Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
2013-04-01
demonstration test . 5.1 CONCEPTUAL EXPERIMENTAL DESIGN In concept, the active biobarrier approach involved the use of alternating extraction and injection...16 4.3 GROUNDWATER CHEMISTRY ....................................................................... 18 5.0 TEST DESIGN...20 5.1 CONCEPTUAL EXPERIMENTAL DESIGN
Parity in Designing, Conducting, and Evaluating Teacher Education Programs: A Conceptual Definition.
ERIC Educational Resources Information Center
Caruso, Joseph J.
Individuals, agencies, and institutions involved in the education and employment of teachers conceptually defined parity relevant to the decision-making process in planning, conducting, and evaluating teacher education programs and translated the conceptual definition into an instrument for describing parity in consortium-centered teacher…
Conceptual design considerations and neutronics of lithium fall laser fusion target chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Thomson, W.B.
1978-05-31
Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.
Azmal, Mohammad; Sari, Ali Akbari; Foroushani, Abbas Rahimi; Ahmadi, Batoul
2016-06-01
Patient and public involvement is engaging patients, providers, community representatives, and the public in healthcare planning and decision-making. The purpose of this study was to develop a model for the application of patient and public involvement in decision making in the Iranian healthcare system. A mixed qualitative-quantitative approach was used to develop a conceptual model. Thirty three key informants were purposely recruited in the qualitative stage, and 420 people (patients and their companions) were included in a protocol study that was implemented in five steps: 1) Identifying antecedents, consequences, and variables associated with the patient and the publics' involvement in healthcare decision making through a comprehensive literature review; 2) Determining the main variables in the context of Iran's health system using conceptual framework analysis; 3) Prioritizing and weighting variables by Shannon entropy; 4) designing and validating a tool for patient and public involvement in healthcare decision making; and 5) Providing a conceptual model of patient and the public involvement in planning and developing healthcare using structural equation modeling. We used various software programs, including SPSS (17), Max QDA (10), EXCEL, and LISREL. Content analysis, Shannon entropy, and descriptive and analytic statistics were used to analyze the data. In this study, seven antecedents variable, five dimensions of involvement, and six consequences were identified. These variables were used to design a valid tool. A logical model was derived that explained the logical relationships between antecedent and consequent variables and the dimensions of patient and public involvement as well. Given the specific context of the political, social, and innovative environments in Iran, it was necessary to design a model that would be compatible with these features. It can improve the quality of care and promote the patient and the public satisfaction with healthcare and legitimate the representative of people they served for. This model can provide a practical guide for managers and policy makers to involve people in making the decisions that influence their lives.
System Engineering Concept Demonstration, Effort Summary. Volume 1
1992-12-01
involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This
ERIC Educational Resources Information Center
Graves, Rick; Barnett, Mardee; Gamble, Yolanda; Kolak, Mike
A case study was used in an instructional design class to facilitate the transfer of conceptual knowledge to concrete concerns and to aid instructional technology graduate students' understanding of the steps involved in designing, analyzing, and implementing an effective needs analysis. The case study involved real events at fictitious company…
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
Assessing the Impact of Educational Differences in HCI Design Practice
ERIC Educational Resources Information Center
Antunes, Pedro; Xiao, Lu; Pino, Jose A.
2014-01-01
Human-computer interaction (HCI) design generally involves collaboration from professionals in different disciplines. Trained in different design education systems, these professionals can have different conceptual understandings about design. Recognizing and identifying these differences are key issues for establishing shared design practices…
Issues and Design Drivers for Deep Space Habitats
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Anderson, Molly
2012-01-01
A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.
Conceptual Questions and Lack of Formal Reasoning: Are They Mutually Exclusive?
ERIC Educational Resources Information Center
Igaz, Csaba; Proksa, Miroslav
2012-01-01
Using specially designed conceptual question pairs, 9th grade students were tested on tasks (presented as experimental situations in pictorial form) that involved controlling the variables' scheme of formal reasoning. The question topics focused on these three chemical contexts: chemistry in everyday life, chemistry without formal concepts, and…
Use of theoretical and conceptual frameworks in qualitative research.
Green, Helen Elise
2014-07-01
To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.
The role of right and left parietal lobes in the conceptual processing of numbers.
Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D; Price, Cathy J
2010-02-01
Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention, and response-selection processes. To dissociate parietal activation that is number-selective from parietal activation related to other stimulus or response-selection processes, we used fMRI to compare numbers and object names during exactly the same conceptual and perceptual tasks while factoring out activations correlating with response times. We found that right parietal activation was higher for conceptual decisions on numbers relative to the same tasks on object names, even when response time effects were fully factored out. In contrast, left parietal activation for numbers was equally involved in conceptual processing of object names. We suggest that left parietal activation for numbers reflects a range of processes, including the retrieval of learnt facts that are also involved in conceptual decisions on object names. In contrast, number selectivity in right parietal cortex reflects processes that are more involved in conceptual decisions on numbers than object names. Our results generate a new set of hypotheses that have implications for the design of future behavioral and functional imaging studies of patients with left and right parietal damage.
ERIC Educational Resources Information Center
Liao, Ya-Wen; She, Hsiao-Ching
2009-01-01
This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…
ERIC Educational Resources Information Center
Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce
2017-01-01
Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…
NASA Technical Reports Server (NTRS)
1974-01-01
The definition and integration tasks involved in the development of design concepts for a carry-on laboratory (COL), to be compatible with Spacelab operations, were divided into the following study areas: (1) identification of research and equipment requirements of the COL; (2) development of a number of conceptual layouts for COL based on the defined research of final conceptual designs; and (4) development of COL planning information for definition of COL/Spacelab interface data, cost data, and program cost schedules, including design drawings of a selected COL to permit fabrication of a functional breadboard.
Walt, Lisa C.; Hunter, Bronwyn; Salina, Doreen; Jason, Leonard
2015-01-01
Researchers have suggested that interpersonal relationships, particularly romantic relationships, may influence women’s attempts at substance abuse recovery and community re-entry after criminal justice system involvement. The present paper evaluates relational and power theories to conceptualize the influence of romantic partner and romantic relationship qualities on pathways in and out of substance abuse and crime. The paper then combines these conceptualizations with a complementary empirical analysis to describe an ongoing research project that longitudinally investigates these relational and power driven factors on women’s substance abuse recovery and community re-entry success among former substance abusing, recently criminally involved women. This paper is designed to encourage the integration of theory and empirical analysis by detailing how each of these concepts are operationalized and measured. Future research and clinical implications are also discussed. PMID:25750487
The Invisible Hand: Designing Curriculum in the Afterward
ERIC Educational Resources Information Center
McKnight, Lucinda; Rousell, David; Charteris, Jennifer; Thomas, Kat; Burke, Geraldine
2017-01-01
This paper diffracts a curriculum design workshop via online collaboration of a collective emerging from that event. Through the workshop, involving theory, conceptual art, writing, photography and curriculum planning, and the subsequent sharing of words and images, we move beyond interrogating designs for future subjects to asking how the…
Experiential Learning Theory as a Guide for Effective Teaching.
ERIC Educational Resources Information Center
Murrell, Patricia H.; Claxton, Charles S.
1987-01-01
David Kolb's experiential learning theory involves a framework useful in designing courses that meet needs of diverse learners. Course designs providing systematic activities in concrete experience, reflective observations, abstract conceptualization, and active experimentation will be sensitive to students' learning styles while challenging…
ERIC Educational Resources Information Center
Ozmen, Haluk
2008-01-01
In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…
ERIC Educational Resources Information Center
Mäkelä, Tiina; Helfenstein, Sacha
2016-01-01
The present study shows how the mixed-methods approach can be used in capturing and organising learning environment (LE) characteristics for the participatory design of psychosocial and physical LEs involving learners. Theoretical constructs were tested and further elaborated on in the analysis of two similar educational design research studies:…
Conceptual change strategies in teaching genetics
NASA Astrophysics Data System (ADS)
Batzli, Laura Elizabeth
The purpose of this study was to evaluate the effectiveness of utilizing conceptual change strategies when teaching high school genetics. The study examined the effects of structuring instruction to provide students with cognitive situations which promote conceptual change, specifically instruction was structured to elicit students' prior knowledge. The goal of the study was that the students would not only be able to solve genetics problems and define basic terminology but they would also have constructed more scientific schemas of the actual processes involved in inheritance. This study is based on the constructivist theory of learning and conceptual change research which suggest that students are actively involved in the process of relating new information to prior knowledge as they construct new knowledge. Two sections of biology II classes received inquiry based instruction and participated in structured cooperative learning groups. However, the unique difference in the treatment group's instruction was the use of structured thought time and the resulting social interaction between the students. The treatment group students' instructional design allowed students to socially construct their cognitive knowledge after elicitation of their prior knowledge. In contrast, the instructional design for the control group students allowed them to socially construct their cognitive knowledge of genetics without the individually structured thought time. The results indicated that the conceptual change strategies with individually structured thought time improved the students' scientific mastery of genetics concepts and they maintained fewer post instructional alternative conceptions. Although all students gained the ability to correctly solve genetics problems, the treatment group students were able to explain the processes involved in terms of meiosis. The treatment group students were also able to better apply their knowledge to novel genetic situations. The implications for genetics instruction from these results were discussed.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
[Design of a conceptual model on the transference of public health research results in Honduras].
Macías-Chapula, César A
2012-01-01
To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.
ERIC Educational Resources Information Center
Ahmad, N. J.; Lah, Y. Che
2012-01-01
The efficacy of a teaching sequence designed for a specific content of learning of electrochemistry is described in this paper. The design of the teaching draws upon theoretical insights into perspectives on learning and empirical studies to improve the teaching of this topic. A case study involving two classes, the experimental and baseline…
NASA Astrophysics Data System (ADS)
Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.
2018-05-01
Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.
Automating Structural Analysis of Spacecraft Vehicles
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2004-01-01
A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
Mokel, Melissa Jennifer; Shellman, Juliette M
2013-01-01
Many instruments in which religious involvement is measured often (a) contain unclear, poorly developed constructs; (b) lack methodological rigor in scale development; and (c) contain language and content culturally incongruent with the religious experiences of diverse ethnic groups. The primary aims of this review were to (a) synthesize the research on instruments designed to measure religious involvement, (b) evaluate the methodological quality of instruments that measure religious involvement, and (c) examine these instruments for conceptual congruency with African American religious involvement. An updated integrative research review method guided the process (Whittemore & Knafl, 2005). 152 articles were reviewed and 23 articles retrieved. Only 3 retained instruments were developed under methodologically rigorous conditions. All 3 instruments were congruent with a conceptual model of African American religious involvement. The Fetzer Multidimensional Measure of Religious Involvement and Spirituality (FMMRS; Idler et al., 2003) was found to have favorable characteristics. Further examination and psychometric testing is warranted to determine its acceptability, readability, and cultural sensitivity in an African American population.
Idea-Based Learning: A Course Design Process to Promote Conceptual Understanding
ERIC Educational Resources Information Center
Hansen , Edmund J.
2011-01-01
Synthesizing the best current thinking about learning, course design, and promoting student achievement, this is a guide to developing college instruction that has clear purpose, is well integrated into the curriculum, and improves student learning in predictable and measurable ways. The process involves developing a transparent course blueprint,…
Tritter, Jonathan Q.
2009-01-01
Abstract Background Changing the relationship between citizens and the state is at the heart of current policy reforms. Across England and the developed world, from Oslo to Ontario, Newcastle to Newquay, giving the public a more direct say in shaping the organization and delivery of healthcare services is central to the current health reform agenda. Realigning public services around those they serve, based on evidence from service user’s experiences, and designed with and by the people rather than simply on their behalf, is challenging the dominance of managerialism, marketization and bureaucratic expertise. Despite this attention there is limited conceptual and theoretical work to underpin policy and practice. Objective This article proposes a conceptual framework for patient and public involvement (PPI) and goes on to explore the different justifications for involvement and the implications of a rights‐based rather than a regulatory approach. These issues are highlighted through exploring the particular evolution of English health policy in relation to PPI on the one hand and patient choice on the other before turning to similar patterns apparent in the United States and more broadly. Conclusions A framework for conceptualizing PPI is presented that differentiates between the different types and aims of involvement and their potential impact. Approaches to involvement are different in those countries that adopt a rights‐based rather than a regulatory approach. I conclude with a discussion of the tension and interaction apparent in the globalization of both involvement and patient choice in both policy and practice. PMID:19754691
Sánchez, Óscar J; Cardona, Carlos A
2012-01-01
In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
DeMott, Diana; Fuqua, Bryan; Wilson, Paul
2013-01-01
Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.
Airbreathing hypersonic vehicle design and analysis methods
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.
1996-01-01
The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.
Conceptual design and analysis of a dynamic scale model of the Space Station Freedom
NASA Technical Reports Server (NTRS)
Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.
1994-01-01
This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.
The Use of Conceptual Change Text toward Students’ Argumentation Skills in Learning Sound
NASA Astrophysics Data System (ADS)
Sari, B. P.; Feranie, S.; Winarno, N.
2017-09-01
This research aim is to investigate the effect of Conceptual Change Text toward students’ argumentation skills in learning sound concept. The participant comes from one of International school in Bandung, Indonesia. The method that used in this research is a quasi-experimental design with one control group (N=21) and one experimental group (N=21) were involves in this research. The learning model that used in both classes is demonstration model which included teacher explanation and examples, the difference only in teaching materials. In experiment group learn with Conceptual Change Text, while control group learn with conventional book which is used in school. The results showed that Conceptual Change Text instruction was better than the conventional book to improved students’ argumentation skills of sound concept. Based on this results showed that Conceptual Change Text instruction can be an alternative tool to improve students’ argumentation skills significantly.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... ensure that each is conceptually sound. Stress tests usually vary in design and complexity, including the... quantitative tests supported by high-quality data, employ a certain amount of expert or business judgment that... generally, enterprise-wide stress testing involves robust scenario design and effective translation of...
Conducting Design Experiments to Support Teachers' Learning: A Reflection from the Field
ERIC Educational Resources Information Center
Cobb, Paul; Zhao, Qing; Dean, Chrystal
2009-01-01
This article focuses on 3 conceptual challenges that we sought to address while conducting a design experiment in which we supported the learning of a group of middle school mathematics teachers. These challenges involved (a) situating teachers' activity in the institutional setting of the schools and district in which they worked, (b) developing…
Designing Professional Learning for Effecting Change: Partnerships for Local and System Networks
ERIC Educational Resources Information Center
Wyatt-Smith, Claire; Bridges, Susan; Hedemann, Maree; Neville, Mary
2008-01-01
This paper presents (i) a purpose-built conceptual model for professional learning and (ii) a leadership framework designed to support a large-scale project involving diverse sites across the state of Queensland, Australia. The project had as its focus teacher-capacity building and ways to improve literacy and numeracy outcomes for students at…
A Holistic Approach for Risk Management During Design
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2006-01-01
In this paper, an approach for the identification, assessment, mitigation and continuous management of risks during the process of designing a space mission is presented. This approach has been developed by observing the risk patterns that occur at the Project Design Center of the Jet Propulsion Laboratory (TeamX) which develops conceptual, concurrent design of Space Missions. TeamX develops an end-to-end conceptual design of a Space Mission in a matter of one or two weeks. As the risk chair in TeamX, the author has had the opportunity to observe the risk patterns that occur during design over the course of many design sessions. This paper introduces an abstraction and generalization of those patterns. Risk is defined as anything that can go wrong, along with its approximate likelihood and consequence. The indicators, and causes, and effects of these risks are cross cutting across the multiple levels of people and processes involved in the design, and the actual design product itself.
IVHS Denver Metro Area, Master Plan, Appendix A, Project Descriptions
DOT National Transportation Integrated Search
1994-02-01
THIS ACTIVITY INVOLVES THE CONCEPTUAL DESIGN, CONSTRUCTION AND IMPLEMENTATION OF A TRAFFIC OPERATIONS CENTER (TOC) FOR THE DENVER AREA. : ESTABLISHING A TOC IS CENTRAL TO THE SUCCESS OF IVHS IN THE DENVER AREA.ITS IMPORTANCE WILL CONTINUE BEYOND T...
Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles
DOT National Transportation Integrated Search
1979-07-01
The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...
Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design
NASA Technical Reports Server (NTRS)
Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. Additionally, when these obstacles are coupled with The Program to Optimize Simulated Trajectories [1] (POST), an industry standard program to optimize ascent trajectories that is difficult to use, it requires expert trajectory analysts to effectively optimize a vehicle's ascent trajectory. As it has been pointed out, the paradigm of trajectory optimization is still a very manual one because using modern computational resources on POST is still a challenging problem. The nuances and difficulties involved in correctly utilizing, and therefore automating, the program presents a large problem. In order to address these issues, the authors will discuss a methodology that has been developed. The methodology is two-fold: first, a set of heuristics will be introduced and discussed that were captured while working with expert analysts to replicate the current state-of-the-art; secondly, leveraging the power of modern computing to evaluate multiple trajectories simultaneously, and therefore, enable the exploration of the trajectory's design space early during the pre-conceptual and conceptual phases of design. When this methodology is coupled with design of experiments in order to train surrogate models, the authors were able to visualize the trajectory design space, enabling parametric optimal ascent trajectory information to be introduced with other pre-conceptual and conceptual design tools. The potential impact of this methodology's success would be a fully automated POST evaluation suite for the purpose of conceptual and preliminary design trade studies. This will enable engineers to characterize the ascent trajectory's sensitivity to design changes in an arbitrary number of dimensions and for finding settings for trajectory specific variables, which result in optimal performance for a "dialed-in" launch vehicle design. The effort described in this paper was developed for the Advanced Concepts Office [2] at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Recksiedler, A. L.; Lutes, C. L.
1972-01-01
The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing.
ERIC Educational Resources Information Center
Xie, Qin; Andrews, Stephen
2013-01-01
This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…
Kacang Cerdik: A Conceptual Design of an Idea Management System
ERIC Educational Resources Information Center
Murah, Mohd Zamri; Abdullah, Zuraidah; Hassan, Rosilah; Bakar, Marini Abu; Mohamed, Ibrahim; Amin, Hazilah Mohd
2013-01-01
An idea management system is where ideas are stored and then can be evaluated and analyzed. It provides the structure and the platform for users to contribute ideas for innovation and creativity. Designing and developing an idea management system is a complex task because it involves many users and lot of ideas. Some of the critical features for…
An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues. The methodology is two-fold: first, capture the heuristics developed by human analysts over their many years of experience; and secondly, leverage the power of modern computing to evaluate multiple trajectories simultaneously and therefore enable the exploration of the trajectory's design space early during the pre- conceptual and conceptual phases of design. This methodology is coupled with design of experiments in order to train surrogate models, which enables trajectory design space visualization and parametric optimal ascent trajectory information to be available when early design decisions are being made.
Tan, Judy Y; Campbell, Chadwick K; Tabrisky, Alyssa P; Siedle-Khan, Robert; Conroy, Amy A
2018-02-20
Among Black men who have sex with men (MSM), HIV incidence is disproportionately high and HIV care engagement is disproportionately low. There may be important opportunities to leverage the primary relationship to improve engagement in HIV care and treatment among Black MSM couples. Using dyadic qualitative analysis of semi-structured, one-on-one interviews, we explored dyadic aspects of HIV care engagement among 14 Black MSM couples in which at least one partner was HIV-positive and identified as a Black cisgender man. Findings showed that men varied in how involved they were in their HIV-positive partner's care and treatment, and in how they reciprocated their partner's involvement. Patterns of dyadic HIV care engagement supported a conceptual model of dyadic coordination that describes Black MSM relationships in terms of two conceptual dimensions of dyadic HIV care engagement, and guides future intervention designs with Black MSM couples.
Conceptual design report for the project to install leak detection in FAST-FT-534/548/549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, K.J.
1992-07-01
This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which ismore » already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.« less
Modeling and Prototyping of Automatic Clutch System for Light Vehicles
NASA Astrophysics Data System (ADS)
Murali, S.; Jothi Prakash, V. M.; Vishal, S.
2017-03-01
Nowadays, recycling or regenerating the waste in to something useful is appreciated all around the globe. It reduces greenhouse gas emissions that contribute to global climate change. This study deals with provision of the automatic clutch mechanism in vehicles to facilitate the smooth changing of gears. This study proposed to use the exhaust gases which are normally expelled out as a waste from the turbocharger to actuate the clutch mechanism in vehicles to facilitate the smooth changing of gears. At present, clutches are operated automatically by using an air compressor in the four wheelers. In this study, a conceptual design is proposed in which the clutch is operated by the exhaust gas from the turbocharger and this will remove the usage of air compressor in the existing system. With this system, usage of air compressor is eliminated and the riders need not to operate the clutch manually. This work involved in development, analysation and validation of the conceptual design through simulation software. Then the developed conceptual design of an automatic pneumatic clutch system is tested with proto type.
NASA Astrophysics Data System (ADS)
Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.
2015-12-01
An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.
