2,1-b]chromen-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, pdppz = phenanthro[4,5-abc]dipyrido[3,2-h:2',3'-j]phenazine, tactp = 4,5,9,18-tetraazachryseno[9,10-b]-triphenylene), have been synthesised. As expected, these complexes show inhibition towards telomerase by inducing and stabilising the G-quadruplex structure, and behave as topoisomerase I/II poisons at the same time. Additionally, the acute and chronic cytotoxicities of the complexes are considered. Furthermore, cell apoptosis experiments are used to briefly study the mechanism. Because studies involving multi-target inhibition towards topoisomerase and telomerase of Ru(II) complexes have not been reported previously, the present research may help to develop innovative chemical strategies and therapies.

  8. Hydrogen exchange differences between chemoreceptor signaling complexes localize to functionally important subdomains.

    PubMed

    Koshy, Seena S; Li, Xuni; Eyles, Stephen J; Weis, Robert M; Thompson, Lynmarie K

    2014-12-16

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes.

  9. Hydrogen Exchange Differences between Chemoreceptor Signaling Complexes Localize to Functionally Important Subdomains

    PubMed Central

    2015-01-01

    The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045

  10. Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera's key metabolite withaferin A.

    PubMed

    Grover, Abhinav; Shandilya, Ashutosh; Punetha, Ankita; Bisaria, Virendra S; Sundar, Durai

    2010-12-02

    Nuclear Factor kappa B (NF-κB) is a transcription factor involved in the regulation of cell signaling responses and is a key regulator of cellular processes involved in the immune response, differentiation, cell proliferation, and apoptosis. The constitutive activation of NF-κB contributes to multiple cellular outcomes and pathophysiological conditions such as rheumatoid arthritis, asthma, inflammatory bowel disease, AIDS and cancer. Thus there lies a huge therapeutic potential beneath inhibition of NF-κB signalling pathway for reducing these chronic ailments. Withania somnifera, a reputed herb in ayurvedic medicine, comprises a large number of steroidal lactones known as withanolides which show plethora of pharmacological activities like anti- inflammatory, antitumor, antibacterial, antioxidant, anticonvulsive, and immunosuppressive. Though a few studies have been reported depicting the effect of WA (withaferin A) on suppression of NF-κB activation, the mechanism behind this is still eluding the researchers. The study conducted here is an attempt to explore NF-κB signalling pathway modulating capability of Withania somnifera's major constituent WA and to elucidate its possible mode of action using molecular docking and molecular dynamics simulations studies. Formation of active IKK (IκB kinase) complex comprising NEMO (NF-κB Essential Modulator) and IKKβ subunits is one of the essential steps for NF-κB signalling pathway, non-assembly of which can lead to prevention of the above mentioned vulnerable disorders. As observed from our semi-flexible docking analysis, WA forms strong intermolecular interactions with the NEMO chains thus building steric as well as thermodynamic barriers to the incoming IKKβ subunits, which in turn pave way to naive complex formation capability of NEMO with IKKβ. Docking of WA into active NEMO/IKKβ complex using flexible docking in which key residues of the complex were kept flexible also suggest the disruption of the active complex. Thus the molecular docking analysis of WA into NEMO and active NEMO/IKKβ complex conducted in this study provides significant evidence in support of the proposed mechanism of NF-κB activation suppression by inhibition or disruption of active NEMO/IKKβ complex formation being accounted by non-assembly of the catalytically active NEMO/IKKβ complex. Results from the molecular dynamics simulations in water show that the trajectories of the native protein and the protein complexed with WA are stable over a considerably long time period of 2.6 ns. NF-κB is one of the most attractive topics in current biological, biochemical, and pharmacological research, and in the recent years the number of studies focusing on its inhibition/regulation has increased manifolds. Small ligands (both natural and synthetic) are gaining particular attention in this context. Our computational analysis provided a rationalization of the ability of naturally occurring withaferin A to alter the NF-κB signalling pathway along with its proposed mode of inhibition of the pathway. The absence of active IKK multisubunit complex would prevent degradation of IκB proteins, as the IκB proteins would not get phosphorylated by IKK. This would ultimately lead to non-release of NF-κB and its further translocation to the nucleus thus arresting its nefarious acts. Conclusively our results strongly suggest that withaferin A is a potent anticancer agent as ascertained by its potent NF-κB modulating capability. Moreover the present MD simulations made clear the dynamic structural stability of NEMO/IKKβ in complex with the drug WA, together with the inhibitory mechanism.

  11. Mixed mechanisms of multi-site phosphorylation

    PubMed Central

    Suwanmajo, Thapanar; Krishnan, J.

    2015-01-01

    Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose–response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. PMID:25972433

  12. The TFOS International Workshop on Contact Lens Discomfort: Report of the Subcommittee on Neurobiology

    PubMed Central

    Stapleton, Fiona; Marfurt, Carl; Golebiowski, Blanka; Rosenblatt, Mark; Bereiter, David; Begley, Carolyn; Dartt, Darlene; Gallar, Juana; Belmonte, Carlos; Hamrah, Pedram; Willcox, Mark

    2013-01-01

    This report characterizes the neurobiology of the ocular surface and highlights relevant mechanisms that may underpin contact lens–related discomfort. While there is limited evidence for the mechanisms involved in contact lens–related discomfort, neurobiological mechanisms in dry eye disease, the inflammatory pathway, the effect of hyperosmolarity on ocular surface nociceptors, and subsequent sensory processing of ocular pain and discomfort have been at least partly elucidated and are presented herein to provide insight in this new arena. The stimulus to the ocular surface from a contact lens is likely to be complex and multifactorial, including components of osmolarity, solution effects, desiccation, thermal effects, inflammation, friction, and mechanical stimulation. Sensory input will arise from stimulation of the lid margin, palpebral and bulbar conjunctiva, and the cornea. PMID:24058137

  13. MD simulations of papillomavirus DNA-E2 protein complexes hints at a protein structural code for DNA deformation.

    PubMed

    Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A

    2008-08-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.