Rowland, Paula; McMillan, Sarah; McGillicuddy, Patti; Richards, Joy
2017-01-01
Public and patient involvement (PPI) in health care may refer to many different processes, ranging from participating in decision-making about one's own care to participating in health services research, health policy development, or organizational reforms. Across these many forms of public and patient involvement, the conceptual and theoretical underpinnings remain poorly articulated. Instead, most public and patient involvement programs rely on policy initiatives as their conceptual frameworks. This lack of conceptual clarity participates in dilemmas of program design, implementation, and evaluation. This study contributes to the development of theoretical understandings of public and patient involvement. In particular, we focus on the deployment of patient engagement programs within health service organizations. To develop a deeper understanding of the conceptual underpinnings of these programs, we examined the concept of "the patient perspective" as used by patient engagement practitioners and participants. Specifically, we focused on the way this phrase was used in the singular: "the" patient perspective or "the" patient voice. From qualitative analysis of interviews with 20 patient advisers and 6 staff members within a large urban health network in Canada, we argue that "the patient perspective" is referred to as a particular kind of situated knowledge, specifically an embodied knowledge of vulnerability. We draw parallels between this logic of patient perspective and the logic of early feminist theory, including the concepts of standpoint theory and strong objectivity. We suggest that champions of patient engagement may learn much from the way feminist theorists have constructed their arguments and addressed critique.
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
Telling Stories Digitally: An Experiment with Preschool Children
ERIC Educational Resources Information Center
Kocaman-Karoglu, Aslihan
2015-01-01
With the emergence of the new technologies, twenty-first-century learning involves the application of new media in educational environments. Digital storytelling (DST) is a method that blends traditional storytelling with new technologies. This study was designed to compare the conceptual understanding of preschool students in DST classrooms with…
The Role of Information about "Convention," "Design," and "Goal" in Representing Artificial Kinds
ERIC Educational Resources Information Center
German, Tim P.; Truxaw, Danielle; Defeyter, Margaret Anne
2007-01-01
Artifact knowledge requires integration of information from different areas of human commonsense knowledge--our everyday understanding of object mechanics and our everyday psychology. Here, we address the question of artifact conceptual structure, outlining evidence from tasks involving categorization, function judgments, and problem solving.
A Conceptual Framework for Examining Knowledge Management in Higher Education Contexts
ERIC Educational Resources Information Center
Lee, Hae-Young; Roth, Gene L.
2009-01-01
Knowledge management is an on-going process that involves varied activities: diagnosis, design, and implementation of knowledge creation, knowledge transfer, and knowledge sharing. The primary goal of knowledge management, like other management theories or models, is to identify and leverage organizational and individual knowledge for the…
Do University Students, Alumni, Educators and Employers Link Assessment and Graduate Employability?
ERIC Educational Resources Information Center
Kinash, Shelley; McGillivray, Laura; Crane, Linda
2018-01-01
Within higher education literature, "assessment" and "graduate employability" are linked and co-presented, in that quality student assessment is purported to enhance employability. This research was designed to query the extent to which these same conceptual links are perceived by those actively involved in higher education.…
Exploring the Behavioural Patterns of Entrepreneurial Learning: A Competency Approach
ERIC Educational Resources Information Center
Man, Thomas Wing Yan
2006-01-01
Purpose: The purpose of this study is to empirically explore the behavioural patterns involved in entrepreneurial learning through a conceptualization of entrepreneurial learning as a "competency". Design/methodology/approach: Semi-structured interviews to 12 entrepreneurs were conducted with a focus on the critical incidents in which…
CHIME: A Metadata-Based Distributed Software Development Environment
2005-01-01
structures by using typography , graphics , and animation. The Software Im- mersion in our conceptual model for CHIME can be seen as a form of Software...Even small- to medium-sized development efforts may involve hundreds of artifacts -- design documents, change requests, test cases and results, code...for managing and organizing information from all phases of the software lifecycle. CHIME is designed around an XML-based metadata architecture, in
POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.
1963-06-21
A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less
Greene, Kathryn
2013-01-01
Adolescence is a time of increased risk taking, and recent intervention strategies have included adolescents planning or producing antirisk messages for their peers. Although these projects may generate enthusiasm, we know little about message planning or production as a strategy for changing adolescent decision-making and behavior. This article articulates the Theory of Active Involvement (TAI) to describe and explain the processes through which these active involvement interventions influence adolescents. TAI is based on social cognitive theory's notion of self-regulation and examines multiple perspective taking and activating the self-reflection processes. The theory specifically describes the process of cognitive changes experienced by participants in active involvement interventions. The sequence is conceptualized as starting when engagement with the intervention (arousal and involvement) produces skill and knowledge gains (immediate outcomes) that lead to reflection (perceived discrepancy) and then other cognitions (expectancies, norms, intentions), with the ultimate outcome being behavior change. Engaging the target audience in a process of self-reflection is conceptualized as the crucial ingredient for meaningful and sustainable change in cognitions and behavior. This article provides valuable insight into how active involvement strategies function and how to best design these interventions, particularly those targeting adolescents.
Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change
NASA Astrophysics Data System (ADS)
Hubber, Peter; Tytler, Russell; Haslam, Filocha
2010-01-01
A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.
Conceptual designs for in situ analysis of Mars soil
NASA Technical Reports Server (NTRS)
Mckay, C. P.; Zent, A. P.; Hartman, H.
1991-01-01
A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.
Learning in Earth and space science: a review of conceptual change instructional approaches
NASA Astrophysics Data System (ADS)
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2016-03-01
In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.
The Road to Pre-service Teachers' Conceptual Change.
ERIC Educational Resources Information Center
Lin, Huey-Ling; Gorrell, Jeffrey; Porter, Karen
This study involved a series of seminars designed to help preservice students understand and clarify their views about teaching and learning and to create a condition for the development of an understanding of the underlying concepts which affect their teaching and learning. The seminars tested the hypothesis that learning to teach is improved…
ERIC Educational Resources Information Center
Gouet, Christian; Van Paassen, Annemarie
2012-01-01
Purpose: This article explores the views of Smallholder Marketing Cooperatives' (SMCs) leaders and staff, to gain insight about the particular roles SMCs play in facilitating smallholders' market access. Design/methodology/approach: The authors conceptualized and executed two international workshops in which participants from 42 SMCs from 24…
ERIC Educational Resources Information Center
Bronars, Carrie A.; Hanza, Marcelo M.; Meiers, Sonja J.; Patten, Christi A.; Clark, Matthew M.; Nigon, Julie A.; Weis, Jennifer A.; Wieland, Mark L.; Sia, Irene G.
2017-01-01
Lack of treatment fidelity can be an important source of variation affecting the credibility and utility of outcomes from behavioral intervention research. Development and implementation of a well-designed treatment fidelity plan, especially with research involving underserved populations, requires careful conceptualization of study needs in…
A Field Observation on the Philosophy of Teaching Islamic and Arabic Studies
ERIC Educational Resources Information Center
Yaakub, Muhamadul Bakir Hj.
2009-01-01
Implementation of educational policy in designing curriculum details stands as a basis of conceptual educational practice. It is for sure involved time and space factors to become comprehensive and constructive, especially for teaching Islamic and Arabic studies within modern educational challenges where its uniqueness values in nature should be…
ERIC Educational Resources Information Center
Madsen, Stephanie D.; Collins, W. Andrew
2011-01-01
Conceptual links between aspects of adolescents' dating experiences (i.e., involvement and quality; ages 15-17.5) and qualities of their romantic relationships in young adulthood (ages 20-21) were examined in a prospective longitudinal design. Even after accounting for earlier relationship experiences with parents and peers, aspects of adolescent…
This provides an overview of a novel open-source conceptuial model of molecular and biochemical pathways involved in the regulation of fish reproduction. Further, it provides concrete examples of how such models can be used to design and conduct hypothesis-driven "omics" experim...
Energy Conservation Education. An Action Approach. Grades 4-9.
ERIC Educational Resources Information Center
Zamm, Michael; Samuel, Barry C.
Seventeen lessons are provided in this curriculum designed to involve students (grades 4-9) in energy conservation. The lessons are presented in four parts. The three lessons in part I are intended to give students a preliminary conceptual framework for energy conservation and to motivate them to participate in the conservation-action projects…
Implementation Blueprint and Self-Assessment: Positive Behavioral Interventions and Supports
ERIC Educational Resources Information Center
Technical Assistance Center on Positive Behavioral Interventions and Supports, 2010
2010-01-01
A "blueprint" is a guide designed to improve large-scale implementations of a specific systems or organizational approach, like School-Wide Positive Behavior Support (SWPBS). This blueprint is intended to make the conceptual theory, organizational models, and practices of SWPBS more accessible for those involved in enhancing how schools,…
Why involve families in acute mental healthcare? A collaborative conceptual review
Sandhu, Sima; Giacco, Domenico; Barrett, Katherine; Bennison, Gerry; Collinson, Sue; Priebe, Stefan
2017-01-01
Objectives Family involvement is strongly recommended in clinical guidelines but suffers from poor implementation. To explore this topic at a conceptual level, a multidisciplinary review team including academics, clinicians and individuals with lived experience undertook a review to explore the theoretical background of family involvement models in acute mental health treatment and how this relates to their delivery. Design A conceptual review was undertaken, including a systematic search and narrative synthesis. Included family models were mapped onto the most commonly referenced underlying theories: the diathesis–stress model, systems theories and postmodern theories of mental health. Common components of the models were summarised and compared. Lastly, a thematic analysis was undertaken to explore the role of patients and families in the delivery of the approaches. Setting General adult acute mental health treatment. Results Six distinct family involvement models were identified: Calgary Family Assessment and Intervention Models, ERIC (Equipe Rapide d’Intervention de Crise), Family Psychoeducation Models, Family Systems Approach, Open Dialogue and the Somerset Model. Findings indicated that despite wide variation in the theoretical models underlying family involvement models, there were many commonalities in their components, such as a focus on communication, language use and joint decision-making. Thematic analysis of the role of patients and families identified several issues for implementation. This included potential harms that could emerge during delivery of the models, such as imposing linear ‘patient–carer’ relationships and the risk of perceived coercion. Conclusions We conclude that future staff training may benefit from discussing the chosen family involvement model within the context of other theories of mental health. This may help to clarify the underlying purpose of family involvement and address the diverse needs and world views of patients, families and professionals in acute settings. PMID:28963308
Introductory Statistics Students' Conceptual Understanding of Study Design and Conclusions
NASA Astrophysics Data System (ADS)
Fry, Elizabeth Brondos
Recommended learning goals for students in introductory statistics courses include the ability to recognize and explain the key role of randomness in designing studies and in drawing conclusions from those studies involving generalizations to a population or causal claims (GAISE College Report ASA Revision Committee, 2016). The purpose of this study was to explore introductory statistics students' understanding of the distinct roles that random sampling and random assignment play in study design and the conclusions that can be made from each. A study design unit lasting two and a half weeks was designed and implemented in four sections of an undergraduate introductory statistics course based on modeling and simulation. The research question that this study attempted to answer is: How does introductory statistics students' conceptual understanding of study design and conclusions (in particular, unbiased estimation and establishing causation) change after participating in a learning intervention designed to promote conceptual change in these areas? In order to answer this research question, a forced-choice assessment called the Inferences from Design Assessment (IDEA) was developed as a pretest and posttest, along with two open-ended assignments, a group quiz and a lab assignment. Quantitative analysis of IDEA results and qualitative analysis of the group quiz and lab assignment revealed that overall, students' mastery of study design concepts significantly increased after the unit, and the great majority of students successfully made the appropriate connections between random sampling and generalization, and between random assignment and causal claims. However, a small, but noticeable portion of students continued to demonstrate misunderstandings, such as confusion between random sampling and random assignment.
Orbital debris removal and salvage system
NASA Technical Reports Server (NTRS)
1990-01-01
Four Texas A&M University projects are discussed. The first project is a design to eliminate a majority of orbital debris. The Orbital Debris and Salvage System will push the smaller particles into lower orbits where their orbits will decay at a higher rate. This will be done by momentum transfer via laser. The salvageable satellites will be delivered to the Space Station by an Orbital Transfer Vehicle. The rest of the debris will be collected by Salvage I. The second project is the design of a space based satellite system to prevent the depletion of atmospheric ozone. The focus is on ozone depletion in the Antarctic. The plan is to use an orbiting solar array system designed to transmit microwaves at a frequency of 22 GHz over the region in order to dissipate polar stratospheric clouds that form during the months beginning in August and ending in October. The third project, Project Poseidon, involves a conceptual design of a space based hurricane control system consisting of a network of 21 low-orbiting laser platforms arranged in three rings designed to heat the upper atmosphere of a developing tropical depression. Fusion power plants are proposed to provide power for the lasers. The fourth project, Project Donatello, involves a proposed Mars exploration initiative for the year 2050. The project is a conceptual design for a futuristic superfreighter that will transport large numbers of people and supplies to Mars for the construction of a full scale scientific and manufacturing complex.
The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy
Gervais, Mathieu-Joël; Hunt, Matthew
2015-01-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959
Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew
2015-04-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.
Traditional Instruction of Differential Equations and Conceptual Learning
ERIC Educational Resources Information Center
Arslan, Selahattin
2010-01-01
Procedural and conceptual learning are two types of learning, related to two types of knowledge, which are often referred to in mathematics education. Procedural learning involves only memorizing operations with no understanding of underlying meanings. Conceptual learning involves understanding and interpreting concepts and the relations between…
A study of the conceptual comprehension of electric circuits that engineer freshmen display
NASA Astrophysics Data System (ADS)
Chang, Wheijen; Shieh, Ruey S.
2018-07-01
The purpose of this study was to examine the extent of students’ conceptual comprehension of electric circuits obtained during their high school years, as opposed to in recent class lectures. A total of 201 first-year university students majoring in Engineering in four introductory physics classes were involved in the study. A lecture demonstration of electric circuits was designed to achieve the study purpose. After observing the demonstration, the students were required to identify the associated phenomena and then explain the underlying physical laws. The students’ reasoning performance was used to examine their conceptual comprehension. Two instructional strategies, group discussion without prior lecture and individual reasoning with prior lecture, were implemented to assess student performance. The findings disclosed that although the students had studied the topic previously, most of them could only identify the key phenomena involving simple principles, but failed to identify those involving profound ones. The models most of them adopted were scientifically acceptable but inappropriate in the given context. The students who engaged in group discussion appeared to have a higher phenomenon identification rate than that of the individual-reasoning group. Contrarily, the individual-reasoning group was found to have adopted the valid principles more effectively than the discussion group, probably due to the prior instruction received in the current class. The topics recently lectured seemed to have guided the students’ cognitive orientations toward selecting principles, regardless of their validity. The study findings reveal that the concepts the students had acquired from their earlier learning were rather limited. That is, sophisticated instructional design is always pivotal, regardless of students’ prior learning experiences. Moreover, when adopting demonstration as a teaching tool, explicit instructional guidance is also crucial.
Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane
2018-05-05
The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-04-01
The AGRI GRAIN POWER (AGP) Project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The Project conceptual design is presented in this volume.« less
General Methodology for Designing Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.
2012-01-01
A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.
The Role of Context in Third Graders' Learning of Area Measurement
ERIC Educational Resources Information Center
Haris, Denny; Ilma, Ratu
2011-01-01
Many researches showed that the most of students find the difficulty in measuring area. The formula of area tends to be taught directly without involving the conceptual basis and the area measurement are separated from children's daily experiences. For this reason, the teaching and learning of area measurement was designed and link to a set of…
ERIC Educational Resources Information Center
Carter, Keith A.; And Others
Project 2142 was a multi-phase effort to discover and mobilize for dissemination to rural decision-makers various information and findings pertaining to the quality of life experienced by rural people. The initial research phases involved design of a conceptual framework that placed some parameters on the variety of social phenomena studied.…
ERIC Educational Resources Information Center
Welch, Marshall; Plaxton-Moore, Star
2017-01-01
This research involved the conduct of a conceptual review of 28 refereed journal articles and a survey of campus centers for community engagement staff to identify salient features and trends of existing faculty development programming designed to advance service-learning and community engagement in higher education. Results of this investigation…
ERIC Educational Resources Information Center
MacMillan, Karen; Komar, Jennifer
2018-01-01
This article describes a classroom exercise that is designed to help students understand the basic tenets of population ecology (also known as organizational ecology). The macro-level, longitudinal approach to understanding organizations can be difficult for students to conceptualize as it involves systems thinking. This exercise makes the theory…
ERIC Educational Resources Information Center
Chaves, Christopher A.
2009-01-01
The purpose of this article is to provide researchers and, in particular, practitioner-scholars of e-learning curricular designs and instructors with one conceptual model that supports more involvement and interaction within on-line courses. The "On-line Curriculum Interaction Model" posited by the author is informed by the foundational…
ERIC Educational Resources Information Center
Knamiller, G. W.; And Others
1995-01-01
Explored the degree to which a sample of Tanzania science teachers were able to interpret the local production of alcohol in light of their conceptual knowledge of the science involved, designed experiments for investigating factors relating to the processes of fermentation and distillation, and considered alternatives for improving this…
Laidsaar-Powell, Rebekah; Butow, Phyllis; Charles, Cathy; Gafni, Amiram; Entwistle, Vikki; Epstein, Ronald; Juraskova, Ilona
2017-11-01
Family caregivers are regularly involved in cancer consultations and treatment decision-making (DM). Yet there is limited conceptual description of caregiver influence/involvement in DM. To address this, an empirically-grounded conceptual framework of triadic DM (TRIO Framework) and corresponding graphical aid (TRIO Triangle) were developed. Jabareen's model for conceptual framework development informed multiple phases of development/validation, incorporation of empirical research and theory, and iterative revisions by an expert advisory group. Findings coalesced into six empirically-grounded conceptual insights: i) Caregiver influence over a decision is variable amongst different groups; ii) Caregiver influence is variable within the one triad over time; iii) Caregivers are involved in various ways in the wider DM process; iv) DM is not only amongst three, but can occur among wider social networks; v) Many factors may affect the form and extent of caregiver involvement in DM; vi) Caregiver influence over, and involvement in, DM is linked to their everyday involvement in illness care/management. The TRIO Framework/Triangle may serve as a useful guide for future empirical, ethical and/or theoretical work. This Framework can deepen clinicians's and researcher's understanding of the diverse and varying scope of caregiver involvement and influence in DM. Copyright © 2017 Elsevier B.V. All rights reserved.
Greene, Kathryn
2013-01-01
Adolescence is a time of increased risk-taking and recent intervention strategies have included adolescents planning or producing anti-risk messages for their peers. Although these projects may generate enthusiasm, we know little about message planning or production as a strategy for changing adolescent decision-making and behavior. The paper articulates the Theory of Active Involvement (TAI) to describe and explain the processes through which these active involvement interventions influence adolescents. TAI is based on social cognitive theory’s notion of self-regulation and examines multiple perspective-taking and activating the self-reflection processes. The theory specifically describes the process of cognitive changes experienced by participants in active involvement interventions. The sequence is conceptualized as starting when engagement with the intervention (arousal and involvement) produces skill and knowledge gains (immediate outcomes) that lead to reflection (perceived discrepancy) and then other cognitions (expectancies, norms, intentions), with the ultimate outcome being behavior change. Engaging the target audience in a process of self-reflection is conceptualized as the crucial ingredient for meaningful and sustainable change in cognitions and behavior. This paper provides valuable insight into how active involvement strategies function and how to best design these interventions, particularly those targeting adolescents. PMID:23980581
Training and business performance: the mediating role of absorptive capacities.
Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito
2016-01-01
Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.
Guidance for Organisational Strategy on Knowledge to Action from Conceptual Frameworks and Practice
ERIC Educational Resources Information Center
Willis, Cameron; Riley, Barbara; Lewis, Mary; Stockton, Lisa; Yessis, Jennifer
2017-01-01
This paper aims to provide public health organisations involved in chronic disease prevention with conceptual and practical guidance for developing contextually sensitive knowledge-to-action (KTA) strategies. Methods involve an analysis of 13 relevant conceptual KTA frameworks, and a review of three case examples of organisations with active KTA…
Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design
NASA Astrophysics Data System (ADS)
Iqbal, Liaquat Ullah
An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in achieving better designs with reduced risk in lesser time and cost. The approach is shown to eliminate the traditional boundary between the conceptual and the preliminary design stages, combining the two into one consolidated preliminary design phase. Several examples for the validation and utilization of the Multidisciplinary Design and Optimization (MDO) Tool are presented using missions for the Medium and High Altitude Long Range/Endurance Unmanned Aerial Vehicles (UAVs).
Facilitating conceptual change in students’ understanding of concepts related to pressure
NASA Astrophysics Data System (ADS)
Ozkan, Gulbin; Sezgin Selcuk, Gamze
2016-09-01
The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.
1976-11-11
exchange. The basis for this choice was derived from several factors . One was a timing analysis that was made for certain basic time-critical software...randidate 6jrstem designs were developed and _*xamined with respect to L their capability to demonstrate the workability of the basic concept and for factors ...algorithm recuires a bit time completion, while SOF production allows byte timing and the involved = SOF correlation procedure may be perfor-med during
Transition Models for Engineering Calculations
NASA Technical Reports Server (NTRS)
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Guillemin, Marilys; Gillam, Lynn; Barnard, Emma; Stewart, Paul; Walker, Hannah; Rosenthal, Doreen
2016-10-01
Trust in research is important but not well understood. We examine the ways that researchers understand and practice trust in research. Using a qualitative research design, we interviewed 19 researchers, including eight researchers involved in Australian Indigenous research. The project design focused on sensitive research including research involving vulnerable participants and sensitive research topics. Thematic analysis was used to analyze the data. We found that researchers' understanding of trust integrates both the conceptual and concrete; researchers understand trust in terms of how it relates to other similar concepts and how they practice trust in research. This provides a sound basis to better understand trust in research, as well as identifying mechanisms to regain trust when it is lost in research.
Gauvin, Francois-Pierre; Abelson, Julia; Giacomini, Mita; Eyles, John; Lavis, John N
2010-05-01
There have been calls in recent years for greater public involvement in health technology assessment (HTA). Yet the concept of public involvement is poorly articulated and little attention has been paid to the context of HTA agencies. This article investigates how public involvement is conceptualized in the HTA agency environment. Using qualitative concept analysis methods, we reviewed the HTA literature and the websites of HTA agencies and conducted semi-structured interviews with informants in Canada, Denmark, and the United Kingdom. Our analysis reveals that HTA agencies' role as bridges or boundary organizations situated at the frontier of research and policymaking causes the agencies to struggle with the idea of public involvement. The HTA community is concerned with conceptualizing public involvement in such a way as to meet scientific and methodological standards without neglecting its responsibilities to healthcare policymakers. We offer a conceptual tool for analyzing the nature of public involvement across agencies, characterizing different domains, levels of involvement, and types of publics. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Olympiou, Georgios; Zacharia, Zacharias C.
2012-01-01
This study aimed to investigate the effect of experimenting with physical manipulatives (PM), virtual manipulatives (VM), and a blended combination of PM and VM on undergraduate students' understanding of concepts in the domain of "Light and Color." A pre-post comparison study design was used for the purposes of this study that involved 70…
ERIC Educational Resources Information Center
Alhosani, Abdulraheem Ali; Singh, Sanjay Kumar; Al Nahyan, Moza Tahnoon
2017-01-01
Purpose: The purpose of this paper is to develop a conceptual model on students' academic achievement that is well grounded in the academic research in the domain. The paper aims to weave together the divergent research findings into a comprehensive model for use by all the stakeholders. Design/methodology/approach: It is a literature review-based…
Conceptual design of an in-space cryogenic fluid management facility, executive summary
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.
ERIC Educational Resources Information Center
Cardenas-Claros, Monica Stella; Gruba, Paul A.
2013-01-01
This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
NASA Technical Reports Server (NTRS)
1981-01-01
The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
Conceptualizing Parent Involvement: Low-Income Mexican Immigrant Perspectives
ERIC Educational Resources Information Center
Crane, Thomas B.
2012-01-01
The purposes of this study were to (a) investigate the conceptualization of low-income Mexican immigrant parents about their parental involvement and the family-school connection, (b) identify the influences on low-income Mexican immigrant parents' approach to parent involvement, and (c) identify the ways that Mexican immigrant parents…
Extravehicular mobility unit subcritical liquid oxygen storage and supply system
NASA Technical Reports Server (NTRS)
Anderson, John; Martin, Timothy; Hodgson, ED
1992-01-01
The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented.
Prevention of errors and user alienation in healthcare IT integration programmes.
Benson, Tim
2007-01-01
The design, development and implementation stages of integrated computer projects require close collaboration between users and developers, but this is particularly difficult where there are multiple specialties, organisations and system suppliers. Users become alienated if they are not consulted, but consultation is meaningless if they cannot understand the specifications showing exactly what is proposed. We need stringent specifications that users and developers can review and check before most of the work is done. Avoidable errors lead to delays and cost over-runs. The number of errors is a function of the likelihood of misunderstanding any part of the specification, the number of individuals involved and the number of choices or options. One way to reduce these problems is to provide a conceptual design specification, comprising detailed Unified Modelling Language (UML) class and activity diagrams, data definitions and terminology, in addition to conventional technology-specific specifications. A conceptual design specification needs to be straightforward to understand and use, transparent and unambiguous. People find structured diagrams, such as maps, charts and blueprints, easier to use than reports or tables. Other desirable properties include being technology-independent, comprehensive, stringent, coherent, consistent, composed from reusable elements and computer-readable (XML). When users and developers share the same agreed conceptual design specification, this can be one of the master documents of a formal contract between the stakeholders. No extra meaning should be added during the later stages of the project life cycle.
Getting ready for user involvement in a systematic review
Smith, Elizabeth; Donovan, Sheila; Beresford, Peter; Manthorpe, Jill; Brearley, Sally; Sitzia, John; Ross, Fiona
2009-01-01
Abstract Objective This paper aims to support the critical development of user involvement in systematic reviews by explaining some of the theoretical, ethical and practical issues entailed in ‘getting ready’ for user involvement. Background Relatively few health or social care systematic reviews have actively involved service users. Evidence from other research contexts shows that user involvement can have benefits in terms of improved quality and outcomes, hence there is a need to test out different approaches in order to realize the benefits of user involvement and gain a greater understanding of any negative outcomes. Design Setting up a service‐user reference group for a review of user involvement in nursing, midwifery and health visiting research involved conceptualizing user involvement, developing a representation framework, identifying and targeting service users and creating a sense of mutuality and reciprocity. Setting and participants Recruitment was undertaken across England by two researchers. Members from 24 national consumer organizations were selected to participate in the review. Main variables studied Learning was gained about finding ways of navigating consumer networks and organizations, how best to communicate our goals and intentions and how to manage selection and ‘rejection’ in circumstances where we had stimulated enthusiasm. Results and conclusions Involving service users helped us to access information, locate the findings in issues that are important to service users and to disseminate findings. User involvement is about relationships in social contexts: decisions made at the early conceptual level of research design affect service users and researchers in complex and personal ways. PMID:19236632
Innovation and design approaches within prospective ergonomics.
Liem, André; Brangier, Eric
2012-01-01
In this conceptual article the topic of "Prospective Ergonomics" will be discussed within the context of innovation, design thinking and design processes & methods. Design thinking is essentially a human-centred innovation process that emphasises observation, collaboration, interpretation, visualisation of ideas, rapid concept prototyping and concurrent business analysis, which ultimately influences innovation and business strategy. The objective of this project is to develop a roadmap for innovation, involving consumers, designers and business people in an integrative process, which can be applied to product, service and business design. A theoretical structure comprising of Innovation perspectives (1), Worldviews supported by rationalist-historicist and empirical-idealistic dimensions (2) and Models of "design" reasoning (3) precedes the development and classification of existing methods as well as the introduction of new ones.
The TMT instrumentation program
NASA Astrophysics Data System (ADS)
Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne
2010-07-01
An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams.
Design Requirements for Communication-Intensive Interactive Applications
NASA Astrophysics Data System (ADS)
Bolchini, Davide; Garzotto, Franca; Paolini, Paolo
Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.
Prosocial Involvement as a Positive Youth Development Construct: A Conceptual Review
Lam, Ching Man
2012-01-01
This paper discusses the concept of prosocial involvement as a positive youth development construct. How prosocial involvement is defined and how the different theories conceptualize prosocial involvement are reviewed. Antecedents of prosocial involvement such as biological traits, personality, cognitive and emotional processes, socialization experience, culture, and their social context are examined. The relationship between prosocial involvement and adolescent developmental outcomes, together with strategies to promote prosocial involvement in adolescents, are discussed. Finally, directions for future research and practice are proposed. PMID:22649323
Knowledge Development Generic Framework Concept
2008-12-18
requirements. The conceptual model serves as a communication interface among analysts, military staff, and other actors involved [22015] Systems Analysis will...It designates all long- lived basic mechanisms of material and institutional kind, which guarantee the functioning of a complex community . 2.2.3.2...cooperation with users) • Analyze and decide whether it is better to communicate an information object automatically (“document-to-people”) or via human
ERIC Educational Resources Information Center
McNair, Wanda J.
2013-01-01
The purpose of this applied doctoral project (ADP) was to conceptualize a framework for a charter school program design to promote the academic achievement of a select group of African-American males. Gorton, Alston, and Snowden (2007) emphasized that school improvement involves change for the better. The National Education Goals Panel, a…
This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
New technologies - How to assess environmental effects
NASA Technical Reports Server (NTRS)
Sullivan, P. J.; Lavin, M. L.
1981-01-01
A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.
NASA Astrophysics Data System (ADS)
West, Eva; Wallin, Anita
2013-04-01
Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.
The development and validation of Science Learning Inventory (SLI): A conceptual change framework
NASA Astrophysics Data System (ADS)
Seyedmonir, Mehdi
2000-12-01
A multidimensional theoretical model, Conceptual Change Science Learning (CCSL), was developed based on Standard Model of Conceptual Change and Cognitive Reconstruction of Knowledge Model. The model addresses three main components of science learning, namely the learner's conceptual ecology, the message along with its social context, and the cognitive engagement. A learner's conceptual ecology is organized around three clusters, including epistemological beliefs, existing conceptions, and motivation. Learner's cognitive engagement is represented by a continuum from peripheral processing involving shallow cognitive engagement to central processing involving deep cognitive engagement. Through reciprocal, non-sequential interactions of such constructs, the learners' conceptual change is achieved. Using a quantitative empirical approach, three studies were conducted to investigate the theoretical constructs based on the CCSL Model. The first study reports the development and validation of the hypothesized and factor-analytic scales comprising the instrument, Science Learning Inventory (SLI) intended for college students. The self-report instrument was designed in two parts, SLI-A (conceptual ecology and cognitive engagement) with 48 initial items, and SLI-B (science epistemology) with 49 initial items. The items for SLI-B were based on the tenets of Nature of Science as reflected in the recent reform documents, Science for All Americans (Project 2061) and National Science Education Standards. The results of factor analysis indicated seven factors for SLI-A and four factors for SLI-B. The second study investigated the criterion-related (conceptual change) predictive validity of the SLI in an instructional setting (a college-level physics course). The findings suggested the possibility of different interplay of factors and dynamics depending on the nature of the criterion (gain scores from a three-week intervention versus final course grade). Gain scores were predicted by "self-reflective study behavior" and "science self-efficacy" scales of SLI, whereas the course grade was predicted by "metacognitive engagement" and "dynamic scientific truth," (a factor from science epistemology). The third study investigated the effects of text-based conceptual-change strategy (Enhanced Refutational Text; ERT) on Newtonian Laws of Motion, and the efficacy of the SLI scales in a controlled setting. Also, initial divergent and convergent validity procedures are reported in the study. The results provided partial support for the superiority of ERT over expository text. The ERT was an effective intervention for students with no prior physics background but not for students with prior physics background.
Neger, Emily N; Prinz, Ronald J
2015-07-01
Parental substance abuse is a serious problem affecting the well-being of children and families. The co-occurrence of parental substance abuse and problematic parenting is recognized as a major public health concern. This review focuses on 21 outcome studies that tested dual treatment of substance abuse and parenting. A summary of theoretical conceptualizations of the connections between substance abuse and parenting provides a backdrop for the review. Outcomes of the dual treatment studies were generally positive with respect to reduction of parental substance use and improvement of parenting. Research in this area varied in methodological rigor and needs to overcome challenges regarding design issues, sampling frame, and complexities inherent in such a high-risk population. This area of work can be strengthened by randomized controlled trials, use of mixed-methods outcome measures, consideration of parent involvement with child protective services, involvement of significant others in treatment, provision of concrete supports for treatment attendance and facilitative public policies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deverka, Patricia A; Lavallee, Danielle C; Desai, Priyanka J; Esmail, Laura C; Ramsey, Scott D; Veenstra, David L; Tunis, Sean R
2012-01-01
Aims Stakeholder engagement is fundamental to comparative effectiveness research (CER), but lacks consistent terminology. This paper aims to define stakeholder engagement and present a conceptual model for involving stakeholders in CER. Materials & methods The definitions and model were developed from a literature search, expert input and experience with the Center for Comparative Effectiveness Research in Cancer Genomics, a proof-of-concept platform for stakeholder involvement in priority setting and CER study design. Results Definitions for stakeholder and stakeholder engagement reflect the target constituencies and their role in CER. The ‘analytic-deliberative’ conceptual model for stakeholder engagement illustrates the inputs, methods and outputs relevant to CER. The model differentiates methods at each stage of the project; depicts the relationship between components; and identifies outcome measures for evaluation of the process. Conclusion While the definitions and model require testing before being broadly adopted, they are an important foundational step and will be useful for investigators, funders and stakeholder groups interested in contributing to CER. PMID:22707880
Deverka, Patricia A; Lavallee, Danielle C; Desai, Priyanka J; Esmail, Laura C; Ramsey, Scott D; Veenstra, David L; Tunis, Sean R
2012-03-01
AIMS: Stakeholder engagement is fundamental to comparative effectiveness research (CER), but lacks consistent terminology. This paper aims to define stakeholder engagement and present a conceptual model for involving stakeholders in CER. MATERIALS #ENTITYSTARTX00026; METHODS: The definitions and model were developed from a literature search, expert input and experience with the Center for Comparative Effectiveness Research in Cancer Genomics, a proof-of-concept platform for stakeholder involvement in priority setting and CER study design. RESULTS: Definitions for stakeholder and stakeholder engagement reflect the target constituencies and their role in CER. The 'analytic-deliberative' conceptual model for stakeholder engagement illustrates the inputs, methods and outputs relevant to CER. The model differentiates methods at each stage of the project; depicts the relationship between components; and identifies outcome measures for evaluation of the process. CONCLUSION: While the definitions and model require testing before being broadly adopted, they are an important foundational step and will be useful for investigators, funders and stakeholder groups interested in contributing to CER.
Neger, Emily N.; Prinz, Ronald J.
2015-01-01
Parental substance abuse is a serious problem affecting the well-being of children and families. The co-occurrence of parental substance abuse and problematic parenting is recognized as a major public health concern. This review focuses on 21 outcome studies that tested dual treatment of substance abuse and parenting. A summary of theoretical conceptualizations of the connections between substance abuse and parenting provides a backdrop for the review. Outcomes of the dual treatment studies were generally positive with respect to reduction of parental substance use and improvement of parenting. Research in this area varied in methodological rigor and needs to overcome challenges regarding design issues, sampling frame, and complexities inherent in such a high-risk population. This area of work can be strengthened by randomized controlled trials, use of mixed-methods outcome measures, consideration of parent involvement with child protective services, involvement of significant others in treatment, provision of concrete supports for treatment attendance and facilitative public policies. PMID:25939033
Conceptual design of flapping-wing micro air vehicles.
Whitney, J P; Wood, R J
2012-09-01
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft
NASA Technical Reports Server (NTRS)
Fabisinski, Leo L., III; Maples, Charlotte Dauphne
2010-01-01
Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
2017-05-25
the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta
1988-01-01
Several key issues involved in the application of formal optimization technique to helicopter airframe structures for vibration reduction are addressed. Considerations which are important in the optimization of real airframe structures are discussed. Considerations necessary to establish relevant set of design variables, constraints and objectives which are appropriate to conceptual, preliminary, detailed design, ground and flight test phases of airframe design are discussed. A methodology is suggested for optimization of airframes in various phases of design. Optimization formulations that are unique to helicopter airframes are described and expressions for vibration related functions are derived. Using a recently developed computer code, the optimization of a Bell AH-1G helicopter airframe is demonstrated.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
Conceptual design for aerospace vehicles
NASA Technical Reports Server (NTRS)
Gratzer, Louis B.
1989-01-01
The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near-term as well as framework for development of more advanced methods to serve future needs.
Structural impact and crashworthiness. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, G.A.O.
1984-01-01
This volume contains the keynote addresses of those speakers invited to the International Confernece on Structural Impact and Crashworthiness held at Imperial College, London, in 1984. The speakers represent authoritative views on topics covering the spectrum of impact and crashworthiness involving several materials. The theme of this book may be summarized as 'understanding/modelling/prediction.' Ultimately a crashworthy design depends on many conceptual decisions being correct in the initial design phase. The overall configuration of a structure may be paramount; the detail design of joints and so on has to enable the structure to exploit energy absorption; the fail-safe features must notmore » be prohibitively expensive.« less
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
Cronin, Timothy J; Lawrence, Katherine A; Taylor, Kate; Norton, Peter J; Kazantzis, Nikolaos
2015-05-01
Between-session interventions, or homework, are crucial to a range of psychological therapies, including cognitive behavior therapy (CBT). Therapeutic interventions often involve experiencing emotions and situations, or examining strongly held views about their problems, that clients can find distressing. Hence, the clinician faces a particular challenge in collaborating with the client to carry out these interventions between sessions. In this article, we convey how this process in CBT requires not only a consideration of the theoretically meaningful determinants of adherence behavior but also a sophisticated cognitive case conceptualization. Using case material, we illustrate the interplay between in-session design, planning, and review of between-session interventions and the conceptualization. We also include a distinction between generic elements of the therapeutic relationship and CBT-specific elements. The case material also attends to the person of the therapist, and his or her own cognitive and emotional reactions occurring throughout the process of discussing between-session interventions. © 2015 Wiley Periodicals, Inc.
A componential view of children's difficulties in learning fractions.
Gabriel, Florence; Coché, Frédéric; Szucs, Dénes; Carette, Vincent; Rey, Bernard; Content, Alain
2013-01-01
Fractions are well known to be difficult to learn. Various hypotheses have been proposed in order to explain those difficulties: fractions can denote different concepts; their understanding requires a conceptual reorganization with regard to natural numbers; and using fractions involves the articulation of conceptual knowledge with complex manipulation of procedures. In order to encompass the major aspects of knowledge about fractions, we propose to distinguish between conceptual and procedural knowledge. We designed a test aimed at assessing the main components of fraction knowledge. The test was carried out by fourth-, fifth- and sixth-graders from the French Community of Belgium. The results showed large differences between categories. Pupils seemed to master the part-whole concept, whereas numbers and operations posed problems. Moreover, pupils seemed to apply procedures they do not fully understand. Our results offer further directions to explain why fractions are amongst the most difficult mathematical topics in primary education. This study offers a number of recommendations on how to teach fractions.
A componential view of children's difficulties in learning fractions
Gabriel, Florence; Coché, Frédéric; Szucs, Dénes; Carette, Vincent; Rey, Bernard; Content, Alain
2013-01-01
Fractions are well known to be difficult to learn. Various hypotheses have been proposed in order to explain those difficulties: fractions can denote different concepts; their understanding requires a conceptual reorganization with regard to natural numbers; and using fractions involves the articulation of conceptual knowledge with complex manipulation of procedures. In order to encompass the major aspects of knowledge about fractions, we propose to distinguish between conceptual and procedural knowledge. We designed a test aimed at assessing the main components of fraction knowledge. The test was carried out by fourth-, fifth- and sixth-graders from the French Community of Belgium. The results showed large differences between categories. Pupils seemed to master the part-whole concept, whereas numbers and operations posed problems. Moreover, pupils seemed to apply procedures they do not fully understand. Our results offer further directions to explain why fractions are amongst the most difficult mathematical topics in primary education. This study offers a number of recommendations on how to teach fractions. PMID:24133471
NASA Astrophysics Data System (ADS)
Lawson, Anton E.
2003-11-01
This paper explicates a pattern of scientific argumentation in which scientists respond to causal questions with the generation and test of alternative hypotheses through cycles of hypothetico-predictive argumentation. Hypothetico-predictive arguments are employed to test causal claims that exist on at least two levels (designated stage 4 in which the causal claims are perceptible, and stage 5 in which the causal claims are imperceptible). Origins of the ability to construct and comprehend hypothetico-predictive arguments at the highest level can be traced to pre-verbal reasoning of the sensory-motor child and the gradual internalization of verbally mediated arguments involving nominal, categorical, causal and, finally, theoretical propositions. Presumably, the ability to construct and comprehend hypothetico-predictive arguments (an aspect of procedural knowledge) is necessary for the construction of conceptual knowledge (an aspect of declarative knowledge) because such arguments are used during concept construction and conceptual change. Science instruction that focuses on the generation and debate of hypothetico-predictive arguments should improve students' conceptual understanding and their argumentative/reasoning skills.
Lunar surface transportation systems conceptual design lunar base systems study Task 5.2
NASA Technical Reports Server (NTRS)
1988-01-01
Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.
ERIC Educational Resources Information Center
Miller, Brian W.
2011-01-01
Dual-processing theories of conceptual change hypothesize that if children are more personally involved in a lesson they will process the information more deeply leading to more and stronger conceptual change (Dole & Sinatra, 1998). This study tests this theory by increasing personal involvement through anticipation of a future discussion.…
Argumentation as a Strategy for Conceptual Learning of Dynamics
NASA Astrophysics Data System (ADS)
Eskin, Handan; Ogan-Bekiroglu, Feral
2013-10-01
Researchers have emphasized the importance of promoting argumentation in science classrooms for various reasons. However, the study of argumentation is still a young field and more research needs to be carried out on the tools and pedagogical strategies that can assist teachers and students in both the construction and evaluation of scientific arguments. Thus, the aim of this study was to evaluate the impact of argumentation on students' conceptual learning in dynamics. True-experimental design using quantitative research methods was carried out for the study. The participants of the study were tenth graders studying in two classes in an urban all-girls school. There were 26 female students in each class. Five argumentations promoted in the different contexts were embedded through the dynamics unit over a 10-week duration. The study concludes that engaging in the argumentative process that involves making claims, using data to support these claims, warranting the claims with scientific evidence, and using backings, rebuttals, and qualifiers to further support the reasoning, reinforces students' understanding of science, and promotes conceptual change. The results suggest that argumentation should be employed during instruction as a way to enable conceptual learning.
Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation
NASA Technical Reports Server (NTRS)
Orfiz, Gerardo G.; Lee, Shinhak
2006-01-01
A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.
NASA Astrophysics Data System (ADS)
Mazzella, Alessandra; Testa, Italo
2016-09-01
This study is a first attempt to investigate effectiveness of smartphone-based activities on students’ conceptual understanding of acceleration. 143 secondary school students (15-16 years old) were involved in two types of activities: smartphone- and non-smartphone activities. The latter consisted in data logging and ‘cookbook’ activities. For the sake of comparison, all activities featured the same phenomena, i.e., the motion on an inclined plane and pendulum oscillations. A pre-post design was adopted, using open questionnaires as probes. Results show only weak statistical differences between the smartphone and non-smartphone groups. Students who followed smartphone activities were more able to design an experiment to measure acceleration and to correctly describe acceleration in a free fall motion. However, students of both groups had many difficulties in drawing acceleration vector along the trajectory of the studied motion. Results suggest that smartphone-based activities may be effective substitutes of traditional experimental settings and represent a valuable aid for teachers who want to implement laboratory activities at secondary school level. However, to achieve a deeper conceptual understanding of acceleration, some issues need to be addressed: what is the reference system of the built-in smartphone sensor; relationships between smartphone acceleration graphs and experimental setup; vector representation of the measured acceleration.
Mavrou, Katerina; Hoogerwerf, Evert-Jan; Meletiou-Mavrotheris, Maria; Kärki, Anne; Sallinen, Merja
2015-01-01
This paper provides an overview of the construction of a conceptual framework regarding ICT-Assistive Technology (ICT-AT) competence development, designed to gain awareness of the elements involved and to facilitate the understanding and exchange among stakeholders of the ENTELIS (European Network for Technology Enhanced Learning in an Inclusive Society) project. The framework was designed based on the basic principles of Activity Theory, which however have been adapted and adjusted to the project's objectives. Hence, it includes a map of actors and other parameters functioning in a person surrounding "ecosystem", and it allows us to understand and map roles, expectations, barriers, as well as to devise solutions to tackle digital divide. Taking as a starting and central point the person and his/her wish to self-determination and fulfilment (quality of life) and the related needs, it provides a map of how the various concepts and variables interact within the theoretical and methodological perspective of the collection, description and assessment of experiences in ICT-AT education and competences development of persons with disabilities (PwD) of all ages. The conceptual framework represents two interacting learning activity systems: (a) the internal system of the end-user, which includes the end-user and his/her needs, the setting where learning takes place and the other actors involved, and (b) the external system, which embraces the internal system but also wider issues of policy and practice and experiences and 'actors' that contribute to the development and use of ICT and ICT-AT skills in all areas of life. The elements of these systems and their interaction provide the basis for analysing experiences and advancing knowledge relevant for bridging the digital divide.
Engineering performance metrics
NASA Astrophysics Data System (ADS)
Delozier, R.; Snyder, N.
1993-03-01
Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.
NASA Astrophysics Data System (ADS)
Rustaman, N. Y.; Afianti, E.; Maryati, S.
2018-05-01
A study using one group pre-post-test experimental design on Life organization system topic was carried out to investigate student’s tendency in learning abstract concept, their creativity and collaboration in designing and producing cell models through STEM-based learning. A number of seventh grade students in Cianjur district were involved as research subjects (n=34). Data were collected using two tier test for tracing changes in student conception before and after the application of STEM-based learning, and rubrics in creativity design (adopted from Torrance) and product on cell models (individually, in group), and rubric for self-assessment and observed skills on collaboration adapted from Marzano’s for life-long learning. Later the data obtained were analyzed qualitatively by interpreting the tendency of data presented in matrix sorted by gender. Research findings showed that the percentage of student’s scientific concept mastery is moderate in general. Their creativity in making a cell model design varied in category (expressing, emergent, excellent, not yet evident). Student’s collaboration varied from excellent, fair, good, less once, to less category in designing cell model. It was found that STEM based learning can facilitate students conceptual change, creativity and collaboration.
Mathematical vs. conceptual understanding: Where do we draw the line?
NASA Astrophysics Data System (ADS)
Sadaghiani, Homeyra; Aguilera, Nicholas
2013-01-01
This research involved high school physics students and how they learn to understand Newton's laws as they relate to falling bodies and projectile motion. Students in introductory, algebra-based, high school physics classes were evaluated based on their prior knowledge through a pretest, designed to assess their initial comprehension of the motion of falling bodies and projectiles. Groups were divided and taught separately with an emphasis on either mathematical derivation of equations, followed by brief conceptual discussions, or on thorough conceptual analysis, followed by a brief mathematical verification. After a posttest was given, an evaluation of the responses and explanations of each group of students was used to determine which method of instruction was more effective. Results indicate that after the conceptual group and math groups achieved similar scores on the pretest, the conceptual group obtained a slightly higher normalized gain of 25% on the posttest, compared to the mathematical group's normalized gain of 16% (unpaired two-tailed t-test P value for posttest results was 0.1037) and, while within standard deviations, also achieved higher overall scores on all posttest questions and higher normalized gains on all but one posttest question. Further, most students, even thoes in the mathematically-instructed group, were more inclined to give conceptually-based responses on postest questions than mathematically-based ones. In the context of this topic, the dominating difficulty for both groups was in analyzing two-dimensional projectile motion and, more specifically, the behavior of each onedimensional component of such motion.
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
Reconceptualization of the Authoritarian Parenting Style and Parental Control: Some Initial Items.
ERIC Educational Resources Information Center
Chao, Ruth K.
This study compared standard conceptualizations for parenting style, parental involvement in school, and parents' socialization goals with alternative conceptualizations, in relation to children's academic achievement. Specifically, the study asked: (1) whether ethnicity is predictive of achievement scores when included in analyses involving the…
ERIC Educational Resources Information Center
Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra
2012-01-01
Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
Data management in an object-oriented distributed aircraft conceptual design environment
NASA Astrophysics Data System (ADS)
Lu, Zhijie
In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.
NASA Technical Reports Server (NTRS)
1989-01-01
The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.
Design of the WES Centrifuge (Phase 3A and 3B)
1993-03-31
the facility; heme ANS&A’a role was to encourage users from different laboratories by discussing the opportunities that presented themselves on the...the ability to interpret users’ needs and for conceptual model defintion , den aquisition and mastrking. Possible arrangements whereby RP could spend...equipment was discussed. CRREL involvement would be needed in the defintion of initial experiments and in the devdlopme of a programme for the commismoning
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
NASA Technical Reports Server (NTRS)
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Single-stage interpolation flaps in facial reconstruction.
Hollmig, S Tyler; Leach, Brian C; Cook, Joel
2014-09-01
Relatively deep and complex surgical defects, particularly when adjacent to or involving free margins, present significant reconstructive challenges. When the use of local flaps is precluded by native anatomic restrictions, interpolation flaps may be modified to address these difficult wounds in a single operative session. To provide a framework to approach difficult soft tissue defects arising near or involving free margins and to demonstrate appropriate design and execution of single-stage interpolation flaps for reconstruction of these wounds. Examination of our utilization of these flaps based on an anatomic region and surgical approach. A region-based demonstration of flap conceptualization, design, and execution is provided. Tunneled, transposed, and deepithelialized variations of single-stage interpolation flaps provide versatile options for reconstruction of a variety of defects encroaching on or involving free margins. The inherently robust vascularity of these flaps supports importation of necessary tissue bulk while allowing aggressive contouring to restore an intricate native topography. Critical flap design allows access to distant tissue reservoirs and placement of favorable incision lines while preserving the inherent advantages of a single operative procedure.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
Energy utilization: municipal waste incineration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaBeck, M.F.
An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less
Interaction and self-correction
Satne, Glenda L.
2014-01-01
In this paper, I address the question of how to account for the normative dimension involved in conceptual competence in a naturalistic framework. First, I present what I call the naturalist challenge (NC), referring to both the phylogenetic and ontogenetic dimensions of conceptual possession and acquisition. I then criticize two models that have been dominant in thinking about conceptual competence, the interpretationist and the causalist models. Both fail to meet NC, by failing to account for the abilities involved in conceptual self-correction. I then offer an alternative account of self-correction that I develop with the help of the interactionist theory of mutual understanding arising from recent developments in phenomenology and developmental psychology. PMID:25101044
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
Handling Qualities Optimization for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Theodore, Colin R.; Berger, Tom
2016-01-01
Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
Metric integration architecture for product development
NASA Astrophysics Data System (ADS)
Sieger, David B.
1997-06-01
Present-day product development endeavors utilize the concurrent engineering philosophy as a logical means for incorporating a variety of viewpoints into the design of products. Since this approach provides no explicit procedural provisions, it is necessary to establish at least a mental coupling with a known design process model. The central feature of all such models is the management and transformation of information. While these models assist in structuring the design process, characterizing the basic flow of operations that are involved, they provide no guidance facilities. The significance of this feature, and the role it plays in the time required to develop products, is increasing in importance due to the inherent process dynamics, system/component complexities, and competitive forces. The methodology presented in this paper involves the use of a hierarchical system structure, discrete event system specification (DEVS), and multidimensional state variable based metrics. This approach is unique in its capability to quantify designer's actions throughout product development, provide recommendations about subsequent activity selection, and coordinate distributed activities of designers and/or design teams across all design stages. Conceptual design tool implementation results are used to demonstrate the utility of this technique in improving the incremental decision making process.
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps
ERIC Educational Resources Information Center
Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa
2013-01-01
Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
Differential processing of thematic and categorical conceptual relations in spoken word production.
de Zubicaray, Greig I; Hansen, Samuel; McMahon, Katie L
2013-02-01
Studies of semantic context effects in spoken word production have typically distinguished between categorical (or taxonomic) and associative relations. However, associates tend to confound semantic features or morphological representations, such as whole-part relations and compounds (e.g., BOAT-anchor, BEE-hive). Using a picture-word interference paradigm and functional magnetic resonance imaging (fMRI), we manipulated categorical (COW-rat) and thematic (COW-pasture) TARGET-distractor relations in a balanced design, finding interference and facilitation effects on naming latencies, respectively, as well as differential patterns of brain activation compared with an unrelated distractor condition. While both types of distractor relation activated the middle portion of the left middle temporal gyrus (MTG) consistent with retrieval of conceptual or lexical representations, categorical relations involved additional activation of posterior left MTG, consistent with retrieval of a lexical cohort. Thematic relations involved additional activation of the left angular gyrus. These results converge with recent lesion evidence implicating the left inferior parietal lobe in processing thematic relations and may indicate a potential role for this region during spoken word production. 2013 APA, all rights reserved
Parent Involvement in Child Care Settings: Conceptual and Measurement Issues
ERIC Educational Resources Information Center
Zellman, Gail L.; Perlman, Michal
2006-01-01
This paper discusses the conceptualization and measurement of Parent Child Care Involvement (PCCI) and questions whether PCCI should be included in high-stakes quality ratings. It presents data on several PCCI measures, including one used by the National Association for the Education of Young Children, the Parent Caregiver Relationship Scale…
NASA Astrophysics Data System (ADS)
Omoragbon, Amen
Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.
Conceptual Chemical Process Design for Sustainability.
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...
CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY
The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...
NASA Astrophysics Data System (ADS)
Chien, Cheng-Chih
In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
Turnaround Time Modeling for Conceptual Rocket Engines
NASA Technical Reports Server (NTRS)
Nix, Michael; Staton, Eric J.
2004-01-01
Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.
SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO CA
2010-03-09
This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less
Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George
2014-01-01
Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760
The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
DSLM Instructional Approach to Conceptual Change Involving Thermal Expansion.
ERIC Educational Resources Information Center
She, Hsiao-Ching
2003-01-01
Examines the process of student conceptual change regarding thermal expansion using the Dual Situated Learning Model (DSLM) as an instructional approach. Indicates that DSLM promotes conceptual change and holds great potential to facilitate the process through classroom instruction at all levels. (Contains 38 references.) (Author/NB)
Conceptual design of a laser fusion power plant. Part I. An integrated facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less
Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George
2014-01-01
The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.
Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando
2017-01-01
Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded with the qualitative component, which augmented the quantitative findings; trainees' user feedback was used to perform iterative refinements to the simulation design and components (collaborative design), resulting in higher mean evaluation scores leading up to the implementation phase. Through application of innovative Distributed Simulation techniques, collaborative design, and consistent evaluation techniques from conceptual, development, and implementation stages, fully immersive simulation techniques for cardiovascular specialities are achievable and have the potential to be implemented more broadly.
Aircraft Conceptual Design Using Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.
2010-01-01
Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.
The methodology of database design in organization management systems
NASA Astrophysics Data System (ADS)
Chudinov, I. L.; Osipova, V. V.; Bobrova, Y. V.
2017-01-01
The paper describes the unified methodology of database design for management information systems. Designing the conceptual information model for the domain area is the most important and labor-intensive stage in database design. Basing on the proposed integrated approach to design, the conceptual information model, the main principles of developing the relation databases are provided and user’s information needs are considered. According to the methodology, the process of designing the conceptual information model includes three basic stages, which are defined in detail. Finally, the article describes the process of performing the results of analyzing user’s information needs and the rationale for use of classifiers.
Korean Temporary Migrant Mothers' Conceptualization of Parent Involvement in the United States
ERIC Educational Resources Information Center
Chung, Hoewook
2013-01-01
The purpose of this study is to gain insight into how Korean temporary migrant mothers conceptualize the nature of parent involvement in the USA. The participants in this study consisted of Korean mothers who were educated in Korea, migrated temporarily to the USA for educational purposes, and sent their children to American schools. Using the…
Use of clickers and sustainable reform in upper-division physics courses
NASA Astrophysics Data System (ADS)
Dubson, Michael
2008-03-01
At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!
Design Studios in Instructional Design and Technology: What Are the Possibilities?
ERIC Educational Resources Information Center
Knowlton, Dave S.
2016-01-01
Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…
AI applications to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Chalfan, Kathryn M.
1990-01-01
This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.
Semantic Description of Educational Adaptive Hypermedia Based on a Conceptual Model
ERIC Educational Resources Information Center
Papasalouros, Andreas; Retalis, Symeon; Papaspyrou, Nikolaos
2004-01-01
The role of conceptual modeling in Educational Adaptive Hypermedia Applications (EAHA) is especially important. A conceptual model of an educational application depicts the instructional solution that is implemented, containing information about concepts that must be ac-quired by learners, tasks in which learners must be involved and resources…
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1992-01-01
The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
NASA Technical Reports Server (NTRS)
Sager, R. E.; Cox, D. W.
1983-01-01
Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.
NASA Technical Reports Server (NTRS)
1986-01-01
The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.
Structural design considerations for a Personnel Launch System
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Robinson, James C.; Macconochie, Ian O.
1990-01-01
A vehicle capable of performing the transfer of eight people to and from the Space Station Freedom is currently in the conceptual/preliminary design stages at the NASA Langley Research Center. Structural definition of this Personnel Launch System (PLS) and the considerations leading to it are described. Issues such as cost, technology level, human factors, and maintainability are used as guidelines for the structural definition. A synergistic design technique involving aerodynamics, performance, mission, packaging, and weights and sizing analyses is utilized to evaluate the structural design. A closed-loop design is achieved when the mission requirements are met by each previously mentioned analysis for a particular vehicle weight. Although satisfactory, the structural concept presented herein is not to be treated as a final answer, but one promising solution. An examination of alternative designs and more detailed analyses can be undertaken in order to identify design inadequacies and more efficient approaches.
A factory concept for processing and manufacturing with lunar material
NASA Technical Reports Server (NTRS)
Driggers, G. W.
1977-01-01
A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.
Concept mapping for virtual rehabilitation and training of the blind.
Sanchez, Jaime; Flores, Hector
2010-04-01
Concept mapping is a technique that allows for the strengthening of the learning process, based on graphic representations of the learner's mental schemes. However, due to its graphic nature, it cannot be utilized by learners with visual disabilities. In response to this limitation we implemented a study that involves the design of AudiodMC, an audio-based, virtual environment for concept mapping designed for use by blind users and aimed at virtual training and rehabilitation. We analyzed the stages involved in the design of AudiodMC from a user-centered design perspective, considering user involvement and usability testing. These include an observation stage to learn how blind learners construct conceptual maps using concrete materials, a design stage to design of a software tool that aids blind users in creating concept maps, and a cognitive evaluation stage using AudiodMC. We also present the results of a study implemented in order to determine the impact of the use of this software on the development of essential skills for concept mapping (association, classification, categorization, sorting and summarizing). The results point to a high level of user acceptance, having identified key sound characteristics that help blind learners to learn concept codification and selection skills. The use of AudiodMC also allowed for the effective development of the skills under review in our research, thus facilitating meaningful learning.
Designing for students' science learning using argumentation and classroom debate
NASA Astrophysics Data System (ADS)
Bell, Philip Laverne
1998-12-01
This research investigates how to design and introduce an educational innovation into a classroom setting to support learning. The research yields cognitive design principles for instruction involving scientific argumentation and debate. Specifically, eighth-grade students used a computer learning environment to construct scientific arguments and to participate in a classroom debate. The instruction was designed to help students integrate their science understanding by debating: How far does light go, does light die out over distance or go forever until absorbed? This research explores the tension between focusing students' conceptual change on specific scientific phenomena and their development of integrated understanding. I focus on the importance of connecting students' everyday experiences and intuitions to their science learning. The work reported here characterizes how students see the world through a filter of their own understanding. It explores how individual and social mechanisms in instruction support students as they expand the range of ideas under consideration and distinguish between these ideas using scientific criteria. Instruction supported students as they engaged in argumentation and debate on a set of multimedia evidence items from the World-Wide-Web. An argument editor called SenseMaker was designed and studied with the intent of making individual and group thinking visible during instruction. Over multiple classroom trials, different student cohorts were increasingly supported in scientific argumentation involving systematic coordination of evidence with theoretical ideas about light. Students' knowledge representations were used as mediating "learning artifacts" during classroom debate. Two argumentation conditions were investigated. The Full Scope group prepared to defend either theoretical position in the debate. These students created arguments that included more theoretical conjectures and made more conceptual progress in understanding light. The Personal Scope group prepared to defend their original opinion about the debate. These students produced more acausal descriptions of evidence and theorized less in their arguments. Regardless of students' prior knowledge of light, the Full Scope condition resulted in a more integrated understanding. Results from the research were synthesized in design principles geared towards helping future designers. Sharing and refining cognitive design principles offers a productive focus for developing a design science for education.
Smith, Chris; Vannak, Uk; Sokhey, Ly; Ngo, Thoai D; Gold, Judy; Free, Caroline
2016-01-05
The objective of this paper is to outline the formative research process used to develop the MOTIF mobile phone-based (mHealth) intervention to support post-abortion family planning in Cambodia. The formative research process involved literature reviews, interviews and focus group discussions with clients, and consultation with clinicians and organisations implementing mHealth activities in Cambodia. This process led to the development of a conceptual framework and the intervention. Key findings from the formative research included identification of the main reasons for non-use of contraception and patterns of mobile phone use in Cambodia. We drew on components of existing interventions and behaviour change theory to develop a conceptual framework. A multi-faceted voice-based intervention was designed to address health concerns and other key determinants of contraception use. Formative research was essential in order to develop an appropriate mHealth intervention to support post-abortion contraception in Cambodia. Each component of the formative research contributed to the final intervention design.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
The evaluative imaging of mental models - Visual representations of complexity
NASA Technical Reports Server (NTRS)
Dede, Christopher
1989-01-01
The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.
Some issues in data model mapping
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Alsabbagh, Jamal R.
1985-01-01
Numerous data models have been reported in the literature since the early 1970's. They have been used as database interfaces and as conceptual design tools. The mapping between schemas expressed according to the same data model or according to different models is interesting for theoretical and practical purposes. This paper addresses some of the issues involved in such a mapping. Of special interest are the identification of the mapping parameters and some current approaches for handling the various situations that require a mapping.
Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1
NASA Technical Reports Server (NTRS)
1986-01-01
Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.
Design of an expert-system flight status monitor
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Duke, E. L.
1985-01-01
The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.
Solar energy for process heat: Design/cost studies of four industrial retrofit applications
NASA Technical Reports Server (NTRS)
French, R. L.; Bartera, R. E.
1978-01-01
Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.
A noninterference blade vibration measurement system for gas turbine engines
NASA Astrophysics Data System (ADS)
Watkins, William B.; Chi, Ray M.