  14. Complex organic molecules toward low-mass and high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  15. Presentation of lipid antigens to T cells.

    PubMed

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  16. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    PubMed

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  17. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  18. Precision time distribution within a deep space communications complex

    NASA Technical Reports Server (NTRS)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  19. Spectroscopic investigation on the mechanism of formation of molecular complexes of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

    NASA Astrophysics Data System (ADS)

    Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.

    2012-06-01

    UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.

  20. DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.

    PubMed

    Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.

  1. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  2. Elucidation of the binding mechanism of renin using a wide array of computational techniques and biological assays.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Avramopoulos, Aggelos; Reis, Heribert; Czyżnikowska, Żaneta; Zerva, Sofia; Vergadou, Niki; Peristeras, Loukas D; Papavasileiou, Konstantinos D; Alexis, Michael N; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2015-11-01

    We investigate the binding mechanism in renin complexes, involving three drugs (remikiren, zankiren and enalkiren) and one lead compound, which was selected after screening the ZINC database. For this purpose, we used ab initio methods (the effective fragment potential, the variational perturbation theory, the energy decomposition analysis, the atoms-in-molecules), docking, molecular dynamics, and the MM-PBSA method. A biological assay for the lead compound has been performed to validate the theoretical findings. Importantly, binding free energy calculations for the three drug complexes are within 3 kcal/mol of the experimental values, thus further justifying our computational protocol, which has been validated through previous studies on 11 drug-protein systems. The main elements of the discovered mechanism are: (i) minor changes are induced to renin upon drug binding, (ii) the three drugs form an extensive network of hydrogen bonds with renin, whilst the lead compound presented diminished interactions, (iii) ligand binding in all complexes is driven by favorable van der Waals interactions and the nonpolar contribution to solvation, while the lead compound is associated with diminished van der Waals interactions compared to the drug-bound forms of renin, and (iv) the environment (H2O/Na(+)) has a small effect on the renin-remikiren interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis.

    PubMed

    Kobayashi, Masatoshi; Ohsugi, Mitsuru; Sasako, Takayoshi; Awazawa, Motoharu; Umehara, Toshihiro; Iwane, Aya; Kobayashi, Naoki; Okazaki, Yukiko; Kubota, Naoto; Suzuki, Ryo; Waki, Hironori; Horiuchi, Keiko; Hamakubo, Takao; Kodama, Tatsuhiko; Aoe, Seiichiro; Tobe, Kazuyuki; Kadowaki, Takashi; Ueki, Kohjiro

    2018-06-04

    Adipocyte differentiation is regulated by various mechanisms, of which the mitotic clonal expansion (MCE) is a key step. Although this process is known to be regulated by the cell cycle modulators, the precise mechanism remains unclear. N 6 -methyladenosine (m 6 A) post-transcriptional RNA modification, whose methylation and demethylation is performed by respective enzymal molecules, has recently been suggested to be involved in the regulation of adipogenesis. Here, we show that an RNA N 6 -adenosine methyltransferase complex consisting of Wilms' tumor 1-associating protein (WTAP), methyltransferase like (METTL) 3 and METTL14 positively control adipogenesis, by promoting cell cycle transition in MCE during adipogenesis. WTAP, coupled with METTL3 and METTL14, is increased and distributed in nucleus by the induction of adipogenesis dependently on RNA in vitro Knockdown of each of these three proteins leads to cell cycle arrest and impaired adipogenesis associated with suppression of Cyclin A2 upregulation during MCE, whose knockdown also impairs adipogenesis. Consistently, Wtap heterozygous knockout mice are protected from diet-induced obesity with smaller size and number of adipocytes, leading to improved insulin sensitivity. These data provide a mechanism for adipogenesis through WTAP-METTL3-METTL14 complex and a potential strategy for treatment of obesity and associated disorders. Copyright © 2018 Kobayashi et al.

  4. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    PubMed Central

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z.; Whidden, Melissa A.; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K. W.

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved. PMID:24312074

  6. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury.

    PubMed

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K W

    2013-11-21

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.

  7. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    DOE PAGES

    Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; ...

    2014-12-01

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP + from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm 3 crystal with the quasi-Laue technique, andmore » the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pK a of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less

  8. Heterogeneity of reward mechanisms.

    PubMed

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  9. Cinnamic Acid Is Partially Involved in Propolis Immunomodulatory Action on Human Monocytes

    PubMed Central

    Conti, Bruno José; Búfalo, Michelle Cristiane; Golim, Marjorie de Assis; Sforcin, José Maurício

    2013-01-01

    Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci). The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs), HLA-DR, and CD80. Cytokine production (TNF-α and IL-10) and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities. PMID:23762102

  10. Selective turnover of p62/A170/SQSTM1 by autophagy.

    PubMed

    Ichimura, Yoshinobu; Kominami, Eiki; Tanaka, Keiji; Komatsu, Masaaki

    2008-11-01

    Loss of autophagy causes liver injury, cardiomyopathy and neurodegeneration, associated with the formation of ubiquitin-positive inclusion bodies. However, the pathogenic mechanism and molecular machinery involved in inclusion formation are not fully understood. We recently identified a ubiquitin-binding protein, p62/A170/SQSTM1, as a molecule involved in inclusion formation. p62 interacts with LC3 which regulates autophagosome formation, through an 11 amino acid sequence rich in acidic and hydrophobic residues, named the LC3-recognition sequence (LRS), and the LC3-p62 complex is degraded by autophagy. Furthermore, structural analysis reveals an interaction of Trp-340 and Leu-343 of p62 with different hydrophobic pockets in the ubiquitin-fold of LC3. p62 mutants, defective in binding the LRS, escape efficient turnover by autophagy, forming ubiquitin- and p62-positive inclusions. Importantly, such ubiquitin- and p62-positive inclusions are identified in various human diseases, implying the involvement of autophagy in their pathogenic mechanisms. Our reports identify an important role for autophagy in the selective turnover of p62, and demonstrate that in addition to the essential role of LC3 in autophagosome formation, LC3 is also involved in sorting autophagy-specific substrate(s).