1987-06-01
A noninterfering blade vibration system has been demonstrated in tests of a gas turbine first stage fan. Conceptual design of the system, including its theory, design of case mounted probes, and data acquisition and signal processing hardware was done in a previous effort. The current effort involved instrumentation of an engine fan stage with strain gages; data acquisition using shaft-mounted reference and case-mounted optical probes; recording of data on a wideband tape recorder; and posttest processing using off-line analysis in a facility computer and a minicomputer-based readout system designed for near- real-time readout. Results are presented in terms of true blade vibration frequencies, time and frequency dependent vibration amplitudes and comparison of the optical noninterference results with strain gage readings.
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Review of "Conceptual Structures: Information Processing in Mind and Machine."
ERIC Educational Resources Information Center
Smoliar, Stephen W.
This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…
Facilitating Students' Conceptual Change and Scientific Reasoning Involving the Unit of Combustion
ERIC Educational Resources Information Center
Lee, Chin-Quen; She, Hsiao-Ching
2010-01-01
This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the…
Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models
ERIC Educational Resources Information Center
Delgado, Cesar
2015-01-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…
Student Engagement: Developing a Conceptual Framework and Survey Instrument
ERIC Educational Resources Information Center
Burch, Gerald F.; Heller, Nathan A.; Burch, Jana J.; Freed, Rusty; Steed, Steve A.
2015-01-01
Student engagement is considered to be among the better predictors of learning, yet there is growing concern that there is no consensus on the conceptual foundation. The authors propose a conceptualization of student engagement grounded in A. W. Astin's (1984) Student Involvement Theory and W. A. Kahn's (1990) employee engagement research where…
ERIC Educational Resources Information Center
Morales, Marie Paz Escaño
2017-01-01
"Laro-ng-Lahi" (Indigenous Filipino game) based physics activities invigorated the integration of culture in the pre-service physics education to develop students' epistemic beliefs and the notion of conceptual understanding through conceptual change. The study conveniently involved 28 pre-service undergraduate physics students enrolled…
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
[Robot--a member of (re)habilitation team].
Krasnik, Rastislava; Mikov, Aleksandra; Golubović, Spela; Komazec, Zoran; Komazec, Slobodanka Lemajić
2012-01-01
The rehabilitation process involves a whole team of experts who participate in it over a long period oftime. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. During the long history of technological development of mankind, a number of conceptual and technological solutions for the construction of robots have been known. By using robots in medical rehabilitation it is possible to implement the rehabilitation of peripheral and central motor neurons by increasing the motivation of patients for further recovery and effectiveness of therapy. The paper presents some technological solutions for robot-assisted rehabilitation of patients of different age groups and some possibilities of its use in the treatment. Using robots in standard physiotherapy protocols that involve a number of repetitions, exact dosage, quality design and adaptability to each individual patient leads to the significant progress in the rehabilitation of patients.
Conceptual design of a synchronous Mars telecommunications satellite
NASA Technical Reports Server (NTRS)
Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.
1989-01-01
Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.
Engineering design activities and conceptual change in middle school science
NASA Astrophysics Data System (ADS)
Schnittka, Christine G.
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will persist when not specifically addressed. (2) Engineering design activities are not enough to promote conceptual change. (3) A middle school teacher can successfully implement an engineering design-based curriculum in a science class. (4) Results may also be of interest to science curriculum developers and engineering educators involved in developing engineering outreach curricula for middle school students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANGEVIN, A.S.
1999-07-12
This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less
The Conceptual Design of the Magdalena Ridge Observatory Interferometer
NASA Astrophysics Data System (ADS)
Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.
We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.
Design considerations for fiber composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1972-01-01
An overview of the design methodology for designing structural components from fiber composites is presented. In particular, the need for new conceptual structural designs for the future is discussed and the evolution of conceptual design is illustrated. Sources of design data, analysis and design procedures, and the basic components of structural fiber composites are cited and described. Examples of tradeoff studies and optimum designs are discussed and a simple structure is described in some detail.
The power of symbolic capital in patient and public involvement in health research.
Locock, Louise; Boylan, Anne-Marie; Snow, Rosamund; Staniszewska, Sophie
2017-10-01
Policy-makers and health research funders increasingly require researchers to demonstrate that they have involved patients in the design and conduct of research. However, the extent to which patients and public have the power to get involved on an equal footing is dependent on their economic, cultural, social and symbolic capital. To explore power relations in patient and public involvement (PPI) in research, particularly how patients may wield symbolic capital to develop a more equal relationship. Narrative interviews with a maximum variation sample of 38 people involved as patients, carers or public in health research, analysed thematically. Symbolic capital may be demonstrated in a range of ways (sometimes alongside or in the absence of other forms of capital): illness experience, technical illness knowledge and the challenging outsider. Symbolic capital is unstable and dependent on others for recognition and legitimacy. Nonetheless, participants identify a gradual shift in power relations over time. Research into PPI has been conceptually and theoretically poor, limiting our understanding of its mechanisms and wider contextual elements. Our findings demonstrate the importance of reflecting on the forms of power and capital wielded by the health research community, and of acknowledging the way in which PPI is challenging the status quo. As one of the first papers to conceptualize how different forms of symbolic capital operate and their critical role in challenging the balance of power, our findings may help researchers better plan their PPI activities and reflect on their own power. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry
ERIC Educational Resources Information Center
Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz
2015-01-01
The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
The LAC Test: A New Look at Auditory Conceptualization and Literacy Development K-12.
ERIC Educational Resources Information Center
Lindamood, Charles; And Others
The Lindamood Auditory Conceptualization (LAC) Test was constructed with the recognition that the process of decoding involves an integration of the auditory, visual, and motor senses. Requiring the manipulation of colored blocks to indicate conceptualization of test patterns spoken by the examiner, subtest 1 entails coding of identity, number,…
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
Designing Public Library Websites for Teens: A Conceptual Model
ERIC Educational Resources Information Center
Naughton, Robin Amanda
2012-01-01
The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…
NASA Astrophysics Data System (ADS)
Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In
2016-08-01
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package
NASA Technical Reports Server (NTRS)
Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred
1986-01-01
The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.
Developing a comprehensive conceptual arhictecture to support Earth sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.; Xu, C.; Sun, M.; Li, Z.
2014-12-01
Global challenges require the comprehensive understanding of the earth system to make smarter descisions about scientific research, operational management, and educational activities. We conducted in the one and half year a comprehensive investigation about how to develop a comprehensive conceptual architecture for developing a cyberinfrastructure that can help address such global challenges. This includes three aspects of research and outreach: we first analyzed the conceptual architecture requirements from the earth science domains and the exisiting global and national systems from different agencies and organizations to consolidate a list of requirements from scientific, technological, and educational aspects. A conceptual design by considering these reqquirements and the latest development in enterprise arhictecture was conducted based on our past decade's investigation about cyberinfrastructure architecture for supporting different aspects. We also organized several levels of reviews by different levels of experts from different organizations and background to help us comment the completeness, reasonability, and practicality of the design. A comprehensive conceptual design will be released for public comments this spring to solicit the general comments for reaching a design as comprehensive as possible. The final design is scheduled to be published in 2015 to contribute to the general world wide scientists and CI builders in the geoscience domain and beyond.
Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.
The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less
Mars orbiter conceptual systems design study
NASA Technical Reports Server (NTRS)
Dixon, W.; Vogl, J.
1982-01-01
Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.
Willumsen, Elisabeth; Ahgren, Bengt; Ødegård, Atle
2012-05-01
The need for collaboration in health and social welfare is well documented internationally. It is related to the improvement of services for the users, particularly target groups with multiple problems. However, there is still insufficient knowledge of the complex area of collaboration, and the interprofessional literature highlights the need to develop adequate research approaches for exploring collaboration between organizations, professionals and service users. This paper proposes a conceptual framework based on interorganizational and interprofessional research, with focus on the concepts of integration and collaboration. Furthermore, the paper suggests how two measurement instruments can be combined and adapted to the welfare context in order to explore collaboration between organizations, professionals and service users, thereby contributing to knowledge development and policy improvement. Issues concerning reliability, validity and design alternatives, as well as the importance of management, clinical implications and service user involvement in future research, are discussed.
Intervention mapping: a process for developing theory- and evidence-based health education programs.
Bartholomew, L K; Parcel, G S; Kok, G
1998-10-01
The practice of health education involves three major program-planning activities: needs assessment, program development, and evaluation. Over the past 20 years, significant enhancements have been made to the conceptual base and practice of health education. Models that outline explicit procedures and detailed conceptualization of community assessment and evaluation have been developed. Other advancements include the application of theory to health education and promotion program development and implementation. However, there remains a need for more explicit specification of the processes by which one uses theory and empirical findings to develop interventions. This article presents the origins, purpose, and description of Intervention Mapping, a framework for health education intervention development. Intervention Mapping is composed of five steps: (1) creating a matrix of proximal program objectives, (2) selecting theory-based intervention methods and practical strategies, (3) designing and organizing a program, (4) specifying adoption and implementation plans, and (5) generating program evaluation plans.
Kasl, S V
1996-01-01
The framework of psychosocial epidemiology is used to examine research developments that characterize the accumulation of knowledge regarding the role of the work environment in cardiovascular health and disease. The discussion of current programs of research focuses on the work of T. Theorell and R. Karasek (1996) and J. Siegrist (1996) as exemplars of European and American studies that have contributed the most to the understanding of occupational cardiovascular health. It is argued that researchers need to maintain and nurture relatively broad conceptual models of etiology because cardiovascular disease involves multiple biomedical risk factors and because specific aspects of the work environment are embedded in a large, complex matrix of other psychosocial influences. At the same time, investigators need to push ahead with focused research strategies to clarify the precise nature of the work environmental risk factors that emerge in the broad, somewhat imprecise epidemiologic study designs.
Sustainability of partnership projects: a conceptual framework and checklist.
Edwards, Janine C; Feldman, Penny Hollander; Sangl, Judy; Polakoff, David; Stern, Glen; Casey, Don
2007-12-01
There is growing recognition that the health care delivery system in the United States must make major changes. Intervention projects focusing on quality and patient safety offer the potential for reshaping the future of medicine. Sustainability of the Partnerships for Quality (PFQ) projects and other patient safety and quality improvement projects that provide evidence of effectiveness is essential if progress is to be made. For the purposes of these projects, a conceptual framework and a checklist for sustainability were developed. The framework consists of two dimensions: (1) the goals--what is to be sustained--and (2) elements for sustainability--infrastructure, incentives, incremental opportunities for involvement, and integration. The checklist is designed to trigger planning for sustainability early in a project's design. Specific questions about each of the elements can cue planners and project leaders to build in the goals for sustainability and change processes. A pilot test showed that the framework and checklist are relevant and helpful across a variety of projects. Two extended examples of planning and action for sustainability from the PFQ projects are described. It is too early to claim sustainability for these project. However, continued monitoring for at least three years with the checklist could result in valuable national data with which to design and implement future projects.
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsia; Brown, Cheryl; Jeng, Frank
2012-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem.
An object-oriented software approach for a distributed human tracking motion system
NASA Astrophysics Data System (ADS)
Micucci, Daniela L.
2003-06-01
Tracking is a composite job involving the co-operation of autonomous activities which exploit a complex information model and rely on a distributed architecture. Both information and activities must be classified and related in several dimensions: abstraction levels (what is modelled and how information is processed); topology (where the modelled entities are); time (when entities exist); strategy (why something happens); responsibilities (who is in charge of processing the information). A proper Object-Oriented analysis and design approach leads to a modular architecture where information about conceptual entities is modelled at each abstraction level via classes and intra-level associations, whereas inter-level associations between classes model the abstraction process. Both information and computation are partitioned according to level-specific topological models. They are also placed in a temporal framework modelled by suitable abstractions. Domain-specific strategies control the execution of the computations. Computational components perform both intra-level processing and intra-level information conversion. The paper overviews the phases of the analysis and design process, presents major concepts at each abstraction level, and shows how the resulting design turns into a modular, flexible and adaptive architecture. Finally, the paper sketches how the conceptual architecture can be deployed into a concrete distribute architecture by relying on an experimental framework.
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Enabling Rapid and Robust Structural Analysis During Conceptual Design
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
NASA Technical Reports Server (NTRS)
1985-01-01
The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.
Benoit, Richard; Mion, Lorraine
2012-08-01
This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.
Guidelines for conceptual design and evaluation of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Meyer, C. F.; Hauz, W.
1980-10-01
Guidelines are presented for use as a tool by those considering application of aquifer thermal energy storage (ATES) technology. The guidelines assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES are discussed. Storage and transport subsystems and their expected performance and cost are described. A methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution.
The effects of sign design features on bicycle pictorial symbols for bicycling facility signs.
Oh, Kyunghui; Rogoff, Aaron; Smith-Jackson, Tonya
2013-11-01
The inanimate bicycle symbol has long been used to indicate the animate activity of bicycling facility signs. In contrast, either the inanimate bicycle symbol or the animate bicycle symbol has been used interchangeably for the standard pavement symbols in bike lanes. This has led to confusion among pedestrians and cyclists alike. The purpose of this study was to examine two different designs (inanimate symbol vs. animate symbol) involved in the evaluation of perceived preference and glance legibility, and investigate sign design features on bicycle pictorial symbols. Thirty-five participants compared current bicycle signs (inanimate symbols) to alternative designs (animate symbols) in a controlled laboratory setting. The results indicated that the alternative designs (animate symbols) showed better performance in both preference and glance legibility tests. Conceptual compatibility, familiarity, and perceptual affordances were found to be important factors as well. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
IJ van Rooyen; SR Morrell; AE Wright
2014-10-01
Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Conceptual design of single turbofan engine powered light aircraft
NASA Technical Reports Server (NTRS)
Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.
1977-01-01
The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.
Expression of interest: transcriptomics and the designation of conservation units.
Hansen, Michael M
2010-05-01
An important task within conservation genetics consists in defining intraspecific conservation units. Most conceptual frameworks involve two steps: (i) identifying demographically independent units, and (ii) evaluating their degree of adaptive divergence. Whereas a plethora of methods are available for delineating genetic population structure, assessment of functional genetic divergence remains a challenge. In this issue, Tymchuk et al. (2010) study Atlantic salmon (Salmo salar) populations using both microsatellite markers and analysis of global gene expression. They show that important gene expression differences exist that can be interpreted in the context of different ecological conditions experienced by the populations, along with the populations' histories. This demonstrates an important potential role of transcriptomics for designating conservation units.
Cowen, Alan S.; Keltner, Dacher
2018-01-01
We present a mathematically based framework distinguishing the dimensionality, structure, and conceptualization of emotion-related responses. Our recent findings indicate that reported emotional experience is highdimensional, involves gradients between categories traditionally thought of as discrete (e.g., ‘fear’, ‘disgust’), and cannot be reduced to widely used domain-general scales (valence, arousal, etc.). In light of our conceptual framework and findings, we address potential methodological and conceptual confusions in Barrett and colleagues’ commentary on our work. PMID:29477775
ERIC Educational Resources Information Center
Jin, Haiyue; Wong, Khoon Yoong
2015-01-01
Conceptual understanding is a major aim of mathematics education, and concept map has been used in non-mathematics research to uncover the relations among concepts held by students. This article presents the results of using concept map to assess conceptual understanding of basic algebraic concepts held by a group of 48 grade 8 Chinese students.…
Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.
Ondobaka, Sasha; de Lange, Floris P; Wittmann, Marco; Frith, Chris D; Bekkering, Harold
2015-09-01
Recent accounts of understanding goal-directed action underline the importance of a hierarchical predictive architecture. However, the neural implementation of such an architecture remains elusive. In the present study, we used functional neuroimaging to quantify brain activity associated with predicting physical movements, as they were modulated by conceptual-expectations regarding the purpose of the object involved in the action. Participants observed object-related actions preceded by a cue that generated both conceptual goal expectations and movement goal predictions. In 2 tasks, observers judged whether conceptual or movement goals matched or mismatched the cue. At the conceptual level, expected goals specifically recruited the posterior cingulate cortex, irrespectively of the task and the perceived movement goal. At the movement level, neural activation of the parieto-frontal circuit, including inferior frontal gyrus and the inferior parietal lobe, reflected unpredicted movement goals. Crucially, this movement prediction error was only present when the purpose of the involved object was expected. These findings provide neural evidence that prior conceptual expectations influence processing of physical movement goals and thereby support the hierarchical predictive account of action processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
ERIC Educational Resources Information Center
Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis
2011-01-01
This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…
Design, fabrication and acceptance testing of a zero gravity whole body shower
NASA Technical Reports Server (NTRS)
Schumacher, E. A.; Lenda, J. A.
1974-01-01
Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.
Context and Deep Learning Design
ERIC Educational Resources Information Center
Boyle, Tom; Ravenscroft, Andrew
2012-01-01
Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…
Update on the Solar Power Satellite transmitter design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W.C.
1986-01-01
A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.
Building a Framework for Engineering Design Experiences in High School
ERIC Educational Resources Information Center
Denson, Cameron D.; Lammi, Matthew
2014-01-01
In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…
Conceptual design study for a teleoperator visual system, phase 1
NASA Technical Reports Server (NTRS)
Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.
1972-01-01
Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.
Liu, Ping; Salvi, Ashwin
2018-01-16
With more than 250 conceptual designs submitted, we are pleased to highlight the winners of the LIghtweighting Technologies Enabling Comprehensive Automotive Redesign (LITECAR) Challenge. These innovative conceptual designs seek to lightweight a vehicle while maintaining or exceeding current U.S. automotive safety standards.
Conceptual design of liquid droplet radiator shuttle-attached experiment
NASA Technical Reports Server (NTRS)
Pfeiffer, Shlomo L.
1989-01-01
The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.
Fostering radical conceptual change through dual-situated learning model
NASA Astrophysics Data System (ADS)
She, Hsiao-Ching
2004-02-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R. D.; Widdison, C. A.
1975-01-01
Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
Government conceptual estimating for contracting and management
NASA Technical Reports Server (NTRS)
Brown, J. A.
1986-01-01
The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.
Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan
NASA Astrophysics Data System (ADS)
Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.
2007-12-01
The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.
NASA Technical Reports Server (NTRS)
1986-01-01
Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.; Kinchin, C.; Markham, J.
2014-09-11
The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.
Interactive models of communication at the nanoscale using nanoparticles that talk to one another
Llopis-Lorente, Antoni; Díez, Paula; Sánchez, Alfredo; Marcos, María D.; Sancenón, Félix; Martínez-Ruiz, Paloma; Villalonga, Reynaldo; Martínez-Máñez, Ramón
2017-01-01
‘Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating. PMID:28556828
Hughes-Morley, Adwoa; Young, Bridget; Waheed, Waquas; Small, Nicola; Bower, Peter
2015-02-01
Depression is common and clinical trials are crucial for evaluating treatments. Difficulties in recruiting participants into depression trials are well-documented, yet no study has examined the factors affecting recruitment. This review aims to identify the factors affecting recruitment into depression trials and to develop a conceptual framework through systematic assessment of published qualitative research. Systematic review and meta-synthesis of published qualitative studies. Meta-synthesis involves a synthesis of themes across a number of qualitative studies to produce findings that are "greater than the sum of the parts". ASSIA, CINAHL, Embase, Medline and PsychInfo were searched up to April 2013. Reference lists of included studies, key publications and relevant reviews were also searched. Quality appraisal adopted the "prompts for appraising qualitative research". 7977 citations were identified, and 15 studies were included. Findings indicate that the decision to enter a depression trial is made by patients and gatekeepers based on the patient׳s health state at the time of being approached to participate; on their attitude towards the research and trial interventions; and on the extent to which patients become engaged with the trial. Our conceptual framework highlights that the decision to participate by both the patient and the gatekeeper involves a judgement between risk and reward. Only English language publications were included in this review. Findings from this review have implications for the design of interventions to improve recruitment into depression trials. Such interventions may aim to diminish the perceived risks and increase the perceived rewards of participation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)
NASA Technical Reports Server (NTRS)
Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth
1994-01-01
This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
NASA Astrophysics Data System (ADS)
Tarifeño-Saldivia, A.; Tain, J. L.; Domingo-Pardo, C.; Calviño, F.; Cortés, G.; Phong, V. H.; Riego, A.; Agramunt, J.; Algora, A.; Brewer, N.; Caballero-Folch, R.; Coleman-Smith, P. J.; Davinson, T.; Dillmann, I.; Estradé, A.; Griffin, C. J.; Grzywacz, R.; Harkness-Brennan, L. J.; Kiss, G. G.; Kogimtzis, M.; Labiche, M.; Lazarus, I. H.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Morales, A. I.; Nishimura, S.; Page, R. D.; Podolyák, Z. S.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Simpson, J.; Sokol, E.; Surman, R.; Svirkhin, A.; Thomas, S. L.; Tolosa, A.; Woods, P.
2017-04-01
The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in GEANT4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions.
Designing and Evaluating a Context-Based Lesson Sequence Promoting Conceptual Coherence in Biology
ERIC Educational Resources Information Center
Ummels, M. H. J.; Kamp, M. J. A.; de Kroon, H.; Boersma, K. Th.
2015-01-01
Context-based education, in which students deal with biological concepts in a meaningful way, is showing promise in promoting the development of students' conceptual coherence. However, literature gives little guidance about how this kind of education should be designed. Therefore, our study aims at designing and evaluating the practicability of a…
ERIC Educational Resources Information Center
Klebansky, Anna; Fraser, Sharon P.
2013-01-01
This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…
Conceptual Models of Depression in Primary Care Patients: A Comparative Study
Karasz, Alison; Garcia, Nerina; Ferri, Lucia
2009-01-01
Conventional psychiatric treatment models are based on a biopsychiatric model of depression. A plausible explanation for low rates of depression treatment utilization among ethnic minorities and the poor is that members of these communities do not share the cultural assumptions underlying the biopsychiatric model. The study examined conceptual models of depression among depressed patients from various ethnic groups, focusing on the degree to which patients’ conceptual models ‘matched’ a biopsychiatric model of depression. The sample included 74 primary care patients from three ethnic groups screening positive for depression. We administered qualitative interviews assessing patients’ conceptual representations of depression. The analysis proceeded in two phases. The first phase involved a strategy called ‘quantitizing’ the qualitative data. A rating scheme was developed and applied to the data by a rater blind to study hypotheses. The data was subjected to statistical analyses. The second phase of the analysis involved the analysis of thematic data using standard qualitative techniques. Study hypotheses were largely supported. The qualitative analysis provided a detailed picture of primary care patients’ conceptual models of depression and suggested interesting directions for future research. PMID:20182550
A Conceptual Design of a Departure Planner Decision Aid
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Idris, Husni R.; Clark, John-Paul; Feron, Eric; Hansman, R. John; Odoni, Amedeo R.; Hall, William D.
2000-01-01
Terminal area Air Traffic Management handles both arriving and departing traffic. To date, research work on terminal area operations has focused primarily on the arrival flow and typically departures are taken into account only in an approximate manner. However, arrivals and departures are highly coupled processes especially in the terminal airspace, with complex interactions and sharing of the same airport resources between arrivals and departures taking place in practically every important terminal area. Therefore, the addition of automation aids for departures, possibly in co-operation with existing arrival flow automation systems, could have a profound contribution in enhancing the overall efficiency of airport operations. This paper presents the conceptual system architecture for such an automation aid, the Departure Planner (DP). This architecture can be used as a core in the development of decision-aiding systems to assist air traffic controllers in improving the performance of departure operations and optimize runway time allocation among different operations at major congested airports. The design of such systems is expected to increase the overall efficiency of terminal area operations and yield benefits for all stakeholders involved in Air Traffic Management (ATM) operations, users as well as service providers.
Christensen, A J
2000-01-01
Previous reviews have concluded that there is little or no evidence supporting a predictable association between patient characteristics and regimen adherence in chronic illness. The primary objective of this article is to propose an alternative conceptual framework for the interpretation and design of adherence research. The author's research involving adherence among patients with end-stage renal disease is reviewed and used to illustrate the patient-by-context interactive framework. Adherence is most favorable when the patient's characteristic or preferred style of coping with illness and treatment-related experiences is congruent with the contextual features or demands of the particular type of medical intervention the patient is undergoing. Among patients with end-stage renal disease, a more vigilant or active style of coping is associated with more favorable adherence only for patients undergoing home-based dialysis treatment modalities that are highly patient directed. Among patients receiving hospital-based, provider-controlled treatment, a less vigilant or more passive coping style is associated with more favorable dialysis regimen adherence. The patient-by-context interactive perspective can provide a useful framework for the interpretation and design of adherence research.
An approach to studying scale for students in higher education: a Rasch measurement model analysis.
Waugh, R F; Hii, T K; Islam, A
2000-01-01
A questionnaire comprising 80 self-report items was designed to measure student Approaches to Studying in a higher education context. The items were conceptualized and designed from five learning orientations: a Deep Approach, a Surface Approach, a Strategic Approach, Clarity of Direction and Academic Self-Confidence, to include 40 attitude items and 40 corresponding behavior items. The study aimed to create a scale and investigate its psychometric properties using a Rasch measurement model. The convenience sample consisted of 350 students at an Australian university in 1998. The analysis supported the conceptual structure of the Scale as involving studying attitudes and behaviors towards five orientations to learning. Attitudes are mostly easier than behaviors, in line with the theory. Sixty-eight items fit the model and have good psychometric properties. The proportion of observed variance considered true is 92% and the Scale is well-targeted against the students. Some harder items are needed to improve the targeting and some further testing work needs to be done on the Surface Approach. In the Surface Approach and Clarity of Direction in Studying, attitudes make a lesser contribution than behaviors to the variable, Approaches to Studying.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
Personalizing knowledge delivery services: a conceptual framework
NASA Technical Reports Server (NTRS)
Majchrzak, Ann; Chelleppa, Ramnath K.; Cooper, Lynne P.; Hars, Alexander
2003-01-01
Consistent with the call of the Minnesota Symposium for new theory in knowledge management, we offer a new conceptualization of Knowledge Management Systems (KMS) as a portfolio of personalized knowledge delivery services. Borrowing from research on online consumer behavior, we describe the challenges imposed by personalized knowledge delivery services, and suggest design parameters that can help to overcome these challenges. We develop our design constructs through a set of hypotheses and discuss the research implications of our new conceptualization. Finally, we describe practical implications suggested by our conceptualization - practical suggestions that we hope to gain some experience with as part of an ongoing action research project at our partner organization.
Development of the biology card sorting task to measure conceptual expertise in biology.
Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.
Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter
NASA Technical Reports Server (NTRS)
Russell, Carl; Johnson, Wayne
2012-01-01
A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
Advanced turbocharger design study program
NASA Technical Reports Server (NTRS)
Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.
1984-01-01
The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.
Commonality between Reduced Gravity and Microgravity Habitats for Long Duration Missions
NASA Technical Reports Server (NTRS)
Howard, Robert
2014-01-01
Many conceptual studies for long duration missions beyond Earth orbit have assumed unique habitat designs for each destination and for transit habitation. This may not be the most effective approach. A variable gravity habitat, one designed for use in microgravity, lunar, Martian, and terrestrial environments may provide savings that offset the loss of environment-specific optimization. However, a brief analysis of selected flown spacecraft and Constellation-era conceptual habitat designs suggests that one cannot simply lift a habitat from one environment and place it in another that it was not designed for without incurring significant human performance compromises. By comparison, a conceptual habitat based on the Skylab II framework but designed specifically to accommodate variable gravity environments can be shown to yield significant advantages while incurring only minimal human performance compromises.
Cowen, Alan S; Keltner, Dacher
2018-04-01
We present a mathematically based framework distinguishing the dimensionality, structure, and conceptualization of emotion-related responses. Our recent findings indicate that reported emotional experience is high-dimensional, involves gradients between categories traditionally thought of as discrete (e.g., 'fear', 'disgust'), and cannot be reduced to widely used domain-general scales (valence, arousal, etc.). In light of our conceptual framework and findings, we address potential methodological and conceptual confusions in Barrett and colleagues' commentary on our work. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reliability Assessment Of Conceptual Launch Vehicles
NASA Technical Reports Server (NTRS)
Bloomer, Lisa A.
2005-01-01
Planning is underway for new NASA missions to the moon and to MARS. These missions carry a great deal of risk, as the Challenger and Columbia accidents demonstrate. In order to minimize the risks to the crew and the mission, risk reduction must be done at every stage, not only in quality manufacturing, but also in design. It is necessary, therefore, to be able to compare the risks posed in different launch vehicle designs. Further, these designs have not yet been implemented, so it is necessary to compare these risks without being able to test the vehicles themselves. This paper will discuss some of the issues involved in this type of comparison. It will start with a general discussion of reliability estimation. It will continue with a short look at some software designed to make this estimation easier and faster. It will conclude with a few recommendations for future tools.
Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.D.
1979-04-01
A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
Cheng, Howard C H; Siu, Andrew M H; Leung, Mana C M
2006-01-01
Pro-social involvement programmes are significant and important for the healthy growth of adolescents as well as for the development of society. Pro-social involvement of adolescence refers to paid-job, volunteer works, sport and games. It serves the functions of making adolescents aware of and to accept the social norms and moral standard of the society, which would bring positive changes to the adolescents and consequently benefit the society as a whole. Past studies showed that adolescents who participated in pro-social involvement programmes tended to have positive self-perception, more social skills, and less anti-social behaviors. In Hong Kong, professionals in education and social services have fully recognized the benefits of pro-involvement programmes. They have organized multi-level and diverse pro-social involvement programmes and encouraged adolescents to participate. Through participation, adolescents could be helped to redefine their relationship with the society, and maximize their potentials for growth. The current programme described in this article is designed in the P.A.T.H.S. Project, support by the Hong Kong Jockey Club Charities Trust.
Shuttle mission simulator hardware conceptual design report
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
1988-06-01
James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against
ERIC Educational Resources Information Center
Urey, Mustafa; Calik, Muammer
2008-01-01
Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…
ERIC Educational Resources Information Center
Rea-Ramirez, Mary Anne; Ramirez, Tina M.
2017-01-01
Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…
Research on conceptual/innovative design for the life cycle
NASA Technical Reports Server (NTRS)
Cagan, Jonathan; Agogino, Alice M.
1990-01-01
The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).
Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument
NASA Astrophysics Data System (ADS)
Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.
2012-09-01
We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.
Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.
NASA Astrophysics Data System (ADS)
Crismond, David Paul
This thesis studied high school students and adults with varying degrees of design experience doing two technology investigate-and-redesign (I&R) tasks. Each involved subjects investigating products, designing experiments to compare them fairly, and then redesigning the devices. A total of 25 pairs of subjects participated in this investigation and included naive and novice high school designers, as well as naive, novice, and expert adult designers. Subjects of similar age and design experience worked in same-gender teams and met for two 2-hour sessions. The essential research question of this thesis was: "What process skills and concepts do naive, novice and expert designers use and learn when investigating devices, designing experiments, and redesigning the devices?" Three methodologies were used to gather and analyze the data: clinical interviewing (Piaget, 1929/1960), protocol analysis (Ericsson & Simon, 1984) and interaction analysis (Jordan and Henderson, 1995). The thesis provides composite case-studies of 10 of the 50 test sessions, buttressed by descriptions of performance trends for all subjects. Given the small sample sizes involved, the findings are by necessity tentative and not supported by statistical analysis: (1) I&R activities are engaging, less time-intensive complements to design-and-build tasks, which involve simple mechanical devices and carry with them a host of potential "alternative understandings" in science and technology. Much gets learned during these tasks, more involving "device knowledge" and "device inquiry skills" than "big ideas" in science and technology. (2) Redesign tasks scaffold naive and novice designers to improved performance in the multidimensional and context-specific activity of design. The performances of naive and novice designers were more like that of expert designers when redesigning existing devices than when doing start-from-scratch designing. (3) Conceptual redesign involved more analysis- than synthesis-related design strategies, suggesting that opportunities for teaching science and technology during design are present, but underutilized since only experts made frequent connections to key science concepts. (4) Naive subjects focused mostly on product features and functions in their designs and made analogies mostly to concrete objects, while experts focused more on problem-finding, determining appropriate mechanisms, and made connections using analogies and concepts at both abstract and concrete levels.
An advanced technology space station for the year 2025, study and concepts
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Garn, P. A.
1987-01-01
A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations.
Conceptualizing Youth Empowerment within Tobacco Control
ERIC Educational Resources Information Center
Holden, Debra J.; Messeri, Peter; Evans, W. Douglas; Crankshaw, Erik; Ben-Davies, Maureen
2004-01-01
This article presents a conceptual framework that was developed to guide a national evaluation of the American Legacy Foundation's (Legacy) Statewide Youth Movement Against Tobacco Use (SYMATU) program. This program was designed to develop youth-led, youth-directed initiatives within local communities. Two evaluation studies were designed and…
Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N
2017-08-02
Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.
FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT
The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....
Conceptual design of the MHD Engineering Test Facility
NASA Technical Reports Server (NTRS)
Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.
1981-01-01
The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.
Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2
NASA Technical Reports Server (NTRS)
Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott;
2010-01-01
This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,
A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1991-01-01
The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.
DOT National Transportation Integrated Search
2009-04-10
This report documents research on the conceptual framework of an integrated transportation system with a prototype application under the framework. Three levels of control are involved in this framework: at the global level (an entire transportation ...
Paul, David L; McDaniel, Reuben R
2016-04-26
Very few telemedicine projects in medically underserved areas have been sustained over time. This research furthers understanding of telemedicine service sustainability by examining teleconsultation projects from the perspective of healthcare providers. Drivers influencing healthcare providers' continued participation in teleconsultation projects and how projects can be designed to effectively and efficiently address these drivers is examined. Case studies of fourteen teleconsultation projects that were part of two health sciences center (HSC) based telemedicine networks was utilized. Semi-structured interviews of 60 key informants (clinicians, administrators, and IT professionals) involved in teleconsultation projects were the primary data collection method. Two key drivers influenced providers' continued participation. First was severe time constraints. Second was remote site healthcare providers' (RSHCPs) sense of professional isolation. Two design steps to address these were identified. One involved implementing relatively simple technology and process solutions to make participation convenient. The more critical and difficult design step focused on designing teleconsultation projects for collaborative, active learning. This learning empowered participating RSHCPs by leveraging HSC specialists' expertise. In order to increase sustainability the fundamental purpose of teleconsultation projects needs to be re-conceptualized. Doing so requires HSC specialists and RSHCPs to assume new roles and highlights the importance of trust. By implementing these design steps, healthcare delivery in medically underserved areas can be positively impacted.
Bronars, Carrie A; Hanza, Marcelo M; Meiers, Sonja J; Patten, Christi A; Clark, Matthew M; Nigon, Julie A; Weis, Jennifer A; Wieland, Mark L; Sia, Irene G
2017-04-01
Lack of treatment fidelity can be an important source of variation affecting the credibility and utility of outcomes from behavioral intervention research. Development and implementation of a well-designed treatment fidelity plan, especially with research involving underserved populations, requires careful conceptualization of study needs in conjunction with what is feasible in the population. The purpose of this article is to review a fidelity-monitoring plan consistent with the National Institutes of Health Behavior Change Consortium guidelines (e.g., design, training, delivery, receipt, and enactment) for an intervention trial designed to improve physical activity and nutrition among immigrant and refugee families. Description of the fidelity monitoring plan is provided and challenges related to monitoring treatment fidelity in a community-based participatory intervention for immigrant and refugee families are discussed.
Move-tecture: A Conceptual Framework for Designing Movement in Architecture
NASA Astrophysics Data System (ADS)
Yilmaz, Irem
2017-10-01
Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.
Thermodynamical effects and high resolution methods for compressible fluid flows
NASA Astrophysics Data System (ADS)
Li, Jiequan; Wang, Yue
2017-08-01
One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R. D.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John W.; Davis, David O.; Solano, Paul A.
2005-01-01
The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.
Brunton, Ginny; Thomas, James; O'Mara-Eves, Alison; Jamal, Farah; Oliver, Sandy; Kavanagh, Josephine
2017-12-11
Government policy increasingly supports engaging communities to promote health. It is critical to consider whether such strategies are effective, for whom, and under what circumstances. However, 'community engagement' is defined in diverse ways and employed for different reasons. Considering the theory and context we developed a conceptual framework which informs understanding about what makes an effective (or ineffective) community engagement intervention. We conducted a systematic review of community engagement in public health interventions using: stakeholder involvement; searching, screening, appraisal and coding of research literature; and iterative thematic syntheses and meta-analysis. A conceptual framework of community engagement was refined, following interactions between the framework and each review stage. From 335 included reports, three products emerged: (1) two strong theoretical 'meta-narratives': one, concerning the theory and practice of empowerment/engagement as an independent objective; and a more utilitarian perspective optimally configuring health services to achieve defined outcomes. These informed (2) models that were operationalized in subsequent meta-analysis. Both refined (3) the final conceptual framework. This identified multiple dimensions by which community engagement interventions may differ. Diverse combinations of intervention purpose, theory and implementation were noted, including: ways of defining communities and health needs; initial motivations for community engagement; types of participation; conditions and actions necessary for engagement; and potential issues influencing impact. Some dimensions consistently co-occurred, leading to three overarching models of effective engagement which either: utilised peer-led delivery; employed varying degrees of collaboration between communities and health services; or built on empowerment philosophies. Our conceptual framework and models are useful tools for considering appropriate and effective approaches to community engagement. These should be tested and adapted to facilitate intervention design and evaluation. Using this framework may disentangle the relative effectiveness of different models of community engagement, promoting effective, sustainable and appropriate initiatives.
Slaughter, Susan E; Bampton, Erin; Erin, Daniel F; Ickert, Carla; Jones, C Allyson; Estabrooks, Carole A
2017-06-01
Innovative approaches are required to facilitate the adoption and sustainability of evidence-based care practices. We propose a novel implementation strategy, a peer reminder role, which involves offering a brief formal reminder to peers during structured unit meetings. This study aims to (a) identify healthcare aide (HCA) perceptions of a peer reminder role for HCAs, and (b) develop a conceptual framework for the role based on these perceptions. In 2013, a qualitative focus group study was conducted in five purposively sampled residential care facilities in western Canada. A convenience sample of 24 HCAs agreed to participate in five focus groups. Concurrent with data collection, two researchers coded the transcripts and identified themes by consensus. They jointly determined when saturation was achieved and took steps to optimize the trustworthiness of the findings. Five HCAs from the original focus groups commented on the resulting conceptual framework. HCAs were cautious about accepting a role that might alienate them from their co-workers. They emphasized feeling comfortable with the peer reminder role and identified circumstances that would optimize their comfort including: effective implementation strategies, perceptions of the role, role credibility and a supportive context. These intersecting themes formed a peer reminder conceptual framework. We identified HCAs' perspectives of a new peer reminder role designed specifically for them. Based on their perceptions, a conceptual framework was developed to guide the implementation of a peer reminder role for HCAs. This role may be a strategic implementation strategy to optimize the sustainability of new practices in residential care settings, and the related framework could offer guidance on how to implement this role. © 2017 Sigma Theta Tau International.
NASA Astrophysics Data System (ADS)
Hadjiachilleos, Stella; Valanides, Nicos; Angeli, Charoula
2013-07-01
Background: Cognitive conflict has been identified as an important factor for bringing about students' conceptual change. Researchers draw attention to the need to study not only cognitive factors related to cognitive conflict but affective factors as well. Purpose: The purpose of this study was to investigate the contribution of cognitive and non-cognitive aspects involved in cognitive conflict on students' conceptual change. Sample: Fifteen students, five from each of fourth, sixth and eighth grades, participated in the study. Seven students were male, and the rest were female. All students had high academic performance and were good at explaining their reasoning. Design and method: The study focused on gaining in-depth information, using semi-structured clinical interviews, about students' thinking when they were engaged in an inquiry process, which incorporated cognitive conflict using a scenario about floating and sinking. Students' initial conceptions related to the phenomenon of floating and sinking were first diagnosed and, subsequently, discrepant events were presented to challenge their initial conceptions. The 15 interviews were qualitatively analyzed using the constant comparative analysis method. Results: The results of this study showed that students' conceptual change was directly related to both cognitive and affective aspects of cognitive conflict. The results also showed that some students showed persistence on alternative frameworks even after their exposure to cognitive conflict. Conclusions: Cognitive conflict is an idiosyncratic, or personal event, that may not be experienced by all learners in the same way. Thus, the effect of cognitive conflict on learners' conceptual change is directly related to learners' ability to experience and feel the conflict when it is presented to them.
AFB/open cycle gas turbine conceptual design study
NASA Technical Reports Server (NTRS)
Dickinson, T. W.; Tashjian, R.
1983-01-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
AFB/open cycle gas turbine conceptual design study
NASA Astrophysics Data System (ADS)
Dickinson, T. W.; Tashjian, R.
1983-09-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
OTEC riser cable system, Phase II: conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less
A Conceptual Design Study of a High Temperature Solar Thermal Receiver
NASA Technical Reports Server (NTRS)
Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.
1980-01-01
A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.
ERIC Educational Resources Information Center
Miller, Peter V.; Beauchamp, Larry S.
A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…
Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ
NASA Astrophysics Data System (ADS)
Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei
The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1988-01-01
The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Conceptual design of a two stage to orbit spacecraft
NASA Technical Reports Server (NTRS)
Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.
1993-01-01
This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.
ERIC Educational Resources Information Center
Tosho, Abdulrauf; Mutalib, Ariffin Abdul; Abdul-Salam, Sobihatun Nur
2016-01-01
This paper describes an ongoing study related to a conceptual design model, which is specific to instructional interface design to enhance courseware usage. It was found that most of the existing courseware applications focus on the needs of certain target with most of the courseware offer too little to inclusive learners. In addition, the use of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, James; McCluskey, Elaine; Lundin, Tracy
2016-01-21
This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.
Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs
NASA Astrophysics Data System (ADS)
Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.
2002-10-01
Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.