  11. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  12. The role of the parafascicular complex (CM-Pf) of the human thalamus in the neuronal mechanisms of selective attention.

    PubMed

    Raeva, S N

    2006-03-01

    The reactions of 93 neurons in the parafascicular complex (CM-Pf) of the human thalamus were studied by microelectrode recording during stereotaxic neurosurgical operations in patients with spastic torticollis. High reactivity was demonstrated for two previously classified types of neurons with identical irregular (type A) and bursting Ca2+ -dependent (type B) activities in response to presentation of relevant verbal stimuli evoking selective attention in humans. Concordant changes in the network activity of A and B neurons were observed, in the form of linked activatory-inhibitory patterns of responses and the appearance, at the moment of presentation of an imperative morpheme of the command stimulus, of rapidly occurring intercellular interactions consisting of local synchronization with simultaneously developing rhythmic oscillatory (3-4 Hz) activity. Data are presented on the existence of a direct connection between these neuronal rearrangements and activation of selective attention, providing evidence for the involvement of the thalamic parafascicular complex (CM-Pf) in the mechanisms of selective attention and processing of relevant verbal information during the preparative period of voluntary actions.

  13. Probing the Intermediacy of Covalent RNA Enzyme Complexes in RNA Modification Enzymes

    PubMed Central

    Chervin, Stephanie M.; Kittendorf, Jeffrey D.; Garcia, George A.

    2009-01-01

    Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT). PMID:17673081

  14. [Medical certification in workers involved in logging and wood-processing].

    PubMed

    Romankow, Jacek

    2007-01-01

    Activities involved in forestry and woodworking industry are associated with workers being exposed to numerous environmental and technology-related factors that are detrimental to their health. Such hazards include working in changeable climatic conditions, in the vicinity of heavy equipment, exposure to noise, chainsaw vibrations, enforced body positioning, hard physical work, the effect of exhaust gases, potential effects of biological factors, including epizootic diseases. Wood processing involves performing mechanical activities employing tools and machines, as well as processes utilizing various chemical substances. Forestry and woodworking industry workers may deal both with timber and with wood products. In medical certification, the following issues are of significance: work in the vicinity of rotational elements, noise, effects of chemicals or biological factors, including carcinogenic substances. For this reason, the procedures involved in medical examinations of such workers are complex.

  15. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation

    PubMed Central

    Ke, Zhigang; Huang, Qing

    2016-01-01

    Although blood coagulation facilitated by non-thermal plasma has been reported several years ago, the insight to the involved mechanisms is still rather limited. In this work, we report our discovery of a new mechanism for the haem-promoted blood-coagulation caused by non-thermal plasma treatment. The reason for the haem role is due to that its oxidized form, namely, hematin, can promote the dityrosine cross-linking of fibrinogen, the most important coagulation protein, to form a membrane-like layer on the surface of the treated blood with plasma exposure. Both haem and non-thermal-plasma generated hydrogen peroxide are requisite for the cross-linking process. We confirmed that fibrinogen can coordinate with the haem iron to form a protein-haem complex which shows pseudo-peroxidase activity, and in the presence of hydrogen peroxide, the complex can induce the dityrosine formation between fibrinogen molecules, leading to the fibrin network necessary for the blood coagulation. Understanding of such an underlying mechanism can be useful to guide more efficient application of non-thermal plasma in the management of hemostasis, thrombosis and etc. PMID:27229173

  16. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of “Push” vs. “Pull” Mechanisms and Comparison between O2 and Benzoquinone

    PubMed Central

    Diao, Tianning

    2014-01-01

    Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646

  17. Functional macrophages and gastrointestinal disorders.

    PubMed

    Liu, Yue-Hong; Ding, Yue; Gao, Chen-Chen; Li, Li-Sheng; Wang, Yue-Xiu; Xu, Jing-Dong

    2018-03-21

    Macrophages (MΦ) differentiate from blood monocytes and participate in innate and adaptive immunity. Because of their abilities to recognize pathogens and activate bactericidal activities, MΦ are always discovered at the site of immune defense. MΦ in the intestine are unique, such that in the healthy intestine, they possess complex mechanisms to protect the gut from inflammation. In these complex mechanisms, they produce anti-inflammatory cytokines, such as interleukin-10 and transforming growth factor-β, and inhibit the inflammatory pathways mediated by Toll-like receptors. It has been demonstrated that resident MΦ play a crucial role in maintaining intestinal homeostasis, and they can be recognized by their unique markers. Nonetheless, in the inflamed intestine, the function of MΦ will change because of environmental variation, which may be one of the mechanisms of inflammatory bowel disease (IBD). We provide further explanation about these mechanisms in our review. In addition, we review recent discoveries that MΦ may be involved in the development of gastrointestinal tumors. We will highlight the possible therapeutic targets for the management of IBD and gastrointestinal tumors, and we also discuss why more details are needed to fully understand all other effects of intestinal MΦ.

  18. A Trapped Covalent Intermediate of a Glycoside Hydrolase on the Pathway to Transglycosylation. Insights from Experiments and Quantum Mechanics/Molecular Mechanics Simulations.

    PubMed

    Raich, Lluís; Borodkin, Vladimir; Fang, Wenxia; Castro-López, Jorge; van Aalten, Daan M F; Hurtado-Guerrero, Ramón; Rovira, Carme

    2016-03-16

    The conversion of glycoside hydrolases (GHs) into transglycosylases (TGs), i.e., from enzymes that hydrolyze carbohydrates to enzymes that synthesize them, represents a promising solution for the large-scale synthesis of complex carbohydrates for biotechnological purposes. However, the lack of knowledge about the molecular details of transglycosylation hampers the rational design of TGs. Here we present the first crystallographic structure of a natural glycosyl-enzyme intermediate (GEI) of Saccharomyces cerevisiae Gas2 in complex with an acceptor substrate and demonstrate, by means of quantum mechanics/molecular mechanics metadynamics simulations, that it is tuned for transglycosylation (ΔG(⧧) = 12 kcal/mol). The 2-OH···nucleophile interaction is found to be essential for catalysis: its removal raises the free energy barrier significantly (11 and 16 kcal/mol for glycosylation and transglycosylation, respectively) and alters the conformational itinerary of the substrate (from (4)C1 → [(4)E](⧧) → (1,4)B/(4)E to (4)C1 → [(4)H3](⧧) → (4)C1). Our results suggest that changes in the interactions involving the 2-position could have an impact on the transglycosylation activity of several GHs.

  19. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases

    PubMed Central

    Cui, Ziyou; Dewey, Shannamar; Gomes, Aldrin V

    2011-01-01

    Cardioproteomics (Cardiovascular proteomics) is fast becoming an indispensible technique in deciphering changes in signaling pathways that occur in cardiovascular diseases (CVDs). The quality and availability of the instruments and bioinformatics software used for cardioproteomics continues to improve, and these techniques are now available to most cardiovascular researchers either directly or indirectly via university core centers. The heart and aorta are specialized tissues which present unique challenges to investigate. Currently, the diverse range of proteomic techniques available for cardiovascular research makes the choice of the best method or best combination of methods for the disease parameter(s) being investigated as important as the equipment used. This review focuses on proteomic techniques and their applications which have advanced our understanding of the signaling mechanisms involved in CVDs at the levels of protein complex/protein-protein interaction, post-translational modifications and signaling induced protein changes. PMID:22254205

  20. Prenatal programing: at the intersection of maternal stress and immune activation.

    PubMed

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Prenatal programing: At the intersection of maternal stress and immune activation

    PubMed Central

    Howerton, Christopher L.; Bale, Tracy L.

    2013-01-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. PMID:22465455

  2. Clinical and Biochemical Manifestations of Depression: Relation to the Neurobiology of Stress

    PubMed Central

    Gold, Phillip W.; Machado-Vieira, Rodrigo; Pavlatou, Maria G.

    2015-01-01

    Major depressive disorder (MDD) is a chronic, recurrent, and severe psychiatric disorder with high mortality and medical comorbidities. Stress-related pathways have been directly involved in the pathophysiology and treatment of MDD. The present paper provides an overview on the stress system as a model to understand key pathophysiological paradigms in MDD. These mechanisms involve behavioral, cognitive, and systemic manifestations and are also associated with the mechanisms of action of effective antidepressants. Aspects such as depression subtypes, inflammation, insulin resistance, oxidative stress, and prothrombotic states in critical brain circuits and periphery are critically appraised. Finally, new strategies for approaching treatment-resistant major depression and potential adverse effects associated with this complex and intricate network are highlighted. The authors used PubMed as the database for this review. Each author extracted relevant data and assessed the methodological quality of each study. PMID:25878903

  3. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  4. Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System.

    PubMed

    Antoine, Steve; Vaidya, Gaurang; Imam, Haider; Villarreal, Daniel

    2017-01-01

    The syndrome of heart failure involves complex pathophysiologic mechanisms and is associated with extremely high-morbidity, mortality and economic costs. This growing global epidemic has diverse etiologies and is fundamentally characterized by dyshomeostasis between heart and kidneys, leading to development and progression of the cardiorenal syndrome. Excessive and sustained sympathoexcitation has emerged as a single prominent factor involved in the structural and functional dysfunction of multiple organ systems during this disease. Studies in experimental models of heart failure indicate that ablation of the renal nerves may help restore renal sodium and water equilibrium as well as the attenuation of adverse cardiac remodeling. With the recent development of minimally invasive endovascular renal denervation in humans, it is anticipated that this technology would become a novel and important paradigm shift in the management of heart failure. Copyright © 2017. Published by Elsevier Inc.

  5. Intravenous Immunoglobulin in the Management of Lupus Nephritis

    PubMed Central

    Wenderfer, Scott E.; Thacker, Trisha

    2012-01-01

    The occurrence of nephritis in patients with systemic lupus erythematosus is associated with increased morbidity and mortality. The pathogenesis of lupus nephritis is complex, involving innate and adaptive cellular and humoral immune responses. Autoantibodies in particular have been shown to be critical in the initiation and progression of renal injury, via interactions with both Fc-receptors and complement. One approach in the management of patients with lupus nephritis has been the use of intravenous immunoglobulin. This therapy has shown benefit in the setting of many forms of autoantibody-mediated injury; however, the mechanisms of efficacy are not fully understood. In this paper, the data supporting the use of immunoglobulin therapy in lupus nephritis will be evaluated. In addition, the potential mechanisms of action will be discussed with respect to the known involvement of complement and Fc-receptors in the kidney parenchyma. Results are provocative and warrant additional clinical trials. PMID:23056926

  6. Behavioural system identification of visual flight speed control in Drosophila melanogaster

    PubMed Central

    Rohrseitz, Nicola; Fry, Steven N.

    2011-01-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744

  7. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    PubMed

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-06

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  8. New modulated design and synthesis of quercetin-Cu(II)/Zn(II)-Sn2(IV) scaffold as anticancer agents: in vitro DNA binding profile, DNA cleavage pathway and Topo-I activity.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2013-07-21

    New molecular topologies quercetin-Cu(II)-Sn2(IV) and Zn(II)-Sn2(IV)1 and 2 were designed and synthesized to act as potential cancer chemotherapeutic agents. Their interaction with CT DNA by UV-vis and fluorescence spectroscopy was evaluated revealing an electrostatic mode of binding. Quercetin complexes are capable of promoting DNA cleavage involving both single and double strand breaks. Complex 1 cleaved pBR322 DNA via an oxidative mechanism while 2 followed a hydrolytic pathway, accessible to the minor groove of the DNA double helix in accordance with molecular docking studies with the DNA duplex of sequence d(CGCGAATTCGCG)2 dodecamer demonstrating that the complex was stabilized by additional electrostatic and hydrogen bonding interactions with the DNA. ROS such as OH˙, H2O2 and O2˙(-) are the major metabolites responsible for chronic diseases such as cancer, respiratory disorders, HIV, and diabetes etc., therefore eliminating ROS by molecular scaffolds involving SOD enzymatic activity has emerged as a potential way to develop a novel class of drugs. Therefore, in vitro superoxide dismutase activity of redox active complex 1 was evaluated by using a xanthine/xanthine oxidase-NBT assay which showed an IC50 value of 2.26 μM. Moreover, the cytotoxicity of both the complexes were screened on a panel of human carcinoma cell lines (GI50 values <8.7 μM) which revealed that 1 has a better prospect of acting as a cancer chemotherapeutic agent, and to elucidate the mechanism of tumor inhibition, Topo-I enzymatic activity was carried out. Furthermore, molecular modeling studies were carried out to understand molecular features important for drug-enzyme interactions which offer new insights into the experimental model observations.

  9. Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes

    PubMed Central

    Alexanian, Erik J.; Hartwig, John F.

    2010-01-01

    A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for decomposition of the two classes of complexes and an effect of stereochemistry on the selectivity for β-hydrogen elimination are possible origins of the observed phenomena. PMID:18954048

  10. Inhibition of Calpains Protects Mn-Induced Neurotransmitter release disorders in Synaptosomes from Mice: Involvement of SNARE Complex and Synaptic Vesicle Fusion.

    PubMed

    Wang, Can; Xu, Bin; Ma, Zhuo; Liu, Chang; Deng, Yu; Liu, Wei; Xu, Zhao-Fa

    2017-06-16

    Overexposure to manganese (Mn) could disrupt neurotransmitter release via influencing the formation of SNARE complex, but the underlying mechanisms are still unclear. A previous study demonstrated that SNAP-25 is one of substrate of calpains. The current study investigated whether calpains were involved in Mn-induced disorder of SNARE complex. After mice were treated with Mn for 24 days, Mn deposition increased significantly in basal nuclei in Mn-treated and calpeptin pre-treated groups. Behaviorally, less time spent in the center of the area and decreased average velocity significantly in an open field test after 24 days of Mn exposure. With the increase in MnCl 2 dosage, intracellular Ca 2+ increased significantly, but pretreatment with calpeptin caused a dose-dependent decrease in calpains activity. There were fragments of N-terminal of SNAP-25 protein appearance in Mn-treated groups, but it is decreased with pretreatment of calpeptin. FM1-43-labeled synaptic vesicles also provided evidence that the treatment with Mn resulted in increasing first and then decreasing, which was consistent with Glu release and the 80 kDa protein levels of SNARE complexes. In summary, Mn induced the disorder of neurotransmitter release through influencing the formation of SNARE complex via cleaving SNAP-25 by overactivation of calpains in vivo.

  11. The Yeast Nuclear Pore Complex

    PubMed Central

    Rout, Michael P.; Aitchison, John D.; Suprapto, Adisetyantari; Hjertaas, Kelly; Zhao, Yingming; Chait, Brian T.

    2000-01-01

    An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport. PMID:10684247

  12. Ru(II)/diphenylphosphine/pyridine-6-thiolate complexes induce S-180 cell apoptosis through intrinsic mitochondrial pathway involving inhibition of Bcl-2 and p53/Bax activation.

    PubMed

    Pires, Wanessa Carvalho; Lima, Benedicto Augusto Vieira; de Castro Pereira, Flávia; Lima, Aliny Pereira; Mello-Andrade, Francyelli; Silva, Hugo Delleon; da Silva, Monize Martins; Colina-Vegas, Legna; Ellena, Javier; Batista, Alzir A; de Paul Silveira-Lacerda, Elisângela

    2018-01-01

    The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF 6 [Spy = pyridine-6-thiolate; bipy = 2,2'-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1'-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay. The complex [Ru(Spy)(bipy)(dppb)]PF 6 (3) was selected to study both the cellular and molecular mechanisms underlying its promising anticancer action in S-180 cells. The results obtained from this study indicated that complex (3) induces cell cycle arrest in the G0/G1 phase in S-180 cells associated with a decrease in the number of cells in S phase. After 24 and 48 h of exposure to complex (3), the cell viability decreased when compared to the negative control. Complex (3) does not appear to be involved in the DNA damage, but induced changes in the mitochondrial membrane potential in S-180 cells. Furthermore, there was also an increase in the gene expression of Bax, Caspase 9, and Tp53. According to our results, complex (3) induces cell apoptosis through p53/Bax-dependent intrinsic pathway and suppresses the expression of active antiapoptotic Bcl-2 protein.

  13. Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: evolutionary cues for novel "first-in-class" anti-inflammatory drug candidates: a reviewer's perspective.

    PubMed

    Mathew, Geetha; Unnikrishnan, M K

    2015-10-01

    Inflammation is a complex, metabolically expensive process involving multiple signaling pathways and regulatory mechanisms which have evolved over evolutionary timescale. Addressing multiple targets of inflammation holistically, in moderation, is probably a more evolutionarily viable strategy, as compared to current therapy which addresses drug targets in isolation. Polypharmacology, addressing multiple targets, is commonly used in complex ailments, suggesting the superior safety and efficacy profile of multi-target (MT) drugs. Phenotypic drug discovery, which generated successful MT and first-in-class drugs in the past, is now re-emerging. A multi-pronged approach, which modulates the evolutionarily conserved, robust and pervasive cellular mechanisms of tissue repair, with AMPK at the helm, regulating the complex metabolic/immune/redox pathways underlying inflammation, is perhaps a more viable strategy than addressing single targets in isolation. Molecules that modulate multiple molecular mechanisms of inflammation in moderation (modulating TH cells toward the anti-inflammatory phenotype, activating AMPK, stimulating Nrf2 and inhibiting NFκB) might serve as a model for a novel Darwinian "first-in-class" therapeutic category that holistically addresses immune, redox and metabolic processes associated with inflammatory repair. Such a multimodal biological activity is supported by the fact that several non-calorific pleiotropic natural products with anti-inflammatory action have been incorporated into diet (chiefly guided by the adaptive development of olfacto-gustatory preferences over evolutionary timescales) rendering such molecules, endowed with evolutionarily privileged molecular scaffolds, naturally oriented toward multiple targets.

  14. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    PubMed

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. An ELMO2-RhoG-ILK network modulates microtubule dynamics

    PubMed Central

    Jackson, Bradley C.; Ivanova, Iordanka A.; Dagnino, Lina

    2015-01-01

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin–dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca2+-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. PMID:25995380

  16. Investigation of the Causes of Breast Cancer at the Cellular Level: Isolation of In Vivo Binding Sites of the Human Origin Recognition Complex

    DTIC Science & Technology

    2000-08-01

    The coordination between cellular DNA replication and mitosis is critical to ensure controlled cell proliferation and accurate transmission of the...proteins involved in the initiation of DNA replication . Preliminary results are presented....genetic information as cells divide -two aspects of cellular life tipically lost in cancer. In order to unravel the molecular mechanisms of human DNA

  17. Oxidation of ascorbic acid by a (salen)ruthenium(VI) nitrido complex in aqueous solution.

    PubMed

    Wang, Qian; Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-12-25

    The oxidation of ascorbic acid (H2A) by [Ru(VI)(N)(L)(MeOH)](+) in aqueous acidic solutions has the following stoichiometry: 2[Ru(VI)(N)] + 3H2A → 2[Ru(III)(NH2-HA)](+) + A. Mechanisms involving HAT/N-rebound at low pH (≤2) and nucleophilic attack at the nitride at high pH (≥5) are proposed.

  18. Extending IPsec for Efficient Remote Attestation

    NASA Astrophysics Data System (ADS)

    Sadeghi, Ahmad-Reza; Schulz, Steffen

    When establishing a VPN to connect different sites of a network, the integrity of the involved VPN endpoints is often a major security concern. Based on the Trusted Platform Module (TPM), available in many computing platforms today, remote attestation mechanisms can be used to evaluate the internal state of remote endpoints automatically. However, existing protocols and extensions are either unsuited for use with IPsec or impose considerable additional implementation complexity and protocol overhead.

  19. The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis

    PubMed Central

    Chiarotto, Gabriela Bortolança; Trolese, Maria Chiara; França, Marcondes Cavalcante; Bendotti, Caterina

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles. PMID:29104236

  20. The genetics of Takayasu arteritis.

    PubMed

    Renauer, Paul; Sawalha, Amr H

    Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. An In Vitro TORC1 Kinase Assay That Recapitulates the Gtr-Independent Glutamine-Responsive TORC1 Activation Mechanism on Yeast Vacuoles

    PubMed Central

    Tanigawa, Mirai

    2017-01-01

    ABSTRACT Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism. PMID:28483912

  2. Structural mechanisms of chaperone mediated protein disaggregation

    PubMed Central

    Sousa, Rui

    2014-01-01

    The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism—entropic pulling—may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context. PMID:25988153

  3. Mononuclear ruthenium polypyridine complexes that catalyze water oxidation

    DOE PAGES

    Tong, Lianpeng; Thummel, Randolph P.

    2016-08-05

    Over the past decade, significant advances have been made in the development of molecular water oxidation catalysts (WOCs) in the context of developing a system that would accomplish artificial photosynthesis. Mononuclear ruthenium complexes with polypyridine ligands have drawn considerable attention in this regard, due to their high catalytic activity and relatively simple structure. In this perspective review, we will discuss mononuclear Ru polypyridine WOCs by organizing them into four groups according to their ligand environments. Each group will be discussed with regard to three fundamental questions: first, how does the catalyst initiate O–O bond formation? Second, which step in themore » catalytic cycle is rate-determining? Third, how efficient is the catalyst according to the specific descriptors such as turnover frequency? All discussion is based on the high-valent ruthenium intermediates that are proposed in the catalytic cycle according to experimental observation and theoretical simulation. Two fundamental mechanisms are set forth. An acid–base mechanism that involves the attack of a water molecule on the oxo of a high valent Ru=O species to form the O–O bond. Subsequent steps lead to dissociation of O 2 and rehydration of the metal center. A second mechanism involves the formation of a Ru–O˙ radical species, two of which then couple to form a Ru–O–O–Ru species that can release O 2 afterwards. The acid–base mechanism appears to be more common and mechanistic differences could result from variation directly related to polypyridine ligand structures. Thus, understanding how electronic, steric, and conformational properties can effect catalyst performance will lead to the rational design of more effective WOCs with not only ruthenium but also other transition metals.« less

  4. Mechanism-based risk assessment strategy for drug-induced cholestasis using the transcriptional benchmark dose derived by toxicogenomics.

    PubMed

    Kawamoto, Taisuke; Ito, Yuichi; Morita, Osamu; Honda, Hiroshi

    2017-01-01

    Cholestasis is one of the major causes of drug-induced liver injury (DILI), which can result in withdrawal of approved drugs from the market. Early identification of cholestatic drugs is difficult due to the complex mechanisms involved. In order to develop a strategy for mechanism-based risk assessment of cholestatic drugs, we analyzed gene expression data obtained from the livers of rats that had been orally administered with 12 known cholestatic compounds repeatedly for 28 days at three dose levels. Qualitative analyses were performed using two statistical approaches (hierarchical clustering and principle component analysis), in addition to pathway analysis. The transcriptional benchmark dose (tBMD) and tBMD 95% lower limit (tBMDL) were used for quantitative analyses, which revealed three compound sub-groups that produced different types of differential gene expression; these groups of genes were mainly involved in inflammation, cholesterol biosynthesis, and oxidative stress. Furthermore, the tBMDL values for each test compound were in good agreement with the relevant no observed adverse effect level. These results indicate that our novel strategy for drug safety evaluation using mechanism-based classification and tBMDL would facilitate the application of toxicogenomics for risk assessment of cholestatic DILI.

  5. Dynamics of ligand substitution in labile cobalt complexes resolved by ultrafast T-jump

    PubMed Central

    Ma, Hairong; Wan, Chaozhi; Zewail, Ahmed H.

    2008-01-01

    Ligand exchange of hydrated metal complexes is common in chemical and biological systems. Using the ultrafast T-jump, we examined this process, specifically the transformation of aqua cobalt (II) complexes to their fully halogenated species. The results reveal a stepwise mechanism with time scales varying from hundreds of picoseconds to nanoseconds. The dynamics are significantly faster when the structure is retained but becomes rate-limited when the octahedral-to-tetrahedral structural change bottlenecks the transformation. Evidence is presented, from bimolecular kinetics and energetics (enthalpic and entropic), for a reaction in which the ligand assists the displacement of water molecules, with the retention of the entering ligand in the activated state. The reaction time scale deviates by one to two orders of magnitude from that of ionic diffusion, suggesting the involvement of a collisional barrier between the ion and the much larger complex. PMID:18725628

  6. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design

    PubMed Central

    Soldevila-Barreda, Joan J.; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J.

    2015-01-01

    Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD+ to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells. PMID:25791197

  7. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  8. Short-term bioassay of complex organic mixtures. Part II. Mutagenicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epler, J.L.; Clark, B.R.; Ho, C.

    1978-01-01

    The feasibility of using short-term mutagenicity assays to predict the potential biohazard of various crude and complex test materials has been examined in a coupled chemical and biological approach. The principal focus of the research has involved the preliminary chemical characterizatiion and preparation for bioassay, followed by testing in the Salmonella histidine reversion assay system. The mutagenicity tests are intended to act as predictors of profound long-range health effects such as mutagenesis and/or carcinogenesis; act as a mechanism to rapidly isolate and identify a hazardous agent in a complex mixture; and function as a measure of biological activity correlating baselinemore » data with changes in process conditions. Since complex mixtures can be fractionated and approached in these short-term assays, information reflecting on the actual compounds responsible for the biological effect may be accumulated.« less

  9. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-07

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.

  10. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate.

    PubMed

    Torrezan-Nitao, Elis; Boni, Raianna; Marques-Santos, Luis Fernando

    2016-10-01

    Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility. © 2016 International Federation for Cell Biology.

  11. Mechanisms and strategies of plant defense against Botrytis cinerea.

    PubMed

    AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son

    2017-03-01

    Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.

  12. Type 4 cardiorenal syndrome.

    PubMed

    Pinheiro da Silva, Ana Luísa; Vaz da Silva, Manuel Joaquim

    2016-11-01

    The Acute Dialysis Quality Initiative consensus conference proposed a classification of cardiorenal syndrome (CRS), aiming for a better delineation of each subtype. Although the exact pathophysiology of type 4 CRS is not completely understood, the mechanisms involved are probably multifactorial. There is growing evidence that oxidative stress is a major connector in the development and progression of type 4 CRS. Giving its complexity, poor prognosis and increasing incidence, type 4 CRS is becoming a significant public health problem. Patients with chronic kidney disease are particularly predisposed to cardiac dysfunction, due to the high prevalence of traditional cardiovascular risk factors in this population, but the contribution of risk factors specific to chronic kidney disease should also be taken into account. Much remains to be elucidated about type 4 CRS: despite progress over the last decade, there are still significant questions regarding its pathophysiology and there is as yet no specific therapy. A better understanding of the mechanisms involved may provide potential targets for intervention. The present review will provide a brief description of the definition, epidemiology, diagnosis, prognosis, biomarkers and management strategies of type 4 CRS, and the pathophysiological mechanisms and risk factors presumably involved in its development will be particularly highlighted. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Mechanisms involved in the p62-73 idiopeptide-modulated delay of lupus nephritis in SNF(1) mice.

    PubMed

    Nyland, J F; Stoll, M L; Jiang, F; Feng, F; Gavalchin, J

    2012-12-01

    The F(1) progeny of the (SWR × NZB) cross develop a lupus-like disease with high serum titers of autoantibodies, and increased frequency and severity of immune complex-mediated glomerulonephritis in females. In previous work, we found that an idiotypic peptide corresponding to aa62-73 (p62-73) of the heavy chain variable region of autoantibody 540 (Id(LN)F(1)) induced the proliferation of p62-73 idiotype-reactive T cell clones. Further, monthly immunization of pre-nephritic SNF(1) female mice with p62-73 resulted in decreased nephritis and prolonged life spans. Here we show that this treatment modulated proliferative responses to Id(LN)F(1) antigen, including a reduction in the population of idiopeptide-presenting antigen-presenting cells (APCs), as early as two weeks after immunization (10 weeks of age). Th1-type cytokine production was increased at 12 weeks of age. The incidence and severity of nephritis was reduced by 14 weeks compared to controls. Clinical indicators of nephritis, specifically histological evidence of glomerulonephritis and urine protein levels, were reduced by 20 weeks. Together these data suggest that events involved in the mechanism(s) whereby p62-73 immunization delayed nephritis occurred early after immunization, and involved modulation of APCs, B and T cell populations.

  14. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.

    PubMed

    Swarts, Daan C; van der Oost, John; Jinek, Martin

    2017-04-20

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baconguis, Isabelle; Gouaux, Eric

    2012-07-29

    Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na +-selective currents in chicken ASIC1a at pH7.25 and 5.5, respectively. Crystal structures of ASIC1a–psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH7.25 the pore is approximately 10Å in diameter, whereas at pH5.5 the poremore » is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.« less

  16. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment.

    PubMed

    Kaur, Jasmeet; Katopo, Lita; Hung, Andrew; Ashton, John; Kasapis, Stefan

    2018-06-30

    The molecular nature of interactions between β-casein and p-coumaric acid was studied following exposure of their solutions to ultra-high temperature (UHT at 145 °C). Interactions were characterised by employing multi-spectroscopic methods, molecular docking and quantum mechanics calculations. FTIR demonstrates that the ligand lies in the vicinity of the protein, hence inverting the absorbance spectrum of the complex. This outcome changes the conformational characteristics of the protein leading to a flexible and open structure that accommodates the phenolic microconstituent. Results are supported by UV-vis, CD and fluorescence quenching showing considerable shifts in spectra with complexation. Molecular docking indicates that there is at least a hydrogen bond between p-coumaric acid and the peptide backbone of isoleucine (Ile27). Quantum mechanics calculations further argue that changes in experimental observations are also due to a covalent interaction in the protein-phenolic adduct, which according to the best predicted binding pose involves the side chain of lysine 47. Copyright © 2018. Published by Elsevier Ltd.

  17. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  18. Mechanisms for ductus arteriosus closure.

    PubMed

    Coceani, Flavio; Baragatti, Barbara

    2012-04-01

    Closure of the ductus arteriosus at birth is a complex phenomenon being conditioned by antenatal events and progressing in preprogrammed steps. Functional at first, narrowing of the vessel is determined by 2 overlapping processes--removal of the prostaglandin E(2)-based relaxation sustaining prenatal patency and activation of a constrictor mechanism by the natural rise in blood oxygen tension. Two schemes have been proposed for oxygen action--one involving a cytochrome P450 hemoprotein (sensor)/endothelin-1 (effector) complex and the other a set of voltage-gated K(+) channels. These proposals, however, are not mutually exclusive. Structural closure follows the constriction through a remodeling process initiated antenatally with the development of intimal cushions and completed postnatally by a host of humoral and mechanical stimuli. Research in this area has already provided clinical applications. Nevertheless, management of premature infants with persistent ductus remains troublesome and calls for an alternative approach to the prostaglandin E(2) inhibitors now in use. Studies in progress on the oxygen-sensing system may lead to a definitive solution for this problem. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Unliganded Thyroid Hormone Receptor Regulates Metamorphic Timing via the Recruitment of Histone Deacetylase Complexes

    PubMed Central

    2014-01-01

    Anuran metamorphosis involves a complex series of tissue transformations that change an aquatic tadpole to a terrestrial frog and resembles the postembryonic perinatal period in mammals. Thyroid hormone (TH) plays a causative role in amphibian metamorphosis and its effect is mediated by TH receptors (TRs). Molecular analyses during Xenopus development have shown that unliganded TR recruits histone deacetylase (HDAC)-containing N-CoR/SMRT complexes and causes histone deacetylation at target genes while liganded TR leads to increased histone acetylations and altered histone methylations at target genes. Transgenic studies involving mutant TR-cofactors have shown that corepressor recruitment by unliganded TR is required to ensure proper timing of the onset of metamorphosis while coactivator levels influence the rate of metamorphic progression. In addition, a number of factors that can influence cellular free TH levels appear to contribute the timing of metamorphic transformations of different organs by regulating the levels of unliganded vs. liganded TR in an organ-specific manner. Thus, the recruitment of HDAC-containing corepressor complexes by unliganded TR likely controls both the timing of the initiation of metamorphosis and the temporal regulation of organ-specific transformations. Similar mechanisms likely mediate TR function in mammals as the maturation of many organs during postembryonic development is dependent upon TH and resembles organ metamorphosis in amphibians. PMID:23962846

  20. A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Joonhyuk; Rajagopal, Abbhirami; Xu, Yi -Fan

    Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient P i. P i-limitation induces upregulation of inositol heptakisphosphate (IP 7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate themore » PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Moreover, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of P i starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.« less

Top