Assessment of student learning with hypermedia tools in first-year college chemistry
NASA Astrophysics Data System (ADS)
Skov, Neil Martin
Learning chemistry is difficult for some students. In response to this difficulty, many educators argue that hypermedia technology can promote learning of abstract chemistry concepts. This research assesses learning outcomes and use patterns exhibited by first-year college general chemistry students using an instructional hypermedia system called Seeing Through Chemistry (STC) as part of their first course. STC was designed to help students with inadequate preparation for college chemistry. The assessment answers two questions: (a) do students learn from instructional hypermedia, and (b) what kind of students benefit from this medium? This non-experimental, quantitative research involved 82 student volunteers in their first college chemistry course. Data include SAT scores, high school science and mathematics grades, career orientation, chemistry placement score, motivation, laboratory and lecture section enrollment, and chemistry course grade. The investigation requires two specialized assessment tools: a measure of conceptual understanding of acids and bases, and a measure of cognitive engagement with hypermedia. Data analysis methods include two causal path models to examine hypermedia use and learning outcomes: one showing STC's effect on overall chemistry course performance, and the other demonstrating the effect of a single STC module on students' conceptual knowledge of acids and bases. Though there is no significant effect on course grade, the second analysis shows statistically significant learning from students' work with instructional hypermedia. Both causal models demonstrate that students with poorer preparation for college chemistry used STC more than students with better preparation, which matches the designers' intent. Some better prepared students were relatively more motivated to use the hypermedia system. Other findings show positive effects of high school science and college laboratory coursework on concept learning. This research informs the field of hypermedia design. Since STC's developers used particular parameters to guide their design, the medium's positive effect on learning indirectly supports the underlying design parameters. This research also demonstrates an effective method for assessing hypermedia learning in large course settings. In addition, the study exhibits a new tool for investigating conceptual understandings of large numbers of students, and a new way to measure cognitive engagement of students using instructional hypermedia.
Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME
NASA Technical Reports Server (NTRS)
Shirley, John A.; Boedeker, Laurence R.
1993-01-01
Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.
Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology
Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290
Feature Statistics Modulate the Activation of Meaning during Spoken Word Processing
ERIC Educational Resources Information Center
Devereux, Barry J.; Taylor, Kirsten I.; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K.
2016-01-01
Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in ("distinctiveness/sharedness") and likelihood of co-occurrence ("correlational…
Conceptual Framework for the Chemical Effects in Biological Systems (CEBS) T oxicogenomics Knowledge Base
Abstract
Toxicogenomics studies how the genome is involved in responses to environmental stressors or toxicants. It combines genetics, genome-scale mRNA expressio...
Conceptual design of a device to measure hand swelling in a micro-gravity environment
NASA Technical Reports Server (NTRS)
Hysinger, Christopher L.
1993-01-01
In the design of pressurized suits for use by astronauts in space, proper fit is an important consideration. One particularly difficult aspect of the suit design is the design of the gloves. If the gloves of the suit do not fit properly, the grip strength of the astronaut can be decreased by as much as fifty percent. These gloves are designed using an iterative process and can cost over 1.5 million dollars. Glove design is further complicated by the way the body behaves in a micro-gravity environment. In a micro-gravity setting, fluid from the lower body tends to move into the upper body. Some of this fluid collects in the hands and causes the hands to swell. Therefore, a pair of gloves that fit well on earth may not fit well when they are used in space. The conceptual design process for a device which can measure the swelling that occurs in the hands in a micro-gravity environment is described. This process involves developing a specifications list and function structure for the device and generating solution variants for each of the sub functions. The solution variants are then filtered, with the variants that violate any of the specifications being discarded. After acceptable solution variants are obtained, they are combined to form design concepts. These design concepts are evaluated against a set of criteria and the design concepts are ranked in order of preference. Through this process, the two most plausible design concepts were an ultrasonic imaging technique and a laser mapping technique. Both of these methods create a three dimensional model of the hand, from which the amount of swelling can be determined. In order to determine which of the two solutions will actually work best, a further analysis will need to be performed.
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Mavris, Dimitri N.
2006-01-01
An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.
Transitioning from conceptual design to construction performance specification
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather
2012-09-01
On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.
Social exclusion of older persons: a scoping review and conceptual framework.
Walsh, Kieran; Scharf, Thomas; Keating, Norah
2017-03-01
As a concept, social exclusion has considerable potential to explain and respond to disadvantage in later life. However, in the context of ageing populations, the construct remains ambiguous. A disjointed evidence-base, spread across disparate disciplines, compounds the challenge of developing a coherent understanding of exclusion in older age. This article addresses this research deficit by presenting the findings of a two-stage scoping review encompassing seven separate reviews of the international literature pertaining to old-age social exclusion. Stage one involved a review of conceptual frameworks on old-age exclusion, identifying conceptual understandings and key domains of later-life exclusion. Stage two involved scoping reviews on each domain (six in all). Stage one identified six conceptual frameworks on old-age exclusion and six common domains across these frameworks: neighbourhood and community; services, amenities and mobility; social relations; material and financial resources; socio-cultural aspects; and civic participation. International literature concentrated on the first four domains, but indicated a general lack of research knowledge and of theoretical development. Drawing on all seven scoping reviews and a knowledge synthesis, the article presents a new definition and conceptual framework relating to old-age exclusion.
Confirmatory Factor Analyses Comparing Parental Involvement Frameworks with Secondary Students
ERIC Educational Resources Information Center
Duppong Hurley, Kristin; Lambert, Matthew C.; January, Stacy-Ann A.; Huscroft D'Angelo, Jacqueline
2017-01-01
Given the lack of research on measurement models used to operationalize parental involvement with secondary students, the goal of this research is to examine the measurement properties of the three-domain conceptualization of parental involvement including school-based involvement, home-based involvement, and academic socialization, compared to a…
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Astrophysics Data System (ADS)
Hals, F. A.
1981-03-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Conceptual Design of an In-Space Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.
NASA Astrophysics Data System (ADS)
Furió-Más, Carlos; Calatayud, María Luisa; Guisasola, Jenaro; Furió-Gómez, Cristina
2005-09-01
This paper investigates the views of science and scientific activity that can be found in chemistry textbooks and heard from teachers when acid base reactions are introduced to grade 12 and university chemistry students. First, the main macroscopic and microscopic conceptual models are developed. Second, we attempt to show how the existence of views of science in textbooks and of chemistry teachers contributes to an impoverished image of chemistry. A varied design has been elaborated to analyse some epistemological deficiencies in teaching acid base reactions. Textbooks have been analysed and teachers have been interviewed. The results obtained show that the teaching process does not emphasize the macroscopic presentation of acids and bases. Macroscopic and microscopic conceptual models involved in the explanation of acid base processes are mixed in textbooks and by teachers. Furthermore, the non-problematic introduction of concepts, such as the hydrolysis concept, and the linear, cumulative view of acid base theories (Arrhenius and Brönsted) were detected.
A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate
NASA Astrophysics Data System (ADS)
El Dallal, Norhan; Visser, Florentine
2017-09-01
In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.
Types and patterns of safety concerns in home care: client and family caregiver perspectives
Tong, Catherine E.; Sims-Gould, Joanie; Martin-Matthews, Anne
2016-01-01
Objective Drawing on interviews with home care clients and their family caregivers, we sought to understand how these individuals conceptualize safety in the provision and receipt of home care, how they promote safety in the home space and how their safety concerns differ from those of home support workers. Design In-depth, semi-structured interviews were conducted with clients and family caregivers. The analysis included topic and analytical coding of participants' verbatim accounts. Setting Interviews were completed in British Columbia, Canada. Participants Totally 82 clients and 55 caregivers participated. Results Clients and family caregivers identified three types of safety concerns: physical, spatial and interpersonal. These concerns are largely multi-dimensional and intersectional. We present a conceptual model of client and caregiver safety concerns. We also examine the factors that intensify and mitigate safety concerns in the home. Conclusions In spite of safety concerns, clients and family caregivers overwhelmingly prefer to receive care in the home setting. Spatial and physical concerns are the most salient. The financial burden of creating a safe care space should not be the client's alone to bear. The conceptualization and promotion of safety in home care must recognize the roles, responsibilities and perspectives of all of the actors involved, including workers, clients and their caregivers. PMID:26832159
Kitson, Alison L.; Muntlin Athlin, Åsa
2013-01-01
Aim. To develop and test a framework describing the interrelationship of three key dimensions (physical, psychosocial, and relational) in the provision of the fundamentals of care to patients. Background. There are few conceptual frameworks to help healthcare staff, particularly nurses, know how to provide direct care around fundamental needs such as eating, drinking, and going to the toilet. Design. Deductive development of a conceptual framework and qualitative analysis of secondary interview data. Method. Framework development followed by a secondary in-depth analysis of primary narrative interview data from three stroke survivors. Results. Using the physical, psychosocial and relational dimensions to develop a conceptual framework, it was possible to identify a number of “archetypes” or scenarios that could explain stroke survivors' positive experiences of their care. Factors contributing to suboptimal care were also identified. Conclusions. This way of thinking about how the fundamentals of care are experienced by patients may help to elucidate the complex processes involved around providing high quality fundamentals of care. This analysis illustrates the multiple dimensions at play. However, more systematic investigation is required with further refining and testing with wider healthcare user groups. The framework has potential to be used as a predictive, evaluative, and explanatory tool. PMID:23864946
Priming Effects Associated with the Hierarchical Levels of Classification Systems
ERIC Educational Resources Information Center
Loehrlein, Aaron J.
2012-01-01
The act of categorization produces conceptual representations in memory while knowledge organization (KO) systems provide conceptual representations that are used in information storage and retrieval systems. Previous research has explored how KO systems can be designed to resemble the user's internal conceptual structures. However, the more…
Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play
ERIC Educational Resources Information Center
Denham, Andre
2012-01-01
This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…
From the School Health Education Study to the National Health Education Standards: Concepts Endure
ERIC Educational Resources Information Center
Nobiling, Brandye D.; Lyde, Adrian R.
2015-01-01
Background: The landmark School Health Education Study (SHES) project influenced by the conceptual approach to teaching and learning provides perspective on modern school health instruction. Conceptual education, the cornerstone of the SHES curriculum framework (CF), "Health Education: A Conceptual Approach to Curriculum Design," fosters…
The Instrumental Value of Conceptual Frameworks in Educational Technology Research
ERIC Educational Resources Information Center
Antonenko, Pavlo D.
2015-01-01
Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…
Conceptualizations of Professional Competencies in School Health Promotion
ERIC Educational Resources Information Center
Carlsson, Monica
2016-01-01
Purpose: The purpose of the paper is to contribute to the conceptualization and discussion of professional competencies needed for supporting the development of the whole-school approach in school health promotion (SHP). Design/methodology/approach: The paper is based on a conceptual synthesis of literature, guided by a theoretical perspective on…
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Prior Conceptual Knowledge and Textbook Search.
ERIC Educational Resources Information Center
Byrnes, James P.; Guthrie, John T.
1992-01-01
The role of a subject's conceptual knowledge in the procedural task of searching a text for information was studied for 51 college undergraduates in 2 experiments involving knowledge of anatomy. Students with more anatomical information were able to search a text more quickly. Educational implications are discussed. (SLD)
Researching Lesbian, Gay, and Bisexual Youth: Conceptual, Practical, and Ethical Considerations
ERIC Educational Resources Information Center
D'Augelli, Anthony R.; Grossman, Arnold H.
2006-01-01
Developmental and educational researchers have overlooked the development of sexual orientation among adolescents and youth, even as they study sexual development and identity development during adolescence. This paper examines some conceptual, practical, and ethical considerations involved in conducting research on lesbian, gay, and bisexual…
ERIC Educational Resources Information Center
Heck, Ronald H.
1996-01-01
Identifies salient conceptual and methodological issues involved in cross-cultural research. Surveys principals and teachers from California and the Marshall Islands regarding perceptions of principals' leadership capabilities in three areas: school governance, school climate and culture, and instructional organization. There was substantial…
Wagner, Andreas; Rosen, William
2014-01-01
Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation. PMID:24850903
Understanding first law of thermodynamics through activities
NASA Astrophysics Data System (ADS)
Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.
2018-03-01
The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of India. We, then, decided to develop an activity-based module to address students’ conceptual difficulties in this area. In particular, we took up the cases of both adiabatic and isothermal compression of an ideal gas. We tested, through a two-group pre and post test design, the effectiveness of the module.
FAA Airport Design Competition for Universities
NASA Technical Reports Server (NTRS)
Sandy, Mary
2008-01-01
Raise awareness of the importance of airports to the National Airspace System infrastructure. Increase the involvement of the academic community in addressing airport operations and infrastructure issues and needs. Engage U.S. students in the conceptualization of applications, systems and equipment capable of addressing related challenges in a robust, reliable and comprehensive manner. Encourage U.S. undergraduate and graduate students to contribute innovative ideas and solutions to airport and runway safety issues. Provide the framework and incentives for quality educational experiences for university students. d Develop an awareness of and an interest in airports as a vital and interesting area for engineering and technology careers.
Memory as a new therapeutic target
Nader, Karim; Hardt, Oliver; Lanius, Ruth
2013-01-01
This review aims to demonstrate how an understanding of the brain mechanisms involved in memory provides a basis for; (i) reconceptualizing some mental disorders; (ii) refining existing therapeutic tools; and (iii) designing new ones for targeting processes that maintain these disorders. First, some of the stages which a memory undergoes are defined, and the clinical relevance of an understanding of memory processing by the brain is discussed. This is followed by a brief review of some of the clinical studies that have targeted memory processes. Finally, some new insights provided by the field of neuroscience with implications for conceptualizing mental disorders are presented. PMID:24459414
NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne R.
2009-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC - NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2015-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NASA Technical Reports Server (NTRS)
Polites, M. E.; Carrington, C. K.
1995-01-01
This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.
Scenario for concurrent conceptual assembly line design: A case study
NASA Astrophysics Data System (ADS)
Mas, F.; Ríos, J.; Menéndez, J. L.
2012-04-01
The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.
Spent nuclear fuel canister storage building conceptual design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, C.E.
This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.
NASA Astrophysics Data System (ADS)
Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh
2017-07-01
Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Using Concept Maps to Reveal Conceptual Typologies
ERIC Educational Resources Information Center
Hay, David B.; Kinchin, Ian M.
2006-01-01
Purpose: The purpose of this paper is to explain and develop a classification of cognitive structures (or typologies of thought), previously designated as spoke, chain and network thinking by Kinchin "et al." Design/methodology/approach: The paper shows how concept mapping can be used to reveal these conceptual typologies and endeavours to place…
Conceptual design study of a 1985 commercial STOL tilt rotor transport
NASA Technical Reports Server (NTRS)
Widdison, C. A.; Magee, J. P.; Alexander, H. R.
1974-01-01
Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.
A Conceptual Design Model for CBT Development: A NATO Case Study
ERIC Educational Resources Information Center
Kok, Ayse
2014-01-01
CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…
ERIC Educational Resources Information Center
Adolphus, Telima; Omeodu, Doris
2016-01-01
The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…
ERIC Educational Resources Information Center
Wells, John G.
2016-01-01
The PIRPOSAL model is both a conceptual and pedagogical framework intended for use as a pragmatic guide to classroom implementation of Integrative STEM Education. Designerly questioning prompted by a "need to know" serves as the basis for transitioning student designers within and among multiple phases while they progress toward an…
Engineering Design Activities and Conceptual Change in Middle School Science
ERIC Educational Resources Information Center
Schnittka, Christine G.
2009-01-01
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…
A Novel CAI System for Space Conceptualization Training in Perspective Sketching
ERIC Educational Resources Information Center
Luh, Ding-Bang; Chen, Shao-Nung
2013-01-01
For many designers, freehand sketching is the primary tool for conceptualization in the early stage of the design process. However, current education on concept presentation techniques rarely emphasizes the construction of the most fundamental spatial unit, the cube. Incorrect construction of spatial units leads to disproportions that deviate from…
Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.; Moatamedi, M.
2014-12-01
The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.
Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2013-01-01
Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.
NASA Astrophysics Data System (ADS)
Hassan, Rania A.
In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
Design of a recumbent seating system
NASA Technical Reports Server (NTRS)
Croyle, Scott; Delarosa, Jose; George, Daren; Hinkle, Cathy; Karas, Stephen
1993-01-01
Future space shuttle missions presented by NASA might require the shuttle to rendezvous with the Russian space station Mir for the purpose of transporting astronauts back to earth. Due to the atrophied state of these astronauts, a special seating system must be designed for their transportation. The main functions of this seating system are to support and restrain the astronauts during normal reentry flight and to dampen some of the loading that might occur in a crash situation. Through research, the design team developed many concept variants for these functional requirements. By evaluating each variant, the concepts were eliminated until the four most attractive designs remained. The team used a decision matrix to determine the best concept to carry through embodiment. This concept involved using struts for support during reentry flight and a spring damper/shock absorber system to dampen crash landing loads. The embodiment design process consisted of defining the layout of each of the main functional components, specifically, the seat structure and the strut structure. Through the use of MCS/pal two, the design was refined until it could handle all required loads and dampen to the forces specified. The auxiliary function carriers were then considered. Following the design of these components, the complete final layout could be determined. It is concluded that the final design meets all specifications outlined in the conceptual design. The main advantages of this design are its low weight, simplicity, and large amount of function sharing between different components. The disassembly of this design could potentially present a problem because of time and size constraints involved. Overall, this design meets or exceeds all functional requirements.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO
NASA Technical Reports Server (NTRS)
Olds, John R.
1994-01-01
This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.
ERIC Educational Resources Information Center
Baser, Mustafa
2006-01-01
This paper reports upon an active learning approach that promotes conceptual change when studying direct current electricity circuits, using free open source software, "Qucs". The study involved a total of 102 prospective mathematics teacher students. Prior to instruction, students' understanding of direct current electricity was…
ERIC Educational Resources Information Center
Fan, Xinxin; Geelan, David; Gillies, Robyn
2018-01-01
This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…
A Study of Child Variance, Volume 1: Conceptual Models; Conceptual Project in Emotional Disturbance.
ERIC Educational Resources Information Center
Rhodes, William C.; Tracy, Michael L.
Presented are 11 papers discussing the following six models of emotional disturbance in children: biophysical, behavioral, psychodynamic, sociological, and ecological, models, and counter theory. Emotional disturbance is defined as a distinctive human state having multiple manifestations and involving disability, deviance, and alienation. All the…
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... SHELF Plans and Information Deepwater Operations Plans (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined... involving non-conventional production or completion technology for which you have obtained approval...
CONCEPTUAL BASIS FOR MULTI-ROUTE INTAKE DOSE MODELING USING AN ENERGY EXPENDITURE APPROACH
This paper provides the conceptual basis for a modeling logic that is currently being developed in the National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency ( EPA) for use in intake dose assessments involving substances that can enter the body...
College Men's Meanings of Masculinities and Contextual Influences: Toward a Conceptual Model
ERIC Educational Resources Information Center
Harris, Frank, III
2010-01-01
Based on a grounded theory study involving 68 male undergraduates, a conceptual model of the meanings college men ascribe to masculinities is proposed in this article. The participants equated masculinities with "being respected," "being confident and self-assured," "assuming responsibility," and "embodying physical prowess." Contextual factors…
Emotional, self-conceptual, and relational characteristics of bullies and the bullied.
Meland, Eivind; Rydning, Jan Henrik; Lobben, Stian; Breidablik, Hans-Johan; Ekeland, Tor-Johan
2010-06-01
To clarify distributions of emotional and somatic symptoms among different groups involved in bullying behaviour during early adolescence; to explore differences in social integration and self-perceptions; to explore how different cut-off limits for bullying behaviour may affect the impact of these measures; and to interpret our findings in the light of theories of identity that may suggest directions for interventions against bullying in schools. A cross-sectional study, based on self-completion questionnaire, of 1237 pupils aged 11-15 years in autumn 2000 in Alesund, Norway. Bullies and their victims reported similar and greater emotional impairments and psychosomatic complaints, lack of self-confidence, and pessimism than students not involved in bullying. With increasing involvement, bullies differed from non-involved students only in regard to depressive complaints and pessimism. The bullied group reported more depressive, somatic and anxiety complaints, and self-reproach with increasing victimisation. Both bullies and the bullied reported problems relating to school, parents, and teachers. Bullies enjoyed friendships to the same degree or better than their peers not involved in bullying, whereas the bullied group reported impaired peer relations and increasing problems with more serious involvement. Bullies, the bullied, and bully-victims reported diminishing peer support in their class with increasing involvement. Both the bullied and bullies share relational, emotional, and self-conceptual problems, but they also differ in whether they succeed in social arenas and to what extent they are affected by different emotional and self-conceptual problems. They are, however, fellow sufferers in many aspects.
Secondary School Students' Conceptual Understanding of Physical and Chemical Changes
ERIC Educational Resources Information Center
Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.
2016-01-01
In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…
A Conceptual Framework for Responsive Global Engagement in Communication Sciences and Disorders
ERIC Educational Resources Information Center
Hyter, Yvette D.
2014-01-01
The field of speech-language pathology needs a conceptual framework to guide the provision of services in a globalized world. Proposed in this article is a conceptual framework designed to facilitate responsive global engagement for professionals such as speech-language pathologists, who are increasingly serving diverse populations around the…
Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines
NASA Technical Reports Server (NTRS)
Mock, E. A. T.; Daudet, H. C.
1983-01-01
The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.
Flowers, Natalie L
2010-01-01
CodeSlinger is a desktop application that was developed to aid medical professionals in the intertranslation, exploration, and use of biomedical coding schemes. The application was designed to provide a highly intuitive, easy-to-use interface that simplifies a complex business problem: a set of time-consuming, laborious tasks that were regularly performed by a group of medical professionals involving manually searching coding books, searching the Internet, and checking documentation references. A workplace observation session with a target user revealed the details of the current process and a clear understanding of the business goals of the target user group. These goals drove the design of the application's interface, which centers on searches for medical conditions and displays the codes found in the application's database that represent those conditions. The interface also allows the exploration of complex conceptual relationships across multiple coding schemes.
Baucom, Brian R W; Leo, Karena; Adamo, Colin; Georgiou, Panayiotis; Baucom, Katherine J W
2017-12-01
Observational behavioral coding methods are widely used for the study of relational phenomena. There are numerous guidelines for the development and implementation of these methods that include principles for creating new and adapting existing coding systems as well as principles for creating coding teams. While these principles have been successfully implemented in research on relational phenomena, the ever expanding array of phenomena being investigated with observational methods calls for a similar expansion of these principles. Specifically, guidelines are needed for decisions that arise in current areas of emphasis in couple research including observational investigation of related outcomes (e.g., relationship distress and psychological symptoms), the study of change in behavior over time, and the study of group similarities and differences in the enactment and perception of behavior. This article describes conceptual and statistical considerations involved in these 3 areas of research and presents principle- and empirically based rationale for design decisions related to these issues. A unifying principle underlying these guidelines is the need for careful consideration of fit between theory, research questions, selection of coding systems, and creation of coding teams. Implications of (mis)fit for the advancement of theory are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Space station System Engineering and Integration (SE and I). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1987-01-01
A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.
NASA Technical Reports Server (NTRS)
1972-01-01
The conceptual designs of four useful tilt-rotor aircraft for the 1975 to 1980 time period are presented. Parametric studies leading to design point selection are described, and the characteristics and capabilities of each configuration are presented. An assessment is made of current technology status, and additional tilt-rotor research programs are recommended to minimize the time, cost, and risk of development of these vehicles.
The use of COSMIC NASTRAN in an integrated conceptual design environment
NASA Technical Reports Server (NTRS)
White, Gil
1989-01-01
Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.
ERIC Educational Resources Information Center
Bobos, Georgeana; Sierpinska, Anna
2017-01-01
In this paper, we present a design experiment in a "Teaching Mathematics" course for prospective elementary teachers where we sought to develop a "measurement approach" to fractions. We focus on the conceptualization of the mathematical content of the approach. We attribute our progress in the conceptualization to our efforts…
ERIC Educational Resources Information Center
Spears, Janine L.; Parrish, James L., Jr.
2013-01-01
This teaching case introduces students to a relatively simple approach to identifying and documenting security requirements within conceptual models that are commonly taught in systems analysis and design courses. An introduction to information security is provided, followed by a classroom example of a fictitious company, "Fun &…
ERIC Educational Resources Information Center
Richards, Kari
2017-01-01
This study reports the findings of a qualitative case study that examined how elements of design and organization were conceptualized and enacted in two graduate level online courses, and, how these conceptualizations and enactments evolved. Data was collected through interviews and "think-alouds" with the course instructors and through…
The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...
A Conceptual Physical Education Course and College Freshmen's Health-Related Fitness
ERIC Educational Resources Information Center
Liu, Jingwen; Shangguan, Rulan; Keating, Xiaofen D.; Leitner, Jessica; Wu, Yigang
2017-01-01
Purpose: Conceptual physical education (CPE) classes have been widely offered to promote a healthy lifestyle in higher education settings. The purpose of this paper is to examine the effects of a CPE course on health-related fitness (HRF) levels among college freshmen. Design/methodology/approach: A pre- and post-test research design was used. In…
ERIC Educational Resources Information Center
Pöhler, Birte; Prediger, Susanne
2015-01-01
Monolingual or multilingual students with low academic language proficiency need to acquire conceptual understanding for percentages and the language to communicate about them. The design research study explores how these two learning goals can be fostered by a macro-scaffolding approach for seventh grade students. The dual hypothetical learning…
Design in Context: A Conceptual Framework for the Study of Computer Software in Higher Education.
ERIC Educational Resources Information Center
Kozma, Robert B.; Bangert-Drowns, Robert L.
The conceptual groundwork needed to examine the impact of technology, primarily microcomputers, on student learning is presented. Medium, method, and context are tied with a science of design. In section I, research on technology in higher education is reviewed, medium and method are defined, and interaction with context is discussed. Taxonomies…
ERIC Educational Resources Information Center
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-01-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…
Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning
ERIC Educational Resources Information Center
Morgan, Patricia; Abrahamson, Dor
2016-01-01
We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…
Reassessing the causal structure of enduring involvement
Jinhee Jun; Gerard T. Kyle; James D. Absher; William E. Hammitt
2009-01-01
Guided by tenets of identity theory, we hypothesized a causal structure of enduring involvement suggesting that self-relevant components precede the other dimensions. We used Kyle et al.'s (2004a) Modified Involvement Scale, in which leisure involvement is conceptualized as a multidimensional construct consisting of identity affirmation, identity expression,...
ERIC Educational Resources Information Center
White-Johnson, Rhonda L.
2012-01-01
Prosocial involvement is conceptualized as support for or engaging in behaviors that contribute to or benefit African American communities. The current study examines the relationship between prosocial involvement and race-related factors among 303 African American college students. Using two underlying dimensions of prosocial involvement,…
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
Asher, Yvonne M; Kemler Nelson, Deborah G
2008-01-01
Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly accounted for the structural features of the object; others were shown a possible, but implausible function. Children given implausible functions were less satisfied with these responses than those given plausible functions, as shown by their more persistent attempts to ask follow-up questions about function. Accordingly, preschoolers appear to take into account matters of intentional design when assigning artifacts to conceptual kinds.
NASA Astrophysics Data System (ADS)
Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.
2016-08-01
Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercialmore » plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)« less
A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2003-01-01
An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.
A system definition study for the Advanced Meteorological Temperature Sounder (AMTS)
NASA Technical Reports Server (NTRS)
1977-01-01
The functional requirements of Exhibit A (11) were used as the baseline for the conceptual design of a fixed grating out of plane multidetector spectrometer for the Space Shuttle application. Because the grating instrument would be large and the 28 element detector array would be difficult to cool radiatively from a free flying spacecraft and because increasing the spectral resolution of the grating instrument would be difficult in an instrument of reasonable size, a parallel study of a Nichelson interferometer spectrometer was undertaken. This type of instrument offers compact size, fewer detectors to cool, and the possibility of increased spectral resolution. The design and performance parameters of both the grating and interferometer approaches are described. The tradeoffs involved in comparing the two systems for sounding applications are discussed.
A preliminary study of solar powdered aircraft and associated power trains
NASA Technical Reports Server (NTRS)
Hall, D. W.; Fortenbach, C. D.; Dimiceli, E. V.; Parks, R. W.
1983-01-01
The feasibility of regeneratively powered solar high altitude powered platform (HAPP) remotely piloted vehicles was assessed. Those technologies which must be pursued to make long duration solar HAPPs feasible are recommended. A methodology which involved characterization and parametric analysis of roughly two dozen variables to determine vehicles capable of fulfilling the primary mission are defined. One of these vehicles was then conceptually designed. Variations of each major design parameter were investigated along with state-of-the-art changes in power train component capabilities. The midlatitude mission studied would be attainable by a solar HAPP if fuel cell, electrolyzer and photovoltaic technologies are pursued. Vehicles will be very large and have very lightweight structures in order to attain the combinations of altitude and duration required by the primary mission.
The pre-conceptual design of the nuclear island of ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, M.; Menou, S.; Uzu, B.
The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less
Buddhism-as-a-meaning-system for coping with late-life stress: a conceptual framework.
Xu, Jianbin
2018-01-01
Religion is increasingly conceptualized as a meaning system for adjustment and coping. Most of the conceptualizations are grounded in the Judeo-Christian tradition. They may thus not be applicable to Buddhism, which provides a distinct tenor of meaning for coping. This article seeks to construct a conceptual framework of Buddhism-as-a-meaning-system for coping with late-life stress. Literature review and conceptualization were employed. Under this framework, Buddhism functions as a meaning system involving existential meaning, cognitive meaning, and behavioral meaning. There is reason to believe that this framework promises to offer a holistic conceptual map of Buddhist coping in late life. Thus, it could serve as a guide for further empirical and theoretical exploration in the uncharted terrains of Buddhist coping in old age. In addition, gerontological practitioners could use this framework as a frame of reference when working with elderly Buddhist clients who are in stressful circumstances.
Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems
NASA Astrophysics Data System (ADS)
Stewart, John
2010-02-01
At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnarczuk, M.
In this paper, I describe a conceptual framework that uses DOE Order 5700.6C and more than 140 other DOE Orders as an integrated management system -- but I describe it within the context of the broader sociological and cultural issues of doing research at DOE funded facilities. The conceptual framework has two components. The first involves an interpretation of the 10 criteria of DOE 5700.6C that is tailored for a research environment. The second component involves using the 10 criteria as functional categories that orchestrate and integrate the other DOE Orders into a total management system. The Fermilab approach aimsmore » at reducing (or eliminating) the redundancy and overlap within the DOE Orders system at the contractor level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnarczuk, M.
In this paper, I describe a conceptual framework that uses DOE Order 5700.6C and more than 140 other DOE Orders as an integrated management system -- but I describe it within the context of the broader sociological and cultural issues of doing research at DOE funded facilities. The conceptual framework has two components. The first involves an interpretation of the 10 criteria of DOE 5700.6C that is tailored for a research environment. The second component involves using the 10 criteria as functional categories that orchestrate and integrate the other DOE Orders into a total management system. The Fermilab approach aimsmore » at reducing (or eliminating) the redundancy and overlap within the DOE Orders system at the contractor level.« less
Turkish Early Childhood Educators on Parental Involvement
ERIC Educational Resources Information Center
Hakyemez, Sevcan
2015-01-01
Research conducted over recent decades show that parental involvement plays a significant role in children's academic achievement as well as their cognitive, social and emotional development. For effective parental involvement, understanding the conceptualization of early childhood educators should be significant. This research investigated the…
Case conceptualization research in cognitive behavior therapy: A state of the science review.
Easden, Michael H; Kazantzis, Nikolaos
2018-03-01
Prominent models of cognitive behavior therapy (CBT) assert that case conceptualization is crucial for tailoring interventions to adequately address the needs of the individual client. We aimed to review the research on case conceptualization in CBT. We conducted a systematic search of PsychINFO, MEDLINE, Psychology and Behavioral Science Collection, and CINAHL databases to February 2016. A total of 24 studies that met inclusion criteria were identified. It was notable that studies (a) focused on the assessment function of case conceptualization, (b) employed diverse methodologies, and, overall, (c) there remains a paucity of studies examining the in-session process of using case conceptualization or examining relations with outcome. Results from the existing studies suggest that experienced therapists can reliably construct some elements of case conceptualizations, but importance for the efficacy of case conceptualization in CBT has yet to be demonstrated. Research that involves direct observation of therapist competence in case conceptualization as a predictor of CBT outcomes is recommended as a focus for future hypothesis testing. © 2017 Wiley Periodicals, Inc.
Bergström, Zara M; Vogelsang, David A; Benoit, Roland G; Simons, Jon S
2015-09-01
Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. © The Author 2014. Published by Oxford University Press.
Bergström, Zara M.; Vogelsang, David A.; Benoit, Roland G.; Simons, Jon S.
2015-01-01
Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. PMID:24700584
ERIC Educational Resources Information Center
Junsay, Merle L.
2016-01-01
This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…
ERIC Educational Resources Information Center
Kochis, Bruce; Gillespie, Diane
2006-01-01
In this contribution to the growing literature on conceptual metaphor as a fruitful heuristic for qualitative analysis, the authors re-analyzed transcripts of college student discussions of problematic situations involving cultural diversity and interpersonal conflict. The authors show how they identified metaphorical linguistic expressions and…
Development and Validation of a Consumer Quality Assessment Instrument for Dentistry.
ERIC Educational Resources Information Center
Johnson, Jeffrey D.; And Others
1990-01-01
This paper reviews the literature on consumer involvement in dental quality assessment, argues for inclusion of this information in quality assessment measures, outlines a conceptual model for measuring dental consumer quality assessment, and presents data relating to the development and validation of an instrument based on the conceptual model.…
ERIC Educational Resources Information Center
Henry, Alastair
2016-01-01
Currently, the inner dynamics of teacher identity transformations remain a "black box." Conceptualizing preservice teacher identity as a complex dynamic system, and the notion of "being someone who teaches" in dialogical terms as involving shifts between different teacher voices, the study investigates the dynamical processes…
The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance
ERIC Educational Resources Information Center
Haghverdi, Majid; Wiest, Lynda R.
2016-01-01
This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…
ERIC Educational Resources Information Center
Chen, Chien-Hsien; She, Hsiao-Ching
2012-01-01
This study reports the impact of Recurrent On-Line Synchronous Scientific Argumentation learning on 8th grade students' scientific argumentation ability and conceptual change involving physical science. The control group (N = 76) were recruited to receive conventional instruction whereas the experimental group (N = 74) received the Recurrent…
ERIC Educational Resources Information Center
Brint, Steven; Cantwell, Alison M.
2014-01-01
We theorize 5 dimensions of academic disengagement based on students' values, motivations, study behaviors, academic interactions, and competing involvements. Using 2010 survey data from the University of California, we find support for this conceptualization. The size of disengaged populations varied between 5% and 25%, depending on the measure…
ERIC Educational Resources Information Center
Hirsh, Alon; Levy, Sharona T.
2013-01-01
The present research addresses a curious finding: how learning physical principles enhanced athletes' biking performance but not their conceptual understanding. The study involves a model-based triathlon training program, Biking with Particles, concerning aerodynamics of biking in groups (drafting). A conceptual framework highlights several…
ERIC Educational Resources Information Center
Niaz, Mansoor; Chacon, Eleazar
2003-01-01
Describes a study that used a teaching strategy based on two teaching experiments which could facilitate students' conceptual understanding of electrochemistry. Involves two sections (n=29 and n=28) of 10th grade high school students in Venezuela. Concludes that the teaching experiments facilitated student understanding of electrochemistry.…
Planning for a data base system to support satellite conceptual design
NASA Technical Reports Server (NTRS)
Claydon, C. R.
1976-01-01
The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey
2009-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey D.
2010-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
ERIC Educational Resources Information Center
Yuruk, Nejla; Geban, Omer
The main purpose of the study was to investigate the effectiveness of conceptual change text (CCT) oriented instruction over traditionally designed instruction on students' understanding of electrochemical (galvanic and electrolytic) cell concepts. The subjects of the study consisted of 64 students from the two classes of a high school in Turkey.…
Variables to Consider in Planning Research for Effective Instruction: A Conceptual Framework.
ERIC Educational Resources Information Center
Uprichard, A. Edward
In this paper the belief is stated that researchers need to develop some type of conceptual frame for improving continuity of studies and specificity of treatment. This paper describes such a conceptual frame and its implications for research. The paper states that the framework was designed to help researchers identify, classify, and/or quantify…
ERIC Educational Resources Information Center
Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.
2017-01-01
While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…
Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology
ERIC Educational Resources Information Center
Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…
Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts
ERIC Educational Resources Information Center
Agnew, Deborah; Pill, Shane; Orrell, Janice
2017-01-01
This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…
Languaging and Visualisation Method for Grammar Teaching: A Conceptual Change Theory Perspective
ERIC Educational Resources Information Center
Rattya, Kaisu
2013-01-01
Conceptual grammatical knowledge is an area which causes problems at different levels of education. This article examines the ideas of conceptual change theory as a basis for establishing a new grammar teaching method. The research strategy which I use is educational design research and the research data have been collected from teacher students…
Multiple Perspectives of Conceptual Change in Science and the Challenges Ahead
ERIC Educational Resources Information Center
Treagust, David F.; Duit, Reinders
2009-01-01
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. Conceptual change can be interpreted from different individual perspectives or from multiple perspectives. In…
ERIC Educational Resources Information Center
Gurbuz, Ramazan
2010-01-01
The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students' conceptual development of certain probability concepts. The study was conducted using a pretest-posttest control group design with 80 seventh graders. A developed "Conceptual Development Test" comprising 12…
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Lavelle, Thomas M.
1995-01-01
Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.
Conceptual design studies of lift/cruise fans for military transports
NASA Technical Reports Server (NTRS)
1974-01-01
A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.
1988-01-01
system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or
WAIS-IV subtest covariance structure: conceptual and statistical considerations.
Ward, L Charles; Bergman, Maria A; Hebert, Katina R
2012-06-01
D. Wechsler (2008b) reported confirmatory factor analyses (CFAs) with standardization data (ages 16-69 years) for 10 core and 5 supplemental subtests from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Analyses of the 15 subtests supported 4 hypothesized oblique factors (Verbal Comprehension, Working Memory, Perceptual Reasoning, and Processing Speed) but also revealed unexplained covariance between Block Design and Visual Puzzles (Perceptual Reasoning subtests). That covariance was not included in the final models. Instead, a path was added from Working Memory to Figure Weights (Perceptual Reasoning subtest) to improve fit and achieve a desired factor pattern. The present research with the same data (N = 1,800) showed that the path from Working Memory to Figure Weights increases the association between Working Memory and Matrix Reasoning. Specifying both paths improves model fit and largely eliminates unexplained covariance between Block Design and Visual Puzzles but with the undesirable consequence that Figure Weights and Matrix Reasoning are equally determined by Perceptual Reasoning and Working Memory. An alternative 4-factor model was proposed that explained theory-implied covariance between Block Design and Visual Puzzles and between Arithmetic and Figure Weights while maintaining compatibility with WAIS-IV Index structure. The proposed model compared favorably with a 5-factor model based on Cattell-Horn-Carroll theory. The present findings emphasize that covariance model comparisons should involve considerations of conceptual coherence and theoretical adherence in addition to statistical fit. (c) 2012 APA, all rights reserved
A method for scenario-based risk assessment for robust aerospace systems
NASA Astrophysics Data System (ADS)
Thomas, Victoria Katherine
In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
NASA Technical Reports Server (NTRS)
Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.
1989-01-01
The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.
NASA Technical Reports Server (NTRS)
Donahue, Benjamin
1994-01-01
Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchisio, Mario Andrea, E-mail: marchisio@hit.edu.cn
Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment caremore » to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.« less
Conceptual design for a lunar-base CELSS
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Cullingford, Hatice S.
1990-01-01
Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.
Conceptual Design of an APT Reusable Spaceplane
NASA Astrophysics Data System (ADS)
Corpino, S.; Viola, N.
This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.
ERIC Educational Resources Information Center
Gauthier, Andrea; Jenkinson, Jodie
2017-01-01
We designed a serious game, MolWorlds, to facilitate conceptual change about molecular emergence by using game mechanics (resource management, immersed 3rd person character, sequential level progression, and 3-star scoring system) to encourage cycles of productive negativity. We tested the value-added effect of game design by comparing and…
ERIC Educational Resources Information Center
Manurung, Sondang R.; Mihardi, Satria
2016-01-01
The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…
ERIC Educational Resources Information Center
Asher, Yvonne M.; Kemler Nelson, Deborah G.
2008-01-01
Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly…
NASA Technical Reports Server (NTRS)
Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.
1978-01-01
An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.
A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning
ERIC Educational Resources Information Center
Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.
2015-01-01
Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…
Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
J. David Nichols; John R. Warren
1987-01-01
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...
Using conceptual work products of health care to design health IT.
Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark
2016-02-01
This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.
Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak
NASA Astrophysics Data System (ADS)
Labate, C.; Di Gironimo, G.; Renno, F.
2015-09-01
Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.
Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben
2014-01-01
This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.
Survey Measurement of Father Involvement in Childrearing: A Reliability and Validity Study.
ERIC Educational Resources Information Center
Riley, Dave
The purpose of this paper is to describe a specific method of measuring fathers' childrearing involvement. The conceptual scheme underlying the method addresses involvement in routine child care, play with the child, and school-related interactions. Measures involved the father's share of childrearing (as compared with the mother's) and the…
2016-01-01
Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines. PMID:26912288
Gray, Kathleen; Sockolow, Paulina
2016-02-24
Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.
NASA Technical Reports Server (NTRS)
Olds, John R.; Marcus, Leland
2002-01-01
This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).
Motion Planning in a Society of Intelligent Mobile Agents
NASA Technical Reports Server (NTRS)
Esterline, Albert C.; Shafto, Michael (Technical Monitor)
2002-01-01
The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.
A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project
NASA Technical Reports Server (NTRS)
Theodore, Colin R.
2018-01-01
The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
Magnetic liquefier for hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design ofmore » the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.« less
ERIC Educational Resources Information Center
Reeder, Kevin
2005-01-01
In order to facilitate the selection/prioritization process and bridge the gap of design research to design conceptualization, students need to visualize the big picture that describes how the research categories such as "user," "marketing," "functional/mechanical research" are related. This is achieved through the use of a visual storyboard. The…
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran
2009-01-01
The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